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Abstract

The adoption of Transport Layer Security (TLS) has increased significantly in recent years,

both in benign software and malware communications [1]. This trend has led to the devel-

opment of new network analysis techniques, such as fingerprinting and certificate analysis,

which can be employed without direct access to the encrypted segments of TLS communica-

tions.

This thesis aims to develop and evaluate a malware classification system capable of distin-

guishing among different malware families by analyzing their encrypted traffic.

The method employed is a fingerprinting system based on first-order Markov chains, as pre-

sented in Korczyński and Duda [2]. This system encompasses both TLS record type-based

and packet length-based fingerprinting approaches, considering both bidirectional and unidi-

rectional traffic to generate four distinct models. The findings presented in this thesis show

that both TLS record types and packet lengths are valid classification parameters. Further-

more, our analysis suggests that methods using TLS record types perform better compared to

those that use packet lengths.
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Introduction

The use of the TLS has risen considerably in the last years [3], both in legitimate communi-

cation and in malware communication. Traffic encryption has been observed in many types

of malware, particularly in the process of payload deposit, data exfiltration, and command

and control communication. With TLS, malware traffic is indistinguishable from legitimate

traffic, rendering traditional malware detecting techniques harder to use. Traditional packet

inspection can still be used to analyze encrypted traffic, but it requires the ability to decrypt

said traffic, which is not always feasible and defeats the purpose of TLS, rising important

privacy and security issues. Given these constrains, new techniques have been developed,

such as certificate analysis and fingerprinting, the process of selecting some traffic charac-

teristics and creating a ’fingerprint’ that can be used to identify future traffic with the same

characteristics.

Malware detection techniques based on fingerprinting can use different parts of a network

flow; many, for example JA4 [4] and Mercury [5], use the first part of a TLS communication,

which is unencrypted (namely the ClientHello message or the ServerHello message). Several

metadata can be extracted from these handshake messages and used to create a fingerprint,

such as protocol version, Server Name Indication (SNI), and the lists of cipher suites and

TLS extensions.

Other fingerprinting techniques use the entire network flow to create their fingerprints. Ko-

rczyński and Duda [2] in particular showed that a Markov chain fingerprint that considers

TLS record type, and unidirectional traffic (only packets coming from a server) can reliably

classify different applications. Ha and Roh [6] used a similar stochastic model, but consid-

ered packet lengths instead.

In this thesis we build a malware classifier based on first order Markov chains, as done in

Korczyński and Duda [2], but we’ll consider bidirectional and unidirectional traffic, as well

as TLS record types and packet length, thus creating four models.
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We used these models to create a fingerprint for four common malware that use TLS (Cobalt

Strike, Dridex, Emotet, and Trickbot), and assess both their ability to classify malware, and

to properly discriminate malware from legitimate communications, by validating the models

against both types of traffic.
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1. Background

This chapter describes some fundamental concepts underlying this thesis. Section 1.1 gives

a description of how TLS works, section 1.2 talks about malware and its use of TLS, and

section 1.3 goes over some fingerprinting techniques.

1.1 TLS

The main protocol used to encrypt network traffic is TLS, the successor of the now deprecated

Secure Sockets Layer (SSL) protocol. TLS provides authentication, confidentiality, and data

integrity, hence it secures the communication between two machines (usually a client and a

server) communicating over the Internet. [7].

TLS sits between the transport layer and the application layer (see figure 1.1) ant secures the

communication before any data is transmitted to or from the application layer. Its primary

components are the TLS Handshake Protocol and, at a lower level, the TLS Record Protocol.

The handshake protocol is responsible for negotiating encryption and security parameters,

that will then be used by the record protocol to send the actual message.

During the handshake phase, a public-key cryptographic algorithm is used to exchange data

(premaster secret) in order to construct a symmetric key (master secret) that will be used to

secure the following communication.
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Figure 1.1: TLS in the TCP/IP stack

Different version of TLS have been written over the years. For the present work, the most

important change comes with TLS version 1.3, which encrypts all handshake messages after

ServerHello, while previous versions fully encrypt only the last handshake message. A sum-

mary of TLS versions can be found in table 1.1.

Version Year RFC

1.0 1999 - 2021 2246 [7]

1.1 2006 - 2021 4346 [8]

1.2 2008 - in use 5246 [9]

1.3 2018 - in use 8446 [10]

Table 1.1: TLS versions

The rest of this section will provide a more detailed description of how the different TLS

components work.

• TLS handshake protocol: it is used by a client and a server to authenticate them-

selves, and to agree on the encryption and security parameters that will be used by the

record layer.

During the handshake, a connection is initiated by the client with a ClientHello mes-

sage. This message includes the TLS version the client wants to use, a sequence gen-

erated by a random number generator, a session ID (empty if it’s a new session, or a
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specific identifier of a session the client wants to resume), a list of cipher suites sup-

ported by the client, in order of preference, and a list of compression methods supported

by the client.

The server responds with a ServerHello message, which includes the chosen cipher

suite, compression method, and TLS version, along with a random sequence, and the

session ID corresponding to the connection to be created or resumed. The server sends

a Certificate message (if the key exchange method is not anonymous) usually contain-

ing its certificate. If this last message does not contain enough information for the

client to exchange a premaster secret, the server sends a ServerKeyExchange message

containing cryptographic information. The server can optionally request the client’s

certificate with a CertificateRequest message.

This phase ends with a ServerHelloDone message: the server has finished its part of the

key exchange communication. The client verifies the server certificate and the Server-

Hello security parameters, and, if requested, it sends its certificate in a ClientCertificate

message. The client sends a ClientKeyExchange message, containing the premaster se-

cret (PMS). With the premaster secret exchanged, both the client and the server can

now independently compute the master secret (MS) using the premaster secret itself,

and the client and server random sequences. Client and server notify each other they

will next be using the negotiated security parameters with a ChangeCipherSpec mes-

sage. Both the client and the server send a Finished message. This is the first message

encrypted with the negotiated parameters. It is used to verify the correctness of the

previous steps (key exchange and authentication). The full list of handshake content

types can be found in table 1.3.

• TLS record protocol: the record layer transmits a message to its destination. The data

is fragmented and (optionally) compressed using the compression algorithm negotiated

by the handshake protocol. Before the transmission, the MAC is added and the encryp-

tion algorithm is applied to the message according to the handshake negotiation. The

incoming data are processed in reverse order: they are decrypted, verified, and decom-

pressed before being sent to a higher level.
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Other TLS components that sit at the same level of the handshake protocol are:

• Alert protocol: it is used both to signal the end of a session (closure alerts: close notify

message), and to deliver alert messages (error alerts), along with their severity (warn-

ing, fatal).

• Change cipher spec protocol: it signals a change in the security parameters the record

layer should use. It is not a handshake message, but its own content type.

• Application data protocol: this protocol handles application data messages. It de-

livers them to the TLS record layer, where they are fragmented, compressed, and en-

crypted.

Number Description

20 change cipher spec

21 alert

22 handshake

23 application data

24 heartbeat

Table 1.2: TLS content types

Number Description

0 hello request

1 client hello

2 server hello

4 new session ticket

8 encrypted extensions (1.3 only)

11 certificate

12 server key exchange

13 certificate request

14 server hello done

15 certificate verify

16 client key exchange

20 finished

Table 1.3: Handshake content types
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1.2 Malware

The term ”malware” (malicious software) refers to any software intentionally designed to

damage the functioning of a computer system or network, or to alter or steal information

contained in the target machine.

Malware can be categorized based on what they do in the infected machine and how they

gain access to the infected machine.

Some common types of malware are:

• Virus: a virus requires to be executed by the victim in order to begin its infection. When

executed, it adds its own code to that of another, legitimate, program, through which it

can replicate itself.

• Worm: a type of malware that actively spread itself over a network, without the victim’s

action.

• Trojan horse: a malware that disguise itself as a legitimate software, and hides its

true intentions. It is commonly spread via social engineering, for example by email

attachments, that once opened execute the malware. Once in the target system, it can

download and install additional malware, in this case the trojan acts as a ”dropper”. A

trojan subcategory is a Remote Access Trojan (RAT), a malware that has access to a

machine through a network connection, and is installed without the user’s knowledge.

In 2021, nearly 46 percent of malware detected by Sophos Labs used TLS [1]. Although

malware can use TLS in the process of payload deposit, data exfiltration, and communication

with a command and control server, the majority of TLS use is detected in the initial phase

of an attack, when a main module of a malware is downloaded [1].

Malware generally uses encryption as a way to disguise itself, blending its traffic with that

of legitimate programs, while benign traffic uses TLS for its security features. It is perhaps

for this reason that malware TLS cryptographic parameters have in the past been found to be

older and weaker than those of legitimate software [11].
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What follows is a list of malware used in our fingerprinting system:

• Cobalt Strike: an offensive security tool used both by legitimate and malicious actors

[12]. It is classified as a RAT. Its primary component are a ”team server”, which acts as

a command and control (C2) server, and a client, used by the attacker (legitimate or not)

to connect to the team server. [13] Cobalt Strike default payload is called ”beacon”,

which connects to the team server, checking for additional commands.[14]

• Dridex: a banking trojan, that is a trojan that tries to steal banking information. Its

primary method of infection is via attachments in phishing emails, namely MS Word

documents containing macros. When executed, such macros contact a command-and-

control server, from which they download additional malware modules or, in some in-

stances, the main malware module itself [15]. Dridex uses TLS, usually over Hypertext

Transfer Protocol (HTTP) on port default 443 to download additional modules, and ex-

filtrate the stolen data [1].

• Emotet: initially used as a banking trojan and information stealer, it has been re-

purposed as a dropper for other malware. The initial infection is through malicious

attachments in phishing emails. Unlike other trojan, Emotet attempts to replicate itself

within a network [16].

• Trickbot: a trojan and information stealer, it is also used as a dropper. It is spread

mainly through spearfishing campaigns, that is phishing emails aimed at specific peo-

ple. Trickbot exfiltrates stolen information to a command and control server, and is

capable of downloading additional components and configuration files [17]. The com-

munication with its command and control server is over Hypertext Transfer Protocol

Secure (HTTPS).

Based on the analysis our malware samples 2.1, each of these malware use TLS, opening

many TLS connection per attack event. All of them, with the exclusion of Cobalt Strike,

connect to more than one server during an attack. Dridex and Cobalt Strike use mainly

default TLS port 443, Trickbot uses non default ports 447 and 449, while Emotet uses mainly

ports 8080, 80, and 7080.
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1.3 Fingerprinting

Network fingerprinting aims to identify a certain number of network values and characteris-

tics specific to a system. The ensemble of these values is called ”fingerprint”, which can be

used for future identification of the same system.

Fingerprinting can be used to identify operating systems [18], clients [19], protocols [20],

applications [21] [22], and even users [23]. Fingerprinting can be either passive or active.

Active fingerprinting probes the target system by sending it packets and analyzing the corre-

sponding replies. Passive fingerprinting analyses the traffic without interfering with it.

Fingerprinting techniques are particularly valuable in the classification of encrypted net-

work traffic, as they use unencrypted metadata (mainly values from the handshake messages)

to create their fingerprints, leaving all of TLS security properties unaltered.

The first example of fingerprinting applied to SSL/TLS is an Apache module developed in

2009 by Ivan Ristić [24] to extract client supported cipher suites from an SSL handshake [25]

[26].

Other methods combine handshake values with packet lengths and packet interarrival times,

or with related Domain Name System (DNS) or HTTP traffic to construct a unique fingerprint

[27] [28].

Fingerprinting techniques can be also divided in two categories: those that use only the first

packets to create a fingerprint, and those that consider the whole communication flow.

What follows are some common TLS fingerprinting tools belonging to the first category:

• Mercury: (successor of Joy [29]) a passive TLS fingerprinting tool, uses ClientHello

messages to construct its fingerprints. The fingerprint is composed of: TLS version,

list of cipher suites, list of extensions, as well as some ”contextual information”: desti-

nation IP address and port, and server name value [5] [30].

• JA4: (successor of JA3 [31]) a passive TLS client fingerprinting tool. The fingerprint

elements are: TLS version, SNI, Application-Layer Protocol Negotiation (ALPN),
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number of cipher suites and extensions, transport layer protocol, and cipher suites and

extensions lists [32].

• JARM: an active TLS server fingerprinting tool [33]. It sends a server ten ClientHello

messages and uses the responses to create a fingerprint string. The sent messages have

different TLS versions, ciphers, and extensions in order to gather as many diverse re-

sponses as possible [34].

1.3.1 Markov chain fingerprinting

One fingerprinting system that uses the entire network flow is the one proposed in Korczyński

and Duda [2]. They constructed a model consisting of a fist order, homogeneous Markov

chain, where the states correspond to TLS record types, or TLS record type sequences ob-

served in a TLS communication.

A Markov chain is a stochastic process that satisfies the Markov property:

P(Xn+1 = in+1|Xn = in,Xn−1 = in−1, ...,X0 = i0) = P(Xn+1 = in+1|Xn = in)

that is, the probability distribution of Xn+1 depends only on Xn, and not on past values of X.

A Markov chain is homogeneous if:

P(Xn+k = j|Xk = i) = P(Xn = j|X0 = i)

that is, if the transition probabilities don’t depend on k.

In Korczyński and Duda [2], given a discrete-time random variable Xt , with t = t0, t1, ..., tk ∈

T , that takes values it ∈ {1, ...,n}, that is the states set, the set consisting of the TLS record

types or TLS record type sequence, the transition matrix is defined as: [pi− j]i, j=1,...,n where

pi− j = P(Xt = it |Xt−1 = it−1) = P(Xt = j|Xt−1 = i)

To calculate the probabilities of entering and exiting the Markov chain, two vectors are

used: an enter probability vector Q = [q1,q2, ...,qn]
T , where qi = P(Xt = i) at time t = t0 and

an exit probability vector W = [w1,w2, ...,wn]
T , where wi = P(Xt = i) at time t = tn.
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Thus, the probability of a states sequence X1,X2, ...,XT representing a TLS flow is: P(X1, ...,XT )=

qi1 ·∏T
t=2 pit−1−it ·wiT
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2. Methodology and validation

This chapter describes how the fingerprints have been constructed using a Markov chain

model. Section 2.1 describes how data is collected, section 2.2 describes how the Markov

chain model is build and validated.

Four malware classifier based on Markov chains have been constructed, following the

method described in section 1.3.1. Each model considers bidirectional traffic or unidirec-

tional traffic, and its states consists of TLS record types or packet lengths.

Four types of malware have been chosen (Cobalt Strike, Dridex, Emotet, and Trickbot), for

every one of them several pcap files 1 have been downloaded from Malware Traffic Analy-

sis (MTA), filtered to contain only malicious traffic, and divided in two sets: a build set and a

validation set. The build set contains elements used to create the models, and the validation

set contains elements used to test the models. Figure 2.1 gives a summary of how data has

been handled.

Figure 2.1: Data flow

1Files containing packet captures: every packet passing through a network interface during the capturing

process. They can be read and generated with tools such as Wireshark [35] and Tshark [36].
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2.1 Data collection

The malware chosen for this analysis are Cobalt Strike, Dridex, Emotet, and Trickbot. All

packet captures have been downloaded from MTA [37]. The choice of these malware is based

on the fact that they use TLS, and the sample availability on MTA. As shown in table 2.1,

earlier captures are from 2019, and later capture are from 2023.

Every pcap file have been filtered in order to remove any non-malware related traffic. To

this end, the indicators of compromise (IOC) relative to a pcap file is used to extract the IP

addresses involved in the malicious traffic. This information is used to create a Tshark filter

[36], and filter the original pcap. The result is a filtered pcap file containing only malicious

traffic relative to a specific malware.

For every malware, its pcap files have been divided into two sets: a build set and a validate

set.

Malware Number of pcap files Number of TLS flows Time interval [years]

Cobalt Strike 63 21631 2020 - 2023

Dridex 10 121 2019 - 2021

Emotet 21 1397 2021 - 2023

Trickbot 17 425 2019 - 2021

Table 2.1: Collected data (total)

A small number of non-malware TLS traffic (labeled ’none’) has been captured on a MS

Windows machine, it consists of 394 flows. This traffic has been used in the validation phase,

in order to test the models on legitimate traffic. The legitimate traffic is not used in the build

phase, therefore the models can not explicitly classify a traffic flow as ’benign’, but rather

as ’belonging to none of the considered malware’. More specifically, the models consider

the traffic associated with a classification probability lower than a given threshold as non-

malware (see section 2.2.2 on the choice of this threshold). Therefore, we refer to this traffic

as ’none’, instead of ’benign’, in order to avoid any misleading.
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Table 2.2 details the data division between the build set and the validate set. The file di-

vision is approximately even, favoring the build set in the case of an uneven number of files.

We chose to split the data at the file level rather than at the flow level, in order to preserve

the atomicity of a malware infection event. This has led to an uneven distribution of the net-

work flows between the build set and the validation set, but they are still mostly reasonably

distributed, and when not (in the case of Cobalt Strike), the number of flows still favors the

build set.

Malware Build set [files] Build set [flows] Validate set [files] Validate set [flows]

Cobalt Strike 32 15644 31 5987

Dridex 5 57 5 64

Emotet 11 608 10 789

Trickbot 9 238 8 187

Table 2.2: Data division

2.2 Model

Four models have been created, all based on first order homogeneous Markov chains. The

difference between these models is the information used to construct the transition matrix

states, and which packets have been considered.

For the packets we have two cases: bidirectional models, that consider the entire client-server

communication (where ’client’ refers to the malware infected machine, and ’server’ refers to

the remote machine contacted by the malware), and unidirectional models, that consider only

packets coming from the server.

For the states we have the following two cases:

• Type based models: the Markov chain states coincide with the TLS record content

types (table 1.2 and table 1.3). In the case of a packet containing multiple TLS records,
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these have been concatenated together, resulting in a single state.

• Length based models: the Markov chain states are constructed based on the packets

lengths. Following McGrew and Anderson [38] the lengths are divided into intervals

of 150 bytes. Thus, state i, (i > 0) represents packet lengths in [(i− 1) · 150, i · 150).

In the bidirectional case, in order to account for the client component, the number of

states are doubled: we consider positive states (i > 0) for packets coming from the

server, and negative states (i < 0) for packets coming from the client [6].

By taking the combinations of flow directions and the types of states, we have four models

to classify the chosen malware:

• M1: states are the TLS record content types, built considering client and server traffic

(labeled: ’types + bidirectional’).

• M2: states are the TLS record content types, built considering only traffic flows coming

from the server (labeled: ’types + unidirectional’).

• M3: states are the packet lengths, built considering client and server traffic (labeled:

’lengths + bidirectional’).

• M4: states are the packet lengths, built considering only traffic flows coming from the

server (labeled: ’lengths + unidirectional’).

2.2.1 Sequence normalization

Several state sequences have been extracted from the pcap files described in section 2.1, the

states being TLS record types or packet lengths, depending on the model used.

Given that the length of these sequences varies between 1 and 1363, a length analysis has

been performed in order to restrict the interval of length sequences used to build and validate

the models, ideally restricting it to only one sequence length. The reason being that longer

sequences have an intrinsically lower probability of representing a TLS flow (see 1.3.1), thus

confronting sequences of different lengths could be misleading. This length analysis process

has been done separately for the unidirectional case and for the bidirectional case.

16



For each malware the four most common lengths have been retrieved, they are shown in table

2.3.

Bidirectional Unidirectional

Malware 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Cobalt Strike 7 6 9 8 4 3 6 2

Dridex 7 6 5 45 3 2 42 4

Emotet 6 8 7 9 3 4 2 5

Trickbot 8 9 7 6 4 3 5 6

none 7 6 5 8 1 3 2 4

Table 2.3: Four most common sequence lengths for each malware

From table 2.3, we can see that a good length for the bidirectional case is 7, and for the

unidirectional is 3, given that they are common sequence lengths for every class.

Table 2.4 contains the number of flows used in model M1 and M3, and table 2.5 contains

the number of flows used in model M2 and M4.

Malware Build set [flows] Validate set [flows] Total [flows]

Cobalt Strike 11243 3708 14951

Dridex 30 44 74

Emotet 58 52 110

Trickbot 21 17 38

none - 412 412

Table 2.4: Number of flows used in the bidirectional case
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Malware Build set [flows] Validate set [flows] Total [flows]

Cobalt Strike 1336 1531 2867

Dridex 40 49 89

Emotet 214 258 472

Trickbot 38 33 71

none - 381 381

Table 2.5: Number of flows used in the unidirectional case

2.2.2 Validation

The models have been constructed using data from the build set, and validated using data

from the validate set.

The validation phase consists on the application of the Maximum likelihood estimation: given

a model and a flow in the validation set, its elements (packet length or TLS record type) are

used to compute the transition probabilities relative to the four Markov chains, which repre-

sent a particular malware. The malware corresponding to the highest transition probability is

used to classify the traffic flow.

If all the probabilities are 0 or lower than a specified threshold, the flow is classified as ’none’,

that is, not belonging to any of the malware considered.
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3. Implementation: MalTLS

This chapter describes the code structure and implementation of MalTLS, the program writ-

ten to build and validate the classification models. The last three sections correspond to the

three main parts of the program, which creates the model 3.2, applies it to the validation data

3.3, and checks if the results are correct 3.4.

3.1 Code

The code for MalTLS can be found in [39]. The program takes two sets of pcap files, uses

one set (build set) to build a Markov chain, representing the TLS content types sequence

corresponding to a particular malware, and uses the second set (validation set) to validate

the model. The program’s file structure is described in table 3.1. Pcap files are parsed using

Pyshark [40], a Tshark wrapper for python. The location of the pcap files and the output files

is written in a .toml file.

Figure 3.1 contains an overview of the code structure.

3.2 Build

build.py uses parse pcap.py to extract a list of TLS content types from the pcap files in the

build set. It then calls build markov.py to create the transition matrix, the enter probability

vector, and the exit probability vector (see section 1.3.1), which are saved to a file

• parse pcap.py takes a pcap file and searches for all TCP streams containing a TLS

ServerHello message. For all of these TCP streams, it constructs a TLS content type

sequence, or a packet length sequence, depending on the mode specified by the caller.

• build markov.py takes as input a list of TLS content type sequences or a list pf packet

lengths, as returned by parse pcap.py. It considers the first and last element of every
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Figure 3.1: Code structure

sequence to compute the enter and exit probability vectors, respectively. The exit and

enter vectors are represented by a dictionary: its keys are the Markov chain’s states,

and its values are the probability of entering or exiting the Markov chain with that

specific state. The rest of the sequence elements is used to compute the transition

matrix, which is represented by a nested dictionary. The first keys represent a state

in the Markov chain; their values are themselves a dictionary, containing all the states

reachable from the fist key (state), and their respective probability.

3.3 Apply

apply.py uses parse pcap.py to extract a list of TLS content types or packet lengths from the

pcap files in the validation set. For each malware, it retrieves the Markov chain computed

by build.py and then calls get probability.py to compute the probability that the sequence

belongs to a particular malware.

• parse pcap.py is described in the previous section.
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Name Description Input Output

apply.py apply model
pcap files

in validate set

classified

sequences

build markov.py compute Markov chain
type or length

sequences
Markov chain

build.py build model
pcap files

in build set

Markov chain

model

get probability.py

calculate probability

of sequence belonging

to a malware

Markov chain a probability

parse pcap.py pcap file parsing pcap file
type or length

sequences

validate.py validate apply results apply results model evaluation

maltls.toml configuration file - -

Table 3.1: Files structure

• get probability.py takes an entry probability vector, a transition matrix, an exit proba-

bility vector, and a sequence of TLS content types, or packet lengths. It uses its first

three input elements to calculate the probability that the sequence belongs to the mal-

ware represented by this particular Markov chain.

3.4 Validate

validate.py takes the results of apply.py, and checks if the pcap have been correctly catego-

rized. The result is a dictionary containing the number of true positives, false positives, and

total number of sequences of each malware.

It additionally outputs the actual and predicted classification of each sequence, among with

its classification probability for each class.

21



4. Evaluation

This chapter describes the results obtained from the four models. Section 4.1 contains the

Markov chains corresponding to each malware. Sections 4.2 and 4.3 show the models’ results

when applied to the validation set. Section 4.4 contains a discussion of the aforementioned

results.

In this chapter we show the output models of the Markov chain algorithm described in

chapter 2. The models are presented by diagrams that graphically display the entry and exit

probability vectors, as well as the transition matrix of the Markov chain. Each diagram shows

a series of transition states between an entry state vector and exit state vector. The entry vec-

tor goes to the transition states according to the entry probability, and the transition states are

linked to each other by transition probabilities. The exit vector is reached from the transition

states according to the exit probability. These diagrams are shown in section 4.1.

To determine the performance of the results, we compute the confusion matrices corre-

sponding to each model. Rows represent the actual classes, columns represent the predicted

classes. The confusion matrices are used to calculate a series of parameters that allow to

quantitatively assess the robustness of the results; such parameters are:

• Recall: it measures the number of samples correctly classified as one class out of all

the samples actually belonging to that class, that is: recall = T P÷ (T P+FN), where

T P is the number of true positives, and FN is the number of false negatives.

• Precision: it measures the number of samples actually belonging to a specific class out

of all the samples classified as that specific class, that is: precision = T P÷ (T P+FP),

where FP is the number of false positives.

• F1-score: the harmonic mean of precision and recall. F1 score = (2 · precision ·

recall)÷ (precison+ recall).
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• Accuracy: the number of samples correctly classified among all the samples in the

validate set, that is: accuracy = (T P+T N)÷ (T P+FP+T N +FN).

• Micro F1-score: the harmonic mean of the global precision and the global recall (that

is, precision and recall calculated considering the sum of the class-wise TP, FP, and

FN).

• Recall mean: we calculate the recall measure for our five categories (Cobalt Strike,

Dridex, Emotet, Trickbot, and ’none’), and then compute its arithmetic mean: recall mean=

(∑5
t=1 Recalli)÷ 5.

Table 4.1 summarizes the performance for each model.

Model Recall mean Micro F1-score

M1 (types+bidirectional) 0.9435 0.9577

M2 (types+unidirectional) 0.8461 0.9600

M3 (lengths+bidirectional) 0.6937 0.9428

M4 (lengths+unidirectional) 0.7366 0.7877

Table 4.1: Recall mean and micro F1-score of every model

4.1 Malware’s Markov chains

What follows are the Markov chains build for the four models, along with their enter and exit

probability vectors.

Nodes represent the transition matrices states, edges represent the transition probabilities: if

lower than 1, their values are written on the edges. Enter and exit probabilities are represented

with dotted edges.

Cobalt Strike M3 and M4 Markov chains, and Emotet M3 Markov chain are not shown for

the sake of clarity, as they contain too many transitions.
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• M1: types + bidirectional

Figure 4.1: M1 model - Markov chains
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• M2: types + unidirectional

Figure 4.2: M2 model - Markov chains
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• M3: lengths + bidirectional

Figure 4.3: M3 model - Dridex and Trickbot Markov chains
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• M4: lengths + unidirectional

Figure 4.4: M4 model - Dridex, Emotet, and Trickbot Markov chains
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4.2 Type based models results

This section contains the results for the two type based models: M1 and M2. Table 4.2

contains the results of the evaluation measures applied to each class. Figure 4.5 and figure

4.6 show the confusion matrices for model M1 and model M2, respectively.

Bidirectional (M1) Unidirectional (M2)

Malware Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Cobalt Strike 1.0000 0.9539 0.9770 0.8537 1.0000 0.9621 0.9807 0.7380

Dridex 0.2756 0.9772 0.4300 0.5026 0.8596 1.0000 0.9245 0.5055

Emotet 0.9792 0.9038 0.9400 0.5025 0.9257 0.9651 0.9450 0.5285

Trickbot 0.8824 0.8824 0.8824 0.5008 0.1493 0.3030 0.19999 0.4985

none 0.8677 1.0000 0.9290 0.5260 0.9870 1.0000 0.9935 0.5463

Table 4.2: Per-class evaluation measures in type based models

• M1: types + bidirectional

Figure 4.5: M1 model - confusion matrix

• M2: types + unidirectional
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Figure 4.6: M2 model - confusion matrix

4.3 Length based models results

This section contains the results for the two length based models: M3 and M4. Table 4.3

contains the results of the evaluation measures applied to each class. Figure 4.7 and figure

4.8 show the confusion matrices for models M3 and M4, respectively.

Bidirectional (M3) Unidirectional (M4)

Malware Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Cobalt Strike 0.9977 0.9520 0.9743 0.8534 0.8020 0.9288 0.8608 0.7891

Dridex 1.0000 0.3864 0.5574 0.4994 0.8654 0.9184 0.8911 0.5046

Emotet 1.0000 0.3654 0.5352 0.4992 0.9725 0.9612 0.9669 0.5281

Trickbot 1.0000 0.7647 0.8667 0.5005 0.8387 0.7879 0.8125 0.5021

none 0.6378 1.0000 0.7788 0.5272 0.2340 0.0866 0.1264 0.4597

Table 4.3: Per-class evaluation measures in length based models

• M3: lengths + bidirectional
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Figure 4.7: M3 model - confusion matrix

• M4: lengths + unidirectional

Figure 4.8: M4 model - confusion matrix
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4.4 Discussion

• M1 (types + bidirectional)): this model has the highest recall mean (0.9435), and the

second highest micro F1-score (0.9577). It behaves well even with Trickbot, which has

the least training data among all the classes in the bidirectional case.

• M2 (types + unidirectional): it has the highest micro F1-score (0.9600), but can not

accurately classify Trickbot, which is most of the time classified as Emotet.

• M3 (length + bidirectional): it has the lowest recall mean (0.6937), and can not reli-

ably classify Dridex and Emotet. It has a particularly high number of not recognized

malware samples, therefore classified as ’none’.

• M4 (lengths + unidirectional): it has the lowest micro F1-score among all the models

(0.7877). It is the only one with a low recall for the class ’none’.

All type based models have no false negatives for the ’none’ class, that is no benign traffic

flow was classified as belonging to a malware. There are however many false positives for

the ’none’ class, especially in M3.

Trickbot accuracy is relatively low in all the models, which is likely caused by its lower num-

ber of flows in our build set.

The type based methods confirm that TLS record type sequences are valid fingerprint pa-

rameters when considering an entire TLS traffic flow.

The length based methods behave overall poorly, even though Ha and Roh [6] reported

packet length sequence as more representative that TLS record type. Model M3 in particular,

the one that can be directly compared with one of the models studied in Ha and Roh [6] [41],

has a lower recall mean than expected, when considering only the malware classes (excluding

’none’). This could be perhaps be explained by the higher number of samples in their training

set.
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5. Future works

Future works could include:

• Testing the models on more diverse benign traffic, given that this traffic was captured

from a single machine and in a limited time frame.

• Building and testing the bidirectional models on traffic not generated in a sandbox, in

order to study the classification model behavior on traffic generated by diverse clients.

• Considering different versions of the same malware. Given the continuous develop-

ment of the types of malware considered here, it would be useful to extend the classifi-

cation models to ”sub-categories” of a specific malware.

• Adding the computation of an external fingerprint, such as JA4 [4], to provide an ad-

ditional check, and perhaps decrease the number of false positive cases for the ’none’

class.
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Conclusions

In this thesis we have implemented and evaluated four Markov chain based malware clas-

sification methods, based on TLS record type sequences or packet length sequences, and

considering both bidirectional and unidirectional traffic.

We used confusion matrices to estimate the performance of each model, by computing the

micro F1-score and recall mean. This analysis show that all models have a micro F1-score of

at least 0.7877, with the type based models performing particularly well with most classes.

Cobalt Strike precision and recall are among the highest across all models, suggesting

that the number of training data was enough to create a reliable model for this malware.

In the type based models case, it is interesting to note that Dridex recall is high even if the

number of build sequences for this class is relatively low.

The bidirectional length based model (M3) has the lower recall mean, and fails to reliably

classify two out of four malware. Furthermore in this model the number of sequences in the

build set does not always correlate to a class performance.

Future developments of the present work will likely require a more in-depth analysis of

the build dataset, in order to properly determine the best set of parameters to build the finger-

prints.
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