High Speed Network Traffic Analysis with Commodity
Multi-core Systems

Francesco Fusco

IBM Research - Zurich

ETH Zurich
ffu@zurich.ibm.com

ABSTRACT

Multi-core systems are the current dominant trend in com-
puter processors. However, kernel network layers often do
not fully exploit multi-core architectures. This is due to
issues such as legacy code, resource competition of the RX-
queues in network interfaces, as well as unnecessary mem-
ory copies between the OS layers. The result is that packet
capture, the core operation in every network monitoring ap-
plication, may even experience performance penalties when
adapted to multi-core architectures. This work presents
common pitfalls of network monitoring applications when
used with multi-core systems, and presents solutions to these
issues. We describe the design and implementation of a novel
multi-core aware packet capture kernel module that enables
monitoring applications to scale with the number of cores.
We showcase that we can achieve high packet capture per-
formance on modern commodity hardware.

Categories and Subject Descriptors

D.4.4 [Operating Systems]: Communications Manage-
ment; C.2.3 [Network Operations|: Network monitoring

General Terms

Measurement, Performance

Keywords

Linux kernel, network packet capture, multi-core systems

1. INTRODUCTION

The heterogeneity of Internet-based services and advances
in interconnection technologies raised the demand for ad-
vanced passive monitoring applications. In particular an-
alyzing high-speed networks by means of software applica-
tions running on commodity off-the-shelf hardware presents
major performance challenges.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Luca Deri
ntop
deri@ntop.org

Researchers have demonstrated that packet capture, the
cornerstone of the majority of passive monitoring applica-
tions, can be substantially improved by enhancing general
purpose operating systems for traffic analysis [11, 12, 26].
These results are encouraging because today’s commodity
hardware offers features and performance that just a few
years ago were only provided by costly custom hardware de-
sign. Modern network interface cards offer multiple TX/RX
queues and advanced hardware mechanisms able to balance
traffic across queues. Desktop-class machines are becoming
advanced multi-core and even multi-processor parallel archi-
tectures capable of executing multiple threads at the same
time.

Unfortunately, packet capture technologies do not prop-
erly exploit this increased parallelism and, as we show in our
experiments, packet capture performance may be reduced
when monitoring applications instantiate several packet cap-
ture threads or multi-queues adapters are used. This is due
to three major reasons: a) resource competition of threads
on the network interfaces RX queues, b) unnecessary packet
copies, and ¢) improper scheduling and interrupt balancing.

In this work, we mitigate the above issues by introducing
a novel packet capture technology designed for exploiting
the parallelism offered by modern architectures and network
interface cards, and we evaluate its performance using hard-
ware traffic generators. The evaluation shows that thanks to
our technology a commodity server can process more than 4
Gbps per physical processor, which is more than four times
higher than what we can achieve on the same hardware with
previous generation packet capture technologies.

Our work makes several important contributions:

e We successfully exploit traffic balancing features of-
fered by modern network adapters and make each
RX queue visible to the monitoring applications by
means of virtual capture devices. To the best of our
knowledge, this work describes the first packet capture
technology specifically tailored for modern multi-queue
adapters.

e We propose a solution that substantially simplifies the
development of highly scalable multi-threaded traffic
analysis applications and we released it under an open-
source license. Since compatibility with the popular
libpcap [5] library is preserved, we believe that it can
smooth the transition toward efficient parallel packet
processing.

e We minimize the memory bandwidth footprint by re-
ducing the per-packet cost to a single packet copy, and

optimize the cache hierarchy utilization by combining
lock-less buffers together with optimal scheduling set-
tings.

2. MOTIVATION AND SCOPE OF WORK

Modern multi-core-aware network adapters are logically
partitioned into several RX/TX queues where packets are
flow-balanced across queues using hardware-based facilities
such as RSS (Receive-side Scaling) part of Intel™1/0 Ac-
celeration Technology (I/O AT) [17, 18]. By splitting a sin-
gle RX queue into several smaller queues, the load, both in
terms of packets and interrupts, can be balanced across cores
to improve the overall performance. Modern interface cards
(NICs) support static or even dynamically configurable [13]
balancing policies. The number of available queues depends
on the NIC chipset, and it is limited by the number of avail-
able system cores.*

However, in most operating systems, packets are fetched
using packet polling [23, 25] techniques that have been de-
signed in the pre-multi-core age, when network adapters
were equipped with a single RX queue. From the operat-
ing system point of view, there is no difference between a
legacy 100 Mbit card and a modern 10 Gbit card as the
driver hides all card, media and network speed details. As
shown in Figure 1, device drivers must merge all queues into
one as it used to happen with legacy adapters featuring a
single queue. This design limitation is the cause of a major
performance bottleneck, because even if a user space appli-
cation spawns several threads to consume packets, they all
have to compete for receiving packets from the same socket.
Competition is costly as semaphores or similar techniques
have to be used in order to serialize this work instead of
carrying it out in parallel.

Even if multi-core architectures, such as the one depicted
in Figure 2, are equipped with cache levels dynamically
shared among different cores within a CPU, integrated mem-
ory controllers and multi-channel memories, memory band-
width has been identified as a limiting factor for the scal-
ability of current and future multi-core processors [7, 24].
In fact, technology projections suggest that off-chip mem-
ory bandwidth is going to increase slowly compared to the
desired growth in the number of cores. The memory wall
problem represents a serious issue for memory intensive ap-
plications such as traffic analysis software tailored for high-
speed networks. Reducing the memory bandwidth by mini-
mizing the number of packet copies is a key requirement to
exploit parallel architectures.

To reduce the number of packet copies, most capture
packet technologies [11] use memory mapping based zero-
copy techniques (instead of standard system calls) to carry
packets from the kernel level to the user space. The packet
journey inside the kernel starts at the NIC driver layer,
where incoming packets are copied into a temporary memory
area, the socket buffer [8, 21], that holds the packet until it
gets processed by the networking stack. In network monitor-
ing, since packets are often received on dedicated adapters
not used for routing or management, socket buffers’ alloca-
tions and deallocations are unnecessary and zero-copy could
start directly at the driver layer and not just at the network-
ing layer.

'For example on a quad-core machine we can have up to
four queues per port.

Capture Capture Capture Capture

Thread Thread Thread Thread
User Single Resource

space Competition

] I
Kernel
space

Network Stack

NIC Driver

RX 0 RX 1 RX 2 RX 3
Queue Queue Oueue Queue

RSS (Resource Slde Scaling)
1-10 Gbit PHY

Figure 1: Design limitation in Network Monitoring
Architectures.

Inter
socket
Link

<=-o0o30=Z
<=030XZ

110 HUB 1Gb
NIC

On board NICs

PCle Expansion Slots

Figure 2: Commodity parallel architecture.

Memory bandwidth can be wasted when cache hierarchies
are poorly exploited. Improperly balancing interrupt re-
quests (IRQs) may lead to the excessive cache misses phe-
nomena usually referred to as cache-trashing. In order to
avoid this problem, the interrupt request handler and the
capture thread that consumes such a packet must be exe-
cuted on the same processor (to share the L3 level cache)
or on the same core with Hyper-Threaded processors. Un-
fortunately, most operating systems uniformly balance in-
terrupt requests across cores and schedule threads without
considering architectural differences between cores. This is,
in practice, a common case of packet losses. Modern oper-
ating systems allow users to tune IRQ balancing strategy
and override the scheduling policy by means of CPU affinity
manipulation [20]. Unfortunately, since current operating
systems do not deliver queue identifiers up to the user space,
applications do not have enough information to properly set
the CPU affinity.

In summary, we identified two main issues that prevent
parallelism from being exploited:

e There is a single resource competition by multi-
threaded applications willing to concurrently consume
packets coming from the same socket. This prevents
multi-queue adapters being fully exploited.

e Unnecessary packet copies, improper scheduling and
interrupt balancing cause a sub-optimal memory band-
width utilization.

The following section describes a packet capture architec-
ture that addresses the identified limitations.

3. TOWARDS MULTI-CORE MONITOR-
ING ARCHITECTURES

We designed a high performance packet capture technol-
ogy able to exploit multi-queue adapters and modern multi-
core processors. We achieve our high performance by intro-
ducing virtual capture devices, with multi-threaded polling
and zero-copy mechanisms. Linux is used as the target op-
erating system, as it represents the de-facto reference plat-
form for the evaluation of novel packet capture technologies.
However, the exploited concepts are general and can also be
adapted to other operating systems.

Our technology natively supports multi-queues and ex-
poses them to the users as virtual capture devices (see Fig-
ure 3). Virtual packet capture devices allow applications to
be easily split into several independent threads of execution,
each receiving and analyzing a portion of the traffic. In fact
monitoring applications can either bind to a physical device
(e.g., ethl) for receiving packets from all RX queues, or to a
virtual device (e.g., eth1@2) for consuming packets from a
specific queue only. The RSS hardware facility is responsi-
ble for balancing the traffic across RX queues, with no CPU
intervention.

The concept of virtual capture device has been imple-
mented in PF_RING [11], a kernel level network layer de-
signed for improving Linux packet capture performance. It
also provides an extensible mechanism for analyzing packets
at the kernel-level. PF_RING provides a zero-copy mech-
anism based on memory mapping to transfer packets from
the kernel space to the user space without using expensive
system calls (such as read()). However, since it sits on top
of the standard network interface card drivers, it is affected
by the same problems identified in the previous section. In
particular, for each incoming packet a temporary memory
area, called socket buffer [8, 21], is allocated by the network
driver, and then copied to the PF_RING ring buffer which
is memory mapped to user space.

TNAPI drivers: For avoiding the aforementioned issue,
PF_RING features a zero-copy ring buffer for each RX queue
and it supports a new NIC driver model optimized for packet
capture applications called TNAPI (Threaded NAPI?).

TNAPI drivers, when used with PF_RING completely
avoid socket buffers’ allocations. In particular, packets
are copied directly from the RX queue to the associated
PF_RING ring buffer for user space delivery. This process
does not require any memory allocation because both the
RX queue and the corresponding PF_RING ring are allo-
cated statically. Moreover, since PF_RING ring buffers are
memory-mapped to the user-space, moving packets from the
RX queue ring to the user space requires a single packet
copy. In this way, the driver does not deliver packets to
the legacy networking stack so that the kernel overhead is
completely avoided. If desired, users can configure the driver
to push packets into the standard networking stack as well,
but this configuration is not recommended as it is the cause
of a substantial performance drop as packets have to cross
legacy networking stack layers.

2NAPI is the driver model that introduced polling in the
Linux kernel

Capture Capture Capture Capture

Thread Thread Thread Thread
User Virtual Capture
space Devices 0,1,2,3

0 1 2 3

Kernel PF_RING
space B

Polling Polling Polling Polling

Thread Thread Thread Thread

I NIC dr|ver|

RX 0 RX 1 RX 2 RX 3
Queue Queue Queue Queue

RSS (Resource Slde Scaling)
1-10 Gbit PHY

Figure 3: Multi-queue aware packet capture design.
Each capture thread fetches packets from a single
Virtual Capture Device.

Instead of relying on the standard kernel polling mecha-
nisms to fetch packets from each queue, TNAPI features in-
driver multi-threaded packet polling. TNAPI drivers spawn
one polling thread for each RX queue (see Figure 3). Each
polling thread fetches incoming packet(s) from the corre-
sponding RX queue, and, passes the packet to PF_RING.
Inside PF_RING, packet processing involves packet parsing
and, depending on the configuration, may include packet
filtering using the popular BPF filters [5] or even more com-
plex application level filtering mechanisms [16]. Kernel level
packet processing is performed by polling threads in parallel.

TNAPI drivers spawn polling threads and bind them to
a specific core by means of CPU affinity manipulation. In
this way the entire traffic coming from a single RX queue
is always handled by the same core at the kernel level. The
obvious advantage is the increased cache locality for poller
threads. However, there is another big gain that depends
on interrupt mitigation. Modern network cards and their
respective drivers do not raise an interrupt for every packet
under high-rate traffic conditions. Instead, drivers disable
interrupts and switch to polling mode in such situations. If
the traffic is not properly balanced across multi-queues, or
if simply the traffic is bursty, we can expect to have busy
queues working in polling mode and queues generating inter-
rupts. By binding the polling threads to the same core where
interrupts for this queue are received we prevent threads
polling busy queues being interrupted by other queues pro-
cessing low-rate incoming traffic.

The architecture depicted in Figure 3 and implemented in
TNAPI, solves the single resource competition problem iden-
tified in the previous section. In fact, users can instantiate
one packet consumer thread at the user space level for each
virtual packet capture device (RX queue). Having a single
packet consumer per virtual packet capture device does not
require any locking primitive such as semaphores that, as a
side effect, invalidate processor caches. In fact, for each RX
queue the polling thread at the kernel level and the packet
consumer thread at the user space level exchange packets
through a lock-less Single Reader Single Writer (SRSW)
buffer.

In order to avoid cache invalidation due to improper

scheduling, users can manipulate the CPU affinity to make
sure that both threads are executed on cores or Hyper-
Threads sharing levels of caches. In this way, multi-core
architectures can be fully exploited by leveraging high band-
width and low-latency inter-core communications. We de-
cided not to impose specific affinity settings for the consumer
threads, meaning that the user level packet capture library
does not set affinity. Users are responsible for performing
fine grained tuning of the CPU affinity depending on how
CPU intensive the traffic analysis task is. This is straight-
forward and under Linux requires a single function call.®> It
is worth noting, that fine-grained tuning of the system is
simply not feasible if queue information is not exported up
to the user space.

Compatibility and Development Issues: Our packet
capture tecnology comes with a set of kernel modules and a
user-space library called libpring. A detailed description of
the API can be found in the user guide [1]. For compatibil-
ity reasons we also ported the popular libpcap [5] library on
top of our packet capture technology. In this way, already
existing monitoring applications can be easily ported onto
it. As of today, we have implemented packet capture opti-
mized drivers for popular multi-queue Intel™1 and 10 Gbit
adapters (82575/6 and 82598/9 chips).

4. EVALUATION

We evaluated the work using two different parallel ar-
chitectures belonging to different market segments (low-end
and high-end) equipped with the same Intel multi-queue net-
work card. Details of the platforms are listed in Table 1. An
IXTIA 400 [4] traffic generator was used to inject the network
traffic for experiments. For 10 Gbit traffic generation, sev-
eral IXIA-generated 1 Gbit streams were merged into a 10
Gbit link using a HP ProCurve switch. In order to exploit
balancing across RX queues, the IXIA was configured to
generate 64 byte TCP packets (minimum packet size) origi-
nated from a single IP address towards a rotating set of 4096
IP destination addresses. With 64 bytes packets, a full Gbit
link can carry up to 1.48 Million packets per second (Mpps).

Table 1: Evaluation platforms

low-end high-end
motherboard | Supermicro PSDBE | Supermicro X8DTL-iF
CPU Core2Duo 1.86 Ghz | 2x Xeon 5520 2.26 Ghz
2 cores 8 cores
0 HyperThreads 8 HyperThreads
Ram 4 GB 4 GB
NIC Intel ET (1 Gbps) Intel ET (1 Gbps)

In order to perform performance measurements we used
pfcount, a simple traffic monitoring application that counts
the number of captured packets. Depending on the con-
figuration, pfcount spawns multiple packet capture threads
per network interface and even concurrently captures from
multiple network devices, including virtual capture devices.

In all tests we enabled multi-queues in drivers, and mod-
ified the driver’s code so that queue information is prop-
agated up to PF_RING; this driver does not spawn any
poller thread at the kernel level, and does not avoid socket
buffer allocation. We call this driver MQ (multi-queue) and
TNAPI the one described in Section 3.

3See pthread setaffinity np().

Table 2: Packet capture performance (kpps) at 1
Gbps with different two-thread configurations.

[Setup A | Setup B [Setup C
Platform | SQ | sQ [MQ | TNAPI
Threads Userspace/Kernel space
1/0 2/0 2/0 11
low-end 721 Kpps 640 Kpps 610 Kpps | 1264 Kpps
high-end 1326 Kpps | 1100 Kpps | 708 Kpps | 1488 Kpps

Comparing Different Approaches: As a first test,
we evaluated the packet capture performance when using
multi-threaded packet capture applications with and with-
out multi-queue enabled. To do so, we measured the max-
imum loss free rate when pfcount uses three different two-
threaded setups:

e Setup A: multiple queues are disabled and therefore
capture threads read packets from the same interface
(single queue, SQ). Threads are synchronized using a
r/w semaphore. This setup corresponds to the default
Linux configuration shown in Figure 1.

e Setup B: two queues are enabled (MQ) and there are
two capture threads consuming packets from them. No
synchronization is needed.

e Setup C': there is one capture thread at the user level
and a polling thread at the kernel level (TNAPI).

Table 2 shows the performance results on the multi-
threaded setups, and also shows as a reference point the
single-threaded application. The test confirmed the issues
we described in Section 2. When pfcount spawns two threads
at the user level, the packet capture performance is actu-
ally worse than the single-threaded one. This is expected
in both cases (setup A and B). In the case of setup A, the
cause of the drop compared to the single-threaded setup is
cache invalidations due to locking (semaphore), whereas for
B the cause is the round robin IRQ balancing. On the other
hand, our approach consisting of using a kernel thread and a
thread at the user level (setup C) is indeed effective and al-
lows the low-end platform to almost double its single-thread
performance. Moreover, the high-end machine can capture
1 Gbps (1488 kpps) with no loss.

CPU Affinity and Scalability: We now turn our atten-
tion to evaluating our solution at higher packet rates with
the high-end platform. We are interested in understand-
ing if by properly setting the CPU affinity it is possible to
effectively partition the computing resources and therefore
increase the maximum loss-free rate.

2 NICs: To test the packet capture technology with more
traffic, we plug another Intel ET NIC into the high-end sys-
tems and we inject with the IXIA traffic generator 1.488
Mpps for each interface (wire-rate at 1 Gbit with 64 bytes
packets). We want to see if it is possible to handle 2 full
Gbit links with two cores and two queues per NIC only. To
do so, we set the CPU affinity to make sure that for every
NIC the two polling threads at the kernel level are executed
on different Hyper-Threads belonging to the same core (e.g.
0 and 8 from Figure 4 belong to Core 0 of the first phys-
ical processor4). We use the pfcount application to spawn

4Under Linux, /proc/cpuinfo lists the available processing

Figure 4: Core Mapping on Linux with the Dual
Xeon. Hyper-Threads on the same core (e.g. 0 and

Processor 0:
Core 0 Core 1

Processor 1:

Core 0 Core 1

8) share the L2 cache.

Table 3: Packet capture performance (kpps) when

capturing concurrently from two 1 Gbit links.

Test | Capture Polling NIC1 | NIC2
threads threads Kpps Kpps
affinity affinity

1 not set not set 1158 1032

2 NIC1@0 on 0 NIC1@O0 on 0 1122 1290
NIC1@1 on 8 NIC1@1 on 8
NIC2@0 on 2 NIC2@0 on 2
NIC2@1 on 10 | NIC2@1 on 10

3 NIC1 on 0,8 NIC1@O0 on O 1488 1488
NIC2 on 2,10 NIC1@1 on 8

NIC2@O0 on 2
NIC2@1 on 10

capture threads and we perform measurements with three
configurations. First of all, we measure the packet capture
rate when one capture thread and one polling thread per
queue are spawn (8 threads in total) without setting the
CPU affinity (Test 1). Then (Test 2), we repeat the test
by binding each capture thread to the same Hyper-Thread
where the polling thread for that queue is executed (e.g. for
the queue NIC1@Q0 both polling and capture thread run on
Hyper-Thread 0). Finally, in Test 3, we reduce the num-
ber of capture threads to one for each interface. For each
NIC, the capture thread and the polling threads associated
to that interface run on the same core.

Table 3 reports the maximum loss-free rate when captur-
ing from two NIC simultaneously using the configurations
previously described. As shown in Test 1, without prop-
erly tuning the system by means of CPU affinity, our test
platform is not capable of capturing, at wire-rate, from two
adapters simultaneously. Test 2 and Test 3 show that the
performance can be substantially improved by setting the
affinity and wire-rate is achieved. In fact, by using a sin-
gle capture thread for each interface (Test 3) all incoming
packets are captured with no loss (1488 kpps per NIC).

In principle, we would expect to achieve the wire-rate with
the configuration in Test 2 rather than the one used in Test
3. However, splitting the load on two RX queues means that
capture threads are idle most of the time, at least on high-
end processors such as the Xeons we used and a dummy
application that only counts packets. As a consequence,
capture threads must call poll() very often as they have no
packet to process and therefore go to sleep until a new packet
arrives; this may lead to packet losses. As system calls are
slow, it is better to keep capture threads busy so that poll()

units and reports for each of them the core identifier and the
physical CPU. Processing units sharing the same physical
CPU and core identifier are Hyper-Threads.

calls are reduced. The best way of doing so is to capture
from two RX queues, in order to increase the number of in-
coming packets. It is worth noting that, since monitoring
applications are more complex than pfcount, the configu-
ration used for Test 2 may provide better performance in
practice.

4 NICs: We decided to plug two extra NICs to the system
to check if it was possible to reach the wire-rate with 4 NICs
at the same time (4 Gbps of aggregated bandwidth with
minimum sized packets). The third and fourth NIC were
configured using the same tuning parameters as in Test 3
and the measurements repeated. The system can capture
4 Gbps of traffic per physical processor without losing any
packet.

Due to lack of NICs at the traffic generator we could
not evaluate the performance at more than 4 Gbps with
synthetic streams of minimum size packets representing the
worst-case scenario for a packet capture technology. How-
ever, preliminary tests conducted on a 10 Gbit production
network (where the average packet size was close to 300
bytes and the used bandwidth around 6 Gbps) confirmed
that this setup is effective in practice.

The conclusion of the validation is that when CPU affinity
is properly tuned, our packet technology allows:

e Packet capture rate to scale linearly with the number
of NICs.

e Multi-core computers to be partitioned processor-by-
processor. This means that load on each processor
does not affect the load on other processors.

5. RELATED WORK

The industry followed three paths for accelerating net-
work monitoring applications by means of specialized hard-
ware while keeping the software flexibility. Smart traffic bal-
ancers, such as cPacket[2], are special purpose devices used
to filter and balance the traffic according to rules, so that
multiple monitoring stations receive and analyze a portion of
the traffic. Programmable network cards [6] are massively
parallel architectures on a network card. They are suit-
able for accelerating both packet capture and traffic analysis,
since monitoring software written in C can be compiled for
that special purpose architecture and run on the card and
not on the main host. Unfortunately, porting applications
on those expensive devices is not trivial. Capture accelera-
tors [3] completely offload monitoring workstations from the
packet capturing task leaving more CPU cycles to perform
analysis. The card is responsible for coping the traffic di-
rectly to the address space of the monitoring application and
thus the operating system is completely bypassed.

Degiovanni and others [10] show that first generation
packet capture accelerators are not able to exploit the paral-
lelism of multi-processor architectures and propose the adop-
tion of a software scheduler to increase the scalability. The
scalability issue has been solved by modern capture accel-
erators that provide facilities to balance the traffic among
several threads of execution. The balancing policy is imple-
mented by their firmware and it is not meant to be changed
at run-time as it takes seconds if not minutes to reconfigure.

The work described in [19] highlights the effects of cache
coherence protocols in multi-processor architectures in the
context of traffic monitoring. Papadogiannakis and others

[22] show how to preserve cache locality for improving traffic
analysis performance by means of traffic reordering.

Multi-core architectures and multi-queue adapters have
been exploited to increase the forwarding performance of
software routers [14, 15]. Dashtbozorgi and others [9] pro-
pose a traffic analysis architecture for exploiting multi-core
processors. Their work is orthogonal to ours, as they do
not tackle the problem of enhancing packet capture through
parallelism exploitation.

Several research efforts show that packet capture can be
substantially improved by customizing general purpose op-
erating systems. nCap [12] is a driver that maps the card
memory in user-space, so that packets can be fetched from
user-space without any kernel intervention. The work de-
scribed in [26] proposes the adoption of large buffers contain-
ing a long queue of packets to amortize the cost of system
calls under Windows. PF_RING [11] reduces the number of
packet copies, and thus, increases the packet capture perfor-
mance, by introducing a memory-mapped channel to carry
packets from the kernel to the user space.

6. OPEN ISSUES AND FUTURE WORK

This work represents a first step toward our goal of ex-
ploiting the parallelism of modern multi-core architectures
for packet analysis. There are several important steps we
intend to address in future work. The first step is to intro-
duce a software layer capable of automatically tuning the
CPU affinity settings, which is crucial for achieving high
performance. Currently, choosing the correct CPU affin-
ity settings is not a straightforward process for non-expert
users.

In addition, one of the basic assumption of our technol-
ogy is that the hardware-based balancing mechanism (RSS
in our case) is capable of evenly distributing the incoming
traffic among cores. This is often, but not always, true in
practice. In the future, we plan to exploit mainstream net-
work adapters supporting hardware-based and dynamically
configurable balancing policies [13] to implement an adap-
tive hardware-assisted software packet scheduler that is able
to dynamically distribute the workload among cores.

7. CONCLUSIONS

This paper highlighted several challenges when using
multi-core systems for network monitoring applications: re-
source competition of threads on network buffer queues,
unnecessary packet copies, interrupt and scheduling imbal-
ances. We proposed a novel approach to overcome the ex-
isting limitations and showed solutions for exploiting multi-
cores and multi-queue adapters for network monitoring. The
validation process has demonstrated that by using TNAPI it
is possible to capture packets very efficiently both at 1 and
10 Gbit. Therefore, our results present the first software-
only solution to show promise towards offering scalability
with respect to the number of processors for packet captur-
ing applications.

8. ACKNOWLEDGEMENT

The authors would like to thank J. Gasparakis and P.
Waskiewicz Jr from Intel™for the insightful discussions
about 10 Gbit on multi-core systems, as well M. Vlachos,
and X. Dimitropoulos for their suggestions while writing this

paper.

9. CODE AVAILABILITY

This work is distributed under the GNU GPL license
and is available at no cost from the ntop home page
http://www.ntop.org/.

10. REFERENCES

[1] PF_RING User Guide.
http://www.ntop.org/pfring_userguide.pdf.

[2] cpacket networks - complete packet inspection on a
chip. http://www.cpacket.com.

[3] Endace ltd. http://www.endace.com.

[4] Ixia leader in converged ip testing. Homepage
http://www.ixiacom.com.

[5] Libpcap. Homepage http://www.tcpdump.org.

[6] A. Agarwal. The tile processor: A 64-core multicore
for embedded processing. Proc. of HPEC Workshop,
2007.

[7] K. Asanovic et al. The landscape of parallel
computing research: A view from berkeley. Technical
Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec 2006.

[8] A. Cox. Network buffers and memory management.
The Linux Journal, Issue 30,(1996).

[9] M. Dashtbozorgi and M. Abdollahi Azgomi. A
scalable multi-core aware software architecture for
high-performance network monitoring. In SIN ’09:
Proc. of the 2nd Int. conference on Security of
information and networks, pages 117-122, New York,
NY, USA, 2009. ACM.

[10] L. Degioanni and G. Varenni. Introducing scalability
in network measurement: toward 10 gbps with
commodity hardware. In IMC ’04: Proc. of the 4th
ACM SIGCOMM conference on Internet
measurement, pages 233-238, New York, NY, USA,
2004. ACM.

[11] L. Deri. Improving passive packet capture: beyond
device polling. Proc. of SANE, 2004.

[12] L. Deri. ncap: Wire-speed packet capture and
transmission. In F2EMON °05: Proc. of the
End-to-End Monitoring Techniques and Services,
pages 47-55, Washington, DC, USA, 2005. IEEE
Computer Society.

[13] L. Deri, J. Gasparakis, P. Waskiewicz Jr, and
F. Fusco. Wire-Speed Hardware-Assisted Traffic
Filtering with Mainstream Network Adapters. In
NEMA’10: Proc. of the First Int. Workshop on
Network Embedded Management and Applications,
page to appear, 2010.

[14] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt,

F. Huici, L. Mathy, and P. Papadimitriou. A platform
for high performance and flexible virtual routers on
commodity hardware. SIGCOMM Comput. Commun.
Rev., 40(1):127-128, 2010.

[15] N. Egi, A. Greenhalgh, M. Handley, G. Iannaccone,
M. Manesh, L. Mathy, and S. Ratnasamy. Improved
forwarding architecture and resource management for
multi-core software routers. In NPC ’09: Proc. of the
2009 Sizth IFIP Int. Conference on Network and
Parallel Computing, pages 117-124, Washington, DC,
USA, 2009. IEEE Computer Society.

[16] F. Fusco, F. Huici, L. Deri, S. Niccolini, and T. Ewald.

23]

(24]

(25]

(26]

Enabling high-speed and extensible real-time
communications monitoring. In IM’09: Proc. of the
11th IFIP/IEEE Int. Symposium on Integrated
Network Management, pages 343—-350, Piscataway, NJ,
USA, 2009. IEEE Press.

Intel. Accelerating high-speed networking with intel
i/o acceleration technology. White Paper, 2006.

Intel. Intelligent queuing technologies for
virtualization. White Paper, 2008.

A. Kumar and R. Huggahalli. Impact of cache
coherence protocols on the processing of network
traffic. In MICRO ’07: Proc. of the 40th Annual
IEEE/ACM Int. Symposium on Microarchitecture,
pages 161-171, Washington, DC, USA, 2007. IEEE
Computer Society.

R. Love. Cpu affinity. Linux Journal, Issue 111,(July
2003).

B. Milekic. Network buffer allocation in the freebsd
operating system. Proc. of BSDCan,(2004).

A. Papadogiannakis, D. Antoniades,

M. Polychronakis, and E. P. Markatos. Improving the
performance of passive network monitoring
applications using locality buffering. In MASCOTS
07: Proc. of the 2007 15th Int. Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages 151-157,
Washington, DC, USA, 2007. IEEE Computer Society.
L. Rizzo. Device polling support for freebsd.
BSDConEurope Conference, (2001).

B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang,
and Y. Solihin. Scaling the bandwidth wall: challenges
in and avenues for cmp scaling. SIGARCH Comput.
Archit. News, 37(3):371-382, 20009.

J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond
softnet. In ALS ’01: Proc. of the 5th annual Linuz
Showcase & Conference, pages 18—18, Berkeley, CA,
USA, 2001. USENIX Association.

M. Smith and D. Loguinov. Enabling
high-performance internet-wide measurements on
windows. In PAM’10: Proc. of Passive and Active
Measurement Conference, pages 121-130, Zurich,
Switzerland, 2010.

