
Page 1

Droplets: Breaking Monolithic Applications
Apart

Luca Deri, IBM Zurich Research Laboratory1

Most current systems are built around a monolithic structure that integrates
all the services offered. Such a paradigm has been used for many years and
is now proving to have many limitations. This is partly because, with the
advent of distributed systems, there is a need to distribute the intelligence
and control among applications and network entities. Also due to
heterogeneous data or systems that an application has to manage, it costs too
much to rebuild the application every time a new service has to be
supported. It would be better to add such services while the application is
running.
This paper attempts to show the benefits of a component-based application
against a monolithic one and it introduces a new type of software
components, called droplets based on dynamically loadable libraries.
Droplets are used to implement selected application services and have the
ability to be modified or added to the application while it is running, thus
allowing to dynamically modify the application behavior or to extend its
functionality at runtime. Finally the paper shows how to design and
implement droplet-based applications and demonstrates how the droplet
paradigm has been successfully integrated in an existing commercial
application.

Keywords:Software Components, Object-Oriented Programming (C++),
Distributed

Applications, Shared Libraries.

1. Introduction

The traditional object-oriented (OO) programming vision is a bit vague
on the subject of reuse. In a growing and changing world, our diverse and
complex needs often vary from day to day, project to project, and role to
role. Developers are supposed to write classes that may be reused in other
applications, projects and platforms. Most object-oriented languages lack
the means of packages that are containers for source files defining a certain
entity such as a class, and often objects are distributed in binary form and
are written for a specific task that makes it difficult to reuse them in another
context.

Producing software is expensive because it is labor-intensive and
requires highly skilled work. Thus reusability is becoming increasily
desirable. Even more important however, is to write applications that can
be customized by the end-user and tailored to changing requirements. It
does not make sense to pressure customers into buying an application that
can do much more than the user needs. It may confuse a customer to have

1IBM Research Division, Zurich Reserach Laboratory, Säumerstrasse 4, 8803
Rüschlikon, Switzerland. Email: lde@zurich.ibm.com.

Page 2

to pay for an application that will be only partially used. What is certainly
better is to release a basic application and allow the customer to extend it by
buying or writing additional components. Consider the situation with
computers: it is possible to buy a computer having a basic configuration
and then add devices and software later on.

With the advent of open and distributed computing it is becoming
obvious that a monolithic application can hardly survive due to the intrinsic
limitations of its design. Especially in the context of network management,
there is a need to build open applications able to accommodate future
demands by adding new functionality. A monolithic application is by nature
self-contained and cannot be easily extended.

There is another aspect that is gaining importance: mobility. Despite the
fact that the market is trying to build small and powerful machines, it is
sometimes impossible to install big monolithic applications on such
platforms. The market demands small configurable applications that can be
composed directly by customers according to their needs.

This paper will show how to break monolithic applications apart using
software components. It describes a new type of software components
called droplets, based on dynamically loadable libraries, used to implement
selected application services and have the ability to be modified or added to
the running application at runtime. This allows to extend an application or
to modify its behaviour without the need to shut it down, modify it and
then restart it. The ability to reload droplets makes them different from
conventional software components that once loaded cannot be modified.
Finally the paper shows how the droplet paradigm has been integrated in
an existing commercial application and it outlines the benefits and the
drawback of its usage.

2. Towards software components

Most applications are built around a block that does everything. These
applications work to satisfaction and are still doing their job reasonably
well. Nevertheless this paradigm is reaching its limits in terms of code
reusability, extensibility, configuration, and especially speed and size. One
reason is that such a paradigm specifies that the application contain the
entire functionality even if much of the functionality is required only for
very peculiar tasks. For example, most word-processing programs include
a formula editor, a chart package, and many other tools that might never
be used by the average customer. Such a customer nevertheless has to pay
for unused functions that consume disk and memory space. This paradigm
also requires that every extension to the initial design be integrated by the
application developer, who is the only person able to access the source
code. Many times the customer, and not the developer, is the only one who
best knows the requirements. The natural consequence of this would be to
offer an interface that allows the customer the capability to add new
functionality to the monolithic block and that defines a migration path
towards compound applications.

Page 3

 Splitting an application into basic components may be the solution. Just
like a child does with Lego™, a compound application is built with many
simple blocks - called components - rather than being a monolithic entity.
Once the application is built, it works like a monolithic one but has the great
advantage that it can be easily modified and extended, adding further
pieces or replacing old components with new ones. Component software
solves these and other problems by creating a system where it is easy and
inexpensive to bring pieces of functionality together, allowing software to
be tailored to meet individual needs. The old Latin proverb "Divide et
impera" can now be changed to "Build 'n play".

2.1 Components: What are they?

In order to build a compound application we must define the application
in terms of components. A building block is called a component if it provides
a single service to the application. A component can also be regarded as the
atom of the application. It is up to the developer to identify the granularity
of the components. The smaller the granularity, the easier component reuse
is because the component provides a generic service. This approach has
certain side effects however, because very generic services have to be
composed in order to provide the service required, and a large number of
active components may have a negative impact on the performance. Often
when an OO language is used, a component can be defined in terms of a
class. The main difference between a class and a component is felt when
new classes are defined. A new class usually inherits from other classes and
therefore specializes the parent class.

Object Class

Component

Inheritance

Message Flow

Fig. 1: Classes and Components

A component, on the other hand, adds further services and functionality
to the system, often exploiting existing services provided by other
components. This is done by exchanging messages containing operation
requests with other components. The core idea is that a component
provides new services by collaborating with peers, whereas classes do this
using inheritance. Such a statement does not mean, like in some object

Page 4

models2, that inheritance is not supported. It means that, internally, a
component can use inheritance to implement its logic but, whenever it has
to interact with other entities, it does so by using the component interface
and not by defining additional methods or class names. In other words the
interface inheritance is supported but not the implementation inheritance.
Therefore a new component provides new services by giving other
components the opportunity to use its services through the component
interface, whereas a new class provides new methods and a new starting
point for further specialization.

A droplet3 is a software component having the following specific
properties:
• it is not statically linked to the application but it is loaded at runtime,
• it has the ability to be replaced (i.e. a new version of the droplet can

replace a previous one) at runtime while the application is running4,
• it has a well-defined interface that makes it possible to communicate

with other droplets independently from the type of the services
provided.

The droplet interface defines the services provided, the format of the
messages that will be exchanged with the outside world, and additional
information needed to load the droplet. Note that, whereas a class is an
integral part of the application, a droplet requires an application in order to
live even if the application can exist without the droplet. This is because the
droplet adds functionality and services to the application but the application
can exist independently of the number and the type of droplets.

3. Droplet Interface

Because a droplet-based application does not know at compilation time
what services it will have to provide, its design has to be split into two
parts: the core application, which provides the generic and the basic
services, and the droplets. Note that the droplets, and not only the core
application, can provide services that can be used by other droplets. For
instance writing a WWW5 browser, the common services are the user
interface, the routines that handle the basic communication (e.g. TCP/IP

2Microsoft’s COM (Component Object Model) does not support
inheritance. This choice is dictated by the belief that implementation
inheritance is not an appropriate relationship between independently
developed software components distributed in binary form.
3 The term droplet does not have to be confused with the MacPerl droplets,
mini applications what work in conjunction with MacPerl.
4In order to activate a droplet it is necessary to drop it into a certain directory
monitored by the running application. Hence the term droplet.
5The World Wide Web (WWW) is a distributed hypermedia system.

Page 5

socket creation, DNS6 lookup), and additional general utility services such
as encoding/decoding of URL7s or the handling of HTTP8 requests. Other
services could be implemented by droplets. For example there could be a
droplet for FTP9, another for GOPHER10 and so on. Each droplet exploits
the basic services provided by the browser and provides additional
services.

The heterogeneous nature of droplet-provided services exactly identifies
the boundary between the core application and the droplets. The core
application is the most important part of the whole application because it is
the part that never changes. Nevertheless it has to be general enough to
accommodate current and future droplets.

Every routine that can be considered to be of public interest has to be
added to the core application and the data has to be accessed indirectly
through the core application, or via a method or procedure call. A droplet
should not be allowed to invoke functions directly or issue service requests
provided by other droplets. Every request has to be sent from the droplet
to the core application that invokes the requested service. This mechanism
works based on the assumption that every communication has to pass
through the core application because it is the only entity that knows how to
locate and request services. Thanks to this, a droplet can use a service
without knowing where it is really provided. Either the core application or
another droplet may even act as a proxy for another remote entity that
provides the real service.

3.1 Method and Function Resolution

Before discussing how the droplet interface has to be implemented, it is
important to understand how droplets can invoke external methods and
functions not known at compilation time. This mechanism is called
method/function resolution and entails the step of determining which
procedure to execute in response to a method invocation/function call.
There are a few techniques for performing the resolution:
• offset resolution

6The Domain Name Server (DNS) is a server able to translate numeric
TCP/IP address into symbolic ones and vice-versa. For further information
consult RFC 1101.
7The Universal Resource Locator (URL) is used by the WWW to specify
where a certain resource is located. Its form is <resource type>::<resource
location>. For instance the URL for the IBM main WWW server is
http://www.ibm.com/. For further information consult RFC 1738.
8The Hypertext Transfer Protocol (HTTP) is the protocol used by the
WWW to transfer information.
9The File Transfer Protocol (FTP) is a protocol that allows to transfer files
between two computers. For further information consult RFC 542.
10Gopher is a software system that provides on-line access to documents
and other sources of information that reside on the Internet. For further
information consult RFC 1436.

Page 6

• name-lookup resolution
• dispatch-function resolution.

The offset resolution is the fastest technique but also the most
constrained because it requires that the name of the method/function to be
invoked and, in the case of OOP, the name of the class that introduces the
method be known at compile time.

The name-lookup resolution, similar to resolution techniques used by
Objective-C/Smalltalk, is more flexible than the offset resolution and can be
used when one of these conditions is verified:
• the method/function name is not known until run time
• the method is added to the class interface at run time
• the name of the class introducing the method is not known until run

time.

The dispatch-function resolution is the slowest and most flexible
technique. It allows method resolution to be based on arbitrary rules
associated with the class of which the receiving object is an instance.

Component

Component

Core
Application

direct method/function call

indirect service call (through the Core Application)
Fig. 2: Direct and Indirect Calls

The droplet issues direct (offset resolution based) and indirect (name-
lookup resolution based) calls. The direct call is used when the droplet
invokes functions provided by the core application. A droplet is a sort of
small application linked at run time with the core application. It can use
functions/methods and inherit classes from the core application and issue
service calls. When a droplet calls a core application provided
function/method, the offset resolution technique is used because the name
of this function/method is known at compilation time, and the linker can
resolve these references based upon such information. If a droplet requests
a service that is not provided by the core application, the indirect call is
used. In this case the droplet invokes a core application function/method
that takes the service name and the parameters as input. Then the core
application function/method performs the name-lookup and, if the
requested service has been found, it calls the requested service and returns
the results of the call to the droplet that issued the request. In practice, a
service can be used by a droplet not only if the service exists but also if the
droplet has access to the service. It does not make too much sense to allow
droplets to use all the available services without enforcing some basic

Page 7

security rules: the droplet has to have the necessary access rights in order to
access critical or privileged services.

The following example shows how a droplet calls an external service
named ABC:

if(coreAppl->LookupService("ABC") != 0)
 return SERVICE_NOT_AVAILABLE; /* Service not available */
else
{
 if(coreAppl->ExecuteService("ABC", <input params>,

 <output params>, <access rights>) != 0)
 return SERVICE_ERROR; /* Service call returned an error */
else
 return NO_ERROR; /* Service executed successfully */
}

Fig. 3: External Service call

The name-lookup resolution technique is used in the droplet-based
application because method dispatching has to be done at run time for two
reasons:
• it is not possible to statically link the droplet to the core application

because the number and the type of the droplets are not known at
compile time

• the indirect call technique decouples the droplets and makes them
independent of the existence of other droplet-provided services.

Thus the indirect dispatch is of primary importance because it makes the
application independent of the location and the existence of services.

Implementing the droplets using shared libraries does not have much
effect on the application speed of a monolithic application. In fact in the
latter case the compiler and the linker resolve the references. In a droplet-
based application the resolution is performed at run time by the indirect
dispatch mechanism. Every time a droplet or a service is invoked, the core
application has to find the corresponding function (this search may fail if the
function does not exist). This lookup has an impact on the performance but
the slowdown effect can be minimized if caching or an efficient search
mechanism such as hash tables is used11. Note that when a virtual class or
method is used in an OOPL (OO Programming Language) a similar lookup
is performed; this analogy illustrates how the droplet technology is similar
to the OO technology and how in some ways both techniques share similar
problems.

3.2 Understanding the Droplet Interface

The object interface is the set of methods to which the object responds.
The method name and its signature are defined at compilation time and

11 The author has not investigated in detail how to efficiently solve the
problem. The Self language uses some very interesting techniques [Ungar 87]
that can be employed to significantly decrease the lookup time.

Page 8

cannot be changed at run time. Hence the only way to add new methods or
to modify existing ones is to shut down the application, modify it,
recompile it and start it once again.

The droplet interface defines the boundary between the core application
and the droplets. Unlike the object interface, the droplet interface is well
defined and it is the same for every droplet independently to the provided
services. It also has to be general enough to accommodate heterogeneous
droplets without the need to modify it in order to accommodate different
and heterogeneous services. The difference between an object interface and
a droplet interface can be emphasized by means of an example.

Suppose we have a droplet with this interface:

class Class {
public:
 int PerformAction(char *serviceName, char **returnValue);

}
Fig. 4: Droplet Interface

Imagine that the droplet recognizes only the "Apple" and "Pear" services,
and that we have to extend it by adding a service called "Orange". The way
to do this is to add the functions/methods needed to handle it. When the
serviceName parameter has the value “Orange”, this new logic is used. Thus a
droplet does not redefine its interface but releases some constraints on the
parameters by accepting a wider set of values. The interface being
untouched, it prevents the application from being recompiled and but just
the droplet itself whose new version can be reloaded by the running
application.

Instead a class will be defined as follows:

class ParentClass {
public:
 int Apple();
 int Pear();

};

class Class: public ParentClass {
public:
 int Orange();

};
Fig. 5: Class Definition

Subclassing is necessary because the ParentClass class may have been
shipped as a library and thus it cannot be modified but only subclassed. This
prevents one from using the new class and the new methods from a class
that is not derived from ParentClass. Also in order to make the new service
available, the application has to be recompiled and restarted, whereas the
droplet-based one has simply to reload the droplet. Nevertheless it is
important to note that a droplet can be written either in a OOPL or in a non
OOPL. Thus the difference between droplets and classes is that the droplet
adds new services by releasing limitations on the values of the interface
parameters (the interface being unchanged), whereas a class provides new

Page 9

functionality by subclassing and defining new methods. This difference is
shown in the following example:
 int Class::dropletInterface(char *serviceName, char &returnValue)
 {
 if(strcmp(serviceName, "Child") == 0)

 strcpy(&returnValue, GetChildName());
 else if(strcmp(serviceName, "Father") == 0)

 strcpy(&returnValue, GetFatherName());
 else

 return SERVICE_NOT_HANDLED; /* Service not handled by this droplet */

 return NO_ERROR; /* No error */
 }

Fig. 6: Droplet: service handling

Nevertheless the droplet paradigm does not have to be considered class
competitor. It has been shown that they can fit together and that, thanks to
this, the droplet paradigm can be introduced into existing applications
written in an OOPL like a transition path towards a pure compound
application.

3.3 Droplet Interface Definition

A droplet is not statically linked to the core application but is loaded at
run-time. Therefore a mechanism to load a droplet dynamically and to bind
it to the core application has to be identified. Many operating systems
provide facilities for the creation and use of dynamically bound shared
libraries. Dynamic binding allows external symbols referenced in user code
and defined in a shared library to be resolved by the loader at run time. The
shared library code is not present in the executable image on disk. Shared
code is loaded into memory once in the shared library segment and shared
by all processes that reference it. Considering the facilities offered by a
shared library and its great versatility, it makes sense to use it for droplet
implementation.

A droplet is seen by the core application as a shared library. The core
application can load droplets on demand or at start-up time. The entry
point of a shared library can either be a function/method or a variable.
Given the entry point the core application has to be able to access all the
services provided by the droplet. It is therefore necessary to define a new
type that contains all the information about the droplet and to define a
static variable in the droplet code containing this information. Such a
variable will be the entry point of the library.

This is the basic information that has to be specified by a droplet:

typedef void(*DropletInitTermFunct)(<function parameters>);
typedef void(*DropletInterface)(<interface parameters>);

Page 10

typedef struct {
short version;
char *toolName, *toolInfo;
short toolId;
void* additionalInfos;
DropletInitTermFunct startFunct, endFunct;
DropletInterface toolFunct;

} DropletInfo;
Fig. 7: Droplet Information

The DropletInterface is defined as a function but it can be also defined as a
(static) method. The parameters are not specified because they can vary
from application to application. The version field is useful to check the
version in order to prevent inconsistencies. The droplet interface or
DropletInfo may have to be changed; therefore this will cause errors and
possibly they may crash the entire application. The toolName and toolInfo are
used to pass the droplet-related information to the core application. The
toolName is used to find droplets and the toolInfo to characterize the droplet
by specifying what the droplet does and how it expects to be invoked (the
technique of putting comment information into the item itself has already
been applied in languages such as Smalltalk). Suppose a droplet that intends
to use a service XYZ is provided by another droplet, then the toolName can
contain the service name (in this case XYZ) and the core application may
exploit such information to localize the service. The toolId is a unique
identifier that identifies the tool. It is used in case a service (e.g. XYZ) is
mapped to a number and in this case the retrieval is based upon the toolId
rather than on the toolName. The additionalInfos field contains optional
information in an unspecified form. The core application is not responsible
for this information but it is the droplet itself that has to manage it. The
startFunct, toolFunct and endFunct are pointers to droplet functions. The
startFunct and endFunct are optional (they can be NULL) and when present
they are called when the droplet is loaded/unloaded. The toolFunct identifies
the core droplet function. It is invoked by the core application when an
operation concerning the droplet has been requested.

The ability of the core application to load the droplet at run-time makes
it possible to load droplets on demand. This technique can be used to save
system resources such as memory and to make distributed applications
more flexible. For example a remote application can provide a service,
implemented by a droplet, used frequently by a local application. In order
to reduce the network traffic, it makes sense to copy the droplet from the
remote host to the local host and to attach it to the local application. This
way every time this service is requested, a local request is issued instead of
a remote request. Similar techniques can be used in many other cases
where the performance, the network traffic or the resources in use have to
be optimized.

3.4 The Service Interface

Droplets do not have to be seen as mere parts of an application. They are
separate entities that provide and use services. In order to specify which

Page 11

services are provided by a droplet, the droplet interface needs to be
extended. A mechanism that allows a droplet to issue service requests and
receive responses must be defined too.

In a monolithic application the names of classes and methods are known
at compilation time. In a droplet-based application, each droplet knows
about itself and the basic services provided by the core application. A
droplet cannot make any hypothesis about the presence of a certain service
or about its location.

One way to address this problem is to add a service interface to the
droplet interface. The droplet specifies the services that it intends to make
available to peers, and the core application uses such information to locate
and invoke the services on behalf of the droplets. This interface must also
mask how the service is implemented and other details that should not be
of public interest, just like a class of an OOPL does. The interface can be
specified as follows:

typedef int(*ServiceFunction)(void* in_data, void** out_data);

typedef struct {
 ServiceFunction servPtr;
 char *servName, /* Name of the service */
 servInfo, / Info about the service */
 servInParam, / Info about input parameter */
 servOutParam, / Info about output parameter */
 servRetValue; / Info about return value */
} Service;

typedef struct {
...
Service* availableServices;

} DropletInfo;
Fig. 8: Service Interface

The servPtr is the pointer to the function that provides the service. It is
very important that this function has a well-defined and general interface
like the one shown above. There are other possibilities to define
ServiceFunction such as imposing no constraints concerning the number and
type of the parameters. This requires the use of a variable argument list
that may reduce robustness due to the limited checks that can be
performed on the parameters. The servName identifies the name of the
service. To improve the lookup speed, a numerical index can be added as
well. The other fields are used to provide additional information about the
service: what it does, which input/output parameters it expects, and how to
interpret the return value. These fields are very important whenever a
droplet has to call services provided by other droplets and whenever it has
to find out how it is supposed to issue requests. They do not have to be
identified as information of secondary importance but they have to be
considered part of the dynamic service call interface. For example suppose
that a graphic application displays a pop-up menu containing the names of
all the external tools such as circle, line or rectangle. The application can
exploit servName to add the tool names to the menu and servInfo to draw an
icon for each entry. Note that certain services may be available only when

Page 12

specific conditions are verified (e.g. only when some resources are
available); for this reason the core application offers a way to dynamically
register/deregister services other than via DropletInfo.

The services are identified with a precise name just like for methods.
Nevertheless it is important to include a description of the service. It has to
be remembered that the droplets may have been written by different
persons for very different purposes and therefore may not have a
description, so these droplets are useless for anybody but the droplet-
writer.

3.5 Handling External Events

The droplet interface allows the core application to invoke droplets prior
to a certain request. A droplet is not able to invoke external droplet-
provided services or functions asynchronously even if the DropletInterface
and DropletFunct may invoke functions external to the droplet itself. In order
to overcome this problem, the interface must be extended once more.
Every event that the droplet intends to handle (e.g. time event, external
event, key down/up event etc.) has to be mapped to a function. Therefore
the interface has to contain an additional field:

typedef struct {
 short eventId;
 DropletFunct eventFunction;
} EventEntry;

typedef struct {
 ...
 EventEntry *handledEvents;
} DropletInfo;

Fig. 9: External Event Handler Definition

The handledEvents is a NULL-terminated list of events (it can be empty)
that are handled by the droplet. An entry could be:

EventEntry dropletEntry[] = {
 { EXTERNAL_EVENT, compExtEventFunct },
 { INCOMING_DATA, incomingDataFunct },
 NULL };

Fig. 10: An example of droplet handled events

In this case the droplet tells to the core application to invoke the
compExtEventFunct prior to an external event or to invoke incomingDataFunct
when incoming data is available.

4. Applying Droplet Concepts

IBM has recently introduced a product for managing telecommunication
networks (TMN). A key component of this product is the OSI agent
technology developed in the Zurich Research Laboratory and currently
used by many customers world wide.

Page 13

In the OSI network management world, an agent is an application able to
maintain information about the state of a part of the network that it is
responsible for. A manager sends protocol requests to the agent using a
protocol named CMIP. The agent process such requests and send replies
back to the manager.

OSI
Manager

OSI
AgentCMIP Messages

Network
Resources

Fig. 11: OSI Agent/Manager architecture

Information to be managed by an agent is modelled as managed objects.
A managed object (MO) represents either a logical resource such as a user
account, or a real resource such as a router. A MO contains attributes, i.e.
actions that can be performed on the object and notifications that can be
issued by the object prior to a certain event.

The agent technology developed at the Zurich laboratory is based on a
tool that takes as input the description of the MOs and of their relative
attributes12 and that generates a C++ class for each attribute and MO part of
the agent. The generated code is then linked with the core agent functions
in order to generate the final application.

Core Agent Functions

Generated Code

Fig. 12: Internal structure of the Agent built using the Zurich technology (ZSME)

The scope of the agent has been extended by applying the droplet
technology to the initial object-oriented design. Each generated class, both
MO and attribute, is no longer compiled and statically linked with the core
agent function but is contained in a droplet that will be loaded by the agent
at runtime. The goal is allow to add/replace specific MOs or attributes
without having to rebuild the entire agent.

12The GDMO (Guidelines for the Definition of Managed Objects) is the notation
used to define MOs. The type of attributes within a MO is defined using the
ASN.1 (Abstract Syntax Notation One). These notations are defined in the
international standards ISO/IEC 10165-4 and ISO/IEC 8824 respectively.

Page 14

A new element, called droplet manager (DM), has been added to the core
agent. This service is responsible for load/unload droplets - stored in a
subdirectory of the agent directory - and for their management.

Component Manager

Core Agent Functions

MO and Attribute
Components

Fig. 13: Architecture of the droplet based ZSME Agent

At start-up time, the DM loads all the droplets and then enables the MOs
that can actually be instantiated. A MO can be enabled only if it has access to
all the necessary resources.

The DM is also used to decouple the implementation of a MO from the
implementation of its attributes. Each MO class is derived from the
MCinstance abstract class, and each attribute from the attribute abstract class.

MCinstance attributeAbstract Base
Classes

MO classes Attribute classes

Fig. 14: Agent abstract and concrete classes

In the generated code of each MO, all the references to the attributes -
class names and include files - have been replaced with a service provided
by the DM. This is shown in the following example where a reference to the
ATTR_systemId attribute present in the MO system has been replaced with the
CreateAttribute method call.

#include “ATTR_systemId.h”
[....]
new_attr = new ATTR_systemId;

Fig. 15: Creation of the ATTR_systemId attribute from within the MO system

Page 15

DropletManager *compMgr;
#define ATTR_systemId_OI “2.9.3.2.7.4”
new_attr = compMgr->CreateAttribute(ATTR_systemId_OI13);

Fig. 16: Use of the DM for the creation of the ATTR_systemId attribute

The CreateAttribute method, given its unique object identifier, has to locate
the droplet that implements the requested attribute and then call the
toolFunct function (Fig. 7).

attribute* DropletManager::CreateAttribute(char* attrOID)
{
 DropletInfo *theEntry = RetrieveDropletbyOID(attrOID);

 if(theEntry)
 return(theEntry->toolFunct());
 else
 return NULL; /* Attribute NOT found */
}

Fig. 17: DropletManager::CreateAttribute implementation

The droplet interface has been defined as:

typedef attribute* (*DropletInterface)();
Fig. 18: Droplet interface definition

and then toolFunct in the case of the MO system is:

typedef attribute* (*DropletInterface)();
attribute* toolFunct() { return((attribute*)new ATTR_systemId); }

Fig. 19: Droplet interface definition and implementation (ATTR_systemId)

In this way the core agent is not aware that the attribute returned by
toolFunct is actually an instance of the ATTR_systemId class; it instead considers
the attribute as it would be an instance of the attribute class. In case the core
agent calls a virtual method X on this instance, the method ATTR_systemId::X is
called (if it exists) even if the core agent is not aware of the existence of that
method. This is because the virtual table associated with the instance
returned by toolFunct is actually a pointer to the ATTR_systemId virtual table
and then the methods are dispatched correctly (ATTR_systemId::X is called
instead of attribute::X).

This technique just shown for the attributes is used for the MO too. The
core agent is then able to manage MO and attribute instances without
having access to their definition and implementation. The DM is responsible
for creating instances of the actual classes (e.g. CLASS_system and ATTR_systemId)
on behalf of the core application. The C++ virtual method dispatch
mechanism then does the rest of the work by calling the correct methods
and not just the ones known by the core application.

At runtime it is possible to replace a droplet with a new version of it. It is
then possible to change the behavior of the application dynamically while

13In GDMO each entity such as MOs and attributes are identified with a unique
object identifier that is usually represented by a set of digits separated by dots.

Page 16

the application is running. In many cases it is not acceptable to shut the
agent down and then restart the new version because other applications
may have to be constantly connected to the agent. The DM then has to
unload the old droplet and replace it with the new version. In order to
allow this, the new droplet is free to change the method implementation
but not to add/remove class attributes. In other words the implementation
of the class can change but not its definition. This is because the image in the
memory of the class instances must remain unchanged, otherwise the new
class implementation will not be able to manage both old and new instances
transparently.

An additional aspect of the dynamic droplet reload has to be considered.
In some operating systems, the reload of a shared library may cause a new
memory area to be used instead of reusing, and probably extending, the
old memory area. If the memory area is reused, then the virtual table for a
certain class remains at the same location. Therefore instances created with
the old droplet version will automatically call the new methods. If the new
shared library is loaded at a different location, the virtual table of instances
created with the old droplet version will point to a location not longer in
use and then the application will crash. A solution to this problem is to
remove all the virtual methods (then the virtual table is no longer created)
and implement them using software techniques instead of relying on the
virtual table mechanism provided by C++.

Thanks to the use of droplets, parts of the agent can now be modified or
even new functionality added without recompilation and relinking. This is
value-added functionality in cases where the agent must remain operational
or where new resources, not handled by the initial agent, have to be
managed. The integration of droplets with the agent did not require the
initial design to be modified significantly, and it has exploited and enforced
the initial object-oriented design. The code has been slightly changed in
order to use the DM to create the instances. This modification is very
limited and it has affected not more than 5-10% of the generated code. The
performance of the droplet-based agent with respect to the old version is
almost the same. We have noticed only a minimal slow down when an
instance has to be created because of the method
DropletManager::CreateAttribute has been used. This is because the method has
to locate the requested attribute and then create the new instance. The
performance degradation is very limited (in our tests it is less than 3%) and
it affects only the creation of the instances. Once the instance has been
created, the usual method to dispatch via a virtual table is used and then the
performance is not affected. Implementing the droplets with shared
libraries allowed the memory used by the agent at runtime to be
significantly reduced (up to 60%). This memory saving is very useful on
small machines or when multiple agents run on the same host because the
memory used by shared libraries is shared among the agents.

In spite of these advantages, droplets have two significant drawbacks
related to their dynamic nature that are not present in monolithic
applications because it is assumed that the code cannot change unless the

Page 17

application is recompiled. In order to reload a droplet while an application is
running, a droplet must:
• not store any data because the data will be lost when the droplet is

updated;
• not change the class definition (i.e. adding new attributes) of the

classes contained in a droplet, if any, but just the implementation.

The first drawback can be overcomed by defining a storage service in
the core application: data is always stored in the core application and the
droplet contains just pure code. From another perspective, the separation
between data and code is the mechanism that allows droplets to be replaced
while the application is running without losing data.

The second drawback is due to the fact that a new class implementation
has to deal with instances created with the previous implementation.
Because of this, the instance shape in memory must not change otherwise
the new implementation will not be able to handle the old instances or it
will try to access attributes that are not at the expected position because
their definition has changed. This behaviour is very dangerous because it
may cause unexpected application termination.

The droplet-based agent offers several benefits with respect to the initial
version:
• it is now possible to manage new resources by adding droplets at

runtime or changing the agent behavior by modifying existing
droplets and reloading them;

• memory usage in now more efficient and the compilation time has
been significantly reduced since a modification of a class does not
require the entire agent to be rebuild, but just a droplet;

• link time is reduced because the core agent never changes and
therefore it has to be built only once;

• tailoring has been simplified since it can be done simply by modifying
the set of droplets that have to be loaded by the core agent.

5. Conclusions

This paper has shown that the major advantages of the droplets are:
• Coexistence with the OO paradigm: this is very important because

the existing applications can benefit from the use of the droplets
without having to be rewritten.

• Cleaner code design: the boundaries defined by the droplet interface
help the developer specify the information and the services. Often
OO programmers merge services and information in a (virtual base)
class without trying to define it properly.

• Simple tailoring: an application has to provide only the services that
are actually used. This can be done by providing only the droplets
that implement such services and the core application.

• Low cost and resource usage: the customer buys only the droplets
that he actually uses without having to pay for something that he will
never run and that may complicate the configuration and use of the

Page 18

application. Memory and disk space are saved because there is no
need to load/store all the droplets. General performance is improved
because only the necessary resources are used.

• Easy extensibility: due to the droplet interface and to the services
provided by the core application or by other droplets, it is not
difficult to add new functionality by creating new droplets.

• Path to distributed programming: because the services are bound by
the droplets and have a well-defined interface, it is possible for
remote applications to use these services. It is also possible, if a
service is heavily used, to copy the droplet that provides the service
from the remote application and attach it to the local application, thus
speeding up the processing significantly.

It has been shown that OO programming and droplets are two
complementary and yet compatible technologies. The droplet is a
promising technology, different flavours of which have already been
applied in part in some specific applications. It has several advantages and a
few drawbacks due to its dynamic nature. For these characteristics, it can be
considered an interesting and novel technique for breaking monolithic
applications apart.

Page 19

6. References

[Apple 95] Apple Computer
Components Made Easy
OpenDoc Technical White Paper, March 1995.

[Ban 95] B. Ban and L. Deri
Object Factory Revised: a Design Pattern
IBM Zurich Research Laboratory, September 1995

[Booch 91] G. Booch
Object-Oriented Design
Benjamin-Cummings, Redwood City, CA, 1991.

[Bourne 83] S. R. Bourne
The UNIX System
Addison-Wesley, Reading, MA, 1983.

[Chen 93] D. J. Chen and S. K. Huang
Interface for Reusable Software Components
Journal of OO Programming Lang., Jan. 1993.

[Chen 94] D. J. Chen and D. T.K. Chen
An Experimental Study of Using Reusable Software
Design Frameworks to Achieve Software Reuse
Journal of OO Programming Lang., May 1994.

[Cox 91] B. Cox and A. Novobilski
Object Oriented Programming: An Evolutionary Approach
Addison-Wesley, Reading, MA, 1991.

[Ellis 91] M. Ellis and B. Stroustrup
The Annotated C++ Reference Manual
Addison-Wesley, Reading, MA, 1990.

[Gamma 94] E. Gamma, R. Helm, R. Johnson and J. Vlissides
Design Patterns: Elements of Reusable OO Software.
Addison-Wesley, Reading, MA, 1994.

[Goldberg 83] A. Goldberg and D. Robson
Smalltalk-80: The Language and its Implementation
Addison-Wesley, Reading, MA, 1983.

[IBM 94] SOM Dev. T.lkit: An Introductory Guide to the System
Object Model and its Accompanying Frameworks
IBM, October 1994.

[Kernighan 88] B.W. Kernighan and D. M. Ritchie
The C Programming Language
Prentice Hall, Englewood Cliffs, NY, 1988.

[Mathews 90] D. C. Mathews
Static and Dynamic Type Checking
Bancilhon & Buneman, 1990.

[Meyer 88] B. Meyer
Object Oriented Software Construction
Prentice Hall, Englewood Cliffs, NY, 1988.

[Micallef 88] J. Micallef
Encapsulation, Reusability and Extensibility in Object
Oriented Programming Languages
Journal of OO Programming Lang., Apr./May 1988.

Page 20

[Microsoft 93] Object Linking and Embedding v. 2 (OLE2): Programmer’s Ref.
Vols. 1 and 2, Microsoft Press, Redmond, WA, 1993.

[Nackman 94] L. R. Nackman and J. J. Barton
Base-Class Composition with Multiple Derivation and
Virtual Bases
IBM T.J. Watson Research Center, 1994

[Nierstrasz 92] O. Nierstrasz, S. Gibbs and D. Tsichritzis
Component-Oriented Software Development
Communications of the ACM, Vol. 35, No. 9, Sept. 1992.

[OMG 93] The Common Object Request Broker: Architecture
and Specification
1.2 edition, Object Management Group, 1993.

[Pinson 91] L. J. Pinson and R. S. Wiener
Objective-C: Object Oriented Programming Techniques
Addison-Wesley, Reading, MA, 1991.

[Udell 94] J. Udell
ComponentWare
Byte, May 1994.

[Ungar 87] D. Ungar and R. Smith
Self: The Power of Simplicity
OOPSLA ‘87 Conference Proceedings, October, 1987.

