Gestione di Rete

Paradigmi e Protocolli per la Gestione di Rete

© 2026 - Luca Deri <deri@ntop.org>

1. Introduction

1. Introduction

1.1 Motivation
1.2 Terminology and Basic Concepts
1.3 Abstract Syntax Notation One

2. Internet Management

© 2026 - Luca Deri <deri@ntop.org>

1.1 Motivation: Why Do We Need Management ?

» Current situation:
* increasing meaning of strategic resources "information”.

« a computer network is no longer only a supporting item in an enterprise, but takes even
more frequently a key position.

» the number of interconnected computers rose dramatically in the past few years. This
process will probably continue to persist.

« Complexity and functionality of the components grows in correspondence with the
performance of the available hardware.

- Demand:
« Permanent availability of network services with optimal quality.
» Cost reduction for the network infrastructure of the company.

- Necessity:
« computer-aided management of heterogeneous networks.

© 2026 - Luca Deri <deri@ntop.org>

Network Management Dimensions

Functional Dimension

3

- Security

- Performance deduction

— Performance evaluation

—T Anomaly management

— Configuration management

: % S +—— Time Dimension
Planning Installation Operation Migration

Components
Systems
Users

Enterprise

Object Dimension

© 2026 - Luca Deri <deri@ntop.org>

1.2 Terminology and Fundamental Concepts

- Control, co-ordination and monitoring of resources takes place via the manipulation
from so-called managed objects:

"A managed object is the abstracted view of a resource that presents its
properties as seen by (and for the purpose of) management.” (ISO 7498-4)

- Managed objects are an abstract representation of a real resource.

- The boundary of a managed object specifies which details are accessible to a
management system and which ones are shielded (black box).

Attributes
Operations
Behavior

Notification

Warning: Coffee
Machine is operational
but no coffee is produced.

=

Management-System Managed Object Real Coffee Machine

- Managed objects do not necessarily correspond to objects, as one knows from
object-oriented programming. Simple variables correspond to the MOs in the
Internet management.

ARDUINO

© 2026 - Luca Deri <deri@ntop.org> 5

Managed Objects (MO)

- Attributes:

« Attributes describe the state/condition of managed objects.

« Attributes can change when the condition of the real object changes.
« Attributes can be manipulated by means of management operations.
- Operations:

» Make it possible to access a managed object. Typical operations are get, set,
create and delete.

» The number and type of operations influence the object performance and
complexity.

- Behavior:

 Determines the semantics and interaction with the real resource.
« The behavior of managed objects is normally defined in plain English.

« Notifications:

» The quantity and type of the messages, which can be generated by pre-defined
situations by a managed object when specific situations occur.

© 2026 - Luca Deri <deri@ntop.org> 6

Management Information Base (MIB)

The union of all managed objects contained in a system forms the Management
Information Base (MIB) of the system:

"The set of managed objects within a system, together with their attributes,
constitutes that system's management information base." (ISO 7498-4)

- This is the first interpretation of the term "Management Information Base” (more

definitions will follow).
(5) T~
(4

(%) -
\
Management Information Base

ONgl

—

Management

- A MIB should be known both to the implementer and the manager.

© 2026 - Luca Deri <deri@ntop.org> 7

MIB Modularity

- Managed objects of a system are usually defined in multiple MIB definitions.

- Modules have been introduced in MIBs for enabling design modularity:
 Different modules can be defined by different teams.
« Management functionality can be gradually extended and modified.

Different systems can support different MIB modules/releases.

Vendors can extend the management functionality by means of proprietary
MIBs.

MIBs are defined using a specification language

© 2026 - Luca Deri <deri@ntop.org>

Manager/Agent Paradigm

- Agent:
* Implements the MOs MIB by accessing the real resources.

» Receives requests from a manager, processes them and transmits appropriate
responses.

» Dispatches naotifications about important changes in status in the MIB.

» Protects MOs against unauthorised accesses using access control rules and
communication authentication with the partner.

- Manager:
» Exercises control: it controls functions hence it is the crucial instance.

« Starts up management operations by appropriate protocol operations for the
manipulation of MOs.

» Receives messages from agents and passes them on (for handling) to
appropriate applications.

© 2026 - Luca Deri <deri@ntop.org> 9

Management Protocol

- Management applications and MOs are not often on same node.

- A management protocol implements access to distant managed objects by encoding
management data that is then secured during the transfer.

Algorithm for the
solution of the
Management

problem

T

=

~— , Component

N |

Management Protocol

Model

Management Protocol

Manager

Agent

© 2026 - Luca Deri <deri@ntop.org> 10

Functional Areas (FCAPS) [1/2]

- Management applications can be divided into 5 function areas:

- Fault management:
» Error detection, isolation, and repair.

- Configuration management:

* Production and administration of configuration information.
* Name administration.

 Start, check and termination of services.

- Account management:

» Entry of consumption (usage) data.

* Distribution and monitoring of contingents.
» Customer billing for resource consumption.

© 2026 - Luca Deri <deri@ntop.org>

11

Functional Areas (FCAPS) [2/2]

- Performance management:

« Statistic data collection.

» Determination of the system performance.

« Systems modifications for increase in efficiency.

- Security management:

* Production and verification of security policies.

» Generation and distribution of passwords and accounts.
* Report and analysis of security-relevant events.

- These 5 functional areas according to the initial letters of the English terms normally
under the contraction FCAPS.

- These functional areas are not mutually independent (data measurement has often
impact on system configuration).

- Basic functions (e.g. monitoring of a counter for threshold values) often reside in

different functional areas.
© 2026 - Luca Deri <deri@ntop.org> 12

Management Architectures Overview

- Structure of the management information:
« defines the rules of the description of Managed Objects.
* |dentification and designation of MOs.
« Composition of MOs.
» Behaviour of MOs.
 Relations to other MOs.
» Possible operations and internal messages of the MOs.
« Definition of the datatypes, structure and syntax for the description of the MOs.

* The quantity of the descriptions of MOs in accordance with these rules defines
the Management Information Base (MIB)

- Management Protocols and Services:
» Defines the services and enable the access to remote MOs.
» Several protocols can be used for the implementation of the defined services.

* The service primitive and the appropriate protocol operations influence
considerably the efficiency and the complexity of the management system.

© 2026 - Luca Deri <deri@ntop.org> 13

Services and Protocols: Some Definitions

- Service

It is defined as an abstract function supplied by a network

- Service Primitive

The individual elementary functions are called service-primitives. Typical ISO/OSI services

are:

* request Service Request

* indication Indication that a service was requested

* response Reaction of the service to a service request

» confirm Acknowledgement that a requested service was provided

- Service Access Point (SAP)
The interfaces over which the service primitive can be access as service access points.

- Entities

The services furnished by so-called instances.

« Protocol

The rules and the restrictions according to which instances interact with other instances.

© 2026 - Luca Deri <deri@ntop.org> 14

Representation and Layering of Services

Service User

Service Provider

/'/ SAPN
~

Service Layer N /[\
> e

N-Authority 1

iy

N-Authority 2

~—1% S

N T

Service Layer N-1

\——/

(N-1)-Authority 1

)

(N-1)-Authority 2

)

N—

N—

Layer N

Layer N-1

- The definition of layers is a fundamental principle for the structuring of communication systems.

- Services of a layer may only accept service primitives of services in adjacent layers.

© 2026 - Luca Deri <deri@ntop.org>

15

Time Diagrams

Service User Service Provider Service User Service Provider

request —

[~ ~
~
~
~
~
~ o~
~

~+— indication request

~ o
~
-~
~o
~

~+— indication
«——— response

-
-
-
-
-
-
-
-
-

confirmation «——

v v v \ 4

Confirmed Service Unconfirmed Service

Time diagrams clarify the temporal and spatial connections between service
primitives.

Vertical axis are time axis, horizontal axis give the spatial distance between users
and providers of services.

Service requests of a confirmed service can result either in a positive or negative
confirmation.

Service requests of an unconfirmed service are not acknowledged.

© 2026 - Luca Deri <deri@ntop.org> 16

ISO/OSI-Reference Model

Application Process Application Process
End System I End System

APPlICAtION e fmrm oo e .| Application

Presentation le |- cocooci o e .| Presentation
Session B | oo immimicmimimmmam 5 Session
Transport) -I:r; n_SI:[é};s,;e;n ___________________________ . Transport
Network DA Network P I Network
Data Link P PP Data Link P PP Data Link
Physical L B Physical R Physical

Media Media

© 2026 - Luca Deri <deri@ntop.org>

ISO/OSI Transport System [1/2]

- Physical Layer
» Transport of a stream of bits over a media.
» Transport depending on the characteristics of the media being used.
» Representation of values 0 and 1 (e.g. voltage levels).
* Synchronisation between senders and recipients.
* Definition of standard plugs for media interconnection.

- Data Link Layer
» Transport of a frame of bits.

Data communication between systems that share a common media.

Detection and recovery of transfer errors.

Flow control for handling traffic peaks (traffic jam).

Implementation usually in hardware on adapter cards (e.g. Ethernet card).

© 2026 - Luca Deri <deri@ntop.org>

18

ISO/OSI Transport System [2/2]

- Network Layer
» Determination of a route through the network (routing).

Error detection and recovery between end-systems.

Flow control between end-systems.

Division of a Packet in multiple frames.

- Transport Layer
« End-to-end communication between applications.

Error detection and recovery between applications.

Flow control between applications.

Concurrent usage of multiple services.

© 2026 - Luca Deri <deri@ntop.org>

Multiplex of network connections over a shared connection.

Virtual connections over connectionless datagram services.

19

ISO/OSI Higher Layers

- Session Layer
« Synchronisation and co-ordination of communicating processes.

« Session control (checkpoints for recovery).

- Presentation Layer

« Transformation and adaptation of data presentations (e.g ASCII EBCDIC).
 Serialisation of data structures for the purpose of transfer.

« Data compression.

- Application Layer

« Supply of fundamental services, which can be used directly by any application
including (but not limited to):

* File transfer, virtual terminals, name space administration, database access,
network management, electronic communication networks, process and print
control...

© 2026 - Luca Deri <deri@ntop.org> 20

Application Process

End System

&
<+

Application

Transport

Internet (IP)

Subnetwork

<«

Internet Layer Model

Media

-+ Internet (IP) |«

Subnetwork

Media

Application Process

End System
| Application
i Transport

Internet (IP)

Subnetwork

© 2026 - Luca Deri <deri@ntop.org>

21

No Implementation

Still No
Implementation !

ISO Standardisation

Working Document

Committee Draft

Modifications Needed

Reject Technical

Draft International
Standard

Report

Modifications Needed

Reject Technical

Full Standard

© 2026 - Luca Deri <deri@ntop.org>

Report

22

Implementation experience
must be obtained

Several independent
implementations must
interoperate

IETF Standardisation

Working Document

Proposed Standard Modifications Needed
Reject))
Ac;Eezr 3e2rzx e Historical
Draft Modifications Needed
Standard
¢ Reject
Aoﬁr ;‘e':rzx Historical

Full Standard

© 2026 - Luca Deri <deri@ntop.org> 23

1.3 Overview: Abstract Syntax Notation One

- Abstract Syntax Notation One (ASN.1) is a syntax user for the definition of data
structures and message formats.

- ASN.1 goals:

» Exchange of information between machines with different hardware
architectures (8/16/32/64 bit, little/big-endian).

 Independence from existing programming languages (language neutral).

» Coding of the data during the transfer should be selectable between senders
and recipients (negotiation).

- Separation of the data presentation from the application-specific data structure
representation.

- The abstract syntax defines the data structures during the transfer and determines
in which form these data structures will serially transfer over a network.

© 2026 - Luca Deri <deri@ntop.org> 24

Little vs Big Endian [1/3]

LSB: least-significant byte / MSB: most-significant byte
MSB LSB

10101001 01001010 10101011 10001100

- Big Endian: load/store the MSB first

* |.e., In the lowest address location

- Little Endian: load/store the LSB first

* |.e., In the lowest address location

Network byte order is big endian, or most significant byte first

© 2026 - Luca Deri <deri@ntop.org>

Little vs Big Endian [2/3]

- Endianness matters when you store a multi-byte
value to memory.

+ Processors can be either Big (Motorola 68Kk,
PowerPC) or Little endian (Intel x64, Apple Silicon)

NAME
htonl, htons, htonll, ntohl, ntohs, ntohll — convert values between host and network byte order

LIBRARY
Standard C Library (libc, -lc¢)

SYNOPSIS
#include <arpa/inet.h>

uintéé4_t
htonll(uinté4_t hostlonglong);

uint32_t
htonl(uint32_t hostlong);

ntohll(uinté4_t netlonglong);

uint32 t
ntohl(uint32_t netlong);

uintié_t
ntohs(uintlé_t netshort);

© 2026 - Luca Deri <deri@ntop.org> 26

Little vs Big Endian [3/3]

#include <arpa/inet.h>
#include <stdio.h>

int [EF)(int argc, char xargv[]) {
unsigned int a = 0x12345678;

printf("Host Representation: 0x%X\n", a);
printf('"Network Representation: 0x%X\n'", htonl(a));

return(0);

}

$./endian
Host Representation: 0x12345678
Network Representation: 0x78563412

Question: on what platform (little or big
endian) did | run this program ?

© 2026 - Luca Deri <deri@ntop.org>

27

Abstract Syntax and Transfer Syntax

Abstract Syntax (ASN.1)

Local Syntax

System A

Local Syntax

Enc/Dec | | Common Data |
| | Representation |

Enc/Dec

System B

Transfers Syntax (ASN.1 Encoding Rules)

ASN.1 defines a standardized abstract syntax.

ASN.1 permits several encoding rules that transform the abstract syntax into a

byte stream suitable for transfer. BER (Basic Encoding Rules) defines the mapping
between abstract and transfer syntax.

- Applications normally use a local syntax depending on the programming language

being used.

© 2026 - Luca Deri <deri@ntop.org>

28

Primitive ASN.1 Datatypes

- Names of ASN.1 datatypes begin with a uppercase letter.

- Names of ASN.1 values (constants) begin with a lowercase letter.

- ASN.1 keywords and macro names consists only of uppercase letters.
- Comments are enclosed between "--" (e.g. -- This is a comment --").

BOOLEAN:
« Can only take the predefined values TRUE and FALSE.

INTEGER:

» Covers all the possible integer numbers. No delimitation of the number range.
BIT STRING:

« A sequence of bits. The length does not have to be divisible by 8.

OCTET STRING:

» A sequence of octets (bytes). It is the base type for different character sets and
other derived types (GeneralizedTime, UTCTime).

© 2026 - Luca Deri <deri@ntop.org> 29

Primitive ASN.1-Datatypes

ENUMERATED:

» Type of enumerating. Possible values must be determined by the definition of
derived datatypes.

OBJECT IDENTIFIER:
» Unique identification of a node in the ISO registration tree.
 Path of the root of the tree to the target node.
ObjectDescriptor:
A character string for the identification of a node in the Registration tree.
* Not necessarily unique.
ANY:
« any ASN.1-datatype (Union of all ASN.1 datatypes as C ‘void’).
EXTERNAL:
« Data not described using an ASN.1 definition.
NULL:

« A substitute symbol, in order to indicate in an assembled datatype the absence
of a value.

© 2026 - Luca Deri <deri@ntop.org> 30

ISO Registration Tree

- Used for uniquely identifying definitions, documents, objects...
- Hierarchical structure, similar to hierarchical file systems.
- All nodes of a level identified by a unique number.

- The path from the root of the registration tree to a node results in a numerical
sequence called Object Identifier (e.g. 1.3.6.1).

ccitt(0) iso(1) joint-iso-ccitt(2)

//\

standard(0) registration-authority(1) member-body(2) identified-organization(3)

dod(6)
internet(1)
directory(1) mgmt(2) experimental(3) private(4)

© 2026 - Luca Deri <deri@ntop.org>

31

Assembled ASN.1 Datatypes

SEQUENCE:
» Corresponds to structures in C or records in Pascal.
* The sequence of the items in a SEQUENCE is fixed.
SET:

« Similar to a SEQUENCE, with the difference that the sequence of the elements
is not specified.

SEQUENCE OF:

» Ordered quantity (list) of homogeneous data.
SET OF:

» Unordered quantity of homogeneous data.
CHOICE.:

» Type of selection, similar to the C union.

REAL:
« |t consists of the INTEGER datatype extended with mantissa and exponent.

© 2026 - Luca Deri <deri@ntop.org> 32

Reduced Datatypes

- Definition of further datatypes by restricting the scope of existing datatypes.

- Exact syntax dependent on the underlying primitive datatype.

- Examples:
LottoNumber ::= INTEGER (1..90)
MD5Key ::= OCTET STRING (SIZE (16))
IPAddress = OCTET STRING (SIZE (4]16))
Counter32 = INTEGER (0..4294967295)
Integer32 = INTEGER (-2147483648..2147483647)
Unsigned64 ::= INTEGER (0..18446744073709551615)

Restrictions of the scope are applied to derived datatypes (e.g SEQUENCE OF
MD5Key).

The restriction of the INTEGER datatype makes sense as today's computers
internally usually operate with 32-bit or 64-bit numbers.

© 2026 - Luca Deri <deri@ntop.org>

33

Some Definitions of Types and Values

- Type definitions:
Number ::= INTEGER
DateAndTime ::= UTCTime
ID ::= OBJECT Identifier

- Value definitions :

ok BOOLEAN ::= TRUE
seven Number ::= 7
now DateAndTime ::= "971105012200-0100"

- Implicit Value Definitions :

Lotto ::= INTEGER { first(l), last(49) }
AccessRight ::= BIT STRING { read(l), write(2), execute(3)
MaskAccessRight ::= { read, execute }

Sex ::= ENUMERATED { female(l), male(0) }

© 2026 - Luca Deri <deri@ntop.org>

}

34

A Complex Example [1/2]

Message ::= SEQUENCE {
version INTEGER,
community OCTET STRING,

data ANY -- e.g. PDUs if no authentication

}
PDUs ::= CHOICE {

get-request GetRequest-PDU,

get-next-request GetNextRequest-PDU,

get-response GetResponse-PDU,

set-request SetRequest-PDU
}

GetRequest-PDU
GetNextRequest-PDU
GetResponse-PDU
SetRequest-PDU

:= [0] IMPLICIT PDU
:= [1] IMPLICIT PDU
:= [2] IMPLICIT PDU
:= [3] IMPLICIT PDU

© 2026 - Luca Deri <deri@ntop.org>

35

A Complex Example [2/2]

PDU ::= SEQUENCE {

request-id INTEGER,

error-status INTEGER {
noError(0), tooBig(l),
noSuchName(2), badvalue(3),
readOnly(4), genErr(5)

b
error-index INTEGER,

variable-bindingsVarBindList

}
VarBindList ::= SEQUENCE OF VarBind
VarBind ::= SEQUENCE {
name ObjectName,
value ObjectSyntax
}

© 2026 - Luca Deri <deri@ntop.org>

36

Basic Encoding Rules (BER)

- The Basic Encoding Rules determine how a ASN.1 datatype can be represented as
a string of bytes.

- Based on tag/length/value coding (TLV) algorithm, where the each variable is
identified by one tag, the length of the value in bytes and the value of those bytes.

- The TLV coding permits a recipient to reconstruct the type of a message from the
received byte stream.

- BER coding is a little inefficient as there is often unnecessary information to be
transferred.

- The use of OPTIONAL fields further complicated the BER definition.

- BER also defines the transmission direction of the bit stream other than the coding
the ASN.1 datatypes:

Byte (Octet)
Transmission Direction

87654321

© 2026 - Luca Deri <deri@ntop.org> 37

Coding Tags Classes

- Each tags is coded in a byte:

87654321

| ‘ —— Tag Number (type identification)
Primitive (0) or sub (1) type
Tag Class
- Tag classes:
Bit 8 Bit 7
UNIVERSAL 0 0
APPLICATION 0

1
CONTEXT-SPECIFIC 1 0
PRIVATE 1 1

© 2026 - Luca Deri <deri@ntop.org>

38

Coding Field Length

- The length field indicates the length of the directly following value.

* Length within 0..127:
87654321

0

I— Length (0..127)

* Length > 127 .
87654321 87654321 87654321

1

| |

Number of bytes that specify the field length Field length (>127)

© 2026 - Luca Deri <deri@ntop.org>

Value Coding

« For each primitive ASN.1 type there is a rule that allows values to be translated into a
stream of bytes and vice-versa.

- The rules for INTEGER and OCTET STRING are simple.
- The rules for OBJECT IDENTIFIER are relatively complex.

- Assembled values (SEQUENCE, SEQUENCE OF) are easily represented by coding each
individual item.

- With CHOICE constructs only the available value is transferred, therefore the associated
tag must be unique.

- For further details:

« D. Steedman: Abstract Syntax Notation One (ASN.1) - The Tutorial and
Reference, Technology Appraisals, 1990

© 2026 - Luca Deri <deri@ntop.org> 40

30 1B
02
04
Al

01
06
OE
02
02
02
30

00
70

04
01
01
00

Example of a BER Coded Message

SEQUENCE, Length 27
INTEGER, Length 1, "O0"

75 62 6C 69 63 OCTET STRING, Length 6, "public'

36 A2 8F 07
00
00

GetNextRequest-PDU, Length 14
INTEGER, Length 4, "916623111"
INTEGER, Length 1, "O0"
INTEGER, Length 1, "O0"
SEQUENCE OF, Length 0

- Length of the BER encoding must be well known (no dummy values) when a value

is coded. With some restrictions it is also possible to specify the length after the

value.

- The decoding is more difficult when the length is specified after the value.

- Coding the primitive values is not always as simple as in the example (some

datatypes can be encoded in both short and long form).

© 2026 - Luca Deri <deri@ntop.org>

41

ASN.1

An ASN.1 Compiler [1/2]

CertainStructure ::= SEQUENCE {
tag VisibleString,
vall INTEGER,
val2 INTEGER OPTIONAL,
reals SET OF REAL

typedef struct CertainStructure {
VisibleString_t tag;
int vali;
int *val2; [* OPTIONAL */
A _SET_OF(double) reals;
} CertainStructure _t;

© 2026 - Luca Deri <deri@ntop.org> 42

An ASN.1 Compiler [2/2]

Encoding and Decoding Data

CertainStructure t *cs = 0;

ber_decode(0, &asn_DEF_CertainStructure, &cs, buffer, buffer_length);
cs->vall = 123; /* Modify the contents */

ber_encode(&asn_DEF CertainStructure, cs, write_handle, 0);

Online ASN.1 Compiler
http://lionet.info/asn1c/asnic.caqi

© 2026 - Luca Deri <deri@ntop.org>

43

http://lionet.info/asn1c/asn1c.cgi

1.
2.

2. Internet Management

Introduction
Internet Management

2.1 Overview

2.2 Structure the Management Information (SMiv2)

2.3 Fundamental MIBs

2.4 Simple Network Management Protocol Version 1 (SNMPv1)
2.5 Simple Network Management Protocol Version 2¢ (SNMPv2c)
2.6 Simple Network Management Protocol Version 3 (SNMPv3)
2.7 MIB Implementation and Agent Extensibility Protocol (AgentX)

© 2026 - Luca Deri <deri@ntop.org>

44

2.1 Overview

1987 Simple Gateway Monitoring Protocol (SGMP)

1987 High-level Entity Management System (HEMS)

1988 Simple Network Management Protocol (SNMPv1) proposed

1990 Simple Network Management Protocol (SNMPv1) standard 15, 16

1991 Management Information Base Il standard 17
1993 SNMP Version 2 (Party/Party/Context) standard
1996 SNMP Version 2 (Communities) standard
1998 SNMP Version 3 (User-based) standard

- SNMPv1 has a large spreading particularly in data communication.
- The attempts for the standardisation of SNMPv2 failed.

- SNMPv3 with SNMPv1 has been accepted by a large community of network
manufacturers.

- The user community has accepted SNMPv3 very well in terms of support and
development.

© 2026 - Luca Deri <deri@ntop.org>

SNMP Development Goals

- Minimization of the number and complexity of the management functions, which are
iImplemented by an agent:

* Reduction of development costs for management agents (simple applications).

« Ubiquity: use the same management technology for all devices (printers or
Cray).

» Application extensibility: development of new management functions without
the need to modify the agents.

- Extensibility by defining new MIBs.

- Independence from existing computer or network architectures.

- Robustness by a simple, connectionless transport service (UDP).
- No dependency on other network services.

- Addition of management to new/existing devices/applications should be
inexpensive, simple to develop and of limited functionality.

- Unfortunately some of these original goals have been lost: the term "simple" refers
to the protocol and not to the specifications or the implementation of management
applications.

© 2026 - Luca Deri <deri@ntop.org> 46

Trap Directed Polling

Information (Traps)

Manager
Agent Agent Agent Agent Agent Agent

- SNMP managers polls in regular intervals the SNMP agents.
- Agents can signal exceptional cases to a manager by sending a trap.

- The SNMP manager can adapt the polling strategy upon the receipt of traps (trap
directed polling).

- SNMP is a strictly centralised model, where the manager implements the whole
functionality and responsibility.

© 2026 - Luca Deri <deri@ntop.org>

(Buijjod) 10u0)

SNMP Application Areas

- SNMP can be used not only for network management:
 control and monitoring of production processes.
 control and monitoring of complex computer systems.

» monitoring of complex application programs (relational databases, SAP R/3
components...).

- Many good SNMP toolkits are available on the market.
- Very few applications are available for solving complex management problems.

- The implementation of special applications or the conversion of local procedure
auidelines is aenerally relativelv complex and expensive.

© 2026 - Luca Deri <deri@ntop.org> 48

2.2 Structure the Management Information (SMiv2)

The current information model known as "Structure of Management Information
version 2" (SMIv2) is defined and based on simple typed variables.

- SMIv2 is based on extended subset of ASN.1 (1998).

- Each variable has a primitive, not assembled ASN.1 datatype:
INTEGER, OCTET STRING, OBJECT IDENTIFIER, NULL

Integer32, Unsigned32, Gauge32, Counter32, Counter64, IpAddress, TimeTicks,
Opaque

- It does not implement complex data structures and operations on the variables.

- Variables are either scalars (exactly one instance) or columns in a “conceptual” two
dimensional table (zero or several variables).

- On the variables only "read" and "write" operations can be applied. However the
SNMP protocol permits the manipulation of lists of variables.

- SMIv2 management information Bases (MIBs) are defined using special ASN.1
macros.

- It leverages the complexity of new MIBs definitions: definition of basic functionality
and primitive types to be used in new MIBs.

© 2026 - Luca Deri <deri@ntop.org> 49

SMIv2 Basic Datatypes (RFC 2578)

SMiv2 SMiv1 Description

INTEGER INTEGER Integer Numbers (-2147483648..2147483647)

OCTET STRING OCTET STRING Sequence of bytes (octets).

OBJECT IDENTIFIER [OBJECT IDENTIFIER Unique identifier.

Integer32 INTEGER 32 bit Integers (-2147483648..2147483647)

Unsigned32 - 32 bit Positive Integers (0..4294967295)

Gauge32 Gauge “Thermometer” Integer (0..4294967295)

Counter32 Counter 32 bit non decreasing counter (0..4294967295)

Counter64 - 64 bit non decreasing counter
(0..18446744073709551615)

TimeTicks TimeTicks Time in 1/100th of seconds

IpAddress IpAddress 4 Byte IPv4 Address

Opaque Opaque Unspecified ASN.1 Type (not recommended)

BITS - Bits in @ OCTET STRING

- NetworkAddress Network Address (not recommended)

© 2026 - Luca Deri <deri@ntop.org> 50

A MIB Use Case

Manager

name —__ | ‘: Agent
E uptime ~_ E\ “

____________ address

- Definition of the variables in the ISO Registration tree.
- Nodes are defined for naming purposes.

- The leave of the tree represent the managed objects (i.e. “the meat”).
- Sub nodes can be used in order to logically organise the object types.

(1)

address (1) info (2)

name (1) uptime (2)

© 2026 - Luca Deri <deri@ntop.org>

51

Object Identifier and Instance Identifier

In the registration tree each object can be identified by means of a unique object
identifier.

Concrete developments (instance) of a type of object are unique designated by
a so-called Instance Identifier.

A unique instance identifier is obtained by attaching an instance identifiers to the
object identifier.

Scalar object have basically only one instance, where the instance identifier has
basically the value O (e.g. sysName.0).

Instance identifiers for non-scalar variables are derived from the unique naming of
a conceptual table.

As object identifier can have up to 128 elements, hence instance names cannot be
infinitely complex.

© 2026 - Luca Deri <deri@ntop.org> 52

Example of Object and Instance Identifiers

(1)

address (1) K
name (1) uptime (2)
Object Identifier Instance ldentifier Type Value
1.1 0 IpAddress 10.1.2.1
1.2.1 0 OCTET STRING "FilterFresh"
1.2.2 0 TimeTicks 94321

MIB nodes names are relevant for human users only.

Descriptors must be unique within a MIB module, although can be used several
times in different MIB modules (one gets unique descriptors by the combining
module names and descriptors).

© 2026 - Luca Deri <deri@ntop.org> 53

Extension of the Example MIB with a Routing table

(1)

address (1) /lnf% fwdTable(3)

name (1) uptime (2) fwdEntry(1)

mask(2) next(3)

1 2 2
2 3
9 5 2
4 7 2
5 8 3
6 9 3

For matter of simplicity in the above example addresses are represented using
natural numbers.

© 2026 - Luca Deri <deri@ntop.org> 54

Identification of Table Entries

Tables are defined basically with two "auxiliary nodes":
« the first node defines the table and is of type SEQUENCE OF.

« the second node defines an entry (a row) in the table and is of type
SEQUENCE.

« this is the only permitted use of SEQUENCE and SEQUENCE OF in SNMP SMIiv2.

The result of the column and instance identifier (code of the table) is a unique
object identifier for each table entry.

Table Example (convention OID => value):
1.3.1.1.1=>1 1.3.1.3.1=>2 1.31.24=>7

1.3.1.2.1=>2 1.3.1.1.4 =>4 1.3.1.2.7 =>
not existing

© 2026 - Luca Deri <deri@ntop.org> 55

Tables Naming [1/3]

Table naming is very important as it affects the way tables are accessed.
Two kind of tables naming:
« Use row numbers (not being used by SNMP).

1 2 2
3 3
3 5 2 This is row number 3
4 7 2
5 8 3

* Use an index column (the SNMP way).
his is the index column

2 2

~
N

QRN JWOIN | [«
&)
N

oo
w

© 2026 - Luca Deri <deri@ntop.org>

Tables Naming [2/3]

- Atable index is not necessarily (but often is) an INTEGER. For instance the
routingTable uses an IP address as table index.

- Atable index can be made of several components:

OID of the table X

Column number O

11

Index value 1

12

destination (1)

Index valuen 5

routingTable

. 1 = low cost
policy (2) 5 - nigh reliabiity

next (3)

130.89.16.23

130.89.16.23

192.168.10.12

192.168.10.12

© 2026 - Luca Deri <deri@ntop.org>

1 130.89.16.23

2 130.89.16.127

1 172.16.1.18

2 172.16.1.12

57

Tables Naming: Complex Table Indexes [3/3]

- An IP Routing table is the combination of
IP address and the IP netmask necessary
to satisfy the routing rules.

- The individual bytes of the IP address are
specified as individual sub identifiers.

- Example:
Instance Identifier

fwdTable(3)

fwdEntry(1)

Let(l%ask\ (2) next(3)

0.0.0.0

255.255.255.0

134.169.34.1

127.0.0.1

255.0.0.0

127.0.0.1

134.169.34.0

255.255.255.0

134.169,34.15

134.169.35.1

255.255.255.0

134.469.34.18

134.1$9.35.2

255.255.255.0)

134.169.34.18

/

1.3.1.1.134.169.35.1.255.255.255.0 => 134.169.35.1

net mask

1.3.1.3.134.169.34.0.255.255.255.0 => 134.169.34.15

© 2026 - Luca Deri <deri@ntop.org>

58

MIB Module

- Similar object types are combined into MIB modules.
- Each MIB module must have a unique name (uppercase letters).

- MIB modules are (almost) normal ASN.1 modules and obey to the lexical ASN.1
rules.

Definitions can be imported by other MIB modules with the help of of the ASN.1
IMPORT statement.

- All used ASN.1 SMI Macros must be explicitly imported

COFFEE-MIB DEFINITIONS ::= BEGIN

IMPORT MODULE-IDENTITY, OBJECT-TYPE, enterprises,
IpAddress, TimeTicks FROM SNMPv2-SMI;

END

© 2026 - Luca Deri <deri@ntop.org> 59

Module-ldentities (RFC 2578)

<descriptor> MODULE-IDENTITY
LAST-UPDATED <ExtUTCTime>
ORGANIZATION <Text>
CONTACT-INFO <Text>
DESCRIPTION <Text>
[REVISION <ExtUTCTime>
DESCRIPTION <Text>]*

::= <ObjectIdentifier>

- Defines administrative information e.g. contact information and version number.

the REVISION and DESCRIPTION clauses are not mandatory and can occur
several times.

- ExtUTCTime contains a date in the format,YYMMDDHHMMZ* (UTC) or
,YYYYMMDDHHMMZ", e.g.. ,,9502192015Z" or ,,1199502192015Z".

© 2026 - Luca Deri <deri@ntop.org>

60

IMPORTS ...

Module-ldentities (RFC 2578)

IF-MIB DEFINITIONS ::= BEGIN

ifMIB MODULE-IDENTITY

LAST-UPDATED

"9611031355Z"

ORGANIZATION "IETF Interface MIB Working Group"

CONTACT-INFO

DESCRIPTION

REVISION
DESCRIPTION
REVISION
DESCRIPTION
::= { mib-2

END

" Keith McCloghrie

Cisco Systems, Inc.

408-526-5260

kzm@cisco.com

170 West Tasman Drive

San Jose, CA 95134-

1706, US"
describe generic objects for network interface
is an updated version of MIB II s ifTable,

extensions defined in RFC 1229."

Interfaces MIB WG"

"Initial revision, published as part of RFC 1573."

"The MIB module to of
sub-layers. This MIB
and incorporates the

"9602282155Z"

"Revisions made by the

"9311082155Z"

31 }

© 2026 - Luca Deri <deri@ntop.org>

61

Object Identities (RFC 2578)

<descriptor> OBJECT-IDENTITY

STATUS <Status>
DESCRIPTION <Text>
[REFERENCE <Text>]

::= <ObjectIdentifier>
- Defines and registers an object identifier value.
- Permits the allocation of any node within the registration tree.

The STATUS clause defines whether the allocated node is "obsolete" "current", or
"deprecated”.

The optional REFERENCE is used to refer to further information (similar to HTML
hyperlinks).

© 2026 - Luca Deri <deri@ntop.org> 62

Example of Object Identities (RFC 2578,

zeroDotZero OBJECT-IDENTITY
STATUS current
DESCRIPTION

"A value used for null Identifiers."

t:= { 00 }

snmpUDPDomain OBJECT-IDENTITY
STATUS current
DESCRIPTION
"The SNMPv2 over UDP transport domain. The corresponding
transport address is of type SnmpUDPAddress."

:= { snmpDomains 1 }

snmpIPXDomain OBJECT-IDENTITY
STATUS current
DESCRIPTION
"The SNMPv2 over IPX transport domain. The corresponding
transport address is of type SnmpIPXAddress."

::= { snmpDomains 5 }

© 2026 - Luca Deri <deri@ntop.org>

RFC 1906)

63

Object Types (RFC 2578)

<descriptor> OBJECT-TYPE

SYNTAX <Syntax>
[UNITS <Text>]

MAX-ACCESS <Access>
STATUS <Status>
DESCRIPTION <Text>

[REFERENCE <Text>]

[INDEX <Index>]
[AUGMENTS <Index>]
[DEFVAL <Value>]
::= <ObjectIdentifier>

- Macro for the definition of object types and conceptual tables.
The INDEX and AUGMENTS clauses are permitted only for the definition by tables.

- Exactlv one of the above clauses must be specified durina table definition.

© 2026 - Luca Deri <deri@ntop.org> 64

Example for ObjectTypes (RFC 2012)

tcpRtoMin OBJECT-TYPE

SYNTAX Integer32

UNITS "milliseconds”

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The minimum value permitted by a TCP implementation for the
retransmission timeout, measured in milliseconds. More
refined semantics for objects of this type depend upon the
algorithm used to determine the retransmission timeout. In
particular, when the timeout algorithm is rsre(3), an object
of this type has the semantics of the LBO and quantity

of described in RFC 793."

t:= { tcp 2 }

© 2026 - Luca Deri <deri@ntop.org> 65

Example for ObjectTypes (RFC 1907)

sysORTable OBJECT-TYPE

SYNTAX SEQUENCE OF SysOREntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"The (conceptual) table listing the capabilities of the
local SNMPv2 entity acting in an agent role with respect to
various MIB modules. SNMPv2 entities having dynamically-
configurable support of MIB modules will have a
dynamically-varying number of conceptual rows."

::= { system 9 }

SsysOREntry OBJECT-TYPE
SYNTAX SysOREntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the sysORTable."
INDEX { sysORIndex }

::= { sysORTable 1 }

© 2026 - Luca Deri <deri@ntop.org>

66

Notification-Types (RFC 2578)

<descriptor> NOTIFICATION-TYPE

[OBJECTS <Objects>]
STATUS <Status>
DESCRIPTION <Text>

[REFERENCE <Text>]

::= <ObjectIdentifier>

- Macro for the registration of an event.

- In case of event a manager or an agent can send an appropriate notification to another
manager.

- The OBJECTS clauses defines which MIB objects must be contained in the event description.

- The DESCRIPTION clause must describe which instances are meant in each case.

© 2026 - Luca Deri <deri@ntop.org> 67

Example for Notification Types (RFC 2233)

linkDown NOTIFICATION-TYPE

OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }

STATUS current

DESCRIPTION
"A linkDown trap signifies that the SNMPv2 entity,
acting in an agent role, has detected that the
ifOperStatus object for one of its communication links
is about to enter the down state from some other state
(but not from the notPresent state). This other state
is indicated by the included value of ifOperStatus."

::= { snmpTraps 3 }

linkUp NOTIFICATION-TYPE

OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }

STATUS current

DESCRIPTION
"A linkDown trap signifies that the SNMPv2 entity,
acting in an agent role, has detected that the
ifOperStatus object for one of its communication links
left the down state and transitioned into some other
state (but not into the notPresent state). This other
state is indicated by the included value of ifOperStatus.”

::= { snmpTraps 4 }

© 2026 - Luca Deri <deri@ntop.org> 68

New Types from Textual Conventions

Textual conventions allow new types to be derived from SMIv2 base types.

However, additional types may not be derived from a textual convention.

A DISPLAY-HINT clause defines a simple figure of the ASN.1 representation of a
value into a format readable for humans.

The DISPLAY-HINT clause can be used only together with the INTEGER and
OCTET STRING datatype and from which it derives.

- A Textual convention can determine restrictions on the scope.

- A Textual convention cannot define an assembled type.

© 2026 - Luca Deri <deri@ntop.org> 69

Textual Conventions [1/2]

- Textual conventions are defined in RFC 2579.

<descriptor> ::= TEXTUAL-CONVENTION
[DISPLAY-HINT <Text>]

STATUS <Status>
DESCRIPTION <Text>
[REFERENCE <Text>]
SYNTAX <Syntax>

The DISPLAY-HINT clause defines a bi-directional figure of the internally used
representation on a representation readable for humans. .

In the SYNTAX clause only base datatypes may be used (one can thus limit not
existing Textual Conventions even further).

All further semantics must be defined in the DESCRIPTION clause.

© 2026 - Luca Deri <deri@ntop.org>

70

Textual Conventions [2/2]

- The followings are the textual conventions defined in RFC 2579:
* PhysAddress
* MacAddress
 TruthValue
« AutonomousType

InstancePointer

VariablePointer

RowPointer

RowStatus

« TimeStamp

* Timelnterval

« DateAndTime
« StorageType
 TDomain

« TAddress

© 2026 - Luca Deri <deri@ntop.org>

71

- Example:
e ’d”’
e 'd-27
c 0
e

INTEGER DISPLAY-HINTS

Format Description
d Representation of an Integer
d-<number> Representation of "d” with a decimal point
0 Octal Representation
X Hex Representation
stands for ""143""
stands for ""1.43"

stands for 217"

stands for

QE"”

© 2026 - Luca Deri <deri@ntop.org>

72

OCTET STRING DISPLAY-HINTS

o [<repeat>]<number><format>[separator][terminator]
Field Description (similar to C/C++ printf)
<repeat> Indicator for the specification repetition
<number> # bytes in the following format field
<format> Format (a ASCII, d Decimal, x Hexadecimal, o Octal, t UTF8)
<separator> Separator among multiple values
<terminator> Terminator specified at the end of the rule
- Example:
« '255a°" format for the ASCII characters “"aBc™’ in the string “"aBc™
¢ X7 format for the ASCII characters ""aBc™ in the string "'61:42:63"

* "0aHOae0a10a10ao0a 1a™
format for the ASCII characters “"World™" in the string ""Hello World™”

© 2026 - Luca Deri <deri@ntop.org> 73

Example for Textual-Conventions (RFC 2579)

RunState ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"This TC of describes the current execution state of
a running application or process."

SYNTAX INTEGER {
running(1l), runnable(2),

waiting(3), exiting(4), other(5)

}
MacAddress ::= TEXTUAL-CONVENTION
DISPLAY-HINT "1x:"
STATUS current

DESCRIPTION
"Represents an 802 MAC address represented in the
“canonical' or the defined by IEEE 802.la, i.e., as if it
were transmitted least significant bit first, even though
802.5 (in contrast to other 802.x protocols) requires MAC
addresses to be transmitted most significant bit first."

SYNTAX OCTET STRING (SIZE (6))

© 2026 - Luca Deri <deri@ntop.org>

74

Example for Textual-Conventions (RFC 2579)

DateAndTime ::= TEXTUAL-CONVENTION
DISPLAY-HINT "2d-1d-1d,1d:1d:1d.1ld,lald:1d"
STATUS current
DESCRIPTION

"A date-time specification.

field octets contents range
1 1-2 year 0..65536
2 3 month 1..12
3 4 day 1..31
4 5 hour 0..23
5 6 minutes 0..59
6 7 seconds 0..60

(use 60 for leap-second)

7 8 deci-seconds 0..9
8 9 direction from UTC "+
9 10 hours from UTC 0..11
10 11 minutes from UTC 0..59

For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would be displayed as:
1992-5-26,13:30:15.0,-4:0
Note that if only local time is known, then timezone information (fields 8-10) is not present."
SYNTAX OCTET STRING (SIZE (8 | 11))

© 2026 - Luca Deri <deri@ntop.org>

Further SMiv2 Macros

OBJECT-GROUPS
» |t enables the definition of groups of related object types.
* This macro can be used in the MODULE-COMPLIANCE macro.

NOTIFICATION-GROUPS
» |t enables the definition of groups of related notification types.
* This macro can be used in the MODULE-COMPLIANCE macro.

MODULE-COMPLIANCE
* It defines one or more constraints that a MIB implementations must fulfil.

AGENT-CAPABILITIES
* It describes the capabilities of a real MIB implementation.

© 2026 - Luca Deri <deri@ntop.org>

76

MIB-Compiler

Errors and Warnings

Docs

|

Compiler Format Compiler

MIB & SMI Frontend
Definitions

Intermediate Backend

q Y -
—P —>

Test Sources

| AN

SMI Conversion

Runtime
Data

- Backend-Compiler can produce the following outputs:

* Documentation (hypertext versions of MIB modules, diagrams)
» Source code for the semiautomatic implementation of agents

» Test-cases for testing manager and agent implementations

* Inputs for management applications, the MIB definitions needed at run-time.

« There is no standardised or generally accepted intermediate format.

© 2026 - Luca Deri <deri@ntop.org>

77

2.3 Fundamental MIBs

- MIB-Il (RFC 1213) defines object types for the Internet Protocols IP, ICMP, UDP,
TCP, SNMP (and other definitions not relevant here). Basically it models the
management of the TCP/IP protocol stack.

- Goals of the MIB-II definition:

» Define basic error and configuration management for Internet protocols.

* Very few and weak control objects.

» Avoidance of redundant information in the MIB.

« MIB implementation should not interfere with the normal network activities.
* No implementation-dependent object types.

- Altogether 170 object types.

- Some MIB definitions turned out to be too simple and minimal (Routing table,
Interface table).

- Some MIB definitions presuppose a 4-Byte address format, hence these tables must
be redefined for IP version 6 (IPv6).

© 2026 - Luca Deri <deri@ntop.org> 78

Registration and Structure of MIB-II

D

ccitt(0) iso(1) joint-iso-ccitt(2)

T

standard(0) registration-authority(1) member-body(2) identified-organization(3) ...

dod(6)
internet(1)
directory(1) mgmt(2) experimental(3) private(4) security(5) snmpV2(5) ...

B mib-2(1)

system(1) interfaces(2) at(3) ip(4) icmp(5) tcp(6) udp(7)Mion(10) snmp(11) ...

x25(1) dot3(2) dot5(3) ...

© 2026 - Luca Deri <deri@ntop.org> 79

Relations Between MIBs [1/2]

o
— © () Z
' 17 8 3 Q
0 ! [= =
= T Y 08) Y
Interface Statistics X
IP, TCP & UDP Statistics X
SNMP Statistics X
Host Job Counts X

Host File System Information

Link Testing

Network Traffic Statistics

Address Tables

Host Statistics

Overlap

© 2026 - Luca Deri <deri@ntop.org>

Relations Between MIBs [2/2]

é
— © [0)) Z
& 17 S 3 Q
Q o) "= =
= T 04 oM 4
Historical Statistics X
Spanning Tree Performance X
Wide Area Link Performance X
Thresholds for any variable X
Configurable Statistics X
Traffic Matrix with all Nodes X
‘Host Top N’ Information X
Packet/Protocol Analysis X
Distributed Logging X

© 2026 - Luca Deri <deri@ntop.org>

81

2.4 Simple Network Management Protocol Version 1

Virtual Terminal Information Retrieval Name Service Network Filesystem
: . . Simple Network
File Transfer Electronic Mail Management Protocol
Application Layer |\ \ ___________ / __
Transmission Control User Datagram
Protocol (TCP) Protocol (UDP)

Transport Layer

Internet Protocol (IP) &
Internet Control Message
Protocol (ICMP)

| | | |
At |] usDN | ! 8023 | | 8025 |
| | | |

© 2026 - Luca Deri <deri@ntop.org> 82

Lexicographical Ordering

- MIB instances are arranged in the MIB according to their lexicographical ordering.

- The ordering is determined by the value of the object identifier that identify the
instance.

- The SNMP log uses the lexicographical order, in order to read (walk) conceptual
tables or unknown MIBs.

© 2026 - Luca Deri <deri@ntop.org>

83

Example of Lexicographical Ordering

Object Identifier: Value: Object Identifier Value :
1.1.0 10.1.2.3 1.3.1.2.4 7
1.2.1.0 "FilterFresh" 1.3.1.2.5 8
1.2.2.0 94321 1.3.1.2.6 9
1.3.1.1.1 1 1.3.1.3.1 2
1.3.1.1.2 2 1.3.1.3.2 3
1.3.1.1.3 3 1.3.1.3.3 2
1.3.1.1.4 4 1.3.1.3.4 2
1.3.1.1.5 5 1.3.1.3.5 3
1.3.1.1.6 6 1.3.1.3.6 3
1.3.1.2.1 2

1.3.1.2.2 3

1.3.1.2.3 5

- With this ordering the conceptual table structure is lost as the walk output is a list
and no longer a table.

- the SNMP protocol operates only on this arranged list.

© 2026 - Luca Deri <deri@ntop.org>

84

SNMPv1 protocol operations (RFC 1157)

Manager Agent

Get —

-
~
~
~
~
~
~
~
~

«— Response

-
-
-
-
-
-
-

4—
Manager Agent
Set —-.___
~~~~~ —>
,,,,,, «— Response
S

Manager
GetNext —

Agent

Trap—

[~ ~
~
~
~
~
~
~
~
~
~

-
~
~
~
~
~
~
~
~

-
-
-
-
-
-
-

Agent

«— Response

Manager

Note: the SNMP protocol can only exchange (a list of) scalars.

© 2026 - Luca Deri <deri@ntop.org>

85



SNMPv1 Message Format
SNMP message:

version

community

SNMP PDU

GetRequest, GetNextRequest, SetRequest:

PDU type |request-id 0 0 variable-bindings
GetResponse:

PDU type |request-id | error-status | error-index | variable-bindings
Trap:

PDU type | enterprise | address| generic | specific | timestamp| vbs
variable-bindings:

name, | value, name, | value, name, | value,

© 2026 - Luca Deri <deri@ntop.org>

86



SNMPv1 Get Operation

Manager Agent (port 161)
Get —

-
~
~
~
~
~
~
~
~
~

«— Response

-
-
-
-
-
-
-

- The Get operation can be used for reading one or more variables.

- Possible errors when processing a GET operation:

* noSuchName the requested instance does not exist or is not a leaf.
* tooBig the result of the request does not fit not into the response (UDP).
* genkrr any other error occurred.

- In the case of several errors occurred, only one error is signalled as error-index and
error-status are unique in the PDU.

© 2026 - Luca Deri <deri@ntop.org> 87



Example of Get Operation

Get(1.1.0)
Response(noError@0, 1.1.0=10.1.2.3)

Get(1.2.0)
Response(noSuchName@l, 1.2.0)

Get(l.1)
Response (noSuchName@l, 1.1)

Get(1.1.0, 1.2.2.0)
Response(noError@0, 1.1.0=10.1.2.3, 1.2.2.0=54321)

Get(l.3.1.1.4, 1.3.1.3.4)
Response(noError@0, 1.3.1.1.4=4, 1.3.1.3.4=2)

Get(1.1.0, 1.2.2.0, 1.1)
Response(noSuchName@3, 1.1.0, 1.2.2.0, 1.1)

© 2026 - Luca Deri <deri@ntop.org>

88



SNMPv1 GetNext Operation

Manager Agent (port 161)

GetNext —

-
~
~
~
~
~
~
~
~

—

«— Response

-
-
-
-
-
-
-

- It retrieves the object name and the value of the next instance. This operation is
used to discover MIB structures and read tables.

- The GetNext operation allows MIB instances to be read in accordance to the
lexicographical order.

- Using multiple/successive GetNext operations it is possible to read the complete
MIB without knowing its structure.

Possible errors when processing a GetNext Operation:
* noSuchName the requested instance does not exist (= end of MIB).
* tooBig the result of the request does not fit not into the response (UDP).
* genkrr any other error occurred.

© 2026 - Luca Deri <deri@ntop.org> 89



Example of GetNext Operation

GetNext(1.1.0)
Response (noError@o,

GetNext(1.2.1.0)
Response (noError@o,

GetNext(1l.1)
Response (noError@o0,

GetNext(1.3.1.1.1)
Response (noError@o,

GetNext(1.3.1.1.6)
Response (noError@o,

GetNext(l.3.1.1.1,
Response (noError@o,

1.2.1.0=FilterFresh)

1.2.2.0=54321)

1.1.0=10.1.2.3)

1.3.1.1.2=2)

1.3.1.2.1=2)

1.3.1.2.1, 1.3.1.3.1)
1.3.1.1.2=2, 1.3.1.2.2

© 2026 - Luca Deri <deri@ntop.org>

3,

1.3.1.3.2=3)

90



SNMPv1 Set Operation

Manager Agent (port 161)

Set —

-
~
~
~
~
~
~
~
~

—>

«— Response

-
-
-
-
-
-
-

- The Set Operation writes values in one or more MIB instances.
- The Set Operation is atomic.

- With the help of the set operation new MIB instances can also be created, if the MIB
definition permits (there is no standard procedure defined in SNMPv1 for instance
creation).

- Possible errors when processing a Set operation:

* noSuchName the requested instance does not exist and cannot be created.

» badValue the specified value is of wrong type.

* tooBig the result of the request does not fit not into the response (UDP).
* genkrr any other error occurred.

- The error code readOnly is also defined, but not usually used!

© 2026 - Luca Deri <deri@ntop.org> 91



Example of Set Operation

Set(1l.2.1.0=HotJava)
Response (noError@0, 1.2.1.0=HotJava)

Set(l.1.0=foo.bar.com)
Response (badvValue@l, 1.1.0=foo.bar.com)

Set(1.1.1=10.2.3.4)
Response (noSuchName@l, 1.1.1=10.2.3.4)

Set(l.2.1.0=HotJava, 1.
1

l.0=foo.bar.com)
Response (badvValue@2, 1.2.1

.0=HotJava, l1l.l1l.0=foo.bar.com)

Set(l1.3.1.1.8.1=7, 1.3.1.2.7=2, 1.3.1.3.7=3)
Response (nokError@0, 1.3.1.1.8.1=7, 1.3.1.2.7=2, 1.3.1.3.7=3)

© 2026 - Luca Deri <deri@ntop.org>

92



SNMPv1 Trap Operation

Agent Manager (port 162)

Trap —r--__
~~~~~~ NOTE:

* The only operation Agt ->Mgr
» Unsolicited operation

- With the trap operation and agent can emit an event and inform a manager. Note: a
manager can be configured to discard traps!

- The receipt of a trap operation is not acknowledged thus is unreliable as it can be
lost during the transfer.

- The production of traps can lead to so-called trap storms, if e.g. after a power failure
all devices want to display the restart at the same time.

- Agents can be normally configured with the |IP addresses of hosts where traps can
be dispatched. However there is no standard technique in SNMPv1 for such agent
configuration. Usually a configuration file (not the MIB) is used.

- Although if traps are used, polling is still necessary (for instance the agent might be
down)

© 2026 - Luca Deri <deri@ntop.org> 93

Example of SNMPv1 Trap Operation

ColdStart
Trap(generic=0, specific=0)

WarmStart
Trap(generic=1, specific=0)

LinkDown
Trap(generic=2, specific=0, 1.3.6.1.2.1.2.2.1.1.2=2)

LinkUp
Trap(generic=3, specific=0, 1.3.6.1.2.1.2.2.1.1.2=2)

AuthenticationFailure
Trap(generic=4, specific=0)

EnterpriseSpecific (QMS, gmsPtrErrorMsg)
Trap(generic=6, specific=1, enterprise=1.3.6.1.4.1.480,
1.3.6.1.4.1.480.2.1.1.1=out of paper)

© 2026 - Luca Deri <deri@ntop.org>

94

Agent MIB Implementation

Agent Requests

I

Test Suites

I

Manager
Implementation

Test Manager

)

Analysis and MIB View MIB Module
Modelling Draft Draft
Object Analysis OID Structure MIB Module

- It is possible for have several iterative phases for the MIB definitions until it is in draft

status.

Module Structure

Agent Test Agent
Implementation
Implementation Test Suites

Limitations

- MIB definitions cannot however be further changed, if they were released.

© 2026 - Luca Deri <deri@ntop.org>

SNMP MIB Il: Introduction

MIB-II (RFC 1213) defines object types for the Internet
Protocols IP, ICMP, UDP, TCP, SNMP (and other definitions
not relevant here). Basically it models the management of the
TCP/IP protocol stack.

Altogether 170 object types.

Some MIB definitions turned out to be too simple and minimal
(Routing table, Interface table).

Some MIB definitions presuppose a 4-Byte address format,
hence these tables must be redefined for IP version 6 (IPv6).

© 2026 - Luca Deri <deri@ntop.org> 96

SNMP MIB II: Goals
Goals of the MIB-II definition:

— Define basic error and configuration management for
Internet protocols.

— Very few and weak control objects.
— Avoidance of redundant information in the MIB.

— MIB implementation should not interfere with the normal
network activities.

— No implementation-dependent object types.

© 2026 - Luca Deri <deri@ntop.org>

97

"system" Group [1/2]

system(1)

/N

sysDescr(1) sysObjectID(2) sysUpTime(3) sysContact(4) sysName(5) syslLocation(6) sysServices(7)

sysUpTime.0 is a very important variable as it is used for determining

service discontinuities:

— If sysUpTime.0,, > sysUpTime.0,, where t, > t, then the agent has been
reinitialised and management application rely on previous values.

sysServices roughly reports the services supplied by the system:

0 X 0 0 X |

o

X X X

physical layer (e.g. repeaters)
data-link layer (e.g. bridges)
internet layer (e.g. router)
transport layer (e.g. hosts)
application layer (e.g. http-server)

© 2026 - Luca Deri <deri@ntop.org> 98

"system" Group [2/2]

sysObjectld.0 has the format enterprises.<manufacturer>.<id>* and it is

used to identify manufacturer and model. For instance enterprises.9.1.208
identifies a Cisco (.9) 2600 router (.1.208).

sysDescr.0 provides a precise description of the device (e.g. “Cisco
Internetwork Operating System Software 10S (tm) C2600 Software
(C2600-1-M), Version 12.2(23), RELEASE SOFTWARE (fc2) Copyright (c)
1986-2004 by cisco Systems, Inc.”)

In a nutshell the system group is important for:

— Device mapping (via sysObjectld.0, sysDescr.0, and sysLocation.0)
— Counter wrapping check (sysUpTime.0)

— Reporting problems about the device to the administrator (sysContact.0)

© 2026 - Luca Deri <deri@ntop.org> 99

“interface" Group

interfaces(2)

— (zz)oyoadgy
—(lg)usTOINOH
——(0g)ssouzInoH
~—(61)spJessiginoy!
(81)SPIdISEdNNINOY!
—(/1)spidiseaninoy!

—(91)s181001In0}
|)SO101dumouun Uil

(¥1)si003uyy
——(€1)spJeosiquiy
—(Z1)spidisedonNuly
—(1LL)spidiseanuyy!
—(0l)seoul

g)obueydisey
———(g)snejsiadQy!
——(2)smejsuiwpyy!
——(9)ssaippysAydy
(g)poadsi
()AL
(€)adALy
(2)losey

(1)Xspuff

ifEntry(1)

ifTable(2)

ifNumber(1)

100

© 2026 - Luca Deri <deri@ntop.org>

“interface"” Group Variables

ifAdminStatus: the current administrative state of the interface. Values: up(1), down(2),
testing(3). A value different from up means that the interface is not physically present on
the system or that it's present but unavailable to the operating system (e.g. the driver has not
been loaded).

Caveat: SNMP MIB index holes

ifOperStatus: the current operational state of the interface. Values: up(1), down(2), testing(3).
It is similar to ifconfig <device> up/down.

ifOutQLen: the length of the output packet queue (in packets). It is useful for knowing more
about transmission speeds and throughput (buffer full means that the receiver is not as fast
as the sender).

ifLastChange contains the value of sysUpTime at the time the interface entered its current
operational state. Useful for detecting when an interface changed state (e.g. cable
connected).

© 2026 - Luca Deri <deri@ntop.org> 101

Case Diagram for
the "interface" Group

ifinUcastPkts ifOutUcastPkts
+ — +
ifinNUcastPkt ifOutNUcastPkts
iflnDiscard ————
ifinUnknownProtos ifOutErrors
ifInErrors ifOutDiscards

Case diagrams illustrate dependencies between Variables:

— the number of packets delivered by a network interface to the next higher
protocol layer: ifinUcastPkts + iflnNUcastPkits.

— the number of packets received by the network:
(ifinUcastPkts + iflnNUcastPkts) + ifiInDiscards + iflnUnknownProtos +
ifiInErrors

— the number of actually transmitted packets:
(ifOutUcastPkts + ifOutNUcastPkts) - ifOutErrors - ifOutDiscards

© 2026 - Luca Deri <deri@ntop.org> 102

Using the "interface” Group [1/2]
It is the base of SNMP-based monitoring.

Many tools periodically poll values from interfaces (mostly
IfiInOctets and ifOutOctets).

Values are aggregated and not divided per protocol,
destination, AS. This is a major limitation if fine grained
monitoring is required. The reason is that SNMP counters are
basically the kernel counters ‘exposed’ via SNMP.

Interface errors can be used for detecting communication
problems, especially on WAN links.

© 2026 - Luca Deri <deri@ntop.org> 103

Using the "interface” Group [2/2]

Packet size statistics are not reported however simple Octets/
Packets statistics can be computed.

Many manufacturers (e.g. Cisco, Juniper) report information
about both physical and logical interfaces (also known as sub-
interfaces). Others (e.g. Extreme) have the entry in the table
but counters are always zero.

Using the interface counters it is possible to produce reports
about:

— VLAN (Virtual LAN)
— PVC (Private Virtual Circuit) on Frame Relay Links

© 2026 - Luca Deri <deri@ntop.org> 104

Using the "arp" Group

Useful for accessing the arp (Address Resolution Protocol)
table of a remote device.

It can be used for identifying arp-poisoning attacks or
misconfigured hosts (e.g. duplicated IP addresses).

NOTE:

— ARP and switch Forwarding tables are
concepts.

— ARP is an concept (IPv6 uses multicast)

Example:

RFC1213-MIB::atIfIndex.4.1.172.22.6.168 = INTEGER: 4
RFC1213-MIB::atIfIndex.4.1.172.22.7.255 = INTEGER: 4

RFC1213-MIB: :atPhysAddress.4.1.172.22.6.168 = Hex-STRING: 00 40 F4 67 49 08
RFC1213-MIB::atPhysAddress.4.1.172.22.7.255 = Hex-STRING: FF FF FF FF FF FF
RFC1213-MIB: :atNetAddress.4.1.172.22.6.168 = Network Address: AC:16:06:A8
RFC1213-MIB: :atNetAddress.4.1.172.22.7.255 = Network Address: AC:16:07:FF

© 2026 - Luca Deri <deri@ntop.org> 105

SNMP Traps (RFC 3418 and RFC 2863)

RFC 3418 and RFC 2863 define 4+1 traps:
» A SNMP agent sends a coldStart (1.3.6.1.6.3.1.1.5.1) trap when it is
initialized (boot).
» A warmStart (1.3.6.1.6.3.1.1.5.2) is sent when such system is
reinitialised (reboot).

» A linkDown (1.3.6.1.6.3.1.1.5.3) trap signifies that the SNMP agent
detected that the ifOperStatus object for one of its communication links
Is about to enter the down state.

» AlinkUp (1.3.6.1.6.3.1.1.5.4) trap that the SNMP agent detected that
the ifOperStatus object for one of its communication links left the down
state and transitioned into some other state.

» An authenticationFailure (1.3.6.1.6.3.1.1.5.5) trap signifies that the
SNMP entity has received a protocol message that is not properly
authenticated (e.g. bad community).

© 2026 - Luca Deri <deri@ntop.org> 106

Bridge MIB (RFC 1493)

Useful for controlling the status of L2/L3 switches. Do not make the common
mistake to believe that it is used only on bridges.

It somehow complementary to the MIB |l as it provides information the hosts
connected to the switch ports.

Common uses of the bridge MIB:

To know the MAC address of a host connected to the port X/unit Y of the switch
dot1dTpFdbTable.dot1dTpFdbAddress (NOTE: the MIB Il has the MAC address of the
switch port).

The MAC/port association is the base for detecting the physical location of a host. In fact
as switch ports are usually connected to wall sockets, this is a good method for know
who’s where (user -> computer -> switch port -> room/desk)

It keeps track of the “previous” MAC address (and the time) connected to a port so it is
possible to track users as they move from a room to another.

It can be used for detecting ports with associated multiple MAC addresses (trunk) hence
to detect users with multiple MACs (e.g. a user runs VMware on his PC, or a user has
been infected by a virus/worm) or ports with a switch connected to it that the network
policy could be violated.

© 2026 - Luca Deri <deri@ntop.org> 107

Get Port Mac Address

snmpwalk -c public@l 14.32.6.17 dotldTpFdbAddress
.1.3.6.1.2.1.17.4.3.1.1.0.208.211.106.71.251 = Hex-STRING: 00 DO D3 6A 47

snmpwalk -c public@6 14.32.6.17 dotldTpFdbAddress

.1.3.6.1.2.1.17.4.3.1.1.0.2.185.144.76.102 = Hex-STRING: 00 02 B9 90 4C 0o
.1.3. 1.2.1.17.4.3.1.1.0.2.253.106.170.243 = Hex-STRING: 00 02 FD 6A AA F3
.1.3.6.1.2.1.17.4.3.1.1.0.16.13.56.16.0 = Hex-STRING: 00 10 OD 38 10 00
.1.3.6.1.2.1.17.4.3.1.1.0.96.84.144.248.0 = Hex-STRING: 00 60 54 90 F8 00
.1.3.6.1.2.1.17.4.3.1.1.0.208.2.214.120.10 = Hex-STRING: 00 DO 02 Do 78 0A
.1.3.6.1.2.1.17.4.3.1.1.0.208.211.54.162.60 = Hex-STRING: 00 DO D3 36 A2 3C
.1.3.6.1.2.1.17.4.3.1.1.0.224.30.159.10.210 = Hex-STRING: 00 EO 1E 9F OA D2
Note:

- the <community>@<id> means that MAC is searched on VLAN X
- The MAC is part of the OID.

© 2026 - Luca Deri <deri@ntop.org> 108

Get MAC Address Port [1/2]

snmpwalk -c public@1 14.32.6.17 dot1dTpFdbPort
.1.3.6.1.2.1.17.4.3.1.2.0.208.211.106.71.251 = INTEGER: 113

snmpwalk -c public@6 14.32.6.17 dot1dTpFdbPort

.1.
.1.
.1.

e e e e
N

nms-server2:/home/ccarring>

3.6.1
3.6.1

3.6.1.
.3.6.1.
.3.6.1.
.3.6.1.
.3.6.1.
.3.6.1.

.2.1.17.4.3.1.2.0.2.185.144.76.102 = INTEGER: 113

.2.1.17.4.3.1.2.0.2.253.106.170.243 = INTEGER: 113 <-

2.

N NN NN

2.

1.
1.17.

S = = =

17.

.17.
.17.
.17.
.17.

4.

[R~

3.1.2.
.3.1.2.
.3.1.2.
.3.1.2.
.3.1.2.
.3.1.2.

.1.3.6.1.2.1.17.1.4.1.2.68

.1.3.6.1.2.1.17.1.4.1.2.69

.1.3.6.1.2.1.17.1.4.1.2.113

0

o O O o o

.6.83.198.64.173 = INTEGER: 113
.16.13.56.16.0 = INTEGER: 113

.96.84.144.248.0 = INTEGER: 113
.208.2.214.120.10 = INTEGER: 113
.208.211.54.162.60

INTEGER: 113

.224.30.159.10.210 INTEGER: 65

this is not ifIndex

snmpwalk -c public 14.32.6.17 dot1dBasePortlfIndex

INTEGER: 12

INTEGER: 13

INTEGER: 57 <- this is ifIndex

© 2026 - Luca Deri <deri@ntop.org>

109

Get MAC Address Port [2/2]

snmpwalk -On -c public 14.32.6.17 ifName

.1.3.
.1.3.
.1.3.

.1.
.1.
.1.
.1.
.1.
.1.

See:

w w w w w w

w w w w

6.1.2.1.31.1.1.1.1.1 = STRING: scO
6.1.2.1.31.1.1.1.1.2

STRING: sl10

6.1.2.1.31.1.1.1.1.3 = STRING: mel
6.1.2.1.31.1.1.1.1.4 = STRING: VLAN-1
6.1.2.1.31.1.1.1.1.5 = STRING: VLAN-1002
6.1.2.1.31.1.1.1.1.6 = STRING: VLAN-1004
6.1.2.1.31.1.1.1.1.7 = STRING: VLAN-1005
6.1.2.1.31.1.1.1.1.8 = STRING: VLAN-1003
6.1.2.1.31.1.1.1.1.9 = STRING: 2/1
6.1.2.1.31.1.1.1.1.55 = STRING: 2/47
6.1.2.1.31.1.1.1.1.56 = STRING: 2/48
6.1.2.1.31.1.1.1.1.57 = STRING: 2/49 (Slot 2, port 49)
6.1.2.1.31.1.1.1.1.58 = STRING: 2/50

http://www.cisco.com/warp/public/477/SNMP/cam_snmp.html

© 2026 - Luca Deri <deri@ntop.org>

110

Detecting Network Topology [1/2]

- System are combination of logical/physical
structures.
» Logical structure provides visualisation.
» Physical structure has limited visualisation.

+ Problem: how to detect the physical network
topology and any changes in topology.

© 2026 - Luca Deri <deri@ntop.org> 111

Detecting Network Topology [2/2]

» Neighbouring information allows to discover
adjacencies and this the topology.

- This information is present in the data link
layer (layer 2).

» Vendors have their own protocols (e.g. Cisco
has CDP Cisco Discovery Protocol) but the
standard is LLDP Link Layer Discovery
Protocol (RFC 2922)

uca Deri <deri@ntop.org> 112

LLDP
+ LLDP periodically send LLDP packets with
multicast.

- Information on neighbour devices can be read
using SNMP (LLDP-MIB).

Neighbors Information
+ Device A Device A
- Device B) evice
e
// ' LLDP
| LLDP !
D’ Device B

© 2026 - Luca Deri <deri@ntop.org> 113

LLDP MIB [1/3]

lldpRemSysName The system name of the remote system. (Hostname)

lldpRemSysDesc The system description of the remote system. (OS Type, Model
name ...etc)

lIdpRemPortldSubtype The type of port identifier encoding used in the associated
lldpRemPortld' object.

lIldpRemPortld The port component associated with the remote system.
(Port name, MAC Address ...etc)

lldpRemPortDesc The description of the given port associated with the remote
system. (Port name ...etc)

Note:

- Each entry has a timestamp of the time the LLDP packet has been
received LLDP-MIN::LLDPRemoteTree.[time].[LocalPort Index].
[Entry]. Note that often [time] is zero.

- You can have multiple entries (with different timestamps) per port.

© 2026 - Luca Deri <deri@ntop.org> 114

Entry Id LLDP MIB [2/3]

$ snmpwalk -v 2c -c public 1/M16.67.210 1.0.8802.1.1.2.1.4.1.1.6 1ldpRemPortIdSubtype
i50.0.8802.1.1.2.1.4.1.1.6.0. .1 = INTEGER: 5

150.0.8802.1.1.2.1.4.1.1.6.0.2103428.1 = INTEGER: 5

150.0.8802.1.1.2.1.4.1.1.6.0.2103556.2 = INTEGER: 5

150.0.8802.1.1.2.1.4.1.1.6.0.2103684.2 = INTEGER: 5

150.0.8802.1.1.2.1.4.1.1.6.0.9437185.6 = INTEGER: 7

$ snmpwalk -v 2c¢c -c public 172.16.67.210 1.0.8802.1.1.2.1.4.1.1.7 1ldpRemPortId
150.0.8802.1.1.2.1.4.1.1.7.0.2103300.1 = STRING: "TenGigabitEthernet 1/49"
150.0.8802.1.1.2.1.4.1.1.7.0.2103428.1 = STRING: "TenGigabitEthernet 1/50"
150.0.8802.1.1.2.1.4.1.1.7.0.2103556.2 = STRING: "TenGigabitEthernet 1/2"
150.0.8802.1.1.2.1.4.1.1.7.0.2103684.2 = STRING: "TenGigabitEthernet 1/2"
150.0.8802.1.1.2.1.4.1.1.7.0.9437185.6 = STRING: "42"

$ snmpwalk -v 2c -c public 172.16.67.210 1.0.8802.1.1.2.1.4.1.1.8 LldpRemPortDesc
150.0.8802.1.1.2.1.4.1.1.8.0.2103300.1 = STRING: "TenGigabitEthernet 1/49"
150.0.8802.1.1.2.1.4.1.1.8.0.2103428.1 = STRING: "TenGigabitEthernet 1/50"
150.0.8802.1.1.2.1.4.1.1.8.0.2103556.2 = STRING: "TenGigabitEthernet 1/2"
150.0.8802.1.1.2.1.4.1.1.8.0.2103684.2 = STRING: "TenGigabitEthernet 1/2"
150.0.8802.1.1.2.1.4.1.1.8.0.9437185.6 = STRING: "42"

$ snmpwalk -v 2c -c public 172.16.67.210 1.0.8802.1.1.2.1.4.1.1.9
i50.0.8802.1.1.2.1.4.1.1.9.0.2103300.1 = STRING: "swStorageAccessB7-1" LldpRemSysName
150.0.8802.1.1.2.1.4.1.1.9.0.2103428.1 = STRING: "swStorageAccessB7-1"
150.0.8802.1.1.2.1.4.1.1.9.0.2103556.2 = STRING: "swStoragelLeafl-1"
150.0.8802.1.1.2.1.4.1.1.9.0.2103684.2 = STRING: "swStorageLeafl-2"
150.0.8802.1.1.2.1.4.1.1.9.0.9437185.6 = STRING: '"swOobManagementB5-2"

$ snmpwalk —-v 2c —-c public 172.16.67.210 1.0.8802.1.1.2.1.4.1.1.10 LldpRemSysDesc
150.0.8802.1.1.2.1.4.1.1.10.0.2103300.1 = STRING: "Dell EMC Real Time Operating System Software..”
150.0.8802.1.1.2.1.4.1.1.10.0.2103428.1 = STRING: "Dell EMC Real Time Operating System Software..”
150.0.8802.1.1.2.1.4.1.1.10.0.2103556.2 = STRING: "Dell Real Time Operating System Software..”
1i50.0.8802.1.1.2.1.4.1.1.10.0.2103684.2 = STRING: '"Dell Real Time Operating System Software...”
150.0.8802.1.1.2.1.4.1.1.10.0.9437185.6 = STRING: "ProCurve J9022A Switch 2810-48G.."”

© 2026 - Luca Deri <deri@ntop.org> 115

LLDP MIB [3/3]

%® SNMP Devices / swStorageAccessB7-2 (172.16.67.210) | A+ Interfaces Topology ® MAC Adcresses |4

Topology

IndexA~

2103300

2103428

2103556

2103634

8437185

Interface Name

TenGigabitEthernet 1/49 [IC5N
TenGigabitEthernet 1/50 [I)
TenGigabitEthernet 1/51 [T
TenGigabitEthernet 1/52 m

ManagementEthernet 1/1 [[ET1)

Speed
10 Gbit
10 Gbit
10 Gbit
10 Gbit

1Gbit

Status
Up
Up
Up
Up

Up

Remote Device
TenGigabitEthernet 1/49
TerGigabitEthernst 1/50

TenGigab'tEthernet 1/2
TenGigab'tEthernet 1/2

42

Remote Port Description
TenGigabitEthernet 1/49
TenGigabitEthernet 1/50

TenGigabit=thernet 1/2
TenGigabit=thernet 1/2

42

© 2026 - Luca Deri <deri@ntop.org>

Remote System Name
swStoragcAccessB7-1
sw/StorageAccessB7-1

swStorageleaf1-1
swStoragelLeaf1-2

swOobManagementB5-2

10 ~

Remote System Description

Dell EMC Real Time Opera...
Dell EMC Real Time Opera...
Dell Real Time Operating...
Dell Real Tima Operating...

ProCurve JS022A Switch 2...

116

Side note:
SNMP vs. CLI Counters [1/4]

It a common belief among the network administrator
community that SNMP and CLI counters are basically a

different view of same thing.
Many administrators do like CLI counters more, as:
— Are formatted for direct human consumption
- 0 packets input, 0 packets output
— Many implementations provide command to clear/reset

counter
 clear interface ethernet 3

Note: the definition of what a given counter counts is
dependent on vendor documentation

© 2026 - Luca Deri <deri@ntop.org> 117

Side note:
SNMP vs. CLI Counters [2/4]

c4500#sh int el
Ethernetl is up, line protocol is down
Last clearing of "show interface" counters never
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants
0 input errors, 0 CRC, 0 frame, 0 overrun, 0O ignored, 0 abort
0 input packets with dribble condition detected
187352 packets output, 11347294 bytes, 0 underruns
187352 output errors, 0 collisions, 3 interface resets

- Notes:
- CLI counters remain the basic way of life in element management.
« Counters format/appearance change vendor to vendor (often even
within the same manufacturer, e.g. Cisco 10S vs. CatOS vs. PIX).
« Note: 10S, CatOS, and PIX are respectively the router, switch and
firewall OS used by Cisco appliances.

© 2026 - Luca Deri <deri@ntop.org> 118

Side note:
SNMP vs. CLI Counters [3/4]

SNMP counters instead:
— Allow you to compare apples to apples
« Counters have standard definitions
— as defined by IETF, IEEE, some vendors...
— regardless of network element type or vendor
- and globally unique, hard to pronounce names
- 1.3.6.1.21.17.2.4 dot1dStpTopChanges

— Have a well specified size

« 32 or 64 bits wide (64 bit available in SNMP v2c or v3).

— Counters do not necessarily (but often do) start at zero
« Vendor implementation friendly.

— Are not designed for directing human consumption
 require a delta function to compute rate.

© 2026 - Luca Deri <deri@ntop.org>

119

Side note:
SNMP vs. CLI Counters [4/4]

dotldTpPortInFrames OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION
"The number of frames that have been received by
this port from its segment. Note that a frame
received on the interface corresponding to this
port is only counted by this object if and only if
it is for a protocol being processed by the local
bridging function, including bridge management
frames."

REFERENCE
"IEEE 802.1D-1990: Section 6.6.1.1.3"

- Note: good counters are generally derived from
underlying protocol specification.

© 2026 - Luca Deri <deri@ntop.org> 120

Bandwidth
Utilisation

Input
Utilisation

Output
Utilisation

How To Calculate Bandwidth
Utilisation (%) with SNMP

(A ifInOctets + A ifOutOctets) x 8 x 100
(A time) x ifSpeed

(A ifInOctets) x 8 x 100 /((A time) x ifSpeed)

(A ifOutOctets) x 8 x 100 /((A time) x ifSpeed)

See: http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a008009496e.shtml

© 2026 - Luca Deri <deri@ntop.org> 121

What else can you do with SNMP?

* Detect and clear hung TCP connections.

* Manipulate ARP entries.

* Get environmental temperature.

» Check CPU Ultilisation.

* Monitor redundant/uninterruptible power supplies.
* Find P2P users (NAT table).

 Layout network topology (e.g. via CDP)

See: http://www.cisco.com/en/US/tech/tk648/tk362/tk605/
tsd technology support sub-protocol home.html

© 2026 - Luca Deri <deri@ntop.org> 1292

2.5 Simple Network Management Protocol Version 2c

- There are some variants of of SNMP Version 2:

« SNMPv2p
» SNMPv2 version with party-based security model, historical

» SNMPv2 with trivial community-based security model
« SNMPv2u
» SNMPv2 with a user-based security model, historical
« SNMPv2*
» SNMPv2 with security and administration model, historical

- The term SNMPvV2 is ambiguous.

- Work on a solution of the security problems has blocked improvements of other
protocol characteristics (too) for a long time.

© 2026 - Luca Deri <deri@ntop.org>

123

Manager

Get —

SNMPv2c protocol operations (RFC 1905)

I~
~
~
~
~
~
~
~
~

-
-
-
-
-
-
-
-

Manager

Set —

I~
~
~
~
~
~
~
~
~

-
-
-
-
-
-
-
-

Agent Manager Agent
GetNext —r--___

I e D —>

<« Response | ___-- <— Response
S e

Agent Manager Agent
__’_~~~

I —>

«— Response | ___- «— Response
S

© 2026 - Luca Deri <deri@ntop.org>

Agent Manager
Trap —r~-___
~~~~~ —>
Manager/Agent Manager
—_— -
~~~~~~ —
,,,,,, «— Response
S

124

SNMPv2c Message Format
SNMP message:

version

SNMP PDU

GetRequest, GetNextRequest, SetRequest, Trap, InformRequest:

PDU type |request-id 0 0 variable-bindings
GetResponse:

PDU type |request-id|error-status | error-index | variable-bindings
GetBulkRequest:

PDU type request-id| non-reps max-reps | variable-bindings
variable-bindings:

name, | value, name, | value, name, | value,

© 2026 - Luca Deri <deri@ntop.org>

125

SNMPv2 Exceptions (RFC 1905)

SNMPv2 Exception SNMPv1 Status Used by
noSuchQObject noSuchName Get
noSuchlnstance noSuchName Get
endOfMibView noSuchName GetNext, GetBulk

- Exceptions allow instance access errors to be signaled to MIB authorities, without
causing the whole operation to fail (as happened in SNMPv1).

- Example:
Get(1.1.0, 1.1.1, 1.2.0)

Response(noError@0, 1.1.0=10.1.2.3, 1.1.1=noSuchInstance,
1.2.0=noSuchObject)

GetNext(1l.1l, 1.5.42)
Response(noError@0, 1.1.0=10.1.2.3, 1.5.42=endOfMibView)

© 2026 - Luca Deri <deri@ntop.org> 126

SNMPv2c Get and GetNext Operations

Manager

Get —

-
~
~
~
~
~
~
~
~

-
-
-
-
-
-
=

Agent

«— Response

Manager

GetNext —

I~
~
~
~
~
~
~
~
~

-
-
-
-
-
-
-
-

Agent

«— Response

* Not existing MIB instances produce an exception and not an error.

- Similar to the equivalent SNMPv1 operations.

© 2026 - Luca Deri <deri@ntop.org>

127

SNMPv2c Set Operation

Manager Agent
Set —

-
~
~
~
~
~
~
~
~

«— Response

-
-
-
-
-
-
-
-

- There are 14 possible error codes during processing of set operations:

wrongValue wrongEncoding wrongType
wrongLength inconsisentValue noAccess
notWritable noCreation inconsisentName
resourceUnavailable commitFailed undoFailed

There are two more error codes that have been defined but not really used:
readOnly, authorizationError

- No support of error codes that depend on the object type.

© 2026 - Luca Deri <deri@ntop.org> 128

SNMPv2c GetBulk Operation

Manager Agent
GetBulk —

-
~
~
~
~
~
~
~
~

—

«— Response

-
-
-
-
-
-
-
-

- An extension of the GetNext operation:

* It returns the first N elements (non repetition) of the varbind list treated as
normal GetNext operations.

» The following items of the varbind list treated as repeated Get Next operation,
whereby M (max repetition) indicates the max number of repetitions.

- The GetBulk operation is similar to the GetNext operation on the lexicographical
arranged list of the MIB instances and has therefore no knowledge of table
boundaries.

© 2026 - Luca Deri <deri@ntop.org> 129

Example of the GetBulk Operation

* GetBulk(non-repeaters=0, max-repetitions=4, 1.1)
Response(noError@0, 1.1.0=10.1.2.3, 1.2.1.0=FilterFresh,
1.2.2.0=54321, 1.3.1.1.1=1)

* GetBulk(non-repeaters=1, max-repetitions=2
1.2.2.0, 1.3.1.1, 1.3.1.2, 1.3.1.3)
Response(noError@0, 1.2.2.0=54321,
1.3.1.1.1=1, 1.3.1.2.1=2, 1.3.1.3.1=2,
1.3.1.1.2=2, 1.3.1.2.2=3, 1.3.1.3.2=3)

Without knowledge about the length of a table it is difficult for the manager to
select a suitable number for max repetitions:

» if max-repetitions is too small, then there is no efficiency increase of GetBulk
with respect to the GetNext operation .

 if max-repetitions is too large, then a large number of unnecessary instances
are read .

- The agent can possibly produce a response, which can either get lost in large/busy
networks or not be processed at all by the manager (this causes the manager to
retransmit the request).

- If max repetitions is large and reading the MIB instances is time-consuming, agents
can receive multiple times the manager’s request (e.g. due to retransmission) thus
blocking the agent for some time.

© 2026 - Luca Deri <deri@ntop.org> 130

SNMPv2c Trap Operation
Agent Manager

Trap —

[~ ~
~
~
~
~
~
~
~
~
~

- It corresponds logically to the SNMPv1 Trap operation.

- Trap specific information (sysUpTime, trapType) is accommodated in the varbind
list.

- Trap types are indicated by Obiject Identifier and not by a pair of numbers (generic,
specific) as in SNMPv1.

© 2026 - Luca Deri <deri@ntop.org> 131

SNMPv1 vs. SNMPv2c Traps

* In SNMPv2 MIBs may now include NOTIFICATION-TYPE macros.
- SNMPv1 Trap

myLinkDown TRAP-TYPE
ENTERPRISE myEnterprise
VARIABLES { ifIndex }

DESCRIPTION
"A myLinkDown trap signifies that the sending SNMP application

entity recognises a failure in one of the communications links
represented in the agent's configuration."
$:= 2
- SNMPV2 Trap
linkUp NOTIFICATION-TYPE
OBJECTS { ifIndex }

STATUS current

DESCRIPTION
"A 1linkUp trap means that the entity has detected that the ifOperStatus
object has changed to Up"

::= { snmpTraps 4 }

© 2026 - Luca Deri <deri@ntop.org> 132

SNMPv2c Inform Operation

Manager/Agent Manager

Inform ——

-
~
~
~
~
~
~
~
~

«— Response

-
-
-
-
-
-
-
-

The structure of the PDU corresponds to a SNMPv2 Trap PDU.

It allows (new) managers to talk each other (SNMPv1 limited interaction to agent-
manager or vice-versa).

The receipt of a Inform message is acknowledged with a Response message.

Example:

Inform(1.2.2.0=54321, 1.4.1.0=1.4.2.43,
1.3.1.2.2=16, 1.3.1.3.2=3)
Response (noError@0, 1.2.2.0=54321, 1.4.1.0=1.4.2.43,
1.3.1.2.2=16, 1.3.1.3.2=3)

© 2026 - Luca Deri <deri@ntop.org>

133

SNMPv2c and SNMPv1 Error Codes

SNMPv2 SNMPv1 Comment
noError noError all operations
tooBig tooBig Get, GetNext, Set, Inform
noSuchName noSuchName Get, GetNext, Set (only with SNMPv1)
badValue badValue Set (only with SNMPv1)
readOnly readOnly not used
genErr genErr Get, GetNext, GetBulk, Set
wrongValue badValue Set (only with SNMPv2c)
wrongEncoding badValue Set (only with SNMPv2c)
wrongType badValue Set (only with SNMPv2c)
wrongLength badValue Set (only with SNMPv2c)
inconsisentValue badValue Set (only with SNMPv2c)
noAccess noSuchName Set (only with SNMPv2c)
notWritable noSuchName Set (only with SNMPv2c)
noCreation noSuchName Set (only with SNMPv2c)
inconsisentName noSuchName Set (only with SNMPv2c)
resourceUnavailable genErr Set (only with SNMPv2c)
commitFailed genErr Set (only with SNMPv2c)
undoFailed genErr Set (only with SNMPv2c)
authorizationError noSuchName Not used

© 2026 - Luca Deri <deri@ntop.org>

134

64 Bit Counters (RFC 2233)

IF-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Counter32, Gauge32, ’
Integer32, TimeTicks, mib-2, NOTIFICATION-TYPE FROM SNMPv2-SMI

IfEntry ::=

SEQUENCE { IfXEntry ::=
ifIndex InterfaceIndex, SEQUENCE {
ifDescr DisplayString, ifName DisplayString,
ifType IANAifType, ifInMulticastPkts Counter32,
ifMtu Integer32, ifInBroadcastPkts Counter32,
ifSpeed Gauge32, ifOutMulticastPkts Counter32,
ifPhysAddress PhysAddress, ifOutBroadcastPkts Counter32,
ifAdminStatus INTEGER, ifHCInOctets ’
ifOperStatus INTEGER, ifHCInUcastPkts ,
ifLastChange TimeTicks, ifHCInMulticastPkts ’
ifInOctets ’ ifHCInBroadcastPkts ,
ifInUcastPkts ’ ifHCOutOctets ’
ifInNUcastPkts , —- deprecated ifHCOutUcastPkts ,
ifInDiscards ’ ifHCOutMulticastPkts ,
ifInErrors ’ ifHCOutBroadcastPkts ,
ifInUnknownProtos p ifLinkUpDownTrapEnable INTEGER,
ifOutOctets ’ ifHighSpeed Gauge32,
ifOutUcastPkts ’ ifPromiscuousMode TruthValue,
ifOutNUcastPkts , —- deprecated ifConnectorPresent TruthValue,
ifOutDiscards ’ ifAlias DisplayString,
ifOutErrors p ifCounterDiscontinuityTime TimeStamp
ifOutQLen Gauge32, —- deprecated }
ifSpecific OBJECT IDENTIFIER -- deprecated

}

© 2026 - Luca Deri <deri@ntop.org> 135

SNMP v2 vs SNMP v1

- Improved Performance via the Get-Bulk PDU.
- 64 bit counters (main improvement).

- Definition of additional datatypes and formalisms based on implementation
experience of SNMPv1 agents/managers.

- Transport Service Independence: mappings for SNMPv2 have been defined for
several transports and not for just UDP (TCP can also be used). In practice
everybody still uses UDP.

- Redefined the Trap PDU:
* It has the same format of the other PDUs
* It may be sent to zero, one or many managers

© 2026 - Luca Deri <deri@ntop.org> 136

2.6 SNMPv3

- Design goals of SNMPVa3:
* |ssue of secure SET protocol operations.
* Definition (hopefully) of a long-living architecture model

» Support of cheap simple and more expensive complex implementations
(scalability).

* Independence of the standards
» Use of existing material (mostly MIBs) when possible (design reuse)
« SNMP is to remain as simply as possible

- Several (commercial and open source) implementation available.

- Spreading in real networks still relatively small (most network devices still use
SNMPvZ2c) due to configuration headaches.

© 2026 - Luca Deri <deri@ntop.org> 137

Architectural Model of SNMPv3 (RFC 2571)

SNMP Entity
SNMP Engine
Dispatcher Message Processing Security Access Control
P Subsystem Subsystem Subsystem
SNMP Applications
Command Notification Command Notification Proxy other
Generator Receiver Response Originator Forward

- The SNMP engine of a SNMP entity consists of several subsystems and a

dispatcher.

- The manager/agent model is replaced by a number of smaller “applications ”.

- The modularity permits incremental advancement of SNMP by means of SNMP
Context (RFC 2571)

© 2026 - Luca Deri <deri@ntop.org>

SNMP Context (RFC 2571)

- A context is a quantity of management information that a SNMP Entity can have
accessed to. For each subsystem:

« A SNMP-Entity has potentially access to several contexts.
» The same information can be present in several contexts.

- In a management domain an instance of a Managed Objects is uniquely identified
by the following items:

« the identification of the SNMP engines in a SNMP Entity (e.g. ,xzy").

 the name of the context in a SNMP Entity (e.g. ,board1”).

+ the identification of the type of the Managed Objects (e.g. ,IF-MIB::ifDescr).
« the identification of the Instance (e.g. ,1%).

- Note: the identification of an SNMP engine does not have to do anything with their
addressing.

© 2026 - Luca Deri <deri@ntop.org> 139

SNMPv3 Agent in SNMPv3: Architectural Model

MIB Instrumentation

1&

Access Control Subsystem

© 2026 - Luca Deri <deri@ntop.org>

Command |, | View-based | | | Notification Proxy
Response Access Control Originator Forwarder
" Message Processing Security Subsystem
_ PDU Subsystem
Dispatcher Community
viMP Security Model
Dl\i/lsesastiﬁzr _ v2cMP User-based
P Security Model
v3MP
Transport other
Mappings " other MP Security Model
UDP |PX

140

SNMPv3
SNMPv3Message:

Message Format (RFC 2572)

msgVersion | msgGlobalData | msgSecurityParameter msgData (scopedPDU)

MsgGlobalData:

msgID msgMaxSize ms

gFlags msgSecurityModel

UsmSecurityParameter:

msgEnginelD | msgEngineBoots

msgEngineTime| msgUserName | msgAuthParams

msgPrivParams

ScopedPDU:

contextEnginelD | contextName

SNMPv2 PDU (as defined in RFC 1905)

Security information are in t

he centre of the message.

msgData contain either a ScopedPDU or an encoded ScopedPDU.

msgID is used for the association of responses to pending inquiries.

msgSecurityParameter depends on msgSecurityModel.

© 2026 - Luca Deri <deri@ntop.org>

141

Security Issues

- Blow you can find the questions which must be answered when a decision whether
an operation has to be performed:

* |Is the received message authentic?
« Who (requester name) would like to get the operation executed?
» Which objects are affected by the operation?

* Which access rights has the requester regarding the objects concerned?

- Questions 1 and 2 are answered by the measures to the protection of the messages
(authentication, encoding).

- Questions 3 and 4 are answered by a model to the access supervision (Unix-like).

© 2026 - Luca Deri <deri@ntop.org> 142

Data Integrity and Authentication [1/2]

Sender Receiver
: Key am | T Key .. Data
i o
Hash-Function Hash-Function
MAC MAC
; | | s =2
User MAC Data User MAC Data
T \\/

Authentication with Message Authentication Code (MAC) is efficient to implement.
The Hash function must be cryptographically strong and a "good" MAC producer.

The MD5 algorithm (RFC 1321) can be implemented in software with acceptable performance (128
bit digest).

The Secure Hash algorithm 1 (SHA-1) is considered stronger of MD5 (see next slide).

© 2026 - Luca Deri <deri@ntop.org> 143

Data Integrity and Authentication [2/2]

Encoding is a way of translating between different formats. Like converting a Spanish

recipe for cake into English.

Encryption is a way of protecting data behind a secret.

Hashing is a way of permanently converting from one recognisable thing to something

uniform and simple. Notes:

1) hashing is unidirectional, i.e. you cannot revert the hash to the original data.
2) multiple different input data can produce the same hash value.

Algorithm |Family Bits Introduced |Deprecated |Replaced
SHA-1 Hash 160 (hash) [1995 2011 SHA-256
MD5 Hash 128 (hash) |[1992 2011 SHA-256
DES Encryption |56 (key) 1991 2018 AES-256
AES Encryption [128 (key) [1976 2002 AES-256

« Deprecating MD5 and SHA-1 Signature Hashes in TLS 1.2 and DTLS 1.2 (RFC 9155)

© 2026 - Luca Deri <deri@ntop.org>

144

Protection Against Repetitions of Old Messages

Authoritative Engine

engineBoots || engineTime

authClock

enginelD

Timestamp Data

Receiver

*| engineBoots[| latestRecvTime

engineTime Lifetime

v

Timewindow

—— =]

Valid?

enginelD

Timestamp Data

A recipient must know the "time-of-day" of the authoritative SNMP engine for the message.

If the received message is situated in the validity interval and is "younger" than the last valid
message, then the message will become processed and the clocks adapted.

Before the beginning of authenticated communication the clocks must be synchronized.

© 2026 - Luca Deri <deri@ntop.org>

145

Protection Against Sniffing

SN ROV T
Key Data Key Data

- i

i 5 |

i of the (CBC) of the (CBC)

: 5

v v : ; :

User Secured Data User Secured Data
e v r— o v ... o

- For protecting against sniffing the ScopedPDU can be optionally encoded.

- Data Encryption Standard (of the) in Cipher Block Chaining Modus (CBC) is used for
encryption.

- Encryption is relatively complex and should only be used in area/situations where an
encoding is really necessarily.

- SNMPv3 permits "relatively protected" code modification without encryption (by
using message digest).

© 2026 - Luca Deri <deri@ntop.org> 146

MIB Views (RFC 2575)
1.1.2.1.%.1

- A view subtree is the quantity of all MIB objects, which possess common OID prefix.

- Aview tree family is the combination of one view subtree OID prefix with a filter
(bitmask), which determines whether an item of the prefix is significant or not.

- Aview is an ordered set of view tree families.

- It defines the access rights for read view, write view and notify view.

© 2026 - Luca Deri <deri@ntop.org> 147

MIB Name Conventions

- Similar definitions should be registered together in the registration tree.

- Names of object types should begin the logical grouping with a common prefix, that
suggest (e.g. sysDescr, sysUpTime).

- Names for counter are to be selected in the Plural form.

- Names of conceptual tables should possess the ending Table (e.g. ifTable).

- Names of lines of a conceptual table should possess the ending entry (e.g. ifEntry).

- All items of a conceptual table should use common prefix in the name (e.qg. ifType,
ifDescr).

© 2026 - Luca Deri <deri@ntop.org> 148

Monolithic Agents

MIB
Module

Man . SNMP Method MIB
anage Entity Dispatcher Module

c | vb, vb, vb; vb,

MIB

o Module
Monolithic Agent

- A monolithic agent is normally implemented by an individual process which contains
the SNMP protocol machine and the MIB instrumentation.

- The supported MIB modules is determined at compilation time.

- The method dispatchers is called during processing of SNMP messages, which can
either read or modify values from relevant resources.

© 2026 - Luca Deri <deri@ntop.org> 149

Proxy-Agents

SNMP
Agent

T /
Manager |+ E— | SNMP Proxy < C Vb, | | SNMP
9 Entity Dispatcher 1 Agent

C,| vb, C;| Vb,

Proxy Agent SNMP
Agent

- SNMP Proxy agents permit managers to access other SNMP agents that are not
reachable directly (e.g. behind a firewall) or that are reachable using non IP
protocols (e.g. IPX).

- Management applications must (usually) select the appropriate community string or
context in order to enable the proxy to reach the agents (no transparency).

- Proxy are important for the implementation of firewalls or for conversion between
different SNMP protocol versions.

© 2026 - Luca Deri <deri@ntop.org> 150

Manager [*

vb, vb, vb; vb,

Extensible Agents

Sub-
Agent

SNMP

- Extensible SNMP agents separate the SNMP protocol machine (master agent) from

Entity

AgentX
Dispatcher

AgentX Master-Agent

Sub-
Agent

the MIB instrumentation (subagent).

- MIB modules can be added by starting further subagents dynamically at runtime.

Sub-
Agent

- Expandable agents are transparent for management applications.
- A special protocol regulate communications between the master agent and the

subagents

© 2026 - Luca Deri <deri@ntop.org>

AgentX-Protocol Version 1 (RFC 2257)

- The AgentX protocol is a new standard protocol for the implementation of
expandable SNMP agents.

- AgentX Message Coding:
* No ASN.1 coding.

« Compact representation of object identifier values by coding repetitive OID
prefixes.

» Byte order is selected by the subagent (no transformations necessarily, if
master agent and subagent on the same system).

- AgentX Message Transport:

 TCP connections to the port 705.
(It is possible to have several AgentX sessions over the same TCP connection)

« UNIX Domain Sockets (/var/agentx/master).
» Can be likewise used other local (not standardised) IPC mechanisms.

© 2026 - Luca Deri <deri@ntop.org> 1592

Administrative AgentX Protocol Operations

Master Sub-Agent Master Sub-Agent
,,,,,, +«—Open ___---~—RemoveAgentCaps
Response——1--.___ Response—t-~~____
,,,,,, «—IndexAllocate a--T ~—Unregister
Response——r--.___ Response—t-~~____
,,,,,,, —Register __----T7—IndexDeallocate
Response——1--.___ Response—-~~____
,,,,,,, «——AddAgentCaps T ~—Close
Response——--____ Response—p~--____
» AgentX Session Establishment Deregistration of the Agent Capabilities
* Index Allocation * MIB Deregistration
* MIB Registration * Free of allocated indexes
» Registration of the Agent Capabilities *AgentX Session Termination

© 2026 - Luca Deri <deri@ntop.org> 153

Index-Allocation, OID Registration, Scoping

- Index allocation for common tables between subagents:
« Allocation of specific (private) indexes.

« Allocation of indexes not used at present.

« Allocation of indexes no longer in use.

- OID Registration:
» Registration of individual instances (instance level registration)

1.3.6.1.2.1.2.2.1.1.42 (ifindex.42)
1.3.6.1.2.1.2.2.1.2.42 (ifDescr.42)
1.3.6.1.2.1.2.2.1.3.42 (ifType.42)
» Registration of MIB Ranges:
1.3.6.1.2.1.2.2.1.[1-22].42 (ifindex.42 - ifSpecific.42)
- Scoping:

» AgentX can specify scoping with GetBulk operations (similar to CMIP Scope).

© 2026 - Luca Deri <deri@ntop.org> 154

AgentX Protocol Operations for SNMP Operations

Master Sub-Agent
Get —r~-___
~~~~ —
,,,,,, <—Response
|-
GetNext o
~~~~~ —
,,,,,, ——Response
SR
GetBulk —1--__
~~~~~ —
,,,,,, +«———Response
SR e
,,,,, ——Notify
|-

« SNMP-operations correspond to AgentX
operations.

* A SNMP operation can concern several
subagents.

Master

TestSet —

—

CommitSet —

—

undoSet —*

«—

CleanupSet —

—

I~
~
~
~
~
~
-~
~
~
~
~

-
-
-
-
-
-
-
-
-
-
-

I~
~
~
~
~
~
-~
~
~
~
~

=
-
-
-
-
-
-
| -~

~
~
~
~
~
~
~

-
-
-
-
-
-
-

-
-
-
-
-
-
| - —

 Atomicity of SNMP SET operations is
guaranteed by the AgentX protocol.

© 2026 - Luca Deri <deri@ntop.org>

~
~
~
~
~
~
-~
~
~
~
-~

Sub-Agent

—
<—Response

—>

——Response

—

T—Response

—>

T—Response

155



