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Chapter 1

Introduction

This thesis aims to offer an automated security testing tool for Industrial Control

Systems, which should enable developers and researchers to improve the security

of those critical systems.

Industrial Control Systems

Industrial Control Systems (ICS) form the backbone of modern industrial oper-

ations, enabling the control, monitoring, and automation of critical processes in

various sectors such as manufacturing, energy, water treatment, transportation,

and more. These systems encompass a wide range of technologies, tools, and pro-

tocols designed to ensure the efficient and safe functioning of complex industrial

processes.

At their core, ICS are responsible for managing and regulating the physical

processes that drive industrial operations. This includes tasks like managing ma-

chinery, regulating temperature and pressure, handling material flow, and main-

taining the overall operational integrity of industrial facilities. What sets ICS

apart is their ability to integrate various components, such as sensors, actua-

tors, controllers, and networks, into a unified framework that enables real-time

decision-making and process optimization.

The evolution of ICS has been closely intertwined with advances in comput-

ing, networking, and automation technologies. Early systems relied on simple

analog controls, but the digital revolution introduced programmable logic con-

trollers (PLCs) and distributed control systems (DCS), which enabled more sophis-

ticated control and monitoring capabilities. Today, the concept of the Industrial

Internet of Things (IIoT) has ushered in a new era of ICS, where sensors and smart

devices are interconnected through the internet, allowing for remote monitoring,

data analysis, and predictive maintenance.

Industrial Control Systems have played a pivotal role in enhancing efficiency,

reliability, and safety across industries. Manufacturing plants rely on ICS to au-

tomate production lines, ensuring consistent product quality and minimizing hu-

man error. Energy facilities use these systems to manage power generation and
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distribution, optimizing resource usage and responding to demand fluctuations in

real time. Water treatment plants utilize ICS to monitor and regulate purification

processes, safeguarding public health by maintaining water quality standards.

Technological advancements like cloud computing, big data analytics, and ma-

chine learning have further transformed ICS capabilities. Data collected from sen-

sors and devices are aggregated and analyzed, providing valuable insights for pro-

cess optimization, predictive maintenance, and informed decision-making. This

data-driven approach allows industries to anticipate issues, prevent downtime,

and allocate resources more effectively. Furthermore, Industrial Control Systems

are gradually being inserted into ever-growing networks, allowing for large-scale

automation over whole regions or countries.

However, the increased connectivity and digital integration also bring about

new challenges. The security of Industrial Control Systems has become a paramount

concern. Cyberattacks targeting ICS can disrupt operations, compromise sensi-

tive information, and even lead to catastrophic incidents. As a result, the field of

industrial cybersecurity has emerged to develop strategies and technologies for

protecting these critical systems from malicious actors.

As seen with the 2015 Russian cyberattack on the Ukrainian power grid[7], ICS

are becoming an interesting target for attackers, allowing cyberattacks to impact

the physical world. The field of industrial cybersecurity is critically needed at this

time where ICS system security is terribly underdeveloped, having depended on

security by obscurity and airgapping until now. Attackers are still catching up,

and cyberattacks tend to not use vulnerabilities in the ICS devices, but instead

focus on the control architectures, this is a critical moment in which ICS security

must be improved.

Unfortunately, the industry still relies on security by obscurity, with firmware

images being hard to obtain and no way to verify the security of devices. This

appears to have worked until now due to the air-gapped nature of industrial com-

plexes, but with ever increasing networking many more entry points are becom-

ing available to attackers.

Fuzzing

This thesis intends to offer a fuzzer, a tool capable of automatically finding bugs

in ICS devices for which no firmware image is available.

Fuzzers are automated testing tools designed to discover vulnerabilities, crashes,

and unexpected behaviors in software applications by bombarding them with a

barrage of unexpected, malformed, or random inputs. These inputs can be any-

thing from malformed files and network packets to unexpected user inputs. The

goal is to expose vulnerabilities that might not have been identified through tra-

ditional testing methods.

Unlike structured testing approaches that rely on predefined test cases, fuzzers

take a more exploratory approach. They generate a vast variety of inputs, often
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in a semi-random manner, to probe different execution paths within the software.

This enables fuzzers to uncover obscure bugs and vulnerabilities that might have

gone unnoticed during manual or scripted testing.

Fuzzers operate under the premise that software should be able to handle un-

expected inputs gracefully without crashing, leaking information, or exhibiting

erratic behavior. When a fuzzer discovers a vulnerability or triggers a crash, it

provides developers with invaluable information about the underlying flaw. This

information aids in fixing the problem and improving the software’s overall reli-

ability and security.

Fuzzers have played a crucial role in identifying security vulnerabilities in a

wide range of software, including operating systems, web browsers, networking

protocols, and more. Their ability to find flaws that could potentially be exploited

by malicious actors has already led to their integration into many software devel-

opment and security workflows.

Fuzzers are already available for some ICS protocols, however, modern ICS

protocols offer some unique challenges to fuzzing, which haven’t been solved be-

fore. This creates a void in tooling which we aim to fill by developing a fuzzer for

the MMS protocol. Current blackbox fuzzing approaches struggle to handle the

complexity of modern ICS protocols, and as such in this thesis we will showcase

how we overcame those challenges in developing our own fuzzer.

1.1 Goals
This thesis aims to develop an effective and open-source blackbox fuzzer for the

MMS protocol, aimed at IEC61850 Industrial Control Systems. To the best of our

knowledge, currently only one[13] open-source MMS fuzzers exists, which we

believe presents serious issues. Giving researchers access to an easy-to-use and

effective MMS fuzzer would certainly help in improving security of ICS.

1.2 Thesis Structure
In chapter 2 we will write a state of the art on fuzzing and ICS protocols. We will

look at various fuzzing approaches and give a taxonomy of fuzzers. Afterwards we

will show an overview of ICS communication protocols, as they will be a focus of

this document. The second chapter should give all background knowledge needed

to understand the thesis.

In chapter 3 we will present an example Modbus fuzzer, using it to show how

current fuzzing techniques may struggle against modern protocols. Afterwards

we will present our own fuzzer, explaining our implementation choices and how

we overcame those issues.

In chapter 4 we will explain our tests and examine their result, with the goal

of validating our work.
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Finally, in chapter 5 we will present our conclusions.
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Chapter 2

State of the Art

2.1 Fuzzing

2.1.1 Introduction

Fuzzing is an automated software testing technique that involves providing ran-

dom or invalid data to a computer program. It was introduced in 1990 as a way

of testing UNIX utilities. The test consisted of the ”fuzz” program that generated

a random stream of data, which was then used as an input for various utilities.

Even though the technique appears rudimentary today, it achieved over a 25%

failure rate [21], proving itself as a valid approach to automated testing.

Since its introduction, fuzz testing has gained popularity and importance, becom-

ing one of the most widely deployed approaches to discovering software vulner-

abilities. It proved to be an essential part of automatic bug finding in the 2016

DARPA Cyber Grand Challenge [6], and Google released its OSS-Fuzzer in 2016

[1] which automatically tests popular open source projects for security vulnera-

bilities.

2.1.2 Use case

Fuzzers are used to automatically find bugs in programs. This is done by running

the fuzzer on a target program until a crash is found, therefore fuzzers must not

be run in a live environment, as that would risk impacting the availability of the

service tested. Fuzzers should instead be used in an appropriately prepared test

environment. Fuzzers are used in the first phases of analysis. In particular, a

fuzzer is very effective in finding bugs, but any found bugs need to be further

analyzed in order to evaluate the impact of the vulnerability, and how it may be

escalated.
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2.1.3 Structure of a Fuzzer
A fuzzer fundamentally consists of two parts. One that handles the generation of

inputs, and one that instruments the Program Under Testing(PUT) and evaluates

the given input. A good test input needs to be:

1. Different enough from expected input to discover bugs and vulnerabilities.

2. Similar enough to valid input to pass most sanity checks of the PUT.

Input Generation Input Evaluation

PUT

Input

Feedback

InstrumentationAnalysis

Figure 2.1: Basic fuzzer structure

For example, while completely random data possesses the first property, it

will almost always be rejected by the PUT during basic validation. Such inputs

wouldn’t be very useful in testing, as they would mostly test the relatively simple

validation steps. For example a target that rejects inputs not starting with a valid

HTTP header would be almost impervious to this type of fuzzing, as we would

be very lucky to get one random test case past this check. Completely valid and

expected inputs present another problem, while they may test deeper code paths,

they will usually stay in already well tested paths. We usually can expect code to

function during normal operation, and testing benefits greatly by inserting input

that the developers didn’t expect.

Proper input generation requires some information on what constitutes ex-

pected input. Common techniques involve mutating some captured valid input,

hand defining the input space with a grammar, or automatically inferring inter-

esting input from analysis of the PUT. We will go over those techniques in more

detail later.

With input evaluation we intend both the act of executing the PUT with the

given input, and the detection of any errors in the execution. This can go from

simply executing the PUT with given input and detecting any crashes, to much

more involved instrumentation and bug detection. Instrumentation covers a wide

range of techniques to collect data from a program. In static instrumentation, a

program is recompiled, and code is inserted in crucial parts to collect data. For

example at each branch instruction code may be inserted to gather information

6



on the direction taken. This would allow the input evaluation step to calculate

code coverage of any run. The data gained from the execution may be used as

feedback for further input generation, helping in producing quality test inputs.

For example, code coverage of a test run may be gathered and used as feedback

to guide input generation, by prioritizing inputs with greater code coverage.

2.1.4 Taxonomy of Fuzzers
Fuzzing approaches can be more or less informed depending on how much infor-

mation on the PUT is available to the tester. In a real-life situation a tester may be

fuzzing an open-source application, for which all the internal workings are pub-

licly known. On the other end, the tester might be trying to fuzz software running

on a remote machine and for which nothing more than the given inputs and re-

turned outputs are known. The two cases require very different approaches. In

the former the fuzzer may use techniques leveraging the available information,

whereas in the latter it must cope with this lack of information, which presents a

different challenge entirely.

Fuzzers are usually divided in:

• White-box fuzzers, which have access to complete information over the

PUT, like its source code, and can use generative approaches based on anal-

ysis of the PUTs internals.

• Black-box fuzzers, which can only observe the I/O of the PUT, and cannot

gather information about the PUTs internals.

Referring to figure 2.1, in a black-box fuzzer, the analysis step would be impos-

sible, as would be any instrumentation of the PUT. In a white-box fuzzer, the

input evaluation may be guided by an initial static analysis of the PUT, for ex-

ample TestMiner[28] searches for literals in the PUT to generate interesting test

inputs. Furthermore, instrumentation is possible, and the data gathered enables

some powerful white-box fuzzing techniques.

2.1.5 White-box Fuzzers
White box fuzzers can make use of highly informed techniques, as they have ac-

cess to deep instrumentation of the PUT. Instrumentation gives the fuzzer infor-

mation about the memory contents of the PUT at runtime. It may be implemented

statically, by compiling the source code with a modified compiler, or dynamically,

by using an emulation tool like QEMU[26]. One of the most popular fuzzers,

AFL[31], supports both dynamic instrumentation through QEMU, and static in-

strumentation through a special compiler. It instruments all conditional branch

instructions, enabling it to gather complete coverage information of any PUT exe-

cution. The gathered coverage information is used afterwards as a fitness function
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of inputs in a genetic algorithm, iteratively generating test cases with increasing

code coverage.

Input generation

AFL shows that white box fuzzers can use execution feedback to evolve test cases.

Another commonly used technique is dynamic symbolic execution. The PUT is

executed with symbolic values as input, and at each conditional branch the ex-

ecution is split in two paths. A formula is generated for each path, which, if

satisfiable by a concrete input, will be passed to an SMT solver to generate a test

input which will lead to the selected path. This technique is computationally ex-

pensive, as it involves instrumenting every single instruction of the PUT, but it

can also automatically generate inputs that cover any chosen code path. May-

hem[3], the winner of the 2016 DARPA Cyber Grand Challenge[6] , made heavy

use of symbolic execution to automatically find exploitable bugs.

Bug Oracles

Bug oracles are the part of the input evaluation that detects bugs in an execution of

the PUT. Simple crash detection doesn’t require complex bug oracles, but a good

bug oracle will be able to discover a wider array of bugs. They are a crucial part

of any fuzzer, as with a poor oracle some triggered bugs may go unnoticed. That

said defining a perfect bug oracle is almost impossible, as that oracle would need

to perfectly understand how the PUT should behave for any given input. It would

then be able to find even small implementation errors. Fortunately, security issues

tend to be easier to detect. With white box fuzzing programs can be instrumented

so that any unsafe memory access is detected as a bug. Valgrind[29] and similar

tools can be used for this purpose. More advanced bug oracles are possible, as

demonstrated by the OSS Fuzz[1] project which instrumented execve system calls

to detect invalid inputs, which would likely be caused by a command injection

discovered through fuzzing[20]. This kind of advanced bug oracles can discover

wider classes of bugs, not limiting fuzzing to simple crash discovery.

2.1.6 Black-box Fuzzers
Black box fuzzing has no access to information on the PUT, and may only interact

with it using its I/O, without further instrumentation. Therefore, techniques are

needed to generate good input even when information on the PUTs internals is

not available.

Model-based input generation

In a model-based approach, a fuzzer generates input based on a model of valid

input. When this model takes the form of a grammar, it is referred to as grammar-
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based approach.

The model may be predefined, generated by hand to test a specific application

or protocol. Kaksonen et al[15] propose a black box protocol fuzzer which takes a

BNF grammar defining the protocol to fuzz as configuration. Grammarinator[12]

is an open source fuzzer which instead leverages ANTLRv4 grammars of a proto-

col to fuzz it . Other fuzzers may be built to work on one specific protocol, having

a built-in model. For example, funfuzz[9] uses a grammar defining random but

valid javascript code to test javascript engines.

Handwriting grammars defining complex protocols is time consuming and

error prone, and methods to automatically infer input models have been stud-

ied. Learn&Fuzz[11] uses a machine learning approach to infer a statistical input

model from a given set of input files, and to use it for fuzzing. Given a set of input

files, it may conduct fuzz testing completely autonomously. Models may also be

learned from network traffic. ICPFuzzer[25] analyzes a packet capture of traffic

of a proprietary protocol, and through a LSTM model it’s able to generate inputs

and automatically conduct a fuzz test on a proprietary industrial control protocol

for which no data is available.

Mutation based input generation

Mutation based fuzzing generates input by randomly mutating well-structured

inputs, called seeds. This approach generates inputs that are to an (often control-

lable) extent similar to the starting seeds. Seed selection is an important challenge,

as we would like a set of seeds that cover as many functionalities of the PUT as

possible, while avoiding redundancy which would slow down the fuzzing process.

Mutation can adopt various approaches, like bit flipping, in which a number

of randomly selected bits of a seed are flipped, generating a new random input.

The number of bits to flip controls how mutated our inputs are. Since the effective

mutation amount varies per PUT[4], black box fuzzers usually have to try various

mutation amounts, hoping to stumble on one that works well.

Dictionary based mutation is also used, in which specific and likely to cause

bugs values are substituted to input values. For example the values -1, 0, 1 can be

substituted in integers, and ”%s” can be inserted in strings to detect format string

vulnerabilities.

Bug Oracles

In a black box approach, the detection of bugs becomes difficult, as only clearly

visible bugs may be detected. This is usually limited to detecting crashes, but even

detecting those may be difficult if fuzzing over a network. Crash detection in those

cases is usually done by seeing whether we still receive responses to our test cases,

or to correct requests. However, servers often rate limit or block misbehaving

clients, and precautions must be taken to avoid those protections. Attempts may

be made to detect less visible bugs from output alone, such as unexpected error

9
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Figure 2.2: Modbus TCP Packet format

responses or entering into invalid states. The automatic detection of those bugs,

however, is a difficult problem.

2.2 ICS Protocols
Industrial Control Systems (ICS) are computerized systems used to monitor and

control industrial processes. They are essential in the operation of many criti-

cal infrastructures, including power generation and distribution, water treatment

and distribution, and manufacturing. Industrial Control Systems need to collect

data from numerous sensors, interpret it in suitable control units, and eventu-

ally send commands to various activators. The challenge of coordinating a large

amount of individual devices is met by various networked architectures. These

use their own communication protocols, for example Modbus, DNP3, and OPC

UA, to enable communication between devices. We will now go in-depth on some

communication protocols since those will be the target of our fuzzing.

2.2.1 Modbus TCP

Modbus is a communication protocol used for transmitting information between

electronic devices. It was developed in 1979 by Modicon (now Schneider Electric)

for use with their programmable logic controllers (PLCs).

Modbus is a simple and open protocol that became a de facto standard in the

ICS industry. Since it was designed in the late 70s it presents some limitations, but

its simplicity has kept it popular. Many variations of the Modbus protocol exist,

such as Modbus RTU which uses a compact binary representation of the protocol,

or Modbus TCP[23] which is built to use the network layer.

Packet Structure

We will now look at Modbus TCP more in depth since it has become one of the

most widely used versions of the protocol.

As seen in figure 2.2, Modbus TCP packets are composed of a 7byte MBAP

header, which gives information specific to Modbus TCP, and a simple Protocol

Data Unit (PDU).
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MBAP

The MBAP header is composed of:

• 2byte Transaction Identifier: Identifies a request/response transaction, as

multiple simultaneous request could be made on the same TCP connection.

• 2byte Protocol Identifier: Indicates the protocol used for intra-system mul-

tiplexing, MODBUS protocol is 0.

• 2byte Length Field: Number of following bytes, starting from unit identifier

until end of message.

• 1byte Unit Identifier: Used for internal routing, identifies a server behind a

gateway.

PDU

The PDU is composed of:

• 1byte Function code: If between 1-127 identifies the Function requested

from a client to a server, if between 128-255 identifies an exception response

from the server.

• Up to 254 bytes of arbitrary Data

The function code identifies the kind of action that the client is requesting from

the server, those can go from Reading/Writing various amounts of data on the

device, to diagnostic requests. 17 function codes are reserved for User-Defined

functions, allowing each user to implement their own functions, with no guaran-

tee of interoperability with other devices. A full list of supported function codes

is available in the specifications[22]. The Data field houses up to 254 bytes, and

is formatted according to the Function Code.

The same packet format is used for both requests and responses.

2.2.2 IEC 104
IEC 60870–5-104(IEC104) is a communication protocol standard for control of ICS.

It was published in 2000 building upon IEC 60870-5-101(IEC101) a binary serial

communication protocol, porting it to the TCP/IP stack. It is focused on power

systems, defining data objects specific to those applications, and that’s where it’s

mostly adopted. Working on the TCP/IP stack allows for simpler installation com-

pared to serial lines, and enhanced reliability. It is quite a simple protocol, not

allowing for advanced features like automatic device discovery, setting up events

and automatic callbacks etc. However its simplicity is one of IEC104’s strengths,

making for easy implementation and extension on a case-to-case basis.
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Figure 2.3: IEC 104 Packet format

0 1 2 3 4 5

Start

0x68

Length Control field

Figure 2.4: IEC 104 APCI format

Packet Structure

As seen in Figure 2.3 an IEC 104 packet is formed by an Application Protocol

Control Information (APCI), and zero or more Application Service Data Units

(ASDU). The APCI (Figure 2.4) contains a length byte giving the bytecount of

following bytes, and a control field, containing information about the kind of

packet that was sent, as well as a sequence number, allowing multiple packets to

be processed in order[5].

The packets can be of three kinds:

• Information(I): The only packets that contain ASDUs, used for most com-

mon functionality.

• Supervisory(S): An empty packet, used to acknowledge I packets.

• Unnumbered control(U): A control packet, allows for stopping/starting data

transmission, checking the state of the connection, etc.

Information packets can contain multiple ASDUs, each one being formed of a

Data Unit Identifier and zero or more Information Objects. A Data Unit Identifier

contains:

• Type ID: The type of the ASDU, and of successive Information Objects. For

example, a client may request the reading of a measured value from a sensor,

and the type ID would be used to specify the request type.

• Variable Structure Qualifier: Contains the number of Information Objects

in the ASDU.

• Cause of Transmission: Indicates what caused the transmission of the ASDU,

whether it was a periodic transmission, a response to a request, etc..
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Cause of Transmission

Common Address of ASDU
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Information Elements

Time Tag
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Information Object 2

Figure 2.5: IEC 104 ASDU format
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• Common Address of ASDU: Identifies the station that should interpret the

ASDU, other stations should ignore it.

Information Objects contain the actual data of the packet. This can be the param-

eters of a request or the data of a response. In IEC104 each ASDU can contain

multiple Information Objects, therefore one packet can contain multiple requests

or responses. Information Objects have this structure:

• Information Object Address: Identifies the internal address of the subse-

quent data within a defined station.

• Information Elements: Data formatted accordingly to the Type ID.

• Time Tag: A time tag of when the data was collected.

2.2.3 IEC 61850
IEC 61850 is a standard for communication protocols in the power utility industry

which was first published in 2004. It provides a standardized framework for com-

munication in power systems, using object oriented modeling. IEC 61850 defines

a set of data models and communication protocols for the transmission of data in

ICS. It is quite a large and feature rich standard, offering mappings to 3 different

communication protocols, with an aim to expand to web services as well. Those

protocols are:

• Generic Object Oriented Substation Events (GOOSE): Offers a fast and re-

liable mechanism for transmitting time-critical data over entire substation

networks. It is a multicast publisher/subscriber protocol.

• Sampled Values (SV): Is a multicast publisher/subscriber protocol, transmit-

ting high-speed periodical updates of the values sampled by a sensor to all

subscribed devices on the lan.

• Manufacturing Message Specification (MMS): A unicast protocol allowing

data transfer and supervisory functions.

Those protocols are often used in tandem, with SV being used in the lower levels

for collecting data from various sensors, GOOSE allowing coordination between

units, and MMS mostly being used for management and control functions.

GOOSE

GOOSE is a peer-to-peer publisher/subscriber communication protocol. It en-

ables high-speed exchange of time-critical information between devices. GOOSE

is built on the ethernet stack, with a focus on fast and reliable multicast com-

munication. When an event happens in a device, such as a breaker tripping, the
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device sends multiple transmissions of the same packet to all other devices on

the LAN. Sending multiple packets per event enhances the reliability of the pro-

tocol. Those packets contain information regarding the data of the event, which

would be formatted according to the IEC 61850 standard. Furthermore, they con-

tain information regarding the topic of the transmission. As GOOSE is a multicast

protocol, all devices on the LAN receive the packets, but they filter them and pro-

cess only those of the topics they are subscribed to. GOOSE manages to provide

sub-millisecond reliable transmissions, allowing it to be used in time sensitive and

critical fields like load-shedding[27].

SV

SV is a communication protocol which specializes in transmitting digital repre-

sentations of analog signals. It takes samples of an analog signal at a fixed sam-

pling rate, and constantly sends them to all devices on the LAN. SV is widely used

as a standardized way of digitizing and collecting analog signals from power de-

vices to control or monitor devices.

MMS

MMS(Manufacturing Message Specification) was first published in 1990 with the

goal of offering standardized and interoperable communication between devices

from different manufacturers. IEC61850 later adopted this protocol as a part of

its software stack, by creating a mapping of IEC61850 objects to MMS objects.

MMS is designed as to be independent of the underlying data and hardware, and

only defines a set of generic objects and operations that a server should imple-

ment. Those operations go from reading and writing data, to more complex man-

agement, such as starting processes, uploading or downloading large amounts of

data (for example a software update), or defining automatic actions that a server

should take on receiving an event. With its advanced features MMS is perfectly

suited for high level management, as it gives operators powerful tools to manage

whole power plants. While MMS doesn’t define any domain specific objects, it

allows the definition of arbitrarily complex data types, simplifying its adoption

in distinct fields. This enables the mapping of IEC 61850 power specific objects

to MMS. ASN.1 (Abstract Syntax Notation) is used the specification to define the

syntax of its messages. As such, MMS messages can be seen as a sequence of

ASN.1 objects MMS is defined independently of its communication protocol, and

doesn’t specify how it’s messages should be routed or encoded. Within IEC61850

MMS packets are encoded using ASN.1 BER and routed over the TCP/IP stack.

Basic Encoding Rule

Basic Encoding Rule (BER) is a rich encoding protocol, which represents ASN.1

objects as a Type Length Value (TLV) triple. In each triple, the type and length

15



0 1 2 3 4 5 6 7

Tag Class P/C Tag Type

Figure 2.6: BER Tag field
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Figure 2.7: BER Length field

indicate how to interpret the successive value field. As an MMS packet is a list of

ASN.1 objects, it is encoded to a sequence of TLV triples. The Type encodes the

ASN.1 tag field, can be composed of one or more bytes, and represents the type

of the object, which can for example be String, Integer, or any kind of abstract

ASN.1 object. It also identifies whether the object is ”constructed” and contains

further objects as its value. In figure2.6 we can see how a tag is encoded:

• 2byte Tag Class: Contains the ”class” of the tag, identifying whether the tag

is native to ASN.1 or in which context it was defined if not.

• 1byte Constructed bit: Is set if the type is constructed.

• 5byte Tag Type: Identifies the type. If all bits are set (Type = 31) specifies a

long encoded tag, with following octets identifying the actual type.

In figure2.7 we can see the encoding of a BER Length:

• 1byte Form bit: If set indicates a long form length, otherwise indicates a

short form.

• 7byte Length: In short form contains the length of the value field. In long

form contains the number of following length octets.

In long form, the first octet indicates the number(1-127) of following octets, which

will contain the actual length of the value field. Therefore, a value field can be as

long as 2127∗8 − 1.

The Value field contains length bytes of arbitrary data. The data is interpreted

according to its type, and as MMS allows defining arbitrary types can take any

form. If the type is constructed, however, the Value field actually contains a se-

quence of TLV triples, which can in turn be of constructed type. This allows the

encoding of complex types, such as lists.

2.2.4 OPC-UA
OPC-UA (Open Platform Communications Unified Architecture) is a widely used

industrial communication standard. It was first released in 2006 with the objec-
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tive of providing a more modern approach to industrial automation. OPC-UA

provides a standardized framework for information exchange, offering a high de-

gree of abstraction from the underlying hardware. This allows interoperability

and integration of various devices and systems. With its wide range of function-

ality, it has also been used for cloud and IOT devices. Some of its most prominent

features are its support for security features like encryption and message signing,

its open source nature, and its extensibility. OPC-UA has a different approach

to ICS compared to other standards. For example, IEC61850 takes a hierarchical

approach. It separates ICS systems in low-level devices, such as PLCS, a SCADA

layer which collects data and coordinates them, and a high level human interface

which allows operators to efficiently control the whole process. OPC-UA instead

looks to put all devices on the same network[17], with sensors communicating

directly with human interfaces. This puts it at the forefront of the switch to In-

dustry 4.0, with smarter IOT devices being integrated in production processes.

At its core OPC-UA defines a number of services that a server might implement.

Not all servers need to support all services, they instead can choose which profiles

(sets of services) to implement. A service is an abstract remote procedure call that

a OPC-UA Client might make to a server, examples might be a Read/Write of data,

or GetEndpoints which returns a list of endpoints supported by a server[24]. This

last kind of advanced service discovery shows the power of OPC-UA, and how it

distances itself from older and simpler protocols like Modbus and IEC104. OPC-

UA also gives the possibility of querying historical data from servers, effectively

giving access to logs of system activity in all devices. OPC-UA supports various

encodings. Requests and responses may be encoded in binary data, XML or JSON,

and be transported over TCP, HTTP/S, or even WebSockets. This wide array of

supported technologies allows OPC-UA to adapt to varied network environments.
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Chapter 3

Architecture and
Implementation

We chose to implement a blackbox fuzzer for MMS as MMS is a crucial part of

the widely adopted IEC61850 protocol, and its use as a high level control language

makes it the first point of attack against an Industrial Control System. In IEC61850

lower layers are not exposed to the internet, but are instead only connected to up-

per control layers, therefore an attacker would need to enter the system through

its human machine interface, which uses MMS. The fuzzer has to be blackbox

as usually researchers will not have access to firmware images, but only to the

finished machine with which they may interact over the net. If firmware images

were available then current whitebox fuzzers such as AFL[31] would probably be

effective. Our fuzzer looks to be simple to use, allowing users to, once they set

up a target in a lab environment, automatically conduct fuzzing just by launching

the tool against the target.

We will first present the architecture of an example fuzzer for the Modbus

protocol, as we believe this to be a good example of how ICS fuzzing has usually

been approached. Afterward, we will go in depth on our own fuzzer, and see

which challenges we had to overcome in fuzzing MMS.

We will split ICS protocols in ”old-generation” and ”modern” protocols. This

somewhat arbitrary categorization underlines the changes in protocols going into

industry 4.0. We categorize as old-generation protocols those characterized by

simple implementations and relatively limited functionality. They usually support

some simple function calls, and leave most of the handling to the users. This

works perfectly well for simple systems where standardization is not essential

and devices do not need to be particularly smart or independent. However, those

protocols don’t support the level of abstraction needed for building large dynamic

networks, a necessity for the switch to industry 4.0.

In contrast to these modern protocols, those built with an eye for industry

4.0, tend to be much more complex. They are characterized by rich functionality

and great abstractions from the underlying implementation. This is justified by

18



Listing 3.1: Read coil request

1 #Defines a read coil request
2 s_initialize("modbus_read_coil")
3 with s_block("modbus_head"):
4 #Each s_word or s_byte identifies a different field,

those are the fields of the MBAP
5 s_word(0x0001,name=’transId’,fuzzable=True)
6 s_word(0x0000,name=’protoId’,fuzzable=False)
7 s_word(0x06,endian=’>’,name=’length’)
8 s_byte(0xff,name=’unit Identifier’,fuzzable=False)
9 #Here we define the PDU fields

10 with s_block(’pdu’):
11 s_byte(0x01,name=’funcCode read coil memory’,

fuzzable=False)
12 s_word(0x0000,name=’start address’)
13 s_word(0x0000,name=’quantity’)

the modern need to build a web of interconnected and independent standardized

smart devices.

3.1 Architecture of a Modbus fuzzer
Modbus along with IEC104 are clear examples of old-generation protocols. As

seen in the state of the art, messages of those protocols have a simple structure,

and the structure itself stays mostly unchanged between different messages. An

effective approach to fuzz those protocols is to identify the structure of those

messages, and then define a model of those messages. Once the model is avail-

able specialized libraries can be leveraged, which allow generative fuzzing of any

protocol by just specifying its structure. Fuzzing old-generation protocols is usu-

ally done with this straightforward and effective generative approach. We will

examine this common approach in order to showcase how it struggles against

more complex ICS protocols.

We will now analyze the open-source fuzzowski[10] protocol fuzzer as a rep-

resentative example of a Modbus fuzzer. Fuzzowski is a black box generational

fuzzer based on a fork of Boofuzz[2]. The generative approach is done by identi-

fying the fields present in a subset of Modbus requests and then iteratively gen-

erating bytes to fill them. This is easily done by hand as requests have a sim-

ple structure, which doesn’t change much between different requests. This is a

common and effective approach and allows for a deep coverage of the Modbus

protocol.

The snippet of code in listing 3.1 defines a ”modbus read coil” request for the

Boofuzz framework. It identifies a series of fields (with s word), and chooses
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whether they should be fuzzed or not. This definition tells Boofuzz everything

it needs to know to successfully fuzz this part of the protocol. It will later use its

internal algorithms to generate a series of requests by mutating the fields iden-

tified as fuzzable. For crash detection, fuzzowski sends a simple modbus query

on a new connection after each test case, thus checking whether the last test case

made the target crash.

This is a standard approach to blackbox generative fuzzing, which we also

find in some published fuzzers such as the framework proposed by Ilgner and

Fujdiak[14].

This is not to say that fuzzing of old-generation protocols is a solved problem.

Many interesting ideas are being explored on how to effectively guide the genera-

tion of such fuzzers. MTF[30] and its successor MTF-Storm[16] implement an in-

teresting reconnaissance phase, and manage to automatically tailor their fuzzing

to the target even in a blackbox environment. ICPFuzz[25] proposes the use of

LSTM to learn the features of a proprietary protocol from traffic data and to fur-

ther guide the generation through analysis of ongoing traffic.

3.2 Architecture of our MMS fuzzer
In contrast to old-generation protocols, IEC61850 is more modern and directed to-

wards industry 4.0. Furthermore, the MMS protocol itself is much richer in func-

tionality than Modbus. Because of this MMS offers some peculiar challenges to a

generative approach. The structure of an MMS message is much more complex

than that of Modbus. Furthermore, it changes drastically with each message, and

even with each implementation. MMS messages support arbitrary user defined

objects, and therefore a generative approach clearly becomes difficult to imple-

ment. Writing definitions by hand would necessarily cover only a small part of

the protocol, and the process would require a large amount of man-hours, with

all associated human errors. On the other hand, a mutational approach, where

seed messages are mutated, would be easy to implement, but would most likely

lead to inefficient testing. By randomly mutating messages we would often mod-

ify the wrong fields, and make many of our test cases completely invalid, and

quite uninteresting. If we were to randomly modify a BER encoded message, we

would likely modify the length field of a TLV triple and completely invalidate

all following triples. Furthermore, this lack of knowledge of the packet structure

would completely impede our fuzzer from creating coherent packets where, for

example, a value field was extended or shortened.

3.2.1 Our solution
In order to solve those issues, we needed to develop an automatic and structure

aware fuzzer. Our fuzzer extracts the structure of MMS messages from a set of

seed requests. Afterwards, it is able to set up a generational approach over those
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structures, allowing for total protocol coverage as it can analyze any legal MMS

request. This approach, which straddles the line between mutational and gen-

erational approaches, is a good fit for MMS. Uninformed mutational approaches

would be limited by their lack of knowledge of the underlying protocol. While

this makes them faster to implement, they would tend to generate wildly invalid

packets, easily rejected by the PUT. Thus they would spend most of their time

on testing input validation instead of deeper parts of the code. By setting up

a proper generational approach dynamically, however, we manage to generate

valid or (close enough to valid) packets that tend to pass the first validation of

the PUT. This setup phase is the heart of our approach, and makes for a fast and

automatic equivalent to a hand built generational approach.

3.2.2 Architecture

Fuzzer

Client

PUT

Packet Replayer

Test Cases

Seed Traffic

PCAPControls

Packets

Figure 3.1: Basic Architecture

We developed:

1. A python fuzzer built on top of the boofuzz framework.

2. A custom MMS client written in C.

3. A python packet replayer allowing resending of test packets.

Apart from the main fuzzers, we developed both a custom client and a packet

replayer. Those are useful utilities that make our fuzzer easier to use. In order to

develop an easy to use fuzzer with this approach, we needed a way to automati-

cally generate seed traffic. We could have left this to the users, requiring packet

captures as setup for the fuzzer, but we believe that this would have made our

fuzzer quite cumbersome. We instead elected to develop a custom MMS client,

that automatically makes a series of requests which we can capture. When our
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fuzzer is launched without seed files, it automatically launches the client to make

some requests against the target, which it collects in a packet capture. This way

fuzzing a target is as simple as launching ./fuzzer.py -t ip:port. The fuzzer also

supports external traffic files, if that is preferred by the user. Having both choices

allows our fuzzer to be both simple to use out of the box, while keeping open to

full customization of seed traffic if needed. We also developed a packet replayer,

which allows to replay any test case from a run. This enables users to efficiently

replicate any found bugs, and should help in investigating vulnerabilities.

3.2.3 The Fuzzer
The MMS fuzzer functions as a blackbox generational fuzzer. It first generates

seed traffic by launching the client and capturing its traffic with the target. After-

wards, it analyzes the captured traffic and extracts the structure of the captured

requests. At last, this structure is used to define a generative fuzzing process,

which is then handled by the boofuzz framework.

3.2.4 The MMS Client
A client used for seed traffic generation. Once launched it makes a series of valid

requests to the server, which are used as seeds for further fuzzing. This automatic

traffic generation is needed to simplify the usage of the fuzzer, but the fuzzer also

supports PCAP traffic files generated independently. The client supports various

coverage options, generating only the required subset of requests. This makes it

possible to select more interesting requests depending on the target.

3.2.5 The Test Case Replayer
We offer a test case replaying tool to help in repeating and analyzing found crashes.

It allows one to resend any chosen test case exactly as during the fuzzing process.

In this way, users can trigger the crash again during debugging, simplifying the

investigation of found bugs.

3.3 Implementation

3.3.1 The Fuzzer
The fuzzer is written as a python command line tool. The fuzzing functions are

implemented using the open source boofuzz[2] fuzzing framework. Boofuzz was

chosen as it is a mature python framework, with a focus on black box protocol

fuzzing. As already seen it is used in fuzzowsky[10], and many other ICS blackbox

fuzzers. It independently handles many of the common parts of fuzzing, such as

saving test results and logging. Boofuzz also natively contains mature generation
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Listing 3.2: Handshake extraction

1 cap = pyshark.FileCapture(pcap, display_filter="cotp")
2 handshake1 = packetToBytes(cap[0].tcp.payload)
3 handshake2 = packetToBytes(cap[2].tcp.payload)
4

5 handshake1 = Request("handshake1",
6 children=[Static(name="handshake1", default_value=

handshake1)])
7 handshake2 = Request("handshake2",
8 children=[Static(name="handshake2", default_value=

handshake2)])
9 cap.close()

algorithms for most fuzzable types allowing us to focus on other matters. The

fuzzer takes many options as command line arguments, which are parsed using

the argparse library, allowing customization of the fuzzing process.

We will now describe the fuzzer in further detail, following it step by step in

a standard execution.

Traffic Generation

Once launched, if no seed traffic is provided to the fuzzer, it will automatically

generate some. To do so, it uses shell commands to start a tcpdump traffic cap-

ture, start the MMS client against the server, and stop the capture once it’s done.

This guarantees ease of use, with a completely automated traffic generation step.

In fact running our fuzzer only requires the target specification, and is otherwise

completely automatic (while still offering command options to customize the pro-

cess).

Packet Analyzer

Once the seed traffic is available, it needs to be analysed to setup the fuzzing

process. To do so we use the pyshark python package which supports an in depth

exploration of the seed PCAP file. Here we collect some handshake packets which

will be needed to establish each MMS connection. Those do not change according

to the connection so they are reused as-is. In listing 3.2 we can see the first pass

on the PCAP using pyshark. The handshake packets are set as Static as to not be

fuzzed. The defined requests will be sent before any test case to establish a new

connection.

Afterwards, we analyze all seed packets in the PCAP, as seen in listing 3.3.

The seed packets are first split according to the TLV format described in the BER

encoding state of the art. They are divided in Tag, Length Value triples and recur-

sively in TLV sub-objects in constructed types. In this way, a tree representing
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Listing 3.3: Seed packet analysis

1 filter = f"(mms) && (tcp.dstport == {target[1]})"
2 cap = pyshark.FileCapture(pcap, display_filter=filter,

include_raw=True, use_json=True)
3 for i, pack in enumerate(cap):
4 print(f"Analyzing {i}")
5

6 # We split the packet in a static header which we won’t
fuzz, and the actual MMS payload.

7 header, mms = splitMMS(pack)
8 mms = packetToBytes(mms)
9 header = packetToBytes(header)

10 head = Static(name="header"+str(i), default_value=
header)

11

12 # Here we dynamically generate a fuzzable block based
on our current MMS payload.

13 fuzzBlock = setupFuzzTLV(analyzeTLV(mms))
14

15 # Here we generate a human readable name for the packet
based on the kind of request made

16 name = getName(pack)
17 print(f"Name: {name}[{i}]")
18

19 # Lastly we generate the boofuzz request and connect it
to the session.

20 curReq = Request(f"{name}[{i}]", children=(head,
fuzzBlock))

21 session.connect(handshake2, curReq)
22 print(f"Success {i}")
23 cap.close()
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each packet is created which we will then use to inform our fuzzing process. This

step can be seen in listing 3.4.

Fuzzing Setup

We then setup the fuzzing process for the boofuzz framework. This is done by

traversing the generated tree for each packet, and setting up each node as a block

to be fuzzed in boofuzz. Each object contains a Tag field, a Length field, and either

a Value field or further sub-objects in a constructed type. Each field is fuzzed

in a separate way. Length fields are not fuzzed, and are instead linked to their

value fields as to stay consistent. As such they will always correctly represent the

length of the object, even as it changes during the fuzzing process. This avoids

generating invalid Length fields, which tends to make the BER packets completely

incoherent. Since a BER encoded packet is a succession of TLV objects, if a Length

is incorrect a parser will start reading the successive object at the wrong position,

leading to a completely random Tag and Length, quickly making the whole packet

invalid. Tag and value fields are instead fuzzed using their base values as seed

data. This results in an informed test case generation, which ensures that fuzz

cases pass at least the first steps of validation. In fact, the generated test cases

will always have a correct BER encoding, even if they don’t represent a correct

MMS message. This allows the test cases to always pass the first sanity checks,

and reach deeper parts of the code. This setup step can be seen in listing 3.5. We

extended boofuzz with two classes specific to MMS, MMSType which represents

a Tag field and MMSLength which represents a Length field. MMSLength extends

a Size boofuzz block, which always has a value corresponding to the length of a

linked block. Our class extends this functionality by supporting a BER specific

encoding, which splits the Length field in multiple bytes. Long length encoding

in BER supports a Length field of at most 126 bytes In this encoding, the first byte

has a flag bit set identifying the encoding, and the number of following bytes in

the remaining seven bits. Further bytes contain the actual length field.

Support for this encoding is useful as it’s an underused feature of BER within

MMS. As such, we expect it to appear in a path that is seldom executed and

that should contain many bugs. However this is also sometimes unsupported by

MMS servers, and they may completely reject messages containing this encoding.

Hence, we use it sparingly, in only about 1% of cases, to find a sweet spot.

We also developed a custom MMSType class, which extends the Bytes boofuzz

class. This class is needed to support long form Tag encodings in BER. Long form

encoded Tags have a first byte which identifies this type of encoding, and a bit set

in all further bytes until the last, signaling that the Tag continues. This custom

class is needed to always generate correctly formatted Tag fields. The encode

function enforces some constraints of the BER encoding. In particular, it keeps

the constructed bit set if the Tag was constructed in the seed traffic, keeping our

message structure correct. If our fuzzer were to modify a constructed bit, then
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Listing 3.4: TLV Analysis

1 def analyzeTLV(block):
2 res = []
3 cur = 0
4 l = len(block)
5

6 while cur < l:
7 tagLen = 1
8 tag = block[cur].to_bytes(1, "big")
9 # We need to handle long tags, marked by setting

the last 5 bits of the packet.
10 if getBits(tag[-1], 0,4) == 31:
11 tagLen += 1
12 tag = block[cur:cur + tagLen]
13 print(f"Long tag: Len {tagLen} Tag: {tag}")
14 while getBit(tag[-1], 7) == 1:
15 tagLen += 1
16 tag = block[cur:cur + tagLen]
17 print(f"Long tag: Len {tagLen} Tag: {tag}")
18

19 # This bit marks a constructed type, which we
identify separately.

20 if getBit(tag[0], 5) == 1:
21 res.append((FieldType.CONSTRUCTED_TAG, tag))
22 else:
23 res.append((FieldType.TAG, tag))
24

25

26 length = block[cur + tagLen]
27 res.append((FieldType.LENGTH, length.to_bytes(1, "

big")))
28 value = block[cur +tagLen + 1:cur + tagLen + 1+

length]
29 cur += length + tagLen + 1
30

31 # If the tag is constructed, we need to recursively
analyze the value as a TLV.

32 if getBit(tag[0], 5) == 1:
33 res.append((FieldType.TLV, analyzeTLV(value)))
34 else:
35 res.append((FieldType.VALUE, value))
36

37 return res
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Listing 3.5: Fuzzing Setup

1 nameCount = 0
2 def setupFuzzTLV(TLV):
3 global nameCount
4 curCount = nameCount
5 children = []
6 # Values in our tree are always triples of (type, value

, name)
7 for t, el in TLV:
8 # Tags are fuzzed by our custom MMSType class, here we

need to set the isConstructed flag appropriately.
9 if t == FieldType.TAG:

10 children += [MMSType(name="Tag"+str(nameCount),
max_len=3, size=len(el), default_value=el, fuzzable=True

)]
11 elif t == FieldType.CONSTRUCTED_TAG:
12 children += [MMSType(name="Tag"+str(nameCount),

max_len=3, size=len(el), default_value=el, fuzzable=True
, isConstructed=True)]

13

14 # Length fields are fuzzed by our custom MMSLength
class which extends the boofuzz Size class.

15 elif t == FieldType.LENGTH:
16 children += [MMSLength(name="Length"+str(

nameCount), block_name="Value"+str(nameCount), length=1,
max_length=126, fuzzable=False)]

17

18 # Base Value fields are fuzzed as bytestrings.
19 elif t == FieldType.VALUE:
20 children += [Bytes(name="Value"+str(nameCount),

max_len=0xff, default_value=el, fuzzable=True)]
21 nameCount +=1
22 # Constructed Value fields are recursively fuzzed as

TLVs.
23 elif t == FieldType.TLV:
24 nameCount += 1
25 # We need to update the block name of the last Length

field to match our inner TLV block.
26 children[-1].block_name = "TLV"+str(nameCount)
27 # And then recursively generate our inner blocks.
28 children += [setupFuzzTLV(el)]
29

30 res = Block(name="TLV"+str(curCount),children=children)
31 return res
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Listing 3.6: MMSLength

1 # Long length encoding uses multiple bytes to encode the
length, with the first byte having the highest bit set.

2 def longLengthEncoding(value, max_length):
3 res = [el for el in value]
4 # We choose a random amount of bytes in which to encode

our length.
5 l = random.randint(1, max_length)
6 # In the first byte, we set the highest bit to 1, and

encode the number of bytes chosen in the remaining 7 bits
.

7 res[0] = l
8 res[0] = setBit(res[0], 7)
9 fuzzLogger.log_info("Long length: " + str(l))

10 # Afterwards we fit the actual length into the
remaining bytes.

11 tmp = value[0].to_bytes(l, "big")
12 for el in tmp:
13 res.append(el)
14 return bytes(res)
15 # This class is used to fuzz an MMS length.
16 class MMSLength(Size):
17 def __init__(self, name=None, block_name=None, request=

None, offset=0, length=4, endian="<", output_format="
binary", inclusive=False, signed=False, math=None,
max_length=0, *args, **kwargs):

18 if(max_length == 0):
19 self.max_length = length
20 else:
21 self.max_length = max_length
22 super().__init__(name, block_name, request, offset,

length, endian, output_format, inclusive, signed, math,

*args, **kwargs)
23 # We override the encode function to use our custom

length encoding.
24 def encode(self, value, mutation_context):
25 # Randomly choose a long length encoding.
26 value = super().encode(value, mutation_context)
27 if random.random() <= 0.01:
28 value = longLengthEncoding(value, self.

max_length)
29 return value
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Listing 3.7: MMSType

1 class MMSType(Bytes):
2 def __init__(
3 self,
4 name: str = None,
5 default_value: bytes = b"",
6 size: int = None,
7 padding: bytes = b"\x00",
8 max_len: int = None,
9 isConstructed: bool = False,

10 *args,
11 **kwargs
12 ):
13 # We need to know if the type is constructed, so we

can set the correct bit in the tag.
14 self.isConstructed = isConstructed
15 super().__init__(name=name, default_value=

default_value, size=size, padding=padding, max_len=
max_len, *args, **kwargs)

16

17 def encode(self,value,mutation_context):
18 value = super().encode(value, mutation_context)
19 if value is None:
20 value = b""
21 return value
22 res = [el for el in value]
23 # We set the constructed bit in the tag if the type

is constructed, as this may have been changed by the
fuzzer breaking our message structure.

24 if self.isConstructed:
25 res[0] = setBit(res[0],5)
26 else:
27 res[0] = clearBit(res[0],5)
28

29 # If our tag is longer than one we need to mark the
first byte as a long tag.

30 l = len(value)
31 if l > 1:
32 res[0] = setBits(res[0], 0,4)
33 # And set the highest bit in the remaining

bytes(apart from the last) to 1.
34 for i in range(1,l-1):
35 res[i] = setBit(res[i], 7)
36 return bytes(res)
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Listing 3.8: Ping

1 def ping(target:Target, fuzz_data_logger, session,
test_case_context=None, *args, **kwargs):

2 target.open()
3 fuzz_data_logger.log_info("Sending handshake")
4 # The sent packets are hardcoded, as they are not

fuzzed.
5 target.send(handshake1Pack)
6 target.send(handshake2Pack)
7 target.recv()
8 fuzz_data_logger.log_info("Pinging")
9 # pingPack contains an MMS identify request.

10 target.send(pingPack)
11 res = target.recv()
12 target.close()
13 if(len(res) > 0):
14 fuzz_data_logger.log_pass("Ping successful")
15 else:
16 # A log_fail call will cause the previous test case

to be marked as failing
17 fuzz_data_logger.log_fail("Ping failed")

further fields would be interpreted incorrectly as nested values. This would make

our whole packet invalid. Furthermore, the fuzzer keeps the length of our tag

correct, by setting the appropriate continuation bits. This again is needed to keep

our packet coherent. This long form encoding of Tags is actually used within the

MMS specification, as such long tags are usually supported by MMS servers and

supporting them ourselves is needed.

Crash Detection

Crash detection is implemented by sending a valid, simple identify MMS request

to the server on a new connection. This should always be answered, and if the

server doesn’t accept new connections or answer a simple identify request, we

assume it to have crashed. This step is ran after every test case. If it fails, the test

case sent just before is assumed to be crashing, and marked as such. Using an

MMS request rather than a simple ping is necessary as a ping server will often

be implemented in a separate process from the main MMS server. Checking if

the server is still responding after each test case is the only way to surely detect

a crash. Servers will sometimes silently drop connections if they deem the re-

quests corrupted or invalid, which is often the case during fuzzing and not to be

interpreted as a crash. More advanced error detection may be possible by check-

ing whether the received responses match the specification. However, such an
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in-depth analysis would certainly be complex, and require access to the specifi-

cation which was not available to us.

The Fuzzing

At last, the fuzzing is handed over to boofuzz. Once launched and properly setup,

boofuzz’s algorithms handle the test case generation for us. Furthermore, it na-

tively supports all other steps of fuzzing, such as saving all tried test cases in a

database for further investigation. It also supports a web interface from which

the fuzzing process can be comfortably monitored.

3.3.2 The MMS Client
The client is written in c, in order to use the bindings for libiec61850[18]. li-

biec61850 is a c library for writing server and clients, and has full support for

the MMS protocol. The client supports multiple coverage options, which makes

it possible to select a subset of available requests. Once launched it will connect

to the target server, and make the selected requests. Some requests are influ-

enced by the results of queries. For example, it will query the target for a list

of variables and then use the found variables in successive read/write requests.

Targeting existing variables is important as in IEC61850 they are identified by a

human-readable name. As such it would be almost impossible for our fuzzer to

randomly find valid variable names from seed traffic that didn’t include this infor-

mation. It supports all requests offered by libiec68150, and as such offers almost

complete coverage of the protocol. This level of coverage allows our fuzzer to test

little used commands, which will be more likely to contain bugs.

3.3.3 The Test Case Replayer
Boofuzz saves all ran test cases in an output sqlite database. This includes all sent

and received bytes in a connection. As such our implementation of the packet

replayer connects to the sqlite database, and queries it for all sent and received

data in a chosen test case. It then reenacts the test case, sending all data as it was

sent during fuzzing. Furthermore, it checks whether the received data matches

with the test case. Otherwise, the user is notified, as this could imply that the

crash was influenced by a previous test case.

All code is publicly available at https://github.com/Sofnya/MMS_
Fuzzer.
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Chapter 4

Validation

4.1 The Lab
We tested our fuzzer against a commercial PLC running an IEC61850 server, a

fairly commonly used commercial product in ICS. The device is a PLC that of-

fers support for various ICS protocols, on which a IEC61850 server license was

activated. It was set up as a simple server, with no complex internal state or ex-

ternal peripherals. While this does not allow for complete testing, the server still

supports most commands, so it remains an interesting target. We had internet

access to the PLC through a VPN, and were able to restart manually it from a web

interface.

4.2 Our Tests
Our tests consisted of 3 runs of our fuzzer against the target. The first run was

launched with standard coverage options. However it only fuzzed the first packet

it found, an InitiateRequestPDU, since fuzzing that was quickly able to crash the

target. In the other runs, we manually specified a single seed packet to fuzz. The

second run was launched on a Write request and the third run on a Read request.

In all of the runs, our fuzzer was able to crash the target within 5 minutes,

by finding three separate bugs in the server. After our runs found the bugs they

stopped as there was no way to automatically restart the remote target. This is

a limitation to our tests as it prevents us from collecting information such as the

number of crashes found per hour. However, we believe that being able to quickly

find separate crashes is a pretty strong result on its own. In order to extrapolate

some further interesting data from our tests we will now define some metrics.

4.2.1 Metrics

We collected some data on our runs in Figure 4.1.
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Levenshtein distance

The Levenshtein lev(a,b) distance between two strings a and b can be defined with

the following recurrence relation[8]:

lev(a, b) = min


lev(tail(a), tail(b)) ifa[0] = b[0]//copy,

lev(tail(a), tail(b)) + 1 ifa[0] <> b[0]//substitution,

lev(tail(a), b) + 1, //deletion

lev(a, tail(b)) + 1 //insertion

(4.1)

This is a commonly used measure of the edit distance between two strings,

counting substitutions, deletions and insertions. We measured the average Lev-

enshtein distance between the original seed value and all the produced test cases

as a way to measure how much the fuzzers were mutating the seed packets. For

example an average Levenshtein distance of 16 means that on average the fuzzer

modified, inserted, or removed 16 bytes from the seed.

The average edit distance is an interesting metric when regarding the effi-

ciency of a fuzzer, as it shows how much a fuzzer tends to mutate the input.

Manes et al[19] defined fuzzing as ”The execution of the PUT using input(s) sam-

pled from an input space (the “fuzz input space”) that protrudes the expected input

space of the PUT”. With this definition in mind the average Levenshtein distance

can be seen as a measure of how much the fuzz input space protrudes the expected

input space.

The issue of how much a mutational fuzzer should mutate an input has been

widely discussed, and it seems that the mutation ratio of fuzzers holds a great

importance to fuzzer performance. Cha et al[4] found that the number of bugs

found in various PUTs was influenced by the mutation ratio of the fuzzer, with

separate PUTs often having different optimal ratios. Intuitively, inputs that are

too similar to their seed are likely to be uninteresting in finding bugs, whereas

inputs that differ too much tend to be rejected in the input validation.

Response rate

We define the response rate as:

responserate = #responses/#fuzzcases (4.2)

This measures the likelihood of one of our fuzz cases receiving a response from

the target. Since validation steps silently drop any requests that are incorrect, we

take this to be a measure of how likely it is for one of our fuzz cases to pass the

validation step.

This is especially useful in conjunction with the average distance. Intuitively,

high edit distances in conjunction with high response rates would indicate that a
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Seed packet fuzzed: Initiate Write Read

Run Length: 188s 316s 63s

Number of fuzz cases: 130 302 78

Average Levenshtein distance: 16.75 14.16 7.33

Response Rate: 26.36% 84.44% 42.31%

Length of seed: 187 58 55

Average length of fuzz cases: 202.4 70.6 61.2

Min-Max length of fuzz cases: 184-482 57-390 55-181

Found bugs: 1 1 1

Figure 4.1: Our runs

fuzzer was able to modify its seed more skillfully. Clearly, if a packet has a high

distance and was still accepted by the PUT then our fuzzer would have modified

it in way that kept it recognizable, while still differing enough from the seed to

be interesting.

Furthermore, we measured how much the various runs modified the length of

our packets, by collecting the length of the seed and the minimum and maximum

lengths of our fuzz cases. This holds some interest for us, as minimum and maxi-

mum values that differ little would show that a fuzzer wasn’t modifying its seed

length by much.

4.2.2 Comparison with available fuzzer
We also tested two runs of the only other open-source MMS fuzzer[13] we could

find. The fuzzer is a mutational blackbox fuzzer that requires separately generated

traffic in a specific format. We setup the fuzzer with seed traffic of a Write request,

as this was the only requests supported by both the fuzzer and the server. It

seems that the fuzzer supports a rather small subset of MMS requests. The first

run lasted 35 minutes without incident, and didn’t find any bugs. The second

run was supposed to last for an hour, but crashed at the 44 minute mark with no

bugs found. It seems that the fuzzer crashes whenever the server doesn’t reply

to one of its fuzz cases. This is a serious oversight as servers will often ignore

incorrect requests, and a fuzzer should expect this to happen. The fact that the

fuzzer only encountered this after 40 minutes of fuzzing makes us believe that

the sent packets where not mutated in interesting ways. While the edit distance

shows that mutations certainly took place, those probably happened in relatively

safe spots. Unfortunately, we believe this limitation to be rather serious, impeding

any kind of long run. Furthermore, it seems that the fuzzer has some limitations in

regards to bug checking, as it runs all its test cases on a single MMS connection,

and does no pings in between. After a run it outputs a pdf that contains some

information on the seed packets, but no report on any found bugs, or the test
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Seed packet fuzzed: Write Write

Run Length: 35m 44m

Number of fuzz cases: 20k 24k

Average Levenshtein distance: 7.85 7.85

Response Rate: 100% 99.99%

Length of seed: 58 58

Average length of fuzz cases: 58.9 58.9

Min-Max length of fuzz cases: 53-83 22-83

Found bugs: 0 0

Figure 4.2: Benchmark runs

cases run. Therefore a user needs to separately collect all the generated traffic,

and look through it by hand to find any crashing packets.

We collected the run data in Figure 4.2. By analyzing the traffic generated

it seems that the fuzzer varied the values much less than our own fuzzer on the

same Write seed packet. While it had an almost perfect 100% response rate in both

runs, versus our 84.44%, it had an average edit distance of 7.85, almost half of our

own 14.16. While the lengths varied a fair amount, the relatively low edit distance

seems to show that the fuzzer wasn’t modifying its seed enough to find our same

bug. In fact, being able to modify our packets by an average of 14 bytes and

still achieving a 84% response rate seems to confirm the success of our informed

fuzzing approach.

This clearly isn’t a rigorous measure of fuzzer performance, as such a compari-

son holds many difficulties which we didn’t have the means to solve. In particular,

we were only able to test the fuzzers on one target, which may be more favorable

to one fuzzer rather than another. Furthermore, we couldn’t run the fuzzers for

a long enough period, as finding a single bug in a short time may be just result

of luck, and is much less statistically significant than finding a certain amount

of bugs per hour over 24 hours or more. However, the only other available open

source fuzzer showed great limitations, and we were able to find and report three

bugs. As such we feel we can comfortably say that at least in this instance our

fuzzer outperformed the competition.

4.2.3 Found Vulnerabilities
We found that by sending a modified Initiate-RequestPDU, Write or Read packet,

one could completely crash the server, stopping it from accepting any new con-

nections until a manual power cycle occurred.

The bugs require no authentication or privilege apart from a connection to the

server to exploit, and no advanced knowledge is needed to implement it. In fact,

once the triggering packets were known we were able to reliably crash the target
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just through packet replaying. Unfortunately no further analysis of the bugs could

be made as we had no access to the code running on the target. Such bugs may

escalate in gravity to full on RCE under the proper conditions. That being said

we certainly have a Denial of Service vulnerability, which is still a serious threat

against ICS.

While DoS vulnerabilities are sometimes considered not critical, they become

so in the field of ICS. Shutting down an Industrial Control System means shutting

down a physical process such as a factory, or in the worst cases, an entire power

plant. This is much more severe than the temporary shutdown of a server as such

an attack may disconnect thousands of people from the electrical grid.

Report Timeline

The bugs were reported to the vendor on 11/09/2023. They were confirmed on

14/09/2023, and given a preliminary CVSS score of 7.5/10, as a no authentication

DoS vulnerabilities, pending further analysis. On 26/09/2023 the vendor notified

us that the bugs triggered the same vulnerability, for which CVE-2023-5188 was

reserved. We are currently awaiting for a patch to be developed and an advisory

to be published, where the score will be finalized.

4.3 Results
The fuzzer was able to discover a serious vulnerability on a commercial target,

with a preliminary 7.5 CVSS score. The vulnerability was reserved a CVE Identi-

fier, which confirms that we found a real zero day vulnerability on a commercial

system. Furthermore, in this instance our fuzzer outperformed the only other

available open source fuzzer, which wasn’t able to find any vulnerabilities in the

target. The collected data also seems to suggest that our approach produced better

test cases than a standard mutational fuzzer.
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Chapter 5

Conclusions

In front of the security crisis Industrial Control Systems are facing, there is a deep

need for the work of security researchers on the field. Our fuzzer offers an open-

source tool which has already proved effective on one commercial PLC. We hope

it will be used by developers of MMS servers to validate their products, as this

would certainly improve the security of this protocol in the future. As such we

feel that we successfully met the goals of this thesis.

5.1 Future Works
The fuzzer may use some improvements, mostly in its speed. While the limiting

factor is certainly the time that the targets take to respond, we could take mea-

sures to reduce the number of requests per test case. At the moment, for every

test case, a new connection needs to be established, which contain two requests

each, and for the ping packet sent on a new connection, three different packets

need to be sent. So for each test case we need to send 5 accessory requests, which

is quite bad when targets are so resource limited and take so long to respond to

each request.

Having access to the MMS specification would also allow us to test whether

the responses matched our expectations, possibly flagging some more subtle bugs.

In the future we hope to run some further tests on our fuzzer seeing that we only

had one target available in our lab. Furthermore, we would love to put our fuzzer

to use, in finding and reporting other vulnerabilities.
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