
Yasmin: a Component Based Architecture for Software Applications

Luca Deri
IBM Zurich Research Laboratory1

University of Berne2

1 IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland. Email: lde@zurich.ibm.com, WWW:

http://www.zurich.ibm.com/~lde/.
2 Universität Bern, Institut für Informatik und angewandte Mathematik, Software Composition Group, Neubrückstrasse 10, CH-3012 Bern, Swit-

zerland. Email: deri@iam.unibe.ch, WWW: http://iamwww.unibe.ch/~deri/.

Abstract

Object-oriented programming (OOP) has changed sig-
nificantly the way to produce software applications and
allowed many problems that affected traditional program-
ming to be overcome. Unfortunately several object-
oriented frameworks misused OOP techniques, failed to
address issues such as application extensibility, and have
produced monolithic systems hard to manage and tailor.

This paper describes Yasmin, a new object-oriented,
component-based architecture for software applications. It
allows one to build applications which use system re-
sources efficiently and which can be easily extended and
configured in addition to being simple to program and to
compose. This is achieved by means of droplets, a new
type of software components that can be replaced and
modified at runtime and by exploiting novel techniques
such as collaboration and delegation.

Keywords: Object-Oriented Programming, Software
Components, Application Frameworks.

1. Introduction

The popularity of object-oriented programming (OOP)
has increased considerably over the past several years.
OOP offers many benefits over traditional programming
such as allowing programmers to define objects that can
be easily extended and composed in order to build a soft-
ware application. Although powerful, OOP lacked a stan-
dard framework through which software objects created by
different vendors can interact with one another. The major
result of this trend has been the production of a “sea of
objects” that cannot interact across application boundaries
in a meaningful way. At the beginning of this decade, the
software industry realised that the ability to tie objects
together into a closer unit would result in a much more
powerful system. For this reason, many frameworks and

architectures have been developed to address this problem.
Unfortunately applications based on such frameworks of-
ten had a monolithic structure mostly because object-
oriented techniques such as inheritance have been misused
by introducing cross dependencies among classes. The ob-
vious consequence has been that objects were so tightly
coupled that even the simplest application had to link the
entire system. This has been the reason for the decline or
limited diffusion of highly celebrated applications systems
[27] [6].

Software components [21] [17] [25] seem to be the an-
swer to all these problems. As its name suggests, compo-
nent software is based on the notion of a component,
which is a reusable piece of software that can be “plugged
into” other components from other vendors with relatively
little effort. In contrast, traditional applications are mono-
lithic, which means they come pre-packaged with a wide
range of features, most of which cannot be removed or
replaced with alternatives.

This paper presents Yasmin, a component-based, object-
oriented architecture and framework for software applica-
tions. Yasmin has been developed with the intent to sim-
plify the implementation of software applications with
particular emphasis on distributed networking applications
for network management.

Yasmin defines a new style of building applications,
based upon established technologies such as OOP [20],
software components and novel concepts like cooperation
and delegation. This is part of the effort to make computer
software easy to use and develop in addition to overcom-
ing typical problems that affect network management ap-
plications such as being monolithic and hard to configure
and extend. The experience gained by applying Yasmin to
selected network management problems allowed us to re-
fine and to transform it into a more general architecture for
software applications.

2. Yasmin Fundamentals

This section introduces Yasmin: it defines the scope of
the architecture, the basic components and how they inter-
act from a high-level perspective.

2.1. Understanding Frameworks

Yasmin is built upon OOP abstractions known as
frameworks. A framework is an extensible library of co-
operating classes that make up a reusable design solution
for a given problem domain. Nevertheless a framework is
more than a class hierarchy: a framework is an object-
oriented class hierarchy plus a built-in model which de-
fines how the objects derived from the hierarchy interact
with one other [18].

When the class hierarchy is constructed prior to running
the program, the relations among object classes are static.
At runtime, the objects are constructed during program
execution, hence the relation is dynamic. The framework
defines the architecture itself and provides both dynamic
and static parts of the application.

An application framework goes beyond class hierarchies
defining a preassembled generic application with a dy-
namic and static structure that a developer can modify to
create a real application. A programmer, instead of writing
a main program, instantiates objects that are part of the
framework’s class hierarchy and provides methods for the
framework to call by refining the implementation of some
classes. In this way, a developer tailors the generic frame-
work by defining highly specialised classes and methods
that are called by the framework itself. Because the devel-
oper starts with robust code, the new code is more likely
to work reliably, hence reducing the testing and debugging
phase.

2.2. Yasmin’s Background

The idea to design Yasmin derived from several years of
network management application development [7]. De-
spite the fact that many frameworks and architecture for
building software applications are available on the market,
most of them are tailored only for GUI development [19]
[16] [12]. In the network management world, applications
are usually built following the craftsman principle with-
out the adoption of application frameworks. Some com-
panies have developed huge application systems [15] that
are composed of several applications and libraries that ad-
dress every network management need. Although these
systems are very powerful and rich in terms of functional-
ity and tools, they do not address problems relating to ap-
plication development. In fact in order to build network
management applications based on those systems, devel-
opers need to know in detail many different libraries that
have not always been designed to work together and that

very seldom are based on OOP concepts. Additionally, due
to the interdependencies among those libraries, user appli-
cations require the installation of a large subset of the ap-
plication system in order to run. The natural consequence
is that applications are monolithic, difficult to tailor and
configure and are system resources-hungry, preventing
them from running on hosts of limited power.

Beside this, network management applications quite of-
ten have to support different management protocols and
object models other than being open to extensions and
updates. Since network services should be available most
of the time, it is necessary to identify mechanisms which
allow to selectively upgrade applications while they re-
main partially available in order to guarantee a minimal
level of service. Additionally, it is necessary to build ap-
plications in such a way that it is possible to add new
pieces when new hardware devices have to be supported or
when users demand new services.

Yasmin attempts to address these issues and to overcome
problems that affect conventional network management
applications by defining an applications framework charac-
terised by the following properties:
1. light and simple kernel;
2. based upon pluggable software components;
3. built from the ground up on object-oriented technology;
4. founded on cooperation and delegation;
5. extensible, easy to tailor and distribute.

During the design phase, the author has analysed several
frameworks and architectures available on the market, in
order to verify whether it would have been possible to im-
plement Yasmin using one of them. The result of that
survey is that even established standards such as CORBA
[26] are not fully suitable for this task in terms of:
• independence of the CORBA implementation being

used: there is no CORBA implementation which allows
one to write the code once and to deploy it on several
platforms ranging from personal computers to powerful
Unix workstations;

• interoperability of Yasmin-based applications: CORBA
implementations are usually unable to interoperate, al-
though this problem is supposed to be fixed in CORBA
V2;

• ease of development: CORBA is rather difficult to use
especially in terms of memory management and
datatypes generated by the IDL compiler;

• runtime application evolution: it is not simple to de-
velop facilities which allow the behaviour of CORBA
objects to be modified at runtime.

The idea behind Yasmin is to build component-based
applications that can be composed by the user, who can
add or replace components at runtime. By enforcing the

component boundaries, Yasmin prevents components
from making assumptions on other components, hence
reducing component inter-dependencies and making them
easy to reuse on different contexts [4]. Additionally, Yas-
min loads the components on demand only when they are
really needed and unloads them when no longer in use ac-
cording to the component lifetime defined by its devel-
oper. The efficient use of system resources is quite impor-
tant because it enables complex applications to run on
hosts of limited computation power like mobile comput-
ers.

An effective way to limit the application size is through
cooperation: every component that implements a service
of general use makes it available through a well-defined
interface. Often, large network management systems need
to use a common set of services that sometimes require
significant resources. A typical example are encod-
ing/decoding (enc/dec) services needed to transmit informa-
tion that are often replicated in different applications. As
those services are often implemented using shared librar-
ies, there is only one copy of the enc/dec logic in mem-
ory. Nevertheless this is not efficient enough because
every time the enc/dec service is instantiated in the appli-
cation, it needs a lot of memory for the allocation of the
enc/dec tables. In this case, a single (multithreaded)
enc/dec that cooperated with all the local applications
would be able to serve all of them without the need to rep-
licate the services and hence require a larger amount of
memory.

3. Inside Yasmin

The following picture depicts Yasmin’s components.

Host Operating System

Personality Layer

Communication

Services

Resource

Manager

Droplet

Manager

Service

Manager

Event

Manager

Collaboration

Services

Kernel
Services

Uses

Legend:

User
Services

Figure 1. Yasmin’s Components

The design goal of Yasmin is to define a style of build-
ing applications that make efficient use of system re-
sources whose behaviour can be modified and tailored at
runtime.

Yasmin’s main characteristic is its simplicity. The ker-
nel is very light and contains only those services that are
needed by every Yasmin-based application. Every other
service not widely needed is not included in the kernel.
This is to prevent adding to the kernel some superfluous

logic that takes up memory and disk space. The kernel
being rather generic, it is possible to build very different
applications that share the same architecture: the applica-
tions differ for the number and the nature of their software
components3. Extensibility and runtime behaviour modifi-
cation is realised using droplets [8], software components
implemented using shared libraries having the following
specific properties:
• they are not statically linked to the application but

loaded at runtime;
• they have the ability to be replaced (i.e. a new version

of the droplet can replace a previous one) at runtime
while the application is running4;

• they have a well-defined interface (droplet interface) that
makes it possible to communicate with other droplets
independently from the type of services provided.

Usually object-oriented frameworks provide a set of ob-
ject classes that have to be subclassed in order to imple-
ment the final application. Yasmin instead uses droplets
to implement the application itself. Internally, droplets
can be based on different object models and frameworks,
and implemented using procedural or object-oriented lan-
guages. Basically Yasmin provides the glue between dif-
ferent droplets and makes sure that they can interoperate
and cooperate to define the application behaviour. The
droplet interface guarantees that droplet internals are not
exposed hence that they appear like black boxes which
prevents other droplets from using specific droplet charac-
teristics which may change in future releases or which
may not be available all the time. Besides this, the droplet
interface pushes droplet developers to have a clean design
exporting the public services and shielding droplets from
using services and resources not available through the in-
terface. Basically developers are free to implement droplets
using the tools and technologies that they prefer, leaving
to Yasmin the task of ensuring application consistency.

From this perspective Yasmin can be seen as a generic
architecture for compound applications because it allows
one to build very different applications sharing the very
same structure. Nevertheless its lack of specialisation in a
specific domain, e.g. GUI, does not allow people to use it
as the final solution for all their problems. This is beyond
the scope of Yasmin, as its root are in the network man-
agement field where there are different standards, object
models and APIs that often need to be combined in order
to construct the final application [24]. This is Yasmin’s
problem domain: the integration of many heterogeneous
programming models, sometimes deeply different, in a

3 Despite this characteristic of Yasmin, this does not mean that it is

possible to efficiently build every class of applications using a single
framework since frameworks are specialized for a narrow range of
applications because each model of interaction is domain-specific.

4In order to activate a droplet it is necessary to drop it into a certain
directory monitored by the running application. Hence the term droplet.

compound object-oriented application. This is achieved
through the droplet interface which prevents different ap-
plication components from influencing each other and
hence from creating a monolithic structure. For instance,
multiple inheritance, used to combine different classes,
creates interdependencies among all such classes with the
result that even a minimal application has to include most
of the code needed to implement the whole system.
Through cooperation, different classes can be associated to
perform a certain task without the limitation of creating a
monolithic system.

Additionally, by using droplets the system can load on
demand the parts it needs and purge them when no longer
in use. This mechanism allows Yasmin-based applications
to make efficient use of system resources enabling them
to run in systems of limited computation power.

Finally the ability to replace droplets at runtime, hence
to modify the behaviour of an application while it is run-
ning, is quite important on network management. In this
field, application lifetime is very long. When an applica-
tion has to be stopped for maintenance, services that rely
on such application become unavailable. This is clearly a
major problem when many users rely on those services,
like in the case of telephone or network communications.
Droplets give the chance to developers to incrementally
upgrade their applications without the need to stop them
hence to interrupt services that rely on such applications.

3.1. Personality Abstraction Layer

The framework kernel services are designed to run on dif-
ferent operating systems. For this reason it is necessary to
abstract the operating system through a thin layer called
personality. Personalities provide abstractions for low-
level services performed by the host operating system.
Those services include, but are not limited to:
• threads and semaphores;
• loadable shared libraries with metadata;
• interprocess communication.

If a potential operating system does not support all of

these capabilities, it is often possible to run Yasmin too.
For instance an application can run in single threaded
mode if threads and semaphores are not supported.

The use of personalities allows to keep a single source
code tree for different operating systems, whereas the per-
sonality contains operating system dependent code. This
makes simple to port the framework on different operating
systems and to maintain the different versions.

3.2. Droplet Manager

The droplet manager (DM) is responsible for handling
droplets. Namely it:

• loads droplets on demand;
• maintains a droplet reference counter that allows drop-

lets to be purged;
• is responsible for detecting new droplet versions or fur-

ther droplets added at runtime;
• collaborates with the service manager, informing it of

newly available services.

A Yasmin-based application stores droplets in a well de-
fined directory (usually named Droplets). The user puts (or
drops if drag-and-drop is used) droplets in such directory
and is free to replace them during program execution. The
DM at start-up time searches for a file named index which
contains the name of the droplets and the services they
implement. If such file is found, the DM verifies that it is
newer than all the droplets (this is done by checking the
file modification time) to make sure that it is consistent
with the current droplet set. If not, or if there is a new
droplet, the index file is rebuilt. This operation similar to
the registration of the OpenDoc [1] part editors, is done by
loading and unloading in sequence each droplet in order to
build the list of droplets available and of the services pro-
vided by such droplets that are not visible at the file sys-
tem level because they are usually stored inside the droplet
itself5.

Inside each droplet the droplet lifetime is specified. The
lifetime, which ranges from one second to infinity, speci-
fies how long the droplet has to be kept in memory since
the last time it was used. This facility is used to avoid
keeping droplets in memory that are no longer needed and
indicate to the system when it is necessary to purge some
resources in case of low memory conditions. If a droplet’s
lifetime has expired, the DM unloads it and releases all the
memory and resources allocated by the droplet by calling
the droplet termination function.

The DM is also responsible for detecting new droplets
and new versions of them. In this case the index file is
updated and the service manager (SM, covered in 3.4.),
responsible for handling the services, is notified of the
new services available and the ones no longer available
(this happens when a new version of a certain droplet does
not implement all the services implemented by the former
version). Besides this, droplet versioning prevents the sys-
tem from loading and using droplets which have been de-
veloped for a different application version which may in-
troduce problems or spurious errors. Similar to the ver-
sioning system used by DSOM [11], droplets have a mi-
nor and a major version number. The major version num-
ber specifies what application version can use such droplet
version, whereas the minor number it is used to imple-
ment the droplet versioning.

5 In some systems such as MacOS™ it is possible to know the set of

implemented services by using the resource manager, supposing that
for each service there is a code resource that represents it.

It is worth noting that droplets cannot be unloaded when
in use, whereas it is possible to have one or more different
versions of the same droplet active at the same time. This
technique works because the DM is the only entity that
maintains direct references (i.e. pointers) to droplets,
whereas other entities such as the service manager simply
access services through the DM. For this reason, when-
ever there is a new droplet version, the DM loads it with-
out checking whether someone is still using the old ver-
sion. In case the old droplet version was no longer in use,
then such a version is unloaded and the new version is
loaded, otherwise the DM flips the pointer to the droplet.
This operation:
• allows the new droplet to be used whenever a new re-

quest for such a droplet has to be processed;
• prevents new requests from being processed with the old

droplet while the operations in progress (that make use
of the old droplet) can continue;

• allows the old droplet to be unloaded whenever all the
operations involving the old droplet have been com-
pleted.

The DM collaborates with the SM in order to guarantee
this behaviour by keeping track of the requests currently
in progress for each droplet. A request is considered “in
progress” since the time the SM issues a new service re-
quest to the DM until the SM notifies the DM that such
request has been completed. This mechanism works be-
cause services and droplets are accessed only through man-
agers which shield them from the rest of the system.

The access to resources and services exclusively through
managers:
• contributes to the global system robustness;
• prevents droplets from being directly dependent on each

other, i.e. by means of direct function or method calls;
• allows droplets to be selectively plugged and unplugged

at any time because they have no cross dependencies of
any type.

3.3. Event Manager

Events are by nature asynchronous and usually indicate
that something has occurred. Typical events are
mouseUp/mouseDown or network events. Normally,
events are processed when they occur and their type is well
defined so the program can handle them. In Yasmin, these
limitations are relaxed, hence:
• events can specify when they have to be processed;
• droplets can define new event types.

Yasmin represents events as information records contain-
ing the type of the event (event type), when it has occurred
(event time), and additional information relative to the

event itself (event info). Yasmin adds a new field to this
record which specifies when the event has to be processed;
it may contain an absolute time or a displacement with
respect to the time the event occurred. If this field is set,
the event is called a delayed event. A delayed event is used
to implement repetitive tasks and activities that have to be
performed at a certain time. Typical examples are chime
clock events that have to be executed every hour or system
backups that have to be performed every Sunday at 1 am
when almost nobody is expected to use the system.

The Event Manager (EM) is responsible for:
• delivering events to the various components;
• handling delayed events;
• allowing different droplets and services to cooperate and

interact by means of the events they exchange.

Yasmin defines a set of basic event types and allows
droplets to define their own custom event types, specified
inside the droplet itself. Hence, whenever a new droplet is
loaded/unloaded, the DM notifies the EM about the event
types that can be handled. As different droplets can handle
the same event type, a string called event destination
specified inside the event record is used to identify the type
of the received event. Such string can have three values: a
droplet name, a star (“*”), or a null value. In the first case
the event is delivered to the specified droplet, in the second
to all the droplets that handle such an event, in the last to
a droplet that handles the event, if any. If an event cannot
be handled it is discarded and the memory used by the
event is freed.

Yasmin’s event flexibility allows communications to be
implemented between droplets easily and in a clean way.
Delayed events facilitate the implementation of periodical
tasks whereas custom events allow different droplets to
interoperate in an appropriate way to send a specific event
for a certain situation instead of using generic ones that
need to be jeopardised in order to express peculiar situa-
tions. Additionally, the event destination enables droplets
to implement a multi/broadcast facility which is useful
when multiple droplets have to be informed of a certain
event that is important for all of them (for instance a re-
sourcePurge event which is broadcast by the system in low
memory situations).

3.4. Service Manager

The Service Manager (SM) interacts with the DM to
handle the services provided by the droplets. When a drop-
let is loaded, the DM notifies the SM of the services pro-
vided by the droplet which are made available to the whole
system. When a droplet is unloaded, the DM informs the
SM of the services that are no longer available. Services,
identified by a unique string, can be of two types: local or

remote. A local service can be used only locally whereas a
remote service can be used both locally and remotely in an
RPC6-like way [3] by exploiting the Communication
Services (CS, covered in 3.6.). The main difference be-
tween local and remote services is that for remote services,
the input/output parameters are both strings (hence the
service is responsible for marshalling/unmarshalling data)
whereas local services can use any type they want. Each
service is specified through an entry inside the droplet in-
formation record. Such entry contains the name of the
service, information about the service and about the input
and output parameters specified as strings using the C
language convention. Remote services contain “char*” in
both input and output parameters whereas local services
parameter contain the real type. For instance a local serv-
ice that takes as input a record containing the name and
the age of a person has a service input parameter that
looks like “char*, “unsigned short”. Service parms are
mandatory and are useful for developers whenever they
want to access services provided by a droplet written by
third parties7.

When a droplet has to invoke a service request, it cannot
call the service directly so the SM does this on its behalf.
The droplet provides the service name and the input pa-
rameters to the SM, and it gets back from the SM the re-
sult of the service invocation or an error if the service
cannot be found. This design choice derives once more
from the plug ‘n play principle which specifies that in-
formation access cannot be gained directly (e.g. through a
pointer) but has to be mediated by the entity responsible
for managing such information.

In Yasmin, service requests must be processed within a
limited amount of time in order to leave processing time
to other requests. This means that a service request has to
terminate and it cannot last for an infinite amount of time
(e.g. an endless loop). Services that may need a long
amount of time in order to process requests (for instance
they may need some resources not yet available) should be
divided into subservices that are activated sequentially by
means of events. The requirement to complete service re-
quests in a finite amount of time is very important in sin-
gle-threaded systems, because the whole system is blocked
until the service has been completed. In a multi-threaded
system, although the system can continue to work, long
lasting services occupy resources (for instance threads)
hence reduce the global application performance. The SM
has no way to guarantee that services do not last for too
long since programmers are responsible for this. The only
way for SM to prevent application deadlock or wild re-
source usage, is to run a sort of garbage collector that

6 RPC stands for Remote Procedure Call.
7 In a future version, service parms will be used to do transparent

marshaling/unmarshaling, allowing just one type of service accessible
both locally and remotely.

kills the threads that are apparently in a infinite loop or
that are running since too long. Although this solution is
not very clean because resources in use by threads may not
be freed when the thread is killed, SM has no other choice
to guarantee a minimal quality of service and to prevent
application deadlock.

3.5. Resource Manager

The Resource Manager (RM) cooperates with other
managers to use system resources efficiently. Such re-
sources include but are not limited to memory, communi-
cation sockets, and droplets. The RM makes sure that sys-
tem resources are not wasted and that it is activated peri-
odically like a sort of garbage collector to purge resources
no longer needed. The RM:
• informs the DM when droplets have expired their life-

time so they can be unloaded;
• makes sure that threads are used efficiently not starting

too many threads, which would decrease the overall ap-
plication performance;

• is responsible for purging memory and other system
resources (including droplets) periodically or when it is
required to perform a certain task and the available re-
sources like MacApp does.

Although the RM is a ‘hidden’ component, it is very
important because it allows the system to be run with
very limited resources and prevents wasting them. For in-
stance, Liaison, a Yasmin-based network management
platform, can perform complex network management
tasks using a very low amount of memory because the
RM contributes to scale-down network management ap-
plications from large hosts to standard machines.

3.6. Collaboration Services

CollaBoration Services (CBS) enable droplets and serv-
ices to cooperate in order to perform a certain task. CBS,
exploiting SM and EM, allow a task to be broken down
into many small cooperative subtasks. This solution en-
hances performance because these subtasks can be per-
formed concurrently. This helps keep the complexity low
because each subtask is simpler than the original task.
CBS provide facilities for:
• sending requests in multicast/broadcast mode and col-

lecting results;
• synchronising tasks by means of events.

It is worth noting that Yasmin implements collabora-
tion not only by means of CBS but also through the SM.
In fact droplets collaborate with the rest of the system by
providing services that can be of general interest. This

avoids services being replicated, which saves development
time and keeps the system slim and efficient.

3.7. Communication Services

Communication Services (CS) allow droplets and serv-
ices to communicate with remote entities (local commu-
nications are performed via events). Since Yasmin has
been designed with portability in mind, external commu-
nications are based on TCP/IP because it is a protocol
supported by most platforms especially after the explosion
of Internet. In view of the great diffusion of the World-
Wide Web, CS includes also support for the HTTP proto-
col used by the Web to retrieve documents and which is
becoming increasingly important even outside this con-
text. Its popularity derives from the fact that it is a simple
and efficient protocol which can be used to retrieve infor-
mation other than to communicate with remote peers pos-
sibly located behind firewalls. Developers can exploit CS
in order to:
• register/deregister sockets;
• be notified when data is available;
• issue HTTP requests and retrieve results.

CS is also used internally by other architecture compo-
nents such as the SM which uses it to send transparently
remote service requests and to receive responses. In fact an
important characteristic of CS is that they allow one to
send data in a reliable way and to handle transparently
socket and protocol errors, shielding droplets from differ-
ences among socket implementations available on various
platforms.

4. Yasmin at Work

Yasmin has been designed as an open and general archi-
tecture for software applications. Although the base prin-
ciples of Yasmin have been applied to different fields such
as a system for rapid GUI application development and a
C++-like interpreter for the manipulation of distributed
objects [2], Yasmin has been designed with particular em-
phasis on distributed networking applications for network
management. This section covers the implementation of a
Yasmin-based application for multidomain network man-
agement and shows how the adoption of Yasmin simpli-
fied the design of the application and allowed multiple
network management protocols to be supported in a seam-
less way.

4.1. Liaison: a Yasmin Based software applica-
tion

Liaison [9] is a proxy application [22] [13] which al-
lows users to manage network resources through the Web
using CMIP [5] and SNMP [23], the two dominant proto-

cols for network management. Issues encountered during
the design and development of Liaison are mostly related
to:
• the great difference between CMIP and SNMP, other

than their complexity;
• the need to leave room in order to accommodate future

network management protocols/services and to modify
the existing ones at runtime;

• the ability to run Liaison on hosts of limited comput-
ing power and under different operating systems.

Following Yasmin’s principles, Liaison has been di-
vided into two parts: general and protocol-related services.
General services constitute the kernel of Liaison and are
necessary for an application’s execution. They include
Yasmin’s kernel services and additional ones such as
HTTP services that are necessary to allow Web browsers
to interact with Liaison, this being the only way for cli-
ents to interact with the application.

Protocol-related services, stored inside droplets, imple-
ment basic CMIP/SNMP services besides other facilities
needed to allow users to manage network resources easily.
The great difference between CMIP and SNMP prevented
them from having a shared set of services shared by both
protocols. Nevertheless the dynamic nature of droplets al-
lowed services to be loaded on demand and to unload them
when no longer needed. This has contributed a small ap-
plication memory footprint and to avoiding the need to
mix different protocols, for instance by means of object-
oriented techniques such as inheritance. This design solu-
tion allowed Liaison’s core part to be totally independent
from the management protocols and simplified the integra-
tion of additional services and protocols that will be im-
plemented using additional droplets.

Yasmin’s collaboration services allowed us to reduce the
amount of code needed to implement Liaison. Instead of
implementing CMIP and SNMP separately, the few serv-
ices shared by the two protocols have been implemented
in a droplet in order to be used by both of them. This al-
lowed us to avoid code duplication and also prevented
these services that may not be needed by other protocols
from being included statically into Liaison.

Yasmin’s event services have been used to handle asyn-
chronous protocol events. Network resources may emit
asynchronous notifications when they change state or
when a special situation arises. Management applications
usually perform some actions prior to receipt of such noti-
fications. Liaison allows droplets to register event han-
dlers that are called when a notification is received. The
droplet responsible for receiving notifications posts an
event containing the notification itself. Event services
then process the event by invoking the corresponding
event handlers, if any. This mechanism allows asynchro-

nous events to be handled properly, independently of the
type of event and the protocol used to receive it.

The usage of personalities contributed to obtaining a
highly portable application with almost no effort. Every
platform specific functionality such as thread and shared
library management has been encapsulated inside the per-
sonality without affecting most of the Liaison’s code.
This solution allowed Liaison to be ported over different
platforms with very little effort.

Liaison has been used to validate Yasmin and to apply
the architecture to a real case with strong requirements in
terms of resource utilisation and problem complexity. The
use of Yasmin has significantly contributed to creating a
highly extensible and customisable application, which
makes moderate use of system resources and which allows
network management resources to be managed easily from
the Web.

5. Final Remarks

This paper presented a new object-oriented, component-
based architecture for software applications called Yasmin.
Its main characteristics are that it is:
• highly portable, configurable and extensible;
• built upon dynamic software components called drop-

lets;
• founded on cooperation and delegation, used to glue

components together;
• a slim and efficient kernel which relies on a fast event

handler;
• an efficient use of system resources, which enable Yas-

min-based applications to run on environments of lim-
ited computing power.

Despite Yasmin’s native ability to work in a networked
environment, this architecture is general enough to be
used not only on this applications field. So far it has been
successfully applied to break large monolithic applications
and to create a new class of web-based applications based
on Liaison that integrate heterogeneous network manage-
ment object models in a single homogeneous application
[10]. Finally, the ability to modify and extend its applica-
tions at runtime, makes it attractive in dynamic environ-
ments where new services and resources need to be sup-
ported while the original application must remain active
and ready to serve incoming requests.

6. Acknowledgements

The author would like to thank Dr. Wolfgang Kle-
inöder, Prof. Oscar Nierstrasz and the users and early

adopters of Liaison8 who have greatly contributed with all
their comments and suggestions.

References

[1] Apple Computer, Components Made Easy, OpenDoc
Technical White Paper, March 1995.

[2] B. Ban, A Generic Management Model for CORBA,
CMIP and SNMP, PhD thesis, University of Zurich,
Institut für Informatik, 1997.

[3] A. Birrell and B. Nelson, Implementing Remote Pro-
cedure Calls, ACM Transactions on Computer Sys-
tems, Vol. 2, February 1984.

[4] D. J. Chen and D. T.K. Chen, An Experimental Study
of Using Reusable Software Design Frameworks to
Achieve Software Reuse, Journal of Object-Oriented
Programming Languages, May 1994.

[5] International Standards Organization, Information
Technology - OSI, Common Management Information
Protocol (CMIP) - Part 1: Specification, CCITT Rec-
ommendation X.711, ISO/IEC 9596-1, 1991.

[6] Cotter and M. Potel, Inside Taligent Technology, Ad-
dison-Wesley, ISBN 0-201-40970-4, 1995.

[7] L. Deri and E. Mattei, An Object-Oriented Approach to
the Implementation of OSI Management, Computer
Networks and ISDN Systems, Vol. 27, 1995.

[8] L. Deri, Droplets: Breaking Monolithic Applications
Apart, IBM Research Report RZ 2799, September
1995.

[9] L. Deri, Network Management for the 90s, Proceed-
ings of ECOOP ’96 Workshop on System and Network
Management, Linz, Austria, July 1996.

[10] L. Deri, Surfin’ Network Management Applications
Across the Web, Proceedings of 2nd Int. IEEE Work-
shop on System and Network Management, Toronto,
Canada, June 1996.

[11] IBM Corporation, DSOM Development Toolkit, Oc-
tober 1994.

[12] A. Weinand, E. Gamma and R. Marty, ET++: An ob-
ject-oriented application framework in C++, ACM
OOPSLA ‘88 Conference Proceedings, San Diego, CA,
September 1988.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented
Software , Addison-Wesley, 1994.

[14] T. Berners-Lee, R. Fielding and H. Nielsen, HyperText
Transfer Protocol - HTTP/1.0, Internet Draft, October
1995.

[15] IBM Corporation, IBM TMN Products for AIX: Gen-

8 A version available for public download can be found at

http://misa.zurich.ibm.com/Webbin/.

eral Information, Release 2, GC 31-8016-00, March
1996.

[16] M. Linton and P. Calder, The design and implementa-
tion of Interviews, Proceeding of USENIX C++ Work-
shop, Santa Fe, NM, November 1987.

[17] A. Joch, Killer Components, Byte Magazine, January
1996.

[18] T. Lewis et al., Object Oriented Applications Frame-
works, Manning Publications, ISBN 0-13-213984-7,
1995.

[19] Apple Computer Inc., MacApp 2.0: Programmer’s
Guide, 1989.

[20] B. Meyer, Object Oriented Software Construction,
Prentice Hall, Englewood Cliffs, NY, 1988.

[21] O. Nierstrasz, S. Gibbs and D. Tsichritzis, Compo-
nent-Oriented Software Development, Communica-
tions of the ACM, 35(9), September 1992.

[22] M. Shapiro, Structure and Encapsulation in Distributed
Systems: the Proxy Principle, 6th Int. Conference on
Distributed Computing Systems, Boston, Mass., May
1986.

[23] J. Case, M. Fedor, M. Schoffstall and C. Davin, Sim-
ple Network Management Protocol (SNMP), RFC
1157, May 1990.

[24] D. Tsichritzis, Object-Oriented Development for Open
Systems, Proceedings of IFIP ‘89, North-Holland, San
Francisco, August 1989.

[25] J. Udell, ComponentWare, Byte Magazine, May
1994.

[26] Object Management Group, The Common Object Re-
quest Broker: Architecture and Specification, Revision
2.0, July 1995.

[27] Symantec Corporation, Bedrock Architecture, 1993.

