
© 2026 - Luca Deri <deri@ntop.org>

Gestione di Rete

Paradigmi e Protocolli per la Gestione di Rete

1

© 2026 - Luca Deri <deri@ntop.org>

1. Introduction
1.	 Introduction
	 1.1 Motivation
	 1.2 Terminology and Basic Concepts
	 1.3 Abstract Syntax Notation One
2.	 Internet Management

2

© 2026 - Luca Deri <deri@ntop.org>

1.1 Motivation: Why Do We Need Management ?
• Current situation:

• increasing meaning of strategic resources "information”.
• a computer network is no longer only a supporting item in an enterprise, but takes even

more frequently a key position.
• the number of interconnected computers rose dramatically in the past few years. This

process will probably continue to persist.
• Complexity and functionality of the components grows in correspondence with the

performance of the available hardware.

• Demand:
• Permanent availability of network services with optimal quality.
• Cost reduction for the network infrastructure of the company.

• Necessity:
• computer-aided management of heterogeneous networks.

3

© 2026 - Luca Deri <deri@ntop.org>

Network Management Dimensions

Security

Performance deduction

Performance evaluation

Anomaly management

Configuration management

Planning Installation Operation Migration

Components
Systems

Users
Enterprise

Functional Dimension

Object Dimension

Time Dimension

4

© 2026 - Luca Deri <deri@ntop.org>

Warning: Coffee
Machine is operational
but no coffee is produced.

1.2 Terminology and Fundamental Concepts
• Control, co-ordination and monitoring of resources takes place via the manipulation

from so-called managed objects:
		 "A managed object is the abstracted view of a resource that presents its

properties as seen by (and for the purpose of) management." (ISO 7498-4)
• Managed objects are an abstract representation of a real resource.
• The boundary of a managed object specifies which details are accessible to a

management system and which ones are shielded (black box).

• Managed objects do not necessarily correspond to objects, as one knows from
object-oriented programming. Simple variables correspond to the MOs in the
Internet management.

Attributes
Operations
Behavior
Notifications

Managed Object Real Coffee MachineManagement-System

5

© 2026 - Luca Deri <deri@ntop.org>

Managed Objects (MO)
• Attributes:

• Attributes describe the state/condition of managed objects.
• Attributes can change when the condition of the real object changes.
• Attributes can be manipulated by means of management operations.

• Operations:
• Make it possible to access a managed object. Typical operations are get, set,

create and delete.
• The number and type of operations influence the object performance and

complexity.
• Behavior:

• Determines the semantics and interaction with the real resource.
• The behavior of managed objects is normally defined in plain English.

• Notifications:
• The quantity and type of the messages, which can be generated by pre-defined

situations by a managed object when specific situations occur.

6

© 2026 - Luca Deri <deri@ntop.org>

Management Information Base (MIB)
• The union of all managed objects contained in a system forms the Management

Information Base (MIB) of the system:
	"The set of managed objects within a system, together with their attributes,

constitutes that system's management information base." (ISO 7498-4)
• This is the first interpretation of the term "Management Information Base“ (more

definitions will follow).

• A MIB should be known both to the implementer and the manager.

Management Information Base

MO

Management

MO

MO

MO

MO

MO

7

© 2026 - Luca Deri <deri@ntop.org>

MIB Modularity

• Managed objects of a system are usually defined in multiple MIB definitions.

• Modules have been introduced in MIBs for enabling design modularity:
• Different modules can be defined by different teams.
• Management functionality can be gradually extended and modified.
• Different systems can support different MIB modules/releases.
• Vendors can extend the management functionality by means of proprietary

MIBs.
• MIBs are defined using a specification language

8

© 2026 - Luca Deri <deri@ntop.org>

Manager/Agent Paradigm
• Agent:

• Implements the MOs MIB by accessing the real resources.
• Receives requests from a manager, processes them and transmits appropriate

responses.
• Dispatches notifications about important changes in status in the MIB.
• Protects MOs against unauthorised accesses using access control rules and

communication authentication with the partner.

• Manager:
• Exercises control: it controls functions hence it is the crucial instance.
• Starts up management operations by appropriate protocol operations for the

manipulation of MOs.
• Receives messages from agents and passes them on (for handling) to

appropriate applications.

9

© 2026 - Luca Deri <deri@ntop.org>

Management Protocol

Management Protocol
• Management applications and MOs are not often on same node.
• A management protocol implements access to distant managed objects by encoding

management data that is then secured during the transfer.

Component
Model

MIB

Agent

Management Protocol

Manager

Algorithm for the
solution of the
Management

problem

10

© 2026 - Luca Deri <deri@ntop.org>

Functional Areas (FCAPS) [1/2]
• Management applications can be divided into 5 function areas:

• Fault management:
• Error detection, isolation, and repair.

• Configuration management:
• Production and administration of configuration information.
• Name administration.
• Start, check and termination of services.

• Account management:
• Entry of consumption (usage) data.
• Distribution and monitoring of contingents.
• Customer billing for resource consumption.

11

© 2026 - Luca Deri <deri@ntop.org>

Functional Areas (FCAPS) [2/2]
• Performance management:

• Statistic data collection.
• Determination of the system performance.
• Systems modifications for increase in efficiency.

• Security management:
• Production and verification of security policies.
• Generation and distribution of passwords and accounts.
• Report and analysis of security-relevant events.

• These 5 functional areas according to the initial letters of the English terms normally
under the contraction FCAPS.

• These functional areas are not mutually independent (data measurement has often
impact on system configuration).

• Basic functions (e.g. monitoring of a counter for threshold values) often reside in
different functional areas.

12

© 2026 - Luca Deri <deri@ntop.org>

Management Architectures Overview
• Structure of the management information:

• defines the rules of the description of Managed Objects.
• Identification and designation of MOs.
• Composition of MOs.
• Behaviour of MOs.
• Relations to other MOs.
• Possible operations and internal messages of the MOs.

• Definition of the datatypes, structure and syntax for the description of the MOs.
• The quantity of the descriptions of MOs in accordance with these rules defines

the Management Information Base (MIB)

• Management Protocols and Services:
• Defines the services and enable the access to remote MOs.
• Several protocols can be used for the implementation of the defined services.
• The service primitive and the appropriate protocol operations influence

considerably the efficiency and the complexity of the management system.

13

© 2026 - Luca Deri <deri@ntop.org>

Services and Protocols: Some Definitions
• Service
• 	 It is defined as an abstract function supplied by a network
• Service Primitive
• 	 The individual elementary functions are called service-primitives. Typical ISO/OSI services

are:
• request	 	 Service Request
• indication	 	 Indication that a service was requested
• response	 	 Reaction of the service to a service request
• confirm	 	 Acknowledgement that a requested service was provided

• Service Access Point (SAP)
• 	 The interfaces over which the service primitive can be access as service access points.
• Entities
• 	 The services furnished by so-called instances.
• Protocol
• 	 The rules and the restrictions according to which instances interact with other instances.

14

© 2026 - Luca Deri <deri@ntop.org>

 Representation and Layering of Services

• The definition of layers is a fundamental principle for the structuring of communication systems.
• Services of a layer may only accept service primitives of services in adjacent layers.

N-Authority 1 N-Authority 2

Service User Service Provider

SAP NService Layer N

Layer N

Ty Ty

(N-1)-Authority 1 (N-1)-Authority 2 Layer N-1

Service Layer N-1 SAP N-1

15

© 2026 - Luca Deri <deri@ntop.org>

Time Diagrams

• Time diagrams clarify the temporal and spatial connections between service
primitives.

• Vertical axis are time axis, horizontal axis give the spatial distance between users
and providers of services.

• Service requests of a confirmed service can result either in a positive or negative
confirmation.

• Service requests of an unconfirmed service are not acknowledged.

request

confirmation

indication

response

request
indication

Confirmed Service Unconfirmed Service

Service User Service Provider Service User Service Provider

16

© 2026 - Luca Deri <deri@ntop.org>

ISO/OSI-Reference Model

Media

Presentation

Network

Transport

Physical

Data Link

Session

Application

Network

Transport

Physical

Data Link

Session

Presentation

Application

Application Process

Network

Physical

Data Link

Application Process

Media

Transit System

End System End System

17

© 2026 - Luca Deri <deri@ntop.org>

ISO/OSI Transport System [1/2]
• Physical Layer

• Transport of a stream of bits over a media.
• Transport depending on the characteristics of the media being used.
• Representation of values 0 and 1 (e.g. voltage levels).
• Synchronisation between senders and recipients.
• Definition of standard plugs for media interconnection.

• Data Link Layer
• Transport of a frame of bits.
• Data communication between systems that share a common media.
• Detection and recovery of transfer errors.
• Flow control for handling traffic peaks (traffic jam).
• Implementation usually in hardware on adapter cards (e.g. Ethernet card).

18

© 2026 - Luca Deri <deri@ntop.org>

ISO/OSI Transport System [2/2]

• Network Layer
• Determination of a route through the network (routing).
• Multiplex of network connections over a shared connection.
• Error detection and recovery between end-systems.
• Flow control between end-systems.
• Division of a Packet in multiple frames.

• Transport Layer
• End-to-end communication between applications.
• Virtual connections over connectionless datagram services.
• Error detection and recovery between applications.
• Flow control between applications.
• Concurrent usage of multiple services.

19

© 2026 - Luca Deri <deri@ntop.org>

ISO/OSI Higher Layers
• Session Layer

• Synchronisation and co-ordination of communicating processes.
• Session control (checkpoints for recovery).

• Presentation Layer
• Transformation and adaptation of data presentations (e.g ASCII EBCDIC).
• Serialisation of data structures for the purpose of transfer.
• Data compression.

• Application Layer
• Supply of fundamental services, which can be used directly by any application

including (but not limited to):
• File transfer, virtual terminals, name space administration, database access,

network management, electronic communication networks, process and print
control...

20

© 2026 - Luca Deri <deri@ntop.org>

Internet Layer Model

Media

Internet (IP)

Transport

Internet (IP)

Transport

Application Process

Internet (IP)

Application Process

Media

Router

End System End System

ApplicationApplication

Subnetwork Subnetwork Subnetwork

21

© 2026 - Luca Deri <deri@ntop.org>

ISO Standardisation

Working Document

Committee Draft

Draft International
Standard

Full Standard

Technical
Report

Technical
Report

No Implementation

Still No
Implementation !

Reject

Reject

Modifications Needed

Modifications Needed

22

© 2026 - Luca Deri <deri@ntop.org>

IETF Standardisation

Working Document

Proposed Standard

Draft
Standard

Full Standard

Historical

Historical

Implementation experience
must be obtained

Several independent
implementations must

interoperate
Reject

Reject

Modifications Needed

Modifications Needed

After a max
of 2 years

After a max
of 4 years

23

© 2026 - Luca Deri <deri@ntop.org>

1.3 Overview: Abstract Syntax Notation One
• Abstract Syntax Notation One (ASN.1) is a syntax user for the definition of data

structures and message formats.

• ASN.1 goals:
• Exchange of information between machines with different hardware

architectures (8/16/32/64 bit, little/big-endian).
• Independence from existing programming languages (language neutral).
• Coding of the data during the transfer should be selectable between senders

and recipients (negotiation).

• Separation of the data presentation from the application-specific data structure
representation.

• The abstract syntax defines the data structures during the transfer and determines
in which form these data structures will serially transfer over a network.

24

© 2026 - Luca Deri <deri@ntop.org>

LSB: least-significant byte / MSB: most-significant byte

Little vs Big Endian [1/3]

25

10101001 01001010 10101011 10001100

LSBMSB

• Big Endian: load/store the MSB first
• i.e., in the lowest address location

• Little Endian: load/store the LSB first
• i.e., in the lowest address location

Network byte order is big endian, or most significant byte first

© 2026 - Luca Deri <deri@ntop.org>

Little vs Big Endian [2/3]

• Endianness matters when you store a multi-byte
value to memory.

• Processors can be either Big (Motorola 68k,
PowerPC) or Little endian (Intel x64, Apple Silicon)

26

© 2026 - Luca Deri <deri@ntop.org>

Little vs Big Endian [3/3]

27

#include <arpa/inet.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
 unsigned int a = 0x12345678;

 printf("Host Representation: 0x%X\n", a);
 printf("Network Representation: 0x%X\n", htonl(a));

 return(0);
}

$./endian
Host Representation: 0x12345678
Network Representation: 0x78563412

Question: on what platform (little or big
endian) did I run this program ?

© 2026 - Luca Deri <deri@ntop.org>

Abstract Syntax and Transfer Syntax

• ASN.1 defines a standardized abstract syntax.
• ASN.1 permits several encoding rules that transform the abstract syntax into a

byte stream suitable for transfer. BER (Basic Encoding Rules) defines the mapping
between abstract and transfer syntax.

• Applications normally use a local syntax depending on the programming language
being used.

System A

Enc/Dec

System B

Enc/DecCommon Data
Representation

 Local Syntax Local Syntax

Abstract Syntax (ASN.1)

Transfers Syntax (ASN.1 Encoding Rules)

28

© 2026 - Luca Deri <deri@ntop.org>

Primitive ASN.1 Datatypes
• Names of ASN.1 datatypes begin with a uppercase letter.
• Names of ASN.1 values (constants) begin with a lowercase letter.
• ASN.1 keywords and macro names consists only of uppercase letters.
• Comments are enclosed between `--` (e.g. `-- This is a comment --`).

• BOOLEAN:
• Can only take the predefined values TRUE and FALSE.

• INTEGER:
• Covers all the possible integer numbers. No delimitation of the number range.

• BIT STRING:
• A sequence of bits. The length does not have to be divisible by 8.

• OCTET STRING:
• A sequence of octets (bytes). It is the base type for different character sets and

other derived types (GeneralizedTime, UTCTime).

29

© 2026 - Luca Deri <deri@ntop.org>

Primitive ASN.1-Datatypes
• ENUMERATED:

• Type of enumerating. Possible values must be determined by the definition of
derived datatypes.

• OBJECT IDENTIFIER:
• Unique identification of a node in the ISO registration tree.
• Path of the root of the tree to the target node.

• ObjectDescriptor:
• A character string for the identification of a node in the Registration tree.
• Not necessarily unique.

• ANY:
• any ASN.1-datatype (Union of all ASN.1 datatypes as C ‘void’).

• EXTERNAL:
• Data not described using an ASN.1 definition.

• NULL:
• A substitute symbol, in order to indicate in an assembled datatype the absence

of a value.
30

© 2026 - Luca Deri <deri@ntop.org>

ISO Registration Tree
• Used for uniquely identifying definitions, documents, objects...
• Hierarchical structure, similar to hierarchical file systems.
• All nodes of a level identified by a unique number.
• The path from the root of the registration tree to a node results in a numerical

sequence called Object Identifier (e.g. 1.3.6.1).

ccitt(0) iso(1) joint-iso-ccitt(2)

standard(0) registration-authority(1) member-body(2) identified-organization(3)

dod(6)

internet(1)

directory(1) mgmt(2) experimental(3) private(4)

31

© 2026 - Luca Deri <deri@ntop.org>

Assembled ASN.1 Datatypes
• SEQUENCE:

• Corresponds to structures in C or records in Pascal.
• The sequence of the items in a SEQUENCE is fixed.

• SET:
• Similar to a SEQUENCE, with the difference that the sequence of the elements

is not specified.
• SEQUENCE OF:

• Ordered quantity (list) of homogeneous data.
• SET OF:

• Unordered quantity of homogeneous data.
• CHOICE:

• Type of selection, similar to the C union.
• REAL:

• It consists of the INTEGER datatype extended with mantissa and exponent.

32

© 2026 - Luca Deri <deri@ntop.org>

Reduced Datatypes
• Definition of further datatypes by restricting the scope of existing datatypes.

• Exact syntax dependent on the underlying primitive datatype.

• Examples:
LottoNumber ::= INTEGER (1..90)

MD5Key ::= OCTET STRING (SIZE (16))

IPAddress ::= OCTET STRING (SIZE (4|16))

Counter32 ::= INTEGER (0..4294967295)

Integer32 ::= INTEGER (-2147483648..2147483647)

Unsigned64 ::= INTEGER (0..18446744073709551615)

• Restrictions of the scope are applied to derived datatypes (e.g SEQUENCE OF
MD5Key).

• The restriction of the INTEGER datatype makes sense as today's computers
internally usually operate with 32-bit or 64-bit numbers.

33

© 2026 - Luca Deri <deri@ntop.org>

Some Definitions of Types and Values
• Type definitions:

Number ::= INTEGER

DateAndTime ::= UTCTime

ID ::= OBJECT Identifier

• Value definitions :
ok BOOLEAN ::= TRUE

seven Number ::= 7

now DateAndTime ::= "971105012200-0100"

• Implicit Value Definitions :
Lotto ::= INTEGER { first(1), last(49) }

AccessRight ::= BIT STRING { read(1), write(2), execute(3) }

MaskAccessRight ::= { read, execute }

Sex ::= ENUMERATED { female(1), male(0) }

34

© 2026 - Luca Deri <deri@ntop.org>

A Complex Example [1/2]
Message ::= SEQUENCE {

version INTEGER,

community OCTET STRING,

data ANY -- e.g. PDUs if no authentication

}

PDUs ::= CHOICE {

get-request GetRequest-PDU,

get-next-request GetNextRequest-PDU,

get-response GetResponse-PDU,

set-request SetRequest-PDU

}

GetRequest-PDU ::= [0] IMPLICIT PDU

GetNextRequest-PDU ::= [1] IMPLICIT PDU

GetResponse-PDU ::= [2] IMPLICIT PDU

SetRequest-PDU ::= [3] IMPLICIT PDU

35

© 2026 - Luca Deri <deri@ntop.org>

A Complex Example [2/2]
PDU ::= SEQUENCE {

request-id INTEGER,

error-status INTEGER {

 noError(0), tooBig(1),

 noSuchName(2), badValue(3),

 readOnly(4), genErr(5)

},

error-index INTEGER,

variable-bindingsVarBindList

}

VarBindList ::= SEQUENCE OF VarBind

VarBind ::= SEQUENCE {

name ObjectName,

value ObjectSyntax

}

36

© 2026 - Luca Deri <deri@ntop.org>

Basic Encoding Rules (BER)
• The Basic Encoding Rules determine how a ASN.1 datatype can be represented as

a string of bytes.
• Based on tag/length/value coding (TLV) algorithm, where the each variable is

identified by one tag, the length of the value in bytes and the value of those bytes.
• The TLV coding permits a recipient to reconstruct the type of a message from the

received byte stream.
• BER coding is a little inefficient as there is often unnecessary information to be

transferred.
• The use of OPTIONAL fields further complicated the BER definition.
• BER also defines the transmission direction of the bit stream other than the coding

the ASN.1 datatypes:

Byte (Octet)

8 7 6 5 4 3 2 1
Transmission Direction

37

© 2026 - Luca Deri <deri@ntop.org>

Coding Tags Classes
• Each tags is coded in a byte:

• Tag classes:
	 	 	 	 Bit 8	 Bit 7

UNIVERSAL		 0	 0
APPLICATION	 0	 1
CONTEXT-SPECIFIC	 1	 0
PRIVATE	 	 1	 1

8 7 6 5 4 3 2 1

Tag Number (type identification)
Primitive (0) or sub (1) type
Tag Class

38

© 2026 - Luca Deri <deri@ntop.org>

Coding Field Length
• The length field indicates the length of the directly following value.

• Length within 0..127:

• Length > 127 :

8 7 6 5 4 3 2 1

 Length (0..127)

0

8 7 6 5 4 3 2 1

Field length (>127)

1

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

Number of bytes that specify the field length

....

39

© 2026 - Luca Deri <deri@ntop.org>

Value Coding
• For each primitive ASN.1 type there is a rule that allows values to be translated into a

stream of bytes and vice-versa.

• The rules for INTEGER and OCTET STRING are simple.

• The rules for OBJECT IDENTIFIER are relatively complex.

• Assembled values (SEQUENCE, SEQUENCE OF) are easily represented by coding each
individual item.

• With CHOICE constructs only the available value is transferred, therefore the associated
tag must be unique.

• For further details:
• D. Steedman: Abstract Syntax Notation One (ASN.1) - The Tutorial and

Reference, Technology Appraisals, 1990
40

© 2026 - Luca Deri <deri@ntop.org>

Example of a BER Coded Message
	 30 1B SEQUENCE, Length 27

 02 01 00 INTEGER, Length 1, "0"

 04 06 70 75 62 6C 69 63 OCTET STRING, Length 6, "public"

 A1 0E GetNextRequest-PDU, Length 14

 02 04 36 A2 8F 07 INTEGER, Length 4, "916623111"

 02 01 00 INTEGER, Length 1, "0"

 02 01 00 INTEGER, Length 1, "0"

 30 00 SEQUENCE OF, Length 0

• Length of the BER encoding must be well known (no dummy values) when a value
is coded. With some restrictions it is also possible to specify the length after the
value.

• The decoding is more difficult when the length is specified after the value.

• Coding the primitive values is not always as simple as in the example (some
datatypes can be encoded in both short and long form).

41

© 2026 - Luca Deri <deri@ntop.org>

An ASN.1 Compiler [1/2]
CertainStructure ::= SEQUENCE {
 tag VisibleString,
 val1 INTEGER,
 val2 INTEGER OPTIONAL,
 reals SET OF REAL
 }

 typedef struct CertainStructure {
 VisibleString_t tag;
 int val1;
 int *val2; /* OPTIONAL */
 A_SET_OF(double) reals;
 } CertainStructure_t;

ASN.1

C

42

© 2026 - Luca Deri <deri@ntop.org>

An ASN.1 Compiler [2/2]
Encoding and Decoding Data

CertainStructure_t *cs = 0;
ber_decode(0, &asn_DEF_CertainStructure, &cs, buffer, buffer_length);
cs->val1 = 123; /* Modify the contents */
ber_encode(&asn_DEF_CertainStructure, cs, write_handle, 0);

Online ASN.1 Compiler
http://lionet.info/asn1c/asn1c.cgi

43

http://lionet.info/asn1c/asn1c.cgi

© 2026 - Luca Deri <deri@ntop.org>

2. Internet Management
1.	 Introduction
2.	 Internet Management
	 2.1 Overview
	 2.2 Structure the Management Information (SMIv2)
	 2.3 Fundamental MIBs
	 2.4 Simple Network Management Protocol Version 1 (SNMPv1)
	 2.5 Simple Network Management Protocol Version 2c (SNMPv2c)
	 2.6 Simple Network Management Protocol Version 3 (SNMPv3)
	 2.7 MIB Implementation and Agent Extensibility Protocol (AgentX)

44

© 2026 - Luca Deri <deri@ntop.org>

2.1 Overview
1987	 Simple Gateway Monitoring Protocol (SGMP)
1987	 High-level Entity Management System (HEMS)
1988	 Simple Network Management Protocol (SNMPv1)	 proposed

1990	 Simple Network Management Protocol (SNMPv1)	 standard 15, 16

1991	 Management Information Base II	 	 	 standard 17

1993	 SNMP Version 2 (Party/Party/Context)	 	 standard

1996	 SNMP Version 2 (Communities)	 	 	 standard

1998	 SNMP Version 3 (User-based)	 	 	 standard
	
• SNMPv1 has a large spreading particularly in data communication.
• The attempts for the standardisation of SNMPv2 failed.
• SNMPv3 with SNMPv1 has been accepted by a large community of network

manufacturers.
• The user community has accepted SNMPv3 very well in terms of support and

development.
45

© 2026 - Luca Deri <deri@ntop.org>

SNMP Development Goals

• Minimization of the number and complexity of the management functions, which are
implemented by an agent:

• Reduction of development costs for management agents (simple applications).
• Ubiquity: use the same management technology for all devices (printers or

Cray).
• Application extensibility: development of new management functions without

the need to modify the agents.

• Extensibility by defining new MIBs.
• Independence from existing computer or network architectures.
• Robustness by a simple, connectionless transport service (UDP).
• No dependency on other network services.
• Addition of management to new/existing devices/applications should be

inexpensive, simple to develop and of limited functionality.
• Unfortunately some of these original goals have been lost: the term "simple" refers

to the protocol and not to the specifications or the implementation of management
applications.

46

© 2026 - Luca Deri <deri@ntop.org>

Agent

MIB

Agent

MIB

Agent

MIB

Agent

MIB

Agent

MIB

Agent

MIB

Trap Directed Polling

• SNMP managers polls in regular intervals the SNMP agents.
• Agents can signal exceptional cases to a manager by sending a trap.
• The SNMP manager can adapt the polling strategy upon the receipt of traps (trap

directed polling).

• SNMP is a strictly centralised model, where the manager implements the whole
functionality and responsibility.

Manager

In
fo

rm
at

io
n

(T
ra

ps
) C

ontrol (Polling)

47

© 2026 - Luca Deri <deri@ntop.org>

SNMP Application Areas

• SNMP can be used not only for network management:
• control and monitoring of production processes.

• control and monitoring of complex computer systems.
• monitoring of complex application programs (relational databases, SAP R/3

components...).

• Many good SNMP toolkits are available on the market.
• Very few applications are available for solving complex management problems.
• The implementation of special applications or the conversion of local procedure

guidelines is generally relatively complex and expensive.

48

© 2026 - Luca Deri <deri@ntop.org>

2.2 Structure the Management Information (SMIv2)
• The current information model known as "Structure of Management Information

version 2" (SMIv2) is defined and based on simple typed variables.

• SMIv2 is based on extended subset of ASN.1 (1998).

• Each variable has a primitive, not assembled ASN.1 datatype:
• INTEGER, OCTET STRING, OBJECT IDENTIFIER, NULL
• Integer32, Unsigned32, Gauge32, Counter32, Counter64, IpAddress, TimeTicks,

Opaque
• It does not implement complex data structures and operations on the variables.
• Variables are either scalars (exactly one instance) or columns in a “conceptual” two

dimensional table (zero or several variables).
• On the variables only "read" and "write" operations can be applied. However the

SNMP protocol permits the manipulation of lists of variables.
• SMIv2 management information Bases (MIBs) are defined using special ASN.1

macros.
• It leverages the complexity of new MIBs definitions: definition of basic functionality

and primitive types to be used in new MIBs.

49

© 2026 - Luca Deri <deri@ntop.org>

SMIv2 Basic Datatypes (RFC 2578)
SMIv2 SMIv1 Description

INTEGER INTEGER Integer Numbers (-2147483648..2147483647)

OCTET STRING OCTET STRING Sequence of bytes (octets).
OBJECT IDENTIFIER OBJECT IDENTIFIER Unique identifier.
Integer32 INTEGER 32 bit Integers (-2147483648..2147483647)
Unsigned32 - 32 bit Positive Integers (0..4294967295)
Gauge32 Gauge “Thermometer“ Integer (0..4294967295)
Counter32 Counter 32 bit non decreasing counter (0..4294967295)
Counter64 - 64 bit non decreasing counter
 (0..18446744073709551615)
TimeTicks TimeTicks Time in 1/100th of seconds
IpAddress IpAddress 4 Byte IPv4 Address
Opaque Opaque Unspecified ASN.1 Type (not recommended)
BITS - Bits in a OCTET STRING
- NetworkAddress Network Address (not recommended)

50

© 2026 - Luca Deri <deri@ntop.org>

• Definition of the variables in the ISO Registration tree.
• Nodes are defined for naming purposes.
• The leave of the tree represent the managed objects (i.e. “the meat”).
• Sub nodes can be used in order to logically organise the object types.

Type to
enter text

A MIB Use Case

address

name

uptime

Manager

Agent

MIB

address (1)

name (1) uptime (2)

info (2)

(1)

51

© 2026 - Luca Deri <deri@ntop.org>

Object Identifier and Instance Identifier
• In the registration tree each object can be identified by means of a unique object

identifier.
• Concrete developments (instance) of a type of object are unique designated by

a so-called Instance Identifier.
• A unique instance identifier is obtained by attaching an instance identifiers to the

object identifier.
• Scalar object have basically only one instance, where the instance identifier has

basically the value 0 (e.g. sysName.0).
• Instance identifiers for non-scalar variables are derived from the unique naming of

a conceptual table.
• As object identifier can have up to 128 elements, hence instance names cannot be

infinitely complex.

52

© 2026 - Luca Deri <deri@ntop.org>

Example of Object and Instance Identifiers

	 Object Identifier		 Instance Identifier	 Type	 	 Value

	 1.1	 	 	 0	 	 IpAddress	 10.1.2.1

	 1.2.1	 	 	 0	 	 OCTET STRING	 "FilterFresh"

	 1.2.2	 	 	 0	 	 TimeTicks	 54321

• MIB nodes names are relevant for human users only.

• Descriptors must be unique within a MIB module, although can be used several
times in different MIB modules (one gets unique descriptors by the combining
module names and descriptors).

address (1)

name (1) uptime (2)

info (2)

(1)

53

© 2026 - Luca Deri <deri@ntop.org>

For matter of simplicity in the above example addresses are represented using
natural numbers.

Extension of the Example MIB with a Routing table

address (1)

name (1) uptime (2)

info (2)

(1)

fwdTable(3)

fwdEntry(1)

index(1) mask(2) next(3)
1
2
9
4
5
6

2
3
5
7
8
9

2
3
2
2
3
3

54

© 2026 - Luca Deri <deri@ntop.org>

Identification of Table Entries
• Tables are defined basically with two "auxiliary nodes":

• the first node defines the table and is of type SEQUENCE OF.

• the second node defines an entry (a row) in the table and is of type
SEQUENCE.

• this is the only permitted use of SEQUENCE and SEQUENCE OF in SNMP SMIv2.

• The result of the column and instance identifier (code of the table) is a unique
object identifier for each table entry.

• Table Example (convention OID => value):
1.3.1.1.1 => 1	 	 1.3.1.3.1 => 2	 	 1.3.1.2.4 => 7
1.3.1.2.1 => 2	 	 1.3.1.1.4 => 4	 	 1.3.1.2.7 =>

not existing

55

© 2026 - Luca Deri <deri@ntop.org>

Tables Naming [1/3]
• Table naming is very important as it affects the way tables are accessed.
• Two kind of tables naming:

• Use row numbers (not being used by SNMP).

• Use an index column (the SNMP way).

1
2
3
4
5

2
3
5
7
8

2
3
2
2
3

1
2
3
4
5

2
3
5
7
8

2
3
2
2
3

This is row number 3

This is the index column

56

© 2026 - Luca Deri <deri@ntop.org>

Tables Naming [2/3]
• A table index is not necessarily (but often is) an INTEGER. For instance the

routingTable uses an IP address as table index.
• A table index can be made of several components:

• X . C . I1 . I2 …… In

O
ID

 o
f t

he
 ta

bl
e

C
ol

um
n

nu
m

be
r

In
de

x
va

lu
e

1

In
de

x
va

lu
e

n

130.89.16.23 1 130.89.16.23

130.89.16.23 2 130.89.16.127

192.168.10.12 1 172.16.1.18

192.168.10.12 2 172.16.1.12

destination (1)

policy (2)

next (3)

routingTable

1 = low cost
2 = high reliability

57

© 2026 - Luca Deri <deri@ntop.org>

• An IP Routing table is the combination of
IP address and the IP netmask necessary
to satisfy the routing rules.

• The individual bytes of the IP address are
specified as individual sub identifiers.

• Example:

	 1.3.1.1.134.169.35.1.255.255.255.0 => 134.169.35.1

	 1.3.1.3.134.169.34.0.255.255.255.0 => 134.169.34.15

Tables Naming: Complex Table Indexes [3/3]

fwdTable(3)

fwdEntry(1)

net(1) mask(2) next(3)

127.0.0.1 255.0.0.0 127.0.0.1
134.169.34.0 255.255.255.0 134.169.34.15

0.0.0.0 255.255.255.0 134.169.34.1

134.169.35.1 255.255.255.0 134.169.34.18
134.169.35.2 255.255.255.0 134.169.34.18

net mask

Instance Identifier

58

© 2026 - Luca Deri <deri@ntop.org>

MIB Module
• Similar object types are combined into MIB modules.

• Each MIB module must have a unique name (uppercase letters).

• MIB modules are (almost) normal ASN.1 modules and obey to the lexical ASN.1
rules.

• Definitions can be imported by other MIB modules with the help of of the ASN.1
IMPORT statement.

• All used ASN.1 SMI Macros must be explicitly imported

	 COFFEE-MIB DEFINITIONS ::= BEGIN

IMPORT MODULE-IDENTITY, OBJECT-TYPE, enterprises,

IpAddress, TimeTicks FROM SNMPv2-SMI;

...

END

59

© 2026 - Luca Deri <deri@ntop.org>

Module-Identities (RFC 2578)
<descriptor> MODULE-IDENTITY

 LAST-UPDATED <ExtUTCTime>

 ORGANIZATION <Text>

 CONTACT-INFO <Text>

 DESCRIPTION <Text>

[REVISION <ExtUTCTime>

 DESCRIPTION <Text>]*

::= <ObjectIdentifier>

• Defines administrative information e.g. contact information and version number.

• the REVISION and DESCRIPTION clauses are not mandatory and can occur
several times.

• ExtUTCTime contains a date in the format„YYMMDDHHMMZ“ (UTC) or
„YYYYMMDDHHMMZ“, e.g.. „9502192015Z“ or „199502192015Z“.

60

© 2026 - Luca Deri <deri@ntop.org>

IF-MIB DEFINITIONS ::= BEGIN

IMPORTS ...

ifMIB MODULE-IDENTITY

 LAST-UPDATED "9611031355Z"

 ORGANIZATION "IETF Interface MIB Working Group"

 CONTACT-INFO " Keith McCloghrie 408-526-5260

 Cisco Systems, Inc. kzm@cisco.com

 170 West Tasman Drive

 San Jose, CA 95134-1706, US"

 DESCRIPTION "The MIB module to of describe generic objects for network interface

 sub-layers. This MIB is an updated version of MIB II´s ifTable,

 and incorporates the extensions defined in RFC 1229."

 REVISION "9602282155Z"

 DESCRIPTION "Revisions made by the Interfaces MIB WG"

 REVISION "9311082155Z"

 DESCRIPTION "Initial revision, published as part of RFC 1573."

 ::= { mib-2 31 }

...

END

61

Module-Identities (RFC 2578)

© 2026 - Luca Deri <deri@ntop.org>

Object Identities (RFC 2578)

<descriptor> OBJECT-IDENTITY

 STATUS <Status>

 DESCRIPTION <Text>

[REFERENCE <Text>]

::= <ObjectIdentifier>

• Defines and registers an object identifier value.

• Permits the allocation of any node within the registration tree.

• The STATUS clause defines whether the allocated node is "obsolete" "current", or
"deprecated".

• The optional REFERENCE is used to refer to further information (similar to HTML
hyperlinks).

62

© 2026 - Luca Deri <deri@ntop.org>

Example of Object Identities (RFC 2578, RFC 1906)
zeroDotZero OBJECT-IDENTITY

 STATUS current

 DESCRIPTION

 "A value used for null Identifiers."

 ::= { 0 0 }

snmpUDPDomain OBJECT-IDENTITY

 STATUS current

 DESCRIPTION

 "The SNMPv2 over UDP transport domain. The corresponding

 transport address is of type SnmpUDPAddress."

 ::= { snmpDomains 1 }

snmpIPXDomain OBJECT-IDENTITY

 STATUS current

 DESCRIPTION

 "The SNMPv2 over IPX transport domain. The corresponding

 transport address is of type SnmpIPXAddress."

 ::= { snmpDomains 5 }

63

© 2026 - Luca Deri <deri@ntop.org>

Object Types (RFC 2578)
<descriptor> OBJECT-TYPE

 SYNTAX <Syntax>

[UNITS <Text>]

 MAX-ACCESS <Access>

 STATUS <Status>

 DESCRIPTION <Text>

[REFERENCE <Text>]

[INDEX <Index>]

[AUGMENTS <Index>]

[DEFVAL <Value>]

::= <ObjectIdentifier>

• Macro for the definition of object types and conceptual tables.
• The INDEX and AUGMENTS clauses are permitted only for the definition by tables.
• Exactly one of the above clauses must be specified during table definition.

64

© 2026 - Luca Deri <deri@ntop.org>

Example for ObjectTypes (RFC 2012)

tcpRtoMin OBJECT-TYPE

 SYNTAX Integer32

 UNITS "milliseconds"

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The minimum value permitted by a TCP implementation for the

 retransmission timeout, measured in milliseconds. More

 refined semantics for objects of this type depend upon the

 algorithm used to determine the retransmission timeout. In

 particular, when the timeout algorithm is rsre(3), an object

 of this type has the semantics of the LBO and quantity

 of described in RFC 793."

 ::= { tcp 2 }

65

© 2026 - Luca Deri <deri@ntop.org>

Example for ObjectTypes (RFC 1907)
sysORTable OBJECT-TYPE

 SYNTAX SEQUENCE OF SysOREntry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The (conceptual) table listing the capabilities of the

 local SNMPv2 entity acting in an agent role with respect to

 various MIB modules. SNMPv2 entities having dynamically-

 configurable support of MIB modules will have a

 dynamically-varying number of conceptual rows."

 ::= { system 9 }

sysOREntry OBJECT-TYPE

 SYNTAX SysOREntry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "An entry (conceptual row) in the sysORTable."

 INDEX { sysORIndex }

 ::= { sysORTable 1 }

66

© 2026 - Luca Deri <deri@ntop.org>

Notification-Types (RFC 2578)
<descriptor> NOTIFICATION-TYPE

[OBJECTS <Objects>]

 STATUS <Status>

 DESCRIPTION <Text>

[REFERENCE <Text>]

::= <ObjectIdentifier>

• Macro for the registration of an event.

• In case of event a manager or an agent can send an appropriate notification to another
manager.

• The OBJECTS clauses defines which MIB objects must be contained in the event description.

• The DESCRIPTION clause must describe which instances are meant in each case.

67

© 2026 - Luca Deri <deri@ntop.org>

Example for Notification Types (RFC 2233)
linkDown NOTIFICATION-TYPE

 OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }

 STATUS current

 DESCRIPTION

 "A linkDown trap signifies that the SNMPv2 entity,

 acting in an agent role, has detected that the

 ifOperStatus object for one of its communication links

 is about to enter the down state from some other state

 (but not from the notPresent state). This other state

 is indicated by the included value of ifOperStatus."

 ::= { snmpTraps 3 }

linkUp NOTIFICATION-TYPE

 OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }

 STATUS current

 DESCRIPTION

 "A linkDown trap signifies that the SNMPv2 entity,

 acting in an agent role, has detected that the

 ifOperStatus object for one of its communication links

 left the down state and transitioned into some other

 state (but not into the notPresent state). This other

 state is indicated by the included value of ifOperStatus."

 ::= { snmpTraps 4 }

68

© 2026 - Luca Deri <deri@ntop.org>

New Types from Textual Conventions
• Textual conventions allow new types to be derived from SMIv2 base types.

• However, additional types may not be derived from a textual convention.

• A DISPLAY-HINT clause defines a simple figure of the ASN.1 representation of a
value into a format readable for humans.

• The DISPLAY-HINT clause can be used only together with the INTEGER and
OCTET STRING datatype and from which it derives.

• A Textual convention can determine restrictions on the scope.

• A Textual convention cannot define an assembled type.

69

© 2026 - Luca Deri <deri@ntop.org>

Textual Conventions [1/2]
• Textual conventions are defined in RFC 2579.

<descriptor> ::= TEXTUAL-CONVENTION

[DISPLAY-HINT <Text>]

 STATUS <Status>

 DESCRIPTION <Text>

[REFERENCE <Text>]

 SYNTAX <Syntax>

• The DISPLAY-HINT clause defines a bi-directional figure of the internally used
representation on a representation readable for humans. .

• In the SYNTAX clause only base datatypes may be used (one can thus limit not
existing Textual Conventions even further).

• All further semantics must be defined in the DESCRIPTION clause.

70

© 2026 - Luca Deri <deri@ntop.org>

Textual Conventions [2/2]
• The followings are the textual conventions defined in RFC 2579:

• PhysAddress
• MacAddress
• TruthValue
• AutonomousType
• InstancePointer
• VariablePointer
• RowPointer
• RowStatus
• TimeStamp
• TimeInterval
• DateAndTime
• StorageType
• TDomain
• TAddress

71

© 2026 - Luca Deri <deri@ntop.org>

• Example:
• ´´d´´	 stands for ´´143´´
• ´´d-2´´	 stands for ´´1.43´´
• ´´o´´ 	 stands for ´´217´´
• ´´x´´ 	 stands for ´´8F´´	 	

INTEGER DISPLAY-HINTS

Format
d

d-<number>
o
x

Description
Representation of an Integer

Representation of `d` with a decimal point
Octal Representation
Hex Representation

72

© 2026 - Luca Deri <deri@ntop.org>

OCTET STRING DISPLAY-HINTS

• [<repeat>]<number><format>[separator][terminator]

• Example:
• ´´255a´´	 format for the ASCII characters ´´aBc´´ in the string ´´aBc´´
• ´´1x:´´	 format for the ASCII characters ´´aBc´´ in the string ´´61:42:63´´
• ´´0aH0ae0a10a10ao0a 1a´´

 format for the ASCII characters ´´World´´ in the string ´´Hello World´´

Field
<repeat>
<number>
<format>

<separator>
<terminator>

Description (similar to C/C++ printf)
Indicator for the specification repetition

bytes in the following format field
Format (a ASCII, d Decimal, x Hexadecimal, o Octal, t UTF8)

Separator among multiple values
Terminator specified at the end of the rule

73

© 2026 - Luca Deri <deri@ntop.org>

Example for Textual-Conventions (RFC 2579)
RunState ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "This TC of describes the current execution state of  
 a running application or process."

 SYNTAX INTEGER {

 running(1), runnable(2),

 waiting(3), exiting(4), other(5)

}

MacAddress ::= TEXTUAL-CONVENTION

 DISPLAY-HINT "1x:"

 STATUS current

 DESCRIPTION

 "Represents an 802 MAC address represented in the

 `canonical' or the defined by IEEE 802.1a, i.e., as if it

 were transmitted least significant bit first, even though

 802.5 (in contrast to other 802.x protocols) requires MAC

 addresses to be transmitted most significant bit first."

 SYNTAX OCTET STRING (SIZE (6))

74

© 2026 - Luca Deri <deri@ntop.org>

Example for Textual-Conventions (RFC 2579)
DateAndTime ::= TEXTUAL-CONVENTION

 DISPLAY-HINT "2d-1d-1d,1d:1d:1d.1d,1a1d:1d"

 STATUS current

 DESCRIPTION

 "A date-time specification.

 field octets contents range

 ----- ------ -------- -----

 1 1-2 year 0..65536

 2 3 month 1..12

 3 4 day 1..31

 4 5 hour 0..23

 5 6 minutes 0..59

 6 7 seconds 0..60

 (use 60 for leap-second)

 7 8 deci-seconds 0..9

 8 9 direction from UTC '+' / '-'

 9 10 hours from UTC 0..11

 10 11 minutes from UTC 0..59

 For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would be displayed as:

 1992-5-26,13:30:15.0,-4:0

 Note that if only local time is known, then timezone information (fields 8-10) is not present."

 SYNTAX OCTET STRING (SIZE (8 | 11))

75

© 2026 - Luca Deri <deri@ntop.org>

Further SMIv2 Macros
• OBJECT-GROUPS

• It enables the definition of groups of related object types.
• This macro can be used in the MODULE-COMPLIANCE macro.

• NOTIFICATION-GROUPS

• It enables the definition of groups of related notification types.
• This macro can be used in the MODULE-COMPLIANCE macro.

• MODULE-COMPLIANCE

• It defines one or more constraints that a MIB implementations must fulfil.

• AGENT-CAPABILITIES

• It describes the capabilities of a real MIB implementation.

76

© 2026 - Luca Deri <deri@ntop.org>

• Backend-Compiler can produce the following outputs:
• Documentation (hypertext versions of MIB modules, diagrams)
• Source code for the semiautomatic implementation of agents
• Test-cases for testing manager and agent implementations
• Inputs for management applications, the MIB definitions needed at run-time.

• There is no standardised or generally accepted intermediate format.

MIB-Compiler
Errors and Warnings

SMI Conversion

MIB & SMI
Definitions

Frontend
Compiler

Intermediate
Format

Backend
Compiler

Runtime
Data

 Test Sources

Docs

77

© 2026 - Luca Deri <deri@ntop.org>

2.3 Fundamental MIBs
• MIB-II (RFC 1213) defines object types for the Internet Protocols IP, ICMP, UDP,

TCP, SNMP (and other definitions not relevant here). Basically it models the
management of the TCP/IP protocol stack.

• Goals of the MIB-II definition:
• Define basic error and configuration management for Internet protocols.
• Very few and weak control objects.
• Avoidance of redundant information in the MIB.
• MIB implementation should not interfere with the normal network activities.
• No implementation-dependent object types.

• Altogether 170 object types.

• Some MIB definitions turned out to be too simple and minimal (Routing table,
Interface table).

• Some MIB definitions presuppose a 4-Byte address format, hence these tables must
be redefined for IP version 6 (IPv6).

78

© 2026 - Luca Deri <deri@ntop.org>

Registration and Structure of MIB-II

ccitt(0) iso(1) joint-iso-ccitt(2)

standard(0) registration-authority(1) member-body(2) identified-organization(3) ...

dod(6)

internet(1)

directory(1) mgmt(2) experimental(3) private(4)

mib-2(1)

system(1) interfaces(2) at(3) ip(4) icmp(5) tcp(6) udp(7) egp(8) transmission(10) snmp(11) ...

x25(1) dot3(2) dot5(3) ...

security(5) snmpV2(5) ...

79

© 2026 - Luca Deri <deri@ntop.org>

Relations Between MIBs [1/2]

Interface Statistics X	
IP, TCP & UDP Statistics X
SNMP Statistics X
Host Job Counts X
Host File System Information X
Link Testing	 	 	 	 X X		
Network Traffic Statistics 	 	 	 X X X
Address Tables	 	 	 	 X X
Host Statistics 	 	 	 	 X X

M
IB

-II

H
os

t

R
ep

ea
te

r

B
rid

ge

R
M

O
N

80

Overlap

© 2026 - Luca Deri <deri@ntop.org>

Relations Between MIBs [2/2]

Historical Statistics	 	 	 	 	 	 X
Spanning Tree Performance	 	 	 	 X
Wide Area Link Performance	 	 	 	 X
Thresholds for any variable	 	 	 	 	 X
Configurable Statistics	 	 	 	 	 X
Traffic Matrix with all Nodes	 	 	 	 	 X
‘Host Top N’ Information	 	 	 	 	 X
Packet/Protocol Analysis	 	 	 	 	 X
Distributed Logging		 	 	 	 X

M
IB

-II

H
os

t

R
ep

ea
te

r

B
rid

ge

R
M

O
N

81

© 2026 - Luca Deri <deri@ntop.org>

2.4 Simple Network Management Protocol Version 1

Transmission Control
Protocol (TCP)

User Datagram
Protocol (UDP)

Internet Protocol (IP) &
Internet Control Message
Protocol (ICMP)

ATM ISDN 802.3 802.5

Virtual Terminal

File Transfer Electronic Mail

Name Service Network Filesystem

Simple Network
Management Protocol

Information Retrieval

Network Layer

Transport Layer

Application Layer

82

© 2026 - Luca Deri <deri@ntop.org>

Lexicographical Ordering

• MIB instances are arranged in the MIB according to their lexicographical ordering.

• The ordering is determined by the value of the object identifier that identify the
instance.

• The SNMP log uses the lexicographical order, in order to read (walk) conceptual
tables or unknown MIBs.

83

© 2026 - Luca Deri <deri@ntop.org>

Example of Lexicographical Ordering

• Object Identifier:	 Value:	 	 Object Identifier	 	 Value :
1.1.0	 	 	 10.1.2.3	 	 1.3.1.2.4	 	 	 7
1.2.1.0	 	 "FilterFresh"	 1.3.1.2.5	 	 	 8
1.2.2.0	 	 54321	 	 1.3.1.2.6	 	 	 9
1.3.1.1.1	 	 1	 	 1.3.1.3.1	 	 	 2
1.3.1.1.2	 	 2	 	 1.3.1.3.2	 	 	 3
1.3.1.1.3	 	 3	 	 1.3.1.3.3	 	 	 2
1.3.1.1.4	 	 4	 	 1.3.1.3.4	 	 	 2
1.3.1.1.5	 	 5	 	 1.3.1.3.5	 	 	 3
1.3.1.1.6	 	 6	 	 1.3.1.3.6	 	 	 3
1.3.1.2.1	 	 2
1.3.1.2.2	 	 3
1.3.1.2.3	 	 5

• With this ordering the conceptual table structure is lost as the walk output is a list
and no longer a table.

• the SNMP protocol operates only on this arranged list.

84

© 2026 - Luca Deri <deri@ntop.org>

SNMPv1 protocol operations (RFC 1157)

Manager Agent

Get

Response

Manager Agent

Set

Response

Manager Agent

GetNext

Response

ManagerAgent

Trap

Note: the SNMP protocol can only exchange (a list of) scalars.

85

© 2026 - Luca Deri <deri@ntop.org>

SNMPv1 Message Format

PDU type request-id 0 0 variable-bindings

GetRequest, GetNextRequest, SetRequest:

value1name1 value2 valuenname2 namen...

variable-bindings:

PDU type request-id error-status error-index variable-bindings

GetResponse:

PDU type enterprise address generic vbs

Trap:
specific timestamp

version community SNMP PDU

SNMP message:

86

© 2026 - Luca Deri <deri@ntop.org>

• The Get operation can be used for reading one or more variables.

• Possible errors when processing a GET operation:
• noSuchName	 the requested instance does not exist or is not a leaf.
• tooBig	 	 the result of the request does not fit not into the response (UDP).
• genErr	 	 any other error occurred.

• In the case of several errors occurred, only one error is signalled as error-index and
error-status are unique in the PDU.

SNMPv1 Get Operation

Manager Agent (port 161)

Get

Response

87

© 2026 - Luca Deri <deri@ntop.org>

Example of Get Operation
• Get(1.1.0)  
Response(noError@0, 1.1.0=10.1.2.3)

• Get(1.2.0)  
Response(noSuchName@1, 1.2.0)

• Get(1.1)  
Response(noSuchName@1, 1.1)

• Get(1.1.0, 1.2.2.0)  
Response(noError@0, 1.1.0=10.1.2.3, 1.2.2.0=54321)

• Get(1.3.1.1.4, 1.3.1.3.4)  
Response(noError@0, 1.3.1.1.4=4, 1.3.1.3.4=2)

• Get(1.1.0, 1.2.2.0, 1.1)  
Response(noSuchName@3, 1.1.0, 1.2.2.0, 1.1)

88

© 2026 - Luca Deri <deri@ntop.org>

SNMPv1 GetNext Operation

• It retrieves the object name and the value of the next instance. This operation is
used to discover MIB structures and read tables.

• The GetNext operation allows MIB instances to be read in accordance to the
lexicographical order.

• Using multiple/successive GetNext operations it is possible to read the complete
MIB without knowing its structure.

• Possible errors when processing a GetNext Operation:
• noSuchName	 the requested instance does not exist (= end of MIB).
• tooBig	 	 the result of the request does not fit not into the response (UDP).
• genErr	 	 any other error occurred.

Manager Agent (port 161)

GetNext

Response

89

© 2026 - Luca Deri <deri@ntop.org>

Example of GetNext Operation
• GetNext(1.1.0)  
Response(noError@0, 1.2.1.0=FilterFresh)

• GetNext(1.2.1.0)  
Response(noError@0, 1.2.2.0=54321)

• GetNext(1.1)  
Response(noError@0, 1.1.0=10.1.2.3)

• GetNext(1.3.1.1.1)  
Response(noError@0, 1.3.1.1.2=2)

• GetNext(1.3.1.1.6)  
Response(noError@0, 1.3.1.2.1=2)

• GetNext(1.3.1.1.1, 1.3.1.2.1, 1.3.1.3.1)  
Response(noError@0, 1.3.1.1.2=2, 1.3.1.2.2=3, 1.3.1.3.2=3)

90

© 2026 - Luca Deri <deri@ntop.org>

SNMPv1 Set Operation

• The Set Operation writes values in one or more MIB instances.
• The Set Operation is atomic.
• With the help of the set operation new MIB instances can also be created, if the MIB

definition permits (there is no standard procedure defined in SNMPv1 for instance
creation).

• Possible errors when processing a Set operation:
• noSuchName	 the requested instance does not exist and cannot be created.
• badValue	 	 the specified value is of wrong type.
• tooBig	 	 the result of the request does not fit not into the response (UDP).
• genErr	 	 any other error occurred.

• The error code readOnly is also defined, but not usually used!

Manager Agent (port 161)

Set

Response

91

© 2026 - Luca Deri <deri@ntop.org>

Example of Set Operation
• Set(1.2.1.0=HotJava)  
Response(noError@0, 1.2.1.0=HotJava)

• Set(1.1.0=foo.bar.com)  
Response(badValue@1, 1.1.0=foo.bar.com)

• Set(1.1.1=10.2.3.4)  
Response(noSuchName@1, 1.1.1=10.2.3.4)

• Set(1.2.1.0=HotJava, 1.1.0=foo.bar.com)  
Response(badValue@2, 1.2.1.0=HotJava, 1.1.0=foo.bar.com)

• Set(1.3.1.1.8.1=7, 1.3.1.2.7=2, 1.3.1.3.7=3)  
Response(noError@0, 1.3.1.1.8.1=7, 1.3.1.2.7=2, 1.3.1.3.7=3)

92

© 2026 - Luca Deri <deri@ntop.org>

SNMPv1 Trap Operation

• With the trap operation and agent can emit an event and inform a manager. Note: a
manager can be configured to discard traps!

• The receipt of a trap operation is not acknowledged thus is unreliable as it can be
lost during the transfer.

• The production of traps can lead to so-called trap storms, if e.g. after a power failure
all devices want to display the restart at the same time.

• Agents can be normally configured with the IP addresses of hosts where traps can
be dispatched. However there is no standard technique in SNMPv1 for such agent
configuration. Usually a configuration file (not the MIB) is used.

• Although if traps are used, polling is still necessary (for instance the agent might be
down)

Manager (port 162)Agent

Trap
NOTE:
• The only operation Agt ->Mgr
• Unsolicited operation

93

© 2026 - Luca Deri <deri@ntop.org>

Example of SNMPv1 Trap Operation
• ColdStart  
Trap(generic=0, specific=0)

• WarmStart  
Trap(generic=1, specific=0)

• LinkDown  
Trap(generic=2, specific=0, 1.3.6.1.2.1.2.2.1.1.2=2)

• LinkUp  
Trap(generic=3, specific=0, 1.3.6.1.2.1.2.2.1.1.2=2)

• AuthenticationFailure  
Trap(generic=4, specific=0)

• EnterpriseSpecific (QMS, qmsPtrErrorMsg)  
Trap(generic=6, specific=1, enterprise=1.3.6.1.4.1.480,
1.3.6.1.4.1.480.2.1.1.1=out of paper)

94

© 2026 - Luca Deri <deri@ntop.org>

• It is possible for have several iterative phases for the MIB definitions until it is in draft
status.

• MIB definitions cannot however be further changed, if they were released.

Agent MIB Implementation

Agent
Implementation

Analysis and
Modelling

MIB View
Draft

MIB Module
 Draft

Manager
Implementation

Test Manager

Test AgentObject Analysis OID Structure
Module Structure

MIB Module

Implementation
Limitations

Test Suites

Test SuitesAgent Requests

95

© 2026 - Luca Deri <deri@ntop.org>

SNMP MIB II: Introduction

• MIB-II (RFC 1213) defines object types for the Internet
Protocols IP, ICMP, UDP, TCP, SNMP (and other definitions
not relevant here). Basically it models the management of the
TCP/IP protocol stack.

• Altogether 170 object types.
• Some MIB definitions turned out to be too simple and minimal

(Routing table, Interface table).
• Some MIB definitions presuppose a 4-Byte address format,

hence these tables must be redefined for IP version 6 (IPv6).

96

© 2026 - Luca Deri <deri@ntop.org>

SNMP MIB II: Goals

• Goals of the MIB-II definition:
– Define basic error and configuration management for

Internet protocols.
– Very few and weak control objects.
– Avoidance of redundant information in the MIB.
– MIB implementation should not interfere with the normal

network activities.
– No implementation-dependent object types.

97

© 2026 - Luca Deri <deri@ntop.org>

"system" Group [1/2]

• sysUpTime.0 is a very important variable as it is used for determining
service discontinuities:
– If sysUpTime.0t1 > sysUpTime.0t2 where t2 > t1 then the agent has been

reinitialised and management application rely on previous values.

• sysServices roughly reports the services supplied by the system:

system(1)

sysDescr(1) sysObjectID(2) sysUpTime(3) sysContact(4) sysName(5) sysLocation(6) sysServices(7)

X X0 X 0 0 X X
physical layer (e.g. repeaters)
data-link layer (e.g. bridges)
internet layer (e.g. router)
transport layer (e.g. hosts)
application layer (e.g. http-server)

98

© 2026 - Luca Deri <deri@ntop.org>

"system" Group [2/2]

• sysObjectId.0 has the format enterprises.<manufacturer>.<id>+ and it is
used to identify manufacturer and model. For instance enterprises.9.1.208
identifies a Cisco (.9) 2600 router (.1.208).

• sysDescr.0 provides a precise description of the device (e.g. “Cisco
Internetwork Operating System Software IOS (tm) C2600 Software
(C2600-I-M), Version 12.2(23), RELEASE SOFTWARE (fc2) Copyright (c)
1986-2004 by cisco Systems, Inc.”)

• In a nutshell the system group is important for:
– Device mapping (via sysObjectId.0, sysDescr.0, and sysLocation.0)
– Counter wrapping check (sysUpTime.0)
– Reporting problems about the device to the administrator (sysContact.0)

99

© 2026 - Luca Deri <deri@ntop.org>

"interface" Group
ifI

nd
ex

(1
)

ifD
es

cr
(2

)

ifT
yp

e(
3)

ifM
tu

(4
)

ifS
pe

ed
(5

)

ifP
hy

sA
dd

re
ss

(6
)

ifA
dm

in
S

ta
tu

s(
7)

ifO
pe

rS
ta

tu
s(

8)

ifL
as

tC
ha

ng
e(

9)

ifI
nO

ct
et

s(
10

)

ifI
nU

ca
st

P
kt

s(
11

)

ifI
nN

U
ca

st
P

kt
s(

12
)

ifI
nD

is
ca

rd
s(

13
)

ifI
nE

rr
or

s(
14

)

ifI
nU

nk
no

w
nP

ro
to

s(
15

)

ifO
ut

O
ct

et
s(

16
)

ifO
ut

U
ca

st
P

kt
s(

17
)

ifO
ut

N
U

ca
st

P
kt

s(
18

)

ifO
ut

D
is

ca
rd

s(
19

)

ifO
ut

E
rr

or
s(

20
)

ifO
ut

Q
Le

n(
21

)

ifS
pe

ci
fic

(2
2)

1

2

n

interfaces(2)

ifNumber(1) ifTable(2)

ifEntry(1)

100

© 2026 - Luca Deri <deri@ntop.org>

"interface" Group Variables
• ifAdminStatus: the current administrative state of the interface. Values: up(1), down(2),

testing(3). A value different from up means that the interface is not physically present on
the system or that it’s present but unavailable to the operating system (e.g. the driver has not
been loaded).

•
Caveat: SNMP MIB index holes

• ifOperStatus: the current operational state of the interface. Values: up(1), down(2), testing(3).
It is similar to ifconfig <device> up/down.

• ifOutQLen: the length of the output packet queue (in packets). It is useful for knowing more
about transmission speeds and throughput (buffer full means that the receiver is not as fast
as the sender).

• ifLastChange contains the value of sysUpTime at the time the interface entered its current
operational state. Useful for detecting when an interface changed state (e.g. cable
connected).

101

© 2026 - Luca Deri <deri@ntop.org>

Case Diagram for
the "interface" Group

• Case diagrams illustrate dependencies between Variables:
– the number of packets delivered by a network interface to the next higher

protocol layer: ifInUcastPkts + ifInNUcastPkts.
– the number of packets received by the network:

(ifInUcastPkts + ifInNUcastPkts) + ifInDiscards + ifInUnknownProtos +
ifInErrors

– the number of actually transmitted packets:
(ifOutUcastPkts + ifOutNUcastPkts) - ifOutErrors - ifOutDiscards

ifInUcastPkts
+

ifInNUcastPkt

ifOutUcastPkts
+

ifOutNUcastPkts

ifInDiscard

ifInUnknownProtos

ifInErrors

ifOutErrors

ifOutDiscards

102

© 2026 - Luca Deri <deri@ntop.org>

Using the "interface" Group [1/2]

• It is the base of SNMP-based monitoring.

• Many tools periodically poll values from interfaces (mostly
ifInOctets and ifOutOctets).

• Values are aggregated and not divided per protocol,
destination, AS. This is a major limitation if fine grained
monitoring is required. The reason is that SNMP counters are
basically the kernel counters ‘exposed’ via SNMP.

• Interface errors can be used for detecting communication
problems, especially on WAN links.

103

© 2026 - Luca Deri <deri@ntop.org>

Using the "interface" Group [2/2]

• Packet size statistics are not reported however simple Octets/
Packets statistics can be computed.

• Many manufacturers (e.g. Cisco, Juniper) report information
about both physical and logical interfaces (also known as sub-
interfaces). Others (e.g. Extreme) have the entry in the table
but counters are always zero.

• Using the interface counters it is possible to produce reports
about:
– VLAN (Virtual LAN)
– PVC (Private Virtual Circuit) on Frame Relay Links

104

© 2026 - Luca Deri <deri@ntop.org>

Using the "arp" Group

• Useful for accessing the arp (Address Resolution Protocol)
table of a remote device.

• It can be used for identifying arp-poisoning attacks or
misconfigured hosts (e.g. duplicated IP addresses).

• NOTE:
– ARP and switch Forwarding tables are DIFFERENT

concepts.
– ARP is an IPv4-only concept (IPv6 uses multicast)

• Example:
RFC1213-MIB::atIfIndex.4.1.172.22.6.168 = INTEGER: 4

RFC1213-MIB::atIfIndex.4.1.172.22.7.255 = INTEGER: 4

RFC1213-MIB::atPhysAddress.4.1.172.22.6.168 = Hex-STRING: 00 40 F4 67 49 08

RFC1213-MIB::atPhysAddress.4.1.172.22.7.255 = Hex-STRING: FF FF FF FF FF FF

RFC1213-MIB::atNetAddress.4.1.172.22.6.168 = Network Address: AC:16:06:A8

RFC1213-MIB::atNetAddress.4.1.172.22.7.255 = Network Address: AC:16:07:FF

105

© 2026 - Luca Deri <deri@ntop.org>

SNMP Traps (RFC 3418 and RFC 2863)
• RFC 3418 and RFC 2863 define 4+1 traps:

» A SNMP agent sends a coldStart (1.3.6.1.6.3.1.1.5.1) trap when it is
initialized (boot).

» A warmStart (1.3.6.1.6.3.1.1.5.2) is sent when such system is
reinitialised (reboot).

» A linkDown (1.3.6.1.6.3.1.1.5.3) trap signifies that the SNMP agent
detected that the ifOperStatus object for one of its communication links
is about to enter the down state.

» A linkUp (1.3.6.1.6.3.1.1.5.4) trap that the SNMP agent detected that
the ifOperStatus object for one of its communication links left the down
state and transitioned into some other state.

» An authenticationFailure (1.3.6.1.6.3.1.1.5.5) trap signifies that the
SNMP entity has received a protocol message that is not properly
authenticated (e.g. bad community).

106

© 2026 - Luca Deri <deri@ntop.org>

Bridge MIB (RFC 1493)
• Useful for controlling the status of L2/L3 switches. Do not make the common

mistake to believe that it is used only on bridges.
• It somehow complementary to the MIB II as it provides information the hosts

connected to the switch ports.
• Common uses of the bridge MIB:

– To know the MAC address of a host connected to the port X/unit Y of the switch
dot1dTpFdbTable.dot1dTpFdbAddress (NOTE: the MIB II has the MAC address of the
switch port).

– The MAC/port association is the base for detecting the physical location of a host. In fact
as switch ports are usually connected to wall sockets, this is a good method for know
who’s where (user -> computer -> switch port -> room/desk)

– It keeps track of the “previous” MAC address (and the time) connected to a port so it is
possible to track users as they move from a room to another.

– It can be used for detecting ports with associated multiple MAC addresses (trunk) hence
to detect users with multiple MACs (e.g. a user runs VMware on his PC, or a user has
been infected by a virus/worm) or ports with a switch connected to it that the network
policy could be violated.

107

© 2026 - Luca Deri <deri@ntop.org>

Get Port Mac Address
snmpwalk -c public@1 14.32.6.17 dot1dTpFdbAddress

	 .1.3.6.1.2.1.17.4.3.1.1.0.208.211.106.71.251 = Hex-STRING: 00 D0 D3 6A 47

snmpwalk -c public@6 14.32.6.17 dot1dTpFdbAddress

	 .1.3.6.1.2.1.17.4.3.1.1.0.2.185.144.76.102 = Hex-STRING: 00 02 B9 90 4C 66

	 .1.3.6.1.2.1.17.4.3.1.1.0.2.253.106.170.243 = Hex-STRING: 00 02 FD 6A AA F3

	 .1.3.6.1.2.1.17.4.3.1.1.0.16.13.56.16.0 = Hex-STRING: 00 10 0D 38 10 00

	 .1.3.6.1.2.1.17.4.3.1.1.0.96.84.144.248.0 = Hex-STRING: 00 60 54 90 F8 00

	 .1.3.6.1.2.1.17.4.3.1.1.0.208.2.214.120.10 = Hex-STRING: 00 D0 02 D6 78 0A

	 .1.3.6.1.2.1.17.4.3.1.1.0.208.211.54.162.60 = Hex-STRING: 00 D0 D3 36 A2 3C

	 .1.3.6.1.2.1.17.4.3.1.1.0.224.30.159.10.210 = Hex-STRING: 00 E0 1E 9F 0A D2

Note:
• the <community>@<id> means that MAC is searched on VLAN X
• The MAC is part of the OID.

108

© 2026 - Luca Deri <deri@ntop.org>

Get MAC Address Port [1/2]
snmpwalk -c public@1 14.32.6.17 dot1dTpFdbPort

.1.3.6.1.2.1.17.4.3.1.2.0.208.211.106.71.251 = INTEGER: 113

snmpwalk -c public@6 14.32.6.17 dot1dTpFdbPort

.1.3.6.1.2.1.17.4.3.1.2.0.2.185.144.76.102 = INTEGER: 113

.1.3.6.1.2.1.17.4.3.1.2.0.2.253.106.170.243 = INTEGER: 113 <- this is not ifIndex

.1.3.6.1.2.1.17.4.3.1.2.0.6.83.198.64.173 = INTEGER: 113

.1.3.6.1.2.1.17.4.3.1.2.0.16.13.56.16.0 = INTEGER: 113

.1.3.6.1.2.1.17.4.3.1.2.0.96.84.144.248.0 = INTEGER: 113

.1.3.6.1.2.1.17.4.3.1.2.0.208.2.214.120.10 = INTEGER: 113

.1.3.6.1.2.1.17.4.3.1.2.0.208.211.54.162.60 = INTEGER: 113

.1.3.6.1.2.1.17.4.3.1.2.0.224.30.159.10.210 = INTEGER: 65

nms-server2:/home/ccarring> snmpwalk -c public 14.32.6.17 dot1dBasePortIfIndex

.1.3.6.1.2.1.17.1.4.1.2.68 = INTEGER: 12

.1.3.6.1.2.1.17.1.4.1.2.69 = INTEGER: 13

……

.1.3.6.1.2.1.17.1.4.1.2.113 = INTEGER: 57 <- this is ifIndex

109

© 2026 - Luca Deri <deri@ntop.org>

Get MAC Address Port [2/2]
snmpwalk -On -c public 14.32.6.17 ifName

.1.3.6.1.2.1.31.1.1.1.1.1 = STRING: sc0

.1.3.6.1.2.1.31.1.1.1.1.2 = STRING: sl0

.1.3.6.1.2.1.31.1.1.1.1.3 = STRING: me1

.1.3.6.1.2.1.31.1.1.1.1.4 = STRING: VLAN-1

.1.3.6.1.2.1.31.1.1.1.1.5 = STRING: VLAN-1002

.1.3.6.1.2.1.31.1.1.1.1.6 = STRING: VLAN-1004

.1.3.6.1.2.1.31.1.1.1.1.7 = STRING: VLAN-1005

.1.3.6.1.2.1.31.1.1.1.1.8 = STRING: VLAN-1003

.1.3.6.1.2.1.31.1.1.1.1.9 = STRING: 2/1

…..

.1.3.6.1.2.1.31.1.1.1.1.55 = STRING: 2/47

.1.3.6.1.2.1.31.1.1.1.1.56 = STRING: 2/48

.1.3.6.1.2.1.31.1.1.1.1.57 = STRING: 2/49 (Slot 2, port 49)

.1.3.6.1.2.1.31.1.1.1.1.58 = STRING: 2/50

See: http://www.cisco.com/warp/public/477/SNMP/cam_snmp.html

110

© 2026 - Luca Deri <deri@ntop.org>

Detecting Network Topology [1/2]

• System are combination of logical/physical
structures.
» Logical structure provides visualisation.
» Physical structure has limited visualisation.

• Problem: how to detect the physical network
topology and any changes in topology.

111

© 2026 - Luca Deri <deri@ntop.org>

Detecting Network Topology [2/2]

• Neighbouring information allows to discover
adjacencies and this the topology.

• This information is present in the data link
layer (layer 2).

• Vendors have their own protocols (e.g. Cisco
has CDP Cisco Discovery Protocol) but the
standard is LLDP Link Layer Discovery
Protocol (RFC 2922)

112

© 2026 - Luca Deri <deri@ntop.org>

LLDP

• LLDP periodically send LLDP packets with
multicast.

• Information on neighbour devices can be read
using SNMP (LLDP-MIB).

113

© 2026 - Luca Deri <deri@ntop.org>

LLDP MIB [1/3]

lldpRemSysName The system name of the remote system. (Hostname)

lldpRemSysDesc The system description of the remote system. (OS Type, Model
name ...etc)

lldpRemPortIdSubtype The type of port identifier encoding used in the associated
'lldpRemPortId' object.

lldpRemPortId The port component associated with the remote system. 
(Port name, MAC Address ...etc)

lldpRemPortDesc The description of the given port associated with the remote
system. (Port name ...etc)

Note:
• Each entry has a timestamp of the time the LLDP packet has been

received LLDP-MIN::LLDPRemoteTree.[time].[LocalPort Index].
[Entry]. Note that often [time] is zero.

• You can have multiple entries (with different timestamps) per port.

114

© 2026 - Luca Deri <deri@ntop.org>

LLDP MIB [2/3]

$ snmpwalk -v 2c -c public 172.16.67.210 1.0.8802.1.1.2.1.4.1.1.6
iso.0.8802.1.1.2.1.4.1.1.6.0.2103300.1 = INTEGER: 5
iso.0.8802.1.1.2.1.4.1.1.6.0.2103428.1 = INTEGER: 5
iso.0.8802.1.1.2.1.4.1.1.6.0.2103556.2 = INTEGER: 5
iso.0.8802.1.1.2.1.4.1.1.6.0.2103684.2 = INTEGER: 5
iso.0.8802.1.1.2.1.4.1.1.6.0.9437185.6 = INTEGER: 7
$ snmpwalk -v 2c -c public 172.16.67.210 1.0.8802.1.1.2.1.4.1.1.7
iso.0.8802.1.1.2.1.4.1.1.7.0.2103300.1 = STRING: "TenGigabitEthernet 1/49"
iso.0.8802.1.1.2.1.4.1.1.7.0.2103428.1 = STRING: "TenGigabitEthernet 1/50"
iso.0.8802.1.1.2.1.4.1.1.7.0.2103556.2 = STRING: "TenGigabitEthernet 1/2"
iso.0.8802.1.1.2.1.4.1.1.7.0.2103684.2 = STRING: "TenGigabitEthernet 1/2"
iso.0.8802.1.1.2.1.4.1.1.7.0.9437185.6 = STRING: "42"
$ snmpwalk -v 2c -c public 172.16.67.210 1.0.8802.1.1.2.1.4.1.1.8
iso.0.8802.1.1.2.1.4.1.1.8.0.2103300.1 = STRING: "TenGigabitEthernet 1/49"
iso.0.8802.1.1.2.1.4.1.1.8.0.2103428.1 = STRING: "TenGigabitEthernet 1/50"
iso.0.8802.1.1.2.1.4.1.1.8.0.2103556.2 = STRING: "TenGigabitEthernet 1/2"
iso.0.8802.1.1.2.1.4.1.1.8.0.2103684.2 = STRING: "TenGigabitEthernet 1/2"
iso.0.8802.1.1.2.1.4.1.1.8.0.9437185.6 = STRING: "42"
$ snmpwalk -v 2c -c public 172.16.67.210 1.0.8802.1.1.2.1.4.1.1.9
iso.0.8802.1.1.2.1.4.1.1.9.0.2103300.1 = STRING: "swStorageAccessB7-1"
iso.0.8802.1.1.2.1.4.1.1.9.0.2103428.1 = STRING: "swStorageAccessB7-1"
iso.0.8802.1.1.2.1.4.1.1.9.0.2103556.2 = STRING: "swStorageLeaf1-1"
iso.0.8802.1.1.2.1.4.1.1.9.0.2103684.2 = STRING: "swStorageLeaf1-2"
iso.0.8802.1.1.2.1.4.1.1.9.0.9437185.6 = STRING: "swOobManagementB5-2"
$ snmpwalk -v 2c -c public 172.16.67.210 1.0.8802.1.1.2.1.4.1.1.10
iso.0.8802.1.1.2.1.4.1.1.10.0.2103300.1 = STRING: "Dell EMC Real Time Operating System Software…”
iso.0.8802.1.1.2.1.4.1.1.10.0.2103428.1 = STRING: "Dell EMC Real Time Operating System Software…”
iso.0.8802.1.1.2.1.4.1.1.10.0.2103556.2 = STRING: "Dell Real Time Operating System Software…”
iso.0.8802.1.1.2.1.4.1.1.10.0.2103684.2 = STRING: "Dell Real Time Operating System Software….”
iso.0.8802.1.1.2.1.4.1.1.10.0.9437185.6 = STRING: "ProCurve J9022A Switch 2810-48G…”

lldpRemPortIdSubtype

lldpRemPortId

lldpRemPortDesc

lldpRemSysName

lldpRemSysDesc

Time

Local InterfaceId

Entry Id

115

© 2026 - Luca Deri <deri@ntop.org>

LLDP MIB [3/3]

116

© 2026 - Luca Deri <deri@ntop.org>

Side note:
SNMP vs. CLI Counters [1/4]

• It a common belief among the network administrator
community that SNMP and CLI counters are basically a
different view of same thing.

• Many administrators do like CLI counters more, as:
– Are formatted for direct human consumption

• 0 packets input, 0 packets output
– Many implementations provide command to clear/reset

counter
• clear interface ethernet 3

• Note: the definition of what a given counter counts is
dependent on vendor documentation

117

© 2026 - Luca Deri <deri@ntop.org>

Side note:
SNMP vs. CLI Counters [2/4]

c4500#sh int e1
Ethernet1 is up, line protocol is down
Last clearing of "show interface" counters never
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
0 packets input, 0 bytes, 0 no buffer
 Received 0 broadcasts, 0 runts, 0 giants
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 0 input packets with dribble condition detected
 187352 packets output, 11347294 bytes, 0 underruns
 187352 output errors, 0 collisions, 3 interface resets

• Notes:
• CLI counters remain the basic way of life in element management.
• Counters format/appearance change vendor to vendor (often even

within the same manufacturer, e.g. Cisco IOS vs. CatOS vs. PIX).
• Note: IOS, CatOS, and PIX are respectively the router, switch and

firewall OS used by Cisco appliances.

118

© 2026 - Luca Deri <deri@ntop.org>

Side note:
SNMP vs. CLI Counters [3/4]

• SNMP counters instead:
– Allow you to compare apples to apples

• Counters have standard definitions	
– as defined by IETF, IEEE, some vendors…
– regardless of network element type or vendor

• and globally unique, hard to pronounce names
– 1.3.6.1.2.1.17.2.4 dot1dStpTopChanges

– Have a well specified size
• 32 or 64 bits wide (64 bit available in SNMP v2c or v3).

– Counters do not necessarily (but often do) start at zero
• Vendor implementation friendly.

– Are not designed for directing human consumption
• require a delta function to compute rate.

119

© 2026 - Luca Deri <deri@ntop.org>

Side note:
SNMP vs. CLI Counters [4/4]

dot1dTpPortInFrames OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of frames that have been received by
 this port from its segment. Note that a frame
 received on the interface corresponding to this
 port is only counted by this object if and only if
 it is for a protocol being processed by the local
 bridging function, including bridge management
 frames."
 REFERENCE
 "IEEE 802.1D-1990: Section 6.6.1.1.3”

• Note: good counters are generally derived from
underlying protocol specification.

120

© 2026 - Luca Deri <deri@ntop.org>

How To Calculate Bandwidth
Utilisation (%) with SNMP

 (Δ ifInOctets + Δ ifOutOctets) x 8 x 100
 (Δ time) x ifSpeed

 (Δ ifInOctets) x 8 x 100 /((Δ time) x ifSpeed)

 (Δ ifOutOctets) x 8 x 100 /((Δ time) x ifSpeed)

Bandwidth
Utilisation

Input
Utilisation

Output
Utilisation
See: http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a008009496e.shtml

121

© 2026 - Luca Deri <deri@ntop.org>

What else can you do with SNMP?

• Detect and clear hung TCP connections.
• Manipulate ARP entries.
• Get environmental temperature.
• Check CPU Utilisation.
• Monitor redundant/uninterruptible power supplies.
• Find P2P users (NAT table).
• Layout network topology (e.g. via CDP)

See: http://www.cisco.com/en/US/tech/tk648/tk362/tk605/
tsd_technology_support_sub-protocol_home.html

122

© 2026 - Luca Deri <deri@ntop.org>

2.5 Simple Network Management Protocol Version 2c
• There are some variants of of SNMP Version 2:

• SNMPv2p	
» SNMPv2 version with party-based security model, historical

• SNMPv2c
» SNMPv2 with trivial community-based security model

• SNMPv2u
» SNMPv2 with a user-based security model, historical

• SNMPv2*
» SNMPv2 with security and administration model, historical

• The term SNMPv2 is ambiguous.
• Work on a solution of the security problems has blocked improvements of other

protocol characteristics (too) for a long time.

123

© 2026 - Luca Deri <deri@ntop.org>

SNMPv2c protocol operations (RFC 1905)

Manager Agent

Get

Response

Manager Agent

Set

Response

Manager Agent

GetNext

Response

ManagerAgent

Trap

Manager/Agent Manager

Inform

Response

Manager Agent

GetBulk

Response

124

© 2026 - Luca Deri <deri@ntop.org> \

SNMPv2c Message Format

PDU type request-id 0 0 variable-bindings

GetRequest, GetNextRequest, SetRequest, Trap, InformRequest:

value1name1 value2 valuenname2 namen...

variable-bindings:

PDU type request-id error-status error-index variable-bindings

GetResponse:

version community SNMP PDU

SNMP message:

GetBulkRequest:

PDU type request-id non-reps max-reps variable-bindings

125

© 2026 - Luca Deri <deri@ntop.org>

• Exceptions allow instance access errors to be signaled to MIB authorities, without
causing the whole operation to fail (as happened in SNMPv1).

• Example:
• 	Get(1.1.0, 1.1.1, 1.2.0)
• Response(noError@0, 1.1.0=10.1.2.3, 1.1.1=noSuchInstance,  

 1.2.0=noSuchObject)
• GetNext(1.1, 1.5.42)
• Response(noError@0, 1.1.0=10.1.2.3, 1.5.42=endOfMibView)

SNMPv2 Exceptions (RFC 1905)

SNMPv2 Exception	 SNMPv1 Status	 Used by
noSuchObject	 	 noSuchName	 Get
noSuchInstance	 	 noSuchName	 Get
endOfMibView	 	 noSuchName	 GetNext, GetBulk

126

© 2026 - Luca Deri <deri@ntop.org>

• Not existing MIB instances produce an exception and not an error.

• Similar to the equivalent SNMPv1 operations.

SNMPv2c Get and GetNext Operations

Manager Agent

Get

Response

Manager Agent

GetNext

Response

127

© 2026 - Luca Deri <deri@ntop.org>

SNMPv2c Set Operation

• There are 14 possible error codes during processing of set operations:
• 	 wrongValue wrongEncoding wrongType  

wrongLength inconsisentValue noAccess  
notWritable noCreation inconsisentName  
resourceUnavailable commitFailed undoFailed

• There are two more error codes that have been defined but not really used:
readOnly, authorizationError

• No support of error codes that depend on the object type.

Manager Agent

Set

Response

128

© 2026 - Luca Deri <deri@ntop.org>

SNMPv2c GetBulk Operation

• An extension of the GetNext operation:
• It returns the first N elements (non repetition) of the varbind list treated as

normal GetNext operations.
• The following items of the varbind list treated as repeated Get Next operation,

whereby M (max repetition) indicates the max number of repetitions.

• The GetBulk operation is similar to the GetNext operation on the lexicographical
arranged list of the MIB instances and has therefore no knowledge of table
boundaries.

Manager Agent

GetBulk

Response

129

© 2026 - Luca Deri <deri@ntop.org>

Example of the GetBulk Operation
• GetBulk(non-repeaters=0, max-repetitions=4, 1.1)  
Response(noError@0, 1.1.0=10.1.2.3, 1.2.1.0=FilterFresh,  

 1.2.2.0=54321, 1.3.1.1.1=1)

• GetBulk(non-repeaters=1, max-repetitions=2  
 1.2.2.0, 1.3.1.1, 1.3.1.2, 1.3.1.3)  

Response(noError@0, 1.2.2.0=54321,  
 1.3.1.1.1=1, 1.3.1.2.1=2, 1.3.1.3.1=2,  
 1.3.1.1.2=2, 1.3.1.2.2=3, 1.3.1.3.2=3)

• Without knowledge about the length of a table it is difficult for the manager to
select a suitable number for max repetitions:
• if max-repetitions is too small, then there is no efficiency increase of GetBulk

with respect to the GetNext operation .
• if max-repetitions is too large, then a large number of unnecessary instances

are read .
• The agent can possibly produce a response, which can either get lost in large/busy

networks or not be processed at all by the manager (this causes the manager to
retransmit the request).

• If max repetitions is large and reading the MIB instances is time-consuming, agents
can receive multiple times the manager’s request (e.g. due to retransmission) thus
blocking the agent for some time.

130

© 2026 - Luca Deri <deri@ntop.org>

SNMPv2c Trap Operation

• It corresponds logically to the SNMPv1 Trap operation.

• Trap specific information (sysUpTime, trapType) is accommodated in the varbind
list.

• Trap types are indicated by Object Identifier and not by a pair of numbers (generic,
specific) as in SNMPv1.

ManagerAgent

Trap

131

© 2026 - Luca Deri <deri@ntop.org>

SNMPv1 vs. SNMPv2c Traps
• In SNMPv2 MIBs may now include NOTIFICATION-TYPE macros.
• SNMPv1 Trap

myLinkDown TRAP-TYPE

 ENTERPRISE myEnterprise

 VARIABLES { ifIndex }

 DESCRIPTION

 "A myLinkDown trap signifies that the sending SNMP application

 entity recognises a failure in one of the communications links

 represented in the agent's configuration."

 ::= 2

• SNMPv2 Trap
linkUp NOTIFICATION-TYPE

OBJECTS { ifIndex }

STATUS current

DESCRIPTION

"A linkUp trap means that the entity has detected that the ifOperStatus
object has changed to Up"

::= { snmpTraps 4 }

132

© 2026 - Luca Deri <deri@ntop.org>

SNMPv2c Inform Operation

• The structure of the PDU corresponds to a SNMPv2 Trap PDU.
• It allows (new) managers to talk each other (SNMPv1 limited interaction to agent-

manager or vice-versa).
• The receipt of a Inform message is acknowledged with a Response message.
• Example:
• Inform(1.2.2.0=54321, 1.4.1.0=1.4.2.43,  

 1.3.1.2.2=16, 1.3.1.3.2=3)  
Response(noError@0, 1.2.2.0=54321, 1.4.1.0=1.4.2.43,  

 1.3.1.2.2=16, 1.3.1.3.2=3)

Manager/Agent Manager

Inform

Response

133

© 2026 - Luca Deri <deri@ntop.org>

SNMPv2c and SNMPv1 Error Codes
	 SNMPv2	 SNMPv1	 	 Comment	

noError	 	 noError	 	 all operations

tooBig	 	 tooBig	 	 Get, GetNext, Set, Inform

noSuchName	 noSuchName	Get, GetNext, Set (only with SNMPv1)

badValue	 	 badValue	 	 Set (only with SNMPv1)

readOnly	 	 readOnly	 	 not used

genErr	 	 genErr	 	 Get, GetNext, GetBulk, Set

wrongValue	 badValue	 	 Set (only with SNMPv2c)

wrongEncoding	 badValue	 	 Set (only with SNMPv2c)

wrongType	 	 badValue	 	 Set (only with SNMPv2c)

wrongLength	 badValue	 	 Set (only with SNMPv2c)

inconsisentValue	 badValue	 	 Set (only with SNMPv2c)

noAccess	 	 noSuchName	 Set (only with SNMPv2c)

notWritable	 	 noSuchName	 Set (only with SNMPv2c)

noCreation	 	 noSuchName	 Set (only with SNMPv2c)

inconsisentName	 noSuchName	 Set (only with SNMPv2c)

resourceUnavailable	 genErr	 	 Set (only with SNMPv2c)

commitFailed	 genErr	 	 Set (only with SNMPv2c)

undoFailed	 	 genErr	 	 Set (only with SNMPv2c)

authorizationError	 noSuchName	 Not used

134

© 2026 - Luca Deri <deri@ntop.org>

64 Bit Counters (RFC 2233)

135

 IF-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, Counter32, Gauge32, Counter64,
 Integer32, TimeTicks, mib-2, NOTIFICATION-TYPE FROM SNMPv2-SMI

 IfEntry ::=
 SEQUENCE {
 ifIndex InterfaceIndex,
 ifDescr DisplayString,
 ifType IANAifType,
 ifMtu Integer32,
 ifSpeed Gauge32,
 ifPhysAddress PhysAddress,
 ifAdminStatus INTEGER,
 ifOperStatus INTEGER,
 ifLastChange TimeTicks,
 ifInOctets Counter32,
 ifInUcastPkts Counter32,
 ifInNUcastPkts Counter32, -- deprecated
 ifInDiscards Counter32,
 ifInErrors Counter32,
 ifInUnknownProtos Counter32,
 ifOutOctets Counter32,
 ifOutUcastPkts Counter32,
 ifOutNUcastPkts Counter32, -- deprecated
 ifOutDiscards Counter32,
 ifOutErrors Counter32,
 ifOutQLen Gauge32, -- deprecated
 ifSpecific OBJECT IDENTIFIER -- deprecated
 }

 IfXEntry ::=
 SEQUENCE {
 ifName DisplayString,
 ifInMulticastPkts Counter32,
 ifInBroadcastPkts Counter32,
 ifOutMulticastPkts Counter32,
 ifOutBroadcastPkts Counter32,
 ifHCInOctets Counter64,
 ifHCInUcastPkts Counter64,
 ifHCInMulticastPkts Counter64,
 ifHCInBroadcastPkts Counter64,
 ifHCOutOctets Counter64,
 ifHCOutUcastPkts Counter64,
 ifHCOutMulticastPkts Counter64,
 ifHCOutBroadcastPkts Counter64,
 ifLinkUpDownTrapEnable INTEGER,
 ifHighSpeed Gauge32,
 ifPromiscuousMode TruthValue,
 ifConnectorPresent TruthValue,
 ifAlias DisplayString,
 ifCounterDiscontinuityTime TimeStamp
 }

© 2026 - Luca Deri <deri@ntop.org>

SNMP v2 vs SNMP v1

• Improved Performance via the Get-Bulk PDU.

• 64 bit counters (main improvement).

• Definition of additional datatypes and formalisms based on implementation
experience of SNMPv1 agents/managers.

• Transport Service Independence: mappings for SNMPv2 have been defined for
several transports and not for just UDP (TCP can also be used). In practice
everybody still uses UDP.

• Redefined the Trap PDU:
• It has the same format of the other PDUs
• It may be sent to zero, one or many managers

136

© 2026 - Luca Deri <deri@ntop.org>

2.6 SNMPv3

• Design goals of SNMPv3:
• Issue of secure SET protocol operations.
• Definition (hopefully) of a long-living architecture model
• Support of cheap simple and more expensive complex implementations

(scalability).
• Independence of the standards
• Use of existing material (mostly MIBs) when possible (design reuse)
• SNMP is to remain as simply as possible

• Several (commercial and open source) implementation available.

• Spreading in real networks still relatively small (most network devices still use
SNMPv2c) due to configuration headaches.

137

© 2026 - Luca Deri <deri@ntop.org>

• The SNMP engine of a SNMP entity consists of several subsystems and a
dispatcher.

• The manager/agent model is replaced by a number of smaller “applications ”.
• The modularity permits incremental advancement of SNMP by means of SNMP

Context (RFC 2571)

Architectural Model of SNMPv3 (RFC 2571)

Security
Subsystem

Message Processing
Subsystem

Access Control
SubsystemDispatcher

SNMP Engine

Command
Generator

SNMP Applications

Notification
Receiver

Command
Response

Notification
Originator

Proxy
Forward other

SNMP Entity

138

© 2026 - Luca Deri <deri@ntop.org>

SNMP Context (RFC 2571)
• A context is a quantity of management information that a SNMP Entity can have

accessed to. For each subsystem:
• A SNMP-Entity has potentially access to several contexts.
• The same information can be present in several contexts.

• In a management domain an instance of a Managed Objects is uniquely identified
by the following items:

• the identification of the SNMP engines in a SNMP Entity (e.g. „xzy“).
• the name of the context in a SNMP Entity (e.g. „board1“).
• the identification of the type of the Managed Objects (e.g. „IF-MIB::ifDescr).
• the identification of the Instance (e.g. „1“).

• Note: the identification of an SNMP engine does not have to do anything with their
addressing.

139

© 2026 - Luca Deri <deri@ntop.org>

SNMPv3 Agent in SNMPv3: Architectural Model

PDU
Dispatcher

Message
Dispatcher

Transport
Mappings

UDP IPX

v1MP

v2cMP

v3MP

other MP

Community
Security Model

User-based
Security Model

other
Security Model

Security SubsystemMessage Processing
Subsystem

Command
Response

Notification
Originator

Proxy
Forwarder

Access Control Subsystem

MIB Instrumentation

View-based
Access Control

140

© 2026 - Luca Deri <deri@ntop.org>

SNMPv3 Message Format (RFC 2572)

• Security information are in the centre of the message.
• msgData contain either a ScopedPDU or an encoded ScopedPDU.
• msgID is used for the association of responses to pending inquiries.
• msgSecurityParameter depends on msgSecurityModel.

msgVersion msgGlobalData msgSecurityParameter msgData (scopedPDU)

SNMPv3Message:

msgID msgMaxSize msgFlags msgSecurityModel

MsgGlobalData:

msgEngineID msgEngineBoots msgEngineTime msgUserName

UsmSecurityParameter:
msgAuthParams msgPrivParams

contextEngineID contextName SNMPv2 PDU (as defined in RFC 1905)

ScopedPDU:

141

© 2026 - Luca Deri <deri@ntop.org>

Security Issues
• Blow you can find the questions which must be answered when a decision whether

an operation has to be performed:

• Is the received message authentic?

• Who (requester name) would like to get the operation executed?

• Which objects are affected by the operation?

• Which access rights has the requester regarding the objects concerned?

• Questions 1 and 2 are answered by the measures to the protection of the messages
(authentication, encoding).

• Questions 3 and 4 are answered by a model to the access supervision (Unix-like).

142

© 2026 - Luca Deri <deri@ntop.org>

• Authentication with Message Authentication Code (MAC) is efficient to implement.
• The Hash function must be cryptographically strong and a "good" MAC producer.
• The MD5 algorithm (RFC 1321) can be implemented in software with acceptable performance (128

bit digest).
• The Secure Hash algorithm 1 (SHA-1) is considered stronger of MD5 (see next slide).

Data Integrity and Authentication [1/2]

Hash-Function

MAC

DataKey

MAC DataUser

Hash-Function

MAC

DataKey

MAC DataUser

= ?

Sender Receiver

143

© 2026 - Luca Deri <deri@ntop.org>

Data Integrity and Authentication [2/2]
• Encoding is a way of translating between different formats. Like converting a Spanish

recipe for cake into English.
• Encryption is a way of protecting data behind a secret.
• Hashing is a way of permanently converting from one recognisable thing to something

uniform and simple. Notes:
1) hashing is unidirectional, i.e. you cannot revert the hash to the original data.
2) multiple different input data can produce the same hash value.

• Deprecating MD5 and SHA-1 Signature Hashes in TLS 1.2 and DTLS 1.2 (RFC 9155)

144

Algorithm Family Bits Introduced Deprecated
By

Replaced
BySHA-1 Hash 160 (hash) 1995 2011 SHA-256

MD5 Hash 128 (hash) 1992 2011 SHA-256
DES Encryption 56 (key) 1991 2018 AES-256
AES Encryption 128 (key) 1976 2002 AES-256

© 2026 - Luca Deri <deri@ntop.org>

Protection Against Repetitions of Old Messages

• A recipient must know the "time-of-day" of the authoritative SNMP engine for the message.
• If the received message is situated in the validity interval and is ”younger" than the last valid

message, then the message will become processed and the clocks adapted.
• Before the beginning of authenticated communication the clocks must be synchronized.

engineBoots engineTime

Timestamp DataengineID Timestamp DataengineID

Authoritative Engine Receiver

engineBoots

engineTime

authClock

latestRecvTime

Lifetime

Timewindow

Valid?

145

© 2026 - Luca Deri <deri@ntop.org>

Protection Against Sniffing

• For protecting against sniffing the ScopedPDU can be optionally encoded.
• Data Encryption Standard (of the) in Cipher Block Chaining Modus (CBC) is used for

encryption.
• Encryption is relatively complex and should only be used in area/situations where an

encoding is really necessarily.
• SNMPv3 permits "relatively protected" code modification without encryption (by

using message digest).

of the (CBC)

DataKey

Secured DataUser

of the (CBC)

DataKey

Secured DataUser

Sender Receiver

146

© 2026 - Luca Deri <deri@ntop.org>

• A view subtree is the quantity of all MIB objects, which possess common OID prefix.
• A view tree family is the combination of one view subtree OID prefix with a filter

(bitmask), which determines whether an item of the prefix is significant or not.
• A view is an ordered set of view tree families.
• It defines the access rights for read view, write view and notify view.

MIB Views (RFC 2575)

1

1 2

1 2 1

1 1 2 3

1 2 3
1 1 12 2 2

1 1 12 2 2

1.1.2.1.*.1
1.2.1.2.*

147

© 2026 - Luca Deri <deri@ntop.org>

MIB Name Conventions
• Similar definitions should be registered together in the registration tree.

• Names of object types should begin the logical grouping with a common prefix, that
suggest (e.g. sysDescr, sysUpTime).

• Names for counter are to be selected in the Plural form.

• Names of conceptual tables should possess the ending Table (e.g. ifTable).

• Names of lines of a conceptual table should possess the ending entry (e.g. ifEntry).

• All items of a conceptual table should use common prefix in the name (e.g. ifType,
ifDescr).

148

© 2026 - Luca Deri <deri@ntop.org>

• A monolithic agent is normally implemented by an individual process which contains
the SNMP protocol machine and the MIB instrumentation.

• The supported MIB modules is determined at compilation time.
• The method dispatchers is called during processing of SNMP messages, which can

either read or modify values from relevant resources.

Monolithic Agents

MIB
Module

MIB
Module

MIB
Module

Method
Dispatcher

SNMP
EntityManager

c vb1 vb2 vb3 vb4

Monolithic Agent

149

© 2026 - Luca Deri <deri@ntop.org>

Proxy-Agents

• SNMP Proxy agents permit managers to access other SNMP agents that are not
reachable directly (e.g. behind a firewall) or that are reachable using non IP
protocols (e.g. IPX).

• Management applications must (usually) select the appropriate community string or
context in order to enable the proxy to reach the agents (no transparency).

• Proxy are important for the implementation of firewalls or for conversion between
different SNMP protocol versions.

SNMP
Agent

SNMP
Agent

SNMP
Agent

Proxy
Dispatcher

SNMP
EntityManager

c1 vb1 vb3

Proxy Agent

c2 vb2 c3 vb4

c2 vb2

c
3 vb

4

c 1
vb 1 v

b 3

150

© 2026 - Luca Deri <deri@ntop.org>

Extensible Agents

• Extensible SNMP agents separate the SNMP protocol machine (master agent) from
the MIB instrumentation (subagent).

• MIB modules can be added by starting further subagents dynamically at runtime.
• Expandable agents are transparent for management applications.
• A special protocol regulate communications between the master agent and the

subagents

Sub-
Agent

Sub-
Agent

Sub-
Agent

AgentX
Dispatcher

SNMP
EntityManager

AgentX Master-Agent

c vb2

c
vb

4

c
vb 1 v

b 3

c vb1 vb2 vb3 vb4

151

© 2026 - Luca Deri <deri@ntop.org>

AgentX-Protocol Version 1 (RFC 2257)
• The AgentX protocol is a new standard protocol for the implementation of

expandable SNMP agents.

• AgentX Message Coding:
• No ASN.1 coding.
• Compact representation of object identifier values by coding repetitive OID

prefixes.
• Byte order is selected by the subagent (no transformations necessarily, if

master agent and subagent on the same system).

• AgentX Message Transport:
• TCP connections to the port 705.

(It is possible to have several AgentX sessions over the same TCP connection)
• UNIX Domain Sockets (/var/agentx/master).
• Can be likewise used other local (not standardised) IPC mechanisms.

152

© 2026 - Luca Deri <deri@ntop.org>

Administrative AgentX Protocol Operations

Master Sub-Agent

Response

Open

IndexAllocate

Response

Register

Response

AddAgentCaps

Response

Response

Response

Response

Master Sub-Agent

RemoveAgentCaps

Unregister

IndexDeallocate

Close

Response

• AgentX Session Establishment
• Index Allocation
• MIB Registration
• Registration of the Agent Capabilities

• Deregistration of the Agent Capabilities
• MIB Deregistration
• Free of allocated indexes
•AgentX Session Termination

153

© 2026 - Luca Deri <deri@ntop.org>

Index-Allocation, OID Registration, Scoping
• Index allocation for common tables between subagents:

• Allocation of specific (private) indexes.
• Allocation of indexes not used at present.
• Allocation of indexes no longer in use.

• OID Registration:
• Registration of individual instances (instance level registration)

1.3.6.1.2.1.2.2.1.1.42	 	 (ifIndex.42)
1.3.6.1.2.1.2.2.1.2.42	 	 (ifDescr.42)
1.3.6.1.2.1.2.2.1.3.42	 	 (ifType.42)	

• Registration of MIB Ranges:
1.3.6.1.2.1.2.2.1.[1-22].42	 (ifIndex.42 - ifSpecific.42)

• Scoping:
• AgentX can specify scoping with GetBulk operations (similar to CMIP Scope).

154

© 2026 - Luca Deri <deri@ntop.org>

AgentX Protocol Operations for SNMP Operations

Master Sub-Agent

Get

Response

GetNext

Response

GetBulk

Response

Master Sub-Agent

Notify

TestSet

Response

CommitSet

Response

undoSet

Response

CleanupSet

Response

• SNMP-operations correspond to AgentX
operations.
• A SNMP operation can concern several
subagents.

• Atomicity of SNMP SET operations is
guaranteed by the AgentX protocol.

155

