
Realtime High-Speed Network Traffic
Monitoring Using ntopng

Luca Deri *†, Maurizio Martinelli*, Alfredo Cardigliano†
IIT/CNR*

ntop†
Pisa, Italy

{deri, cardigliano}@ntop.org, {luca.deri, maurizio.martinelli}@iit.cnr.it

Abstract—Monitoring network traffic has become
increasingly challenging in terms of number of hosts, protocol
proliferation and probe placement topologies. Virtualised
environments and cloud services shifted the focus from dedicated
hardware monitoring devices to virtual machine based, software
traffic monitoring applications.  
This paper covers the design and implementation of ntopng, an
open-source traffic monitoring application designed for high-
speed networks. ntopng’s key features are large networks real-
time analytics and the ability to characterise application
protocols and user traffic behaviour. ntopng was extensively
validated in various monitoring environments ranging from
small networks to .it ccTLD traffic analysis.

Keywords—Traffic monitoring, real-time analytics, open-source
software, monitoring of virtual and cloud environments.

I. INTRODUCTION
Network traffic monitoring standards such as sFlow [1] and

NetFlow/IPFIX [2, 3] have been conceived at the beginning of
the last decade. Both protocols have been designed for being
embedded into physical network devices such as routers and
switches where the network traffic is flowing. In order to keep
up with the increasing network speeds, sFlow natively
implements packet sampling in order to reduce the load on the
monitoring probe. While both flow and packet sampling is
supported in NetFlow/IPFIX, network administrators try to
avoid these mechanisms in order to have accurate traffic
measurement. Many routers have not upgraded their
monitoring capabilities to support the increasing numbers of
1/10G ports. Unless special probes are used, traffic analysis
based on partial data results in inaccurate measurements.

Physical devices cannot monitor virtualised environments
because inter-VM traffic is not visible to the physical network
interface. Over the years however, virtualisation software
developers have created virtual network switches with the
ability to mirror network traffic from virtual environments into
physical Ethernet ports where monitoring probes can be
attached. Recently, virtual switches such as VMware vSphere
Distributed Switch or Open vSwitch natively support
NetFlow/sFlow for inter-VM communications [4], thus
facilitating the monitoring of virtual environments. These are
only partial solutions because either v5 NetFlow (or v9 with
basic information elements only) or inaccurate, sample-based
sFlow are supported. Network managers need traffic

monitoring tools that are able to spot bottlenecks and security
issues while providing accurate information for
troubleshooting the cause. This means that while NetFlow/
sFlow can prove a quantitative analysis in terms of traffic
volume and TCP/UDP ports being used, they are unable to
report the cause of the problems. For instance, NetFlow/IPFIX
can be used to monitor the bandwidth used by the HTTP
protocol but embedded NetFlow probes are unable to report
that specific URLs are affected by large service time.

Today a single application may be based on complex
cloud-based services comprised of several processes
distributed across a LAN. Until a few years ago web
applications were constructed using a combination of web
servers, Java-based business logic and a database servers. The
adoption of cache servers (e.g. memcache and redis) and
mapReduce-based databases [5] (e.g. Apache Cassandra and
MongoDB) increased the applications’ architectural
complexity. The distributed nature of this environment needs
application level information to support effective network
monitoring. For example, it is not sufficient to report which
specific TCP connection has been affected by a long service
time without reporting the nature of the transaction (e.g. the
URL for HTTP, or the SQL query for a database server) that
caused the bottleneck. Because modern services use dynamic
TCP/UDP ports the network administrator needs to know what
ports map to what application. The result is that traditional
device-based traffic monitoring devices need to move towards
software-based monitoring probes that increase network
visibility at the user and application level. As this activity
cannot be performed at network level (i.e. by observing traffic
at a monitoring point that sees all traffic), software probes are
installed on the physical/virtual servers where services are
provided. This enables probes to observe the system internals
and collect information (e.g. what user/process is responsible
for a specific network connection) that would be otherwise
difficult to analyse outside the system’s context just by
looking at packets.

Network administrators can then view virtual and cloud
environments in real-time. The flow-based monitoring
paradigm is by nature unable to produce real-time information
[17]. Flows statistics such as throughput can be computed in
flow collectors only for the duration of the flow, which is
usually between 30 and 120 seconds (if not more). This means
that using the flow paradigm, network administrators cannot

have a real-time traffic view due to the latency intrinsic to this
monitoring architecture (i.e. flows are first stored into the flow
cache, then in the export cache, and finally sent to the
collector) and also because flows can only report average
values (i.e. the flow throughout can be computed by dividing
the flow data volume for its duration) thus hiding, for instance,
traffic spikes.

The creation of ntopng, an open-source web-based
monitoring console, was motivated by the challenges of
monitoring modern network topologies and the limitations of
current traffic monitoring protocols. The main goal of ntopng
is the ability to provide a real-time view of network traffic
flowing in large networks (i.e. a few hundred thousand hosts
exchanging traffic on a multi-Gbit link) while providing
dynamic analytics able to show key performance indicators
and bottleneck root cause analysis. The rest of the paper is
structured as follow. Section 2 describes the ntopng design
goals. Section 3 covers the ntopng architecture and its major
software components. Section 4 evaluates the ntopng
implementation using both real and synthetic traffic. Section 5
covers the open issues and future work items. Section 6 lists
applications similar to ntopng, and finally section 7 concludes
the paper.

II. NTOPNG DESIGN GOALS

ntopng’s design is based on the experience gained from
creating its predecessor, named ntop (and thus the name ntop
next generation or ntopng) and first introduced in 1998. When
the original ntop was designed, networks were significantly
different. ntopng’s design reflects new realities:

• Today’s protocols are all IP-based, whereas 15 years ago
many others existed (e.g. NetBIOS, AppleTalk, and IPX).
Whereas only limited non-IP protocol support is needed, v4/
v6 needs additional, and more accurate, metrics including
packet loss, retransmissions, and network latency.

• In the past decade the number of computers connected to
the Internet has risen significantly. Modern monitoring
probes need to support hundreds of thousand of active hosts.

• While computer processing power increased in the last
decade according to the Moore’s law, system architecture
support for increasing network interface speeds (10/10 Mbps
to 10/40 today) has not always been proportional. As it will
be later explained it is necessary to keep up with current
network speeds without dropping packets.

• While non-IP protocols basically disappeared,
application protocols have significantly increased and they
still change rapidly as new popular applications appear (e.g.
Skype). The association UDP/TCP port with an application
protocol is no longer static, so unless other techniques, such
as DPI (Deep Packet Inspection) [6] are in place, identifying
applications based on ports is not reliable.

• As TLS (Transport Layer Security) [7] is becoming
pervasive and no longer limited to secure HTTP, network
administrators need partial visibility of encrypted
communications.

• The HTTP protocol has greatly changed, as it is no
longer used to carry, as originally designed, hypertext only.
Instead, it is now used for many other purposes including

audio/video streaming, firewall trespassing and in many
peer-to-peer protocols. This means that today HTTP no
longer identifies only web-related activities, and thus
monitoring systems need to characterise HTTP traffic in
detail.

In addition to the above requirements, ntopng has been
designed to satisfy the following goals:

• Created as open-source software in order to let users
study, improve, and modify it. Code availability is not a
minor feature in networking as it enables users to compile
and run the code on heterogeneous platforms and network
environments. Furthermore, the adoption of this license
allows existing open-source libraries and frameworks to be
used by ntopng instead of coding everything from scratch as
it often happens with closed-source applications.

• Operate at 10 Gbit without packet loss on a network
backbone where user traffic is flowing (i.e. average packet
size is 512 bytes or more), and support at least 3 Mpps per
core on a commodity system, so that a low-end quad-core
server may monitor a 10 Gbit link with minimal size packets
(64 bytes).

• All monitoring data must be immediately available, with
traffic counters updated in real-time without measurement
latency and average counters that are otherwise typical of
probe/collector architectures.

• Traffic monitoring must be fully implemented in
software with no specific hardware acceleration
requirements. While many applications are now exploiting
GPUs [8] or accelerated network adapters [9], monitoring
virtual and cloud environments requires pure software-based
applications that have no dependency on specific hardware
and that can be migrated, as needed, across VMs.

• In addition to raw packet capture, ntopng must support
the collection of sFlow/NetFlow/IPFIX flows, so that legacy
monitoring protocols can also be supported.

• Ability to detect and characterise the most popular
network protocols including (but not limited to) Skype,
BitTorrent, multimedia (VoIP and streaming), social
(FaceBook, Twitter), and business (Citrix, Webex). As it will
be explained below, this goal has been achieved by
developing a specific framework instead of including this
logic within ntopng. This avoids the need of modifying
ntopng when new protocols are added to the framework.

• Embedded web-based GUI based on HTML5 and
dynamic web pages so that real-time monitoring data can be
displayed using a modern, vector-based graphical user
interface. These requirements are the foundation for the
creation of rich traffic analytics.

• Scriptable and multi-threaded monitor engine so that
dynamic web pages can be created and accessed by multiple
clients simultaneously.

• Efficient monitoring engine not only in terms of packet
processing capacity, but in its ability to operate on a wide
range of computers, including low-power embedded systems
as well as multi-core high-end servers. Support of low-end
systems is necessary in order to embed ntopng into existing
network devices such as Linux-based routers. This feature is

to provide a low-cost solution for monitoring distributed and
SOHO (Small Office Home Office) networks.

The following section covers in detail the ntopng software
architecture and describes the various components on which
the application is layered.

III. NTOPNG SOFTWARE ARCHITECTURE
ntopng is coded in C++ which enables source code

portability across systems (e.g. X86, MIPS and ARM) and
clean class-based design, while granting high execution speed.

!
1. ntopng Software Architecture.

ntopng is divided in four software layers:

• Ingress data layer: monitoring data can be raw packets
captured from one or more network interfaces, or collected
NetFlow/IPFIX/sFlow flows after having been preprocessed.

• Monitoring engine: the ntopng core responsible for
processing ingress data and consolidating traffic counters
into memory.

• Scripting engine: a thin C++ software layer that exports
monitoring data to Lua-based scripts.

• Egress data layer: interface towards external application
that can access real-time monitoring data.

A. Ingress Data Layer
The ingress layer is responsible for receiving monitoring

data. Currently three network interfaces are implemented:
• libpcap Interface: capture raw packets by means of the
popular libpcap library.
• PF_RING Interface: capture raw packets using the open-
source PF_RING framework for Linux systems [10]
developed by ntop for enhancing both packet capture and
transmission speed. PF_RING is divided in two parts: a
kernel module that efficiently interacts with the operating

system and network drivers, and a user-space library that
interacts with the kernel module, and implements an API
used by PF_RING-based applications. The main difference
between libpcap and PF_RING, is that when using the latter
it is possible to capture/receive minimum size packets at 10
Gbit with little CPU usage using commodity network
adapters. PF_RING features these performance figures both
on physical hosts and on Linux KVM-based virtual
machines, thus paving the way to line-rate VM-based traffic
monitoring.
• ØMQ Interface. The ØMQ library [12] is an open-source
portable messaging library coded in C++ that can be used to
implement efficient distributed applications. In ntopng it has
been used to receive traffic-related data from distributed
systems. ntopng creates a ØMQ socket and waits for events
formatted as JSON (JavaScript Object Notation) [16] strings
encoded as “<element id>”: “<value>”, where <element id>
is a numeric identifier as defined in the NetFlow/IPFIX
RFCs. The advantages of this approach with respect of
integrating a native flow collector, are manyfold :

• The complexities of flow standards are not propagated
to ntopng, because open-source applications such as
nProbe [13] act as a proxy by converting flows into JSON
strings delivered to ntopng via ØMQ.
• Any non-flow network event can be collected using this

mechanism. For instance, Linux firewall logs generated by
netfilter, can be parsed and sent to ntopng just like in
commercial products such as Cisco ASA.

Each ingress interface is self-contained with no cross-
dependencies. When an interface is configured at startup,
ntopng creates a data polling thread bound to it. All the data
structures, described later in this section, used to store
monitoring data are defined per-interface and are not global to
ntopng. This has the advantage that each network interface can
operate independently, likely on a different CPU core, to
create a scalable system. This design choice is one of the
reasons for ntopng’s superior data processing performance as
will be shown in the following section.

B. Monitoring Engine

Data is consolidated in ntopng’s monitoring engine. This
component is implemented as a single C++ class that is
instantiated, one per ingress interface, in order to avoid
performance bottlenecks due to locking when multiple
interfaces are in use. Monitoring data is organised in flows and
hosts, where by flow we mean a set of packets having the
same 6-tuple (VLAN, Protocol, IP/Port Source/Destination)
and not as defined in flow-based monitoring paradigms where
flows have additional properties (e.g. flow duration and
export). In ntopng a flow starts when the first packet of the
flow arrives, and it ends when no new data belonging to the
flow is observed for some time. Regardless of the ingress
interface type, monitoring data is classified in flows. Each
ntopng flow instance references two host instances (one for
flow source and the other for flow destination) that are used to
keep statistics about the two peers. This is the flow lifecycle:

Libpcap PF_RING

Lua-based Scripting Engine

Web-Server

Incoming Packets
(Raw Traffic)

NetFlow/IPFIX, sFlow

n
nProbe

Redis

nDPI

Monitoring Engine

Web Browser

Data Export

Log ManagersWeb Apps

JSON Log FilesSyslog

Network Events
(e.g. Firewall)

JSON

• When a packet belonging to a new flow is received, the
monitoring engine decodes the packet and searches a flow
instance matching the packet. If not found, a flow instance is
created along with the two flow host instances if not
existing.
• The flow and host counters (e.g. bytes and packets) are

updated according to the received packets.
• Periodically ntopng purges flows that have been idle for a

while (e.g. 2 minutes with no new traffic received). Hosts
with no active flows that have also been idle for some time
are also purged from memory.

Purging data from memory is necessary to avoid exhausting
all available resources and discard information no longer
relevant. However this does not mean that host information is
lost after data purge but that it has been moved to a secondary
cache. Fig. 1 shows that monitoring engine connects with
Redis [14], a key-value in-memory data store. ntopng uses
redis as data cache where it stores:

• JSON-serialised representation of hosts that have been
recently purged from memory, along with their traffic
counters. This allows hosts to be restored in memory
whenever they receive fresh traffic while saving ntopng
memory.
• In case ntopng has been configured to resolve IP address

into symbolic names, redis stores the association numeric-to-
symbolic address.
• ntopng configuration information.
• Pending activities, such as the queue of numeric IPs,

waiting to be resolved by ntopng.

Redis has been selected over other popular databases (e.g.
MySQL and memcached) for various reasons:

• It is possible to specify whether stored data is persistent or
temporary. For instance, numeric-to-symbolic data is set to
be volatile so that it is automatically purged from redis
memory after the specified duration with no action from
ntopng. Other information such as configuration data is
saved persistently as it happens with most databases.
• Redis instances can be federated. As described in [15]

ntopng and nProbe instances can collaborate and create a
microcloud based on redis. This microcloud consolidates the
monitoring information reported by instances of ntopng/
nProbe in order to share traffic information, and effectively
monitor distributed networks.
• ntopng can exploit the publish/subscribe mechanisms

offered by redis in order to be notified when a specific event
happens (e.g. a host is added to the cache) and thus easily
create applications that execute specific actions based on
triggers. This mechanism is exploited by ntopng to distribute
traffic alerts to multiple consumers using the microcloud
architecture described later on this section.

In ntopng all the objects can be serialised in JSON. This

design choice allows them to be easily stored/retrieved from
redis, exported to third party applications (e.g. web apps),
dumped on log files, and immediately used in web pages
though Javascript. Through JSON object serialisation it is
possible to migrate/replicate host/flow objects across ntopng
instances. As mentioned above, JSON serialisation is also used
to collect flows from nProbe via ØMQ and import network
traffic information from other sources of data.

In addition to the 6-tuple, ntopng attempts to detect the real
application protocol carried by the flow. For collected flows,
unless specified into the flow itself, the application protocol is
inferred by inspecting the IP/ports used by the flows. For
instance, if there is a flow from a local PC to a host belonging
to the Dropbox Inc network on a non-known port, we assume
that the flow uses the dropbox protocol. When network
interfaces operate on raw packets, we need to inspect the
packets’ payload. ntopng does application protocol discovery
using nDPI [18], a home-grown GPLv3 C library for deep
packet inspection. To date nDPI recognises over 170 protocols
including popular ones such as BitTorrent, Skype, FaceBook,
Twitter , Citrix and Webex. nDPI is based on an a protocol-1

independent engine that implements services common to all
protocols, and protocol-specific dissectors that analyse all the
supported protocols. If nDPI is unable to identify a protocol
based on the packet payload it can try to infer the protocol
based on the IP/port used (e.g. TCP on port 80 is likely to be
HTTP). The library is designed to be used both in user-space
inside applications like ntopng and nProbe, and in the kernel
inside the Linux firewall. The advantage of having a clean
separation between nDPI and ntopng is that it is possible to
extend/modify these two components independently without
polluting ntopng with protocol-related code. As described in
[19], nDPI accuracy and speed is comparable to similar
commercial products and often better than other open-source
DPI toolkits.

In addition to DPI, ntopng is able to characterise traffic
based on its nature. An application’s protocol describes how
data is transported on the wire, but it tells nothing about the
nature of the traffic.

! !
2. Application Protocol Classification vs. Traffic Characterisation

To that end ntopng natively integrates Internet domain
categorisation services freely provided to ntopng users by
http://block.si. For instance, traffic for cnn.com is tagged as

 Please note that technically FaceBook is HTTP(S) traffic from/to FaceBook Inc. servers. This also applies to Twitter traffic. However nDPI assigns them a specific application protocol 1

Id in order to distinguish them from plain HTTP(S) traffic.

“News and Media”, whereas traffic for FaceBook is tagged as
“Social”. It is thus possible to characterise host behaviour with
respect to traffic type, and thus tag hosts that perform
potentially dangerous traffic (e.g. access to sites whose content
is controversial or potentially insecure) that is more likely to
create security issues. This information may also be used to
create host traffic patterns that can be used to detect potential
issues, such as when a host changes its traffic pattern profile
over time; this might indicate the presence of viruses or
unwanted applications. Domain categorisation services are
provided as a cloud-service and accessed by ntopng via HTTP.
In order to reduce the number of requests and thus minimise
the network traffic necessary for this service, categorisation
responses are cached in redis similar to the IP/host DNS
mapping explained earlier in this section.

C. Scripting Engine
The scripting engine sits on top of the monitoring engine,

and it implements a Lua-based API for scripts that need to
access monitoring data. ntopng embeds the Lua JIT (Just In
Time) interpreter, and implements two Lua classes able to
access ntopng internals.

• interface: access to interface-related data, and to flow and
host traffic statistics.

• ntop: it allows scripts to interact with ntopng
configuration and the redis cache.

The scripting engine decouples data access from traffic
processing through a simple Lua API. Scripts are executed
when they are requested though the embedded web server, or
based on periodic events. ntopng implements a small cron
daemon that runs scripts periodically with one second
granularity. Such scripts are used to perform periodic activities
(e.g. dump the top hosts that sent/received traffic in the last
minute) as well data housekeeping. For instance every night at
midnight, ntopng runs a script that dumps on a SQLite database
all the hosts monitored during the last 24 hours; this way
ntopng implements a persistent historical view of the recent
traffic activities.

The clear separation of traffic processing from application
logic has been a deliberate choice in ntopng. The processing
engine (coded in C++) has been designed to do simple traffic-
related tasks that have to be performed quickly (e.g. receive a
packet, parse it, update traffic statistics and move to the next
packet). The application logic instead can change according to
user needs and preferences and thus it has been coded with
scripts that access the ntopng core by means of the Lua API.
Given that the Lua JIT is very efficient in terms of processing
speed, this solution allows users to modify the ntopng business
logic by simply changing scripts instead of modifying the C++
engine.
dirs = ntop.getDirs()
package.path = dirs.installdir .. "/scripts/lua/
modules/?.lua;" .. package.path
require "lua_utils"
sendHTTPHeader('text/html')
print('<html><head><title>ntop</title></
head><body>Hello ' .. os.date(“%d.%m.%Y”))
print('Default ifname = ' ..
interface.getDefaultIfName()

3. Simple ntopng Lua Script

When a script accesses an ntopng object, the result is
returned to the Lua script as a Lua table object. In no case Lua
references C++ object instances directly, thus avoiding costly/
error-prone object locks across languages. All ntopng data
structures are lockless, and Lua scripts lock C++ data
structures only if they scan the hosts or flows hash. Multiple
scripts can be executed simultaneously, as the embedded Lua
engine is multithreaded and reentrant.

D. Egress Data Layer
ntopng exports monitoring data through the embedded

HTTP server that can trigger the execution of Lua scripts. The
web GUI is based on the Twitter Bootstrap JavaScript
framework [20] that enables the creation of dynamic web pages
with limited coding. All charts are based on the D3.JS [25] that
features a rich set of HTML5 components that can be used to
represent monitoring data in an effective way.

!
4. ntopng HTML5 Web Interface

The embedded web server serves static pages containing
JavaScript code that triggers the execution of Lua scripts. Such
scripts access ntopng monitoring data and return their results to
the web browser in JSON format. Web pages are dynamically
updated every second by the JavaScript code present in the
web pages, that requests the execution of Lua scripts.

As stated earlier in this section, ntopng can manipulate
JSON objects natively, thus enabling non-HTML applications
to use ntopng as a server for network traffic data as well.
Through Lua scripts, it is possible to create REST-compliant
(Representational State Transfer) [21] Web services on top of
ntopng.

Another way to export monitoring data from ntopng, is by
means of log files. With the advent of high-capacity log
processing applications such as Splunk and ElasticSearch/
Logstash, ntopng can complement traditional service
application logs with traffic logs. This allows network
administrators to correlate network traffic information to
service status. Export in log files is performed through Lua
scripts that can access the monitoring engine and dump data
into log files or send it via the syslog protocol [22], a standard
for remote message logging.

IV. EVALUATION
ntopng has been extensively tested by its users in various

heterogeneous environments. This section reports the results of
some validation tests performed on a lab using both synthetic
and real traffic captured on a network. The tests have been
performed using ntopng v.1.1.1 (r7100) on a system based on a

http://www.apple.com

low-end Intel Xeon E3-1230 running at 3.30 GHz. ntopng
monitors a 10 Gbit Intel network interface using PF_RING
DNA v.5.6.1. The traffic generator and replay is pfsend, an
open-source tool part of the PF_RING toolset. In case of real
traffic, pfsend has reproduced in loop at line rate the pcap file
captured on a real network. In the case of synthetic traffic,
pfsend has generated the specified number of packets by
forging packets with the specified hosts number. Please note
that increasing the number of active hosts also increases the
number of active flows handled by ntopng.

The table below reports the test with traffic captured on a
real network and reproduced by pfsend at line rate

5. Tests Using Real Traffic (Average Packet Size 700 bytes)

The result shows that ntopng is able to monitor a fully
loaded 10 Gbit link without loss and with limited memory
usage. Considered that the test system is a low-end server, this
is a great result, which demonstrates that it is possible to
monitor a fully loaded link with real traffic using commodity
hardware and efficient software. Using synthetic traffic we
have studied how the number of monitored hosts affects the
ntopng performance. Increasing the cardinality of hosts and
flows, ntopng has to perform heavier operations during data
structure lookup and periodic data housekeeping.

6. Synthetic Traffic: Packet Size/Hosts Number vs. Processed Packets (PPS)

The above figure shows how the number of hosts and
packet size influence the number of processes packets. Packet
capture is not a bottleneck due to the use of PF_RING DNA.
However, ntopng’s processing engine performance is reduced
in proportion with the number of active hosts and flows.
Although networks usually have no more than a few thousand
active hosts, we tested ntopng’s performance across many
conditions ranging from a small LAN (100 hosts), a medium
ISP (10k hosts) and large ISP (100k hosts) to a backbone (1M
hosts). The setup we used was worst case, because, in practice

it is not a good choice to send traffic from a million hosts to
the same ntopng monitoring interface.

!
7. pfdnacluster_master: PF_RING Zero Copy Traffic Balancing

The PF_RING library named libzero has the ability to
dispatch packets in zero-copy to applications, threads and
KVM-based VMs. The open-source app l i ca t ion
pfdnacluster_master can read packets from multiple devices 2

and implement zero-copy traffic fan-out (i.e. the same ingress
packet is replicated to various packet consumers) and/or traffic
balancing. Balancing respects the flow-tuple, meaning that all
packets of flow X will always be sent to the egress virtual
interface Y; this mechanisms works also with encapsulated
traffic such as GTP traffic used to encapsulate user traffic in
mobile networks [23]. This application can create many egress
virtual interfaces not limited by the number and type of
physical interfaces from which packets are received.

Thanks to PF_RING it is possible to balance ingress traffic
to many virtual egress interfaces, all monitored by the same
ntopng process that binds each packet processing thread to a
different CPU core. This practice enables concurrent traffic
processing, as it also reduces the number of hosts/flows
handled per interface, thus increasing the overall performance.
In our tests we have decided to measure the maximum
processing capability per interface so that we can estimate the
maximum ntopng processing capability according to the
number of cores available on the system. Using the results
reported in Fig. 5 and 6, using real traffic balanced across
multiple virtual interfaces, ntopng could easily monitor
multi-10 Gbit links, bringing real-time traffic monitoring to a
new performance level.

!
8. Synthetic Traffic: Hosts Number vs. Processed Packets (PPS)

Hosts  
Number PPS Gbps

CPU
Load

Packet
Drops

Memory
Usage

350 1.735.000 10 80% 0% 27 MB

600 1.760.000 10 80% 0% 29 MB

Packet Size 64 bytes 128 bytes 512 bytes 1500 bytes

Hosts
Number

Processed
PPS

Processed
PPS

Processed
PPS

Processed
PPS

100 8.100.000 8.130.000 2.332.090 2.332.090

1.000 7.200.000 6.580.000 2.332.090 820.210

10.000 5.091.000 4.000.000 2.332.090 819.000

100.000 2.080.000 2.000.000 1.680.000 819.000

1.000.000 17.800 17.000 17.000 17.000

Traffic
Balancing

Zero-Copy
Traffic
FanOut

Pr
oc

es
se

d
(p

ps
)

0
1.000.000
2.000.000
3.000.000
4.000.000
5.000.000
6.000.000
7.000.000
8.000.000
9.000.000

Hosts
100 1K 10K 100K 1M

Processed PPS

 Source code available at https://svn.ntop.org/svn/ntop/trunk/PF_RING/userland/examples/pfdnacluster_master.c2

The previous chart above depicts the data in Fig. 6 by
positioning the processing speed with respect to the number of
hosts. As reported in Fig. 5 using real traffic on a full 10 Gbit
link we have approximately 1.7 Mpps. At that ingress rate,
ntopng can successfully handle more than 100K active hosts
per interface, thus making it suitable for a large ISP. The figure
below shows the same information as Fig. 8 in terms of Gbps
instead of PPS.

!
9. Synthetic Traffic: Hosts Number vs. Processed Packets (Gbps)

Similar to processing performance, ntopng’s memory usage
is greatly affected by the number of active hosts and flows. As
the traffic is reproduced in loop, hosts and flows are never
purged from memory as they receive continuously fresh new
data.

!
10. Hosts Number vs. Memory Usage

Memory usage ranges from 20 MB for 100 active hosts, to
about 7 GB for 1 million hosts. Considered that low-end ARM-
based systems [26] such as the RaspberryPI and the
BeagleBoard feature 512 MB of memory, their use enables the
monitoring of ~40k simultaneous hosts and flows. This is an
effective price-performance ratio given the cost ($25) and
processing speed of such devices. ntopng code compiles out of
the box on these devices and also on the low-cost (99$)
Ubiquity EdgeMax router where it is able to process 1 Mpps.

V. OPEN ISSUES AND FUTURE WORK ITEMS

While we have successfully run ntopng on systems with
limited computation power, we are aware that in order to
monitor a highly distributed network such as cloud system, it
is necessary to consolidate all data in a central location. As
both VMs and small PCs have limited storage resources, we
are working on the implementation of a cloud-based storage

system that allows distributed ntopng instances to consolidate
monitoring data onto the same data repository.

Another future work item is the ability to further
characterise network traffic by assigning it a security score.
Various companies provide something called IP reputation
[24] a number which the danger potential of a given IP. We are
planning to integrate cloud-based reputation services into
ntopng similarly to what we have done for domain
categorisation. This would enable spot monitoring of hosts
that generate potentially dangerous network traffic.

VI. RELATED WORK
When the original ntop had been introduced in 1998 it was

the first traffic open-source monitoring application embedding
a web server for serving monitoring data. Several commercial
applications that are similar to ntopng are available from
companies such as Boundary [26], AppNeta FlowView [33],
Lancope StealthWatch [31], and Riverbed Cascade [32].
However, these applications are proprietary, often available
only as a SaaS (Software as a Service) and based on the flow-
paradigm (thus not fully real-time nor highly accurate) These
applications are difficult to integrate with other monitoring
systems because they are self-contained. Many open source
network-monitoring tools are also available : packet analysers
such as Wireshark [30], flow-based tools such as Vermont
(VERsatile MONitoring Toolkit) [27] or YAF (Yet Another
Flowmeter) [29]. Yet, 15 years after its introduction, ntopng
offers singular performance, openness and ease of integration.

VII. FINAL REMARKS
This paper presented ntopng, an open-source, real-time

traffic monitoring application. ntopng is fully scriptable by
means of an embedded Lua JIT interpreter, guaranteeing both
flexibility and performance. Monitoring data is represented
using HTML 5 served by the embedded web server, and it can
be exported to external monitoring applications by means of a
REST API or through log files that can be processed by
distributed log processing platforms. Validations tests have
demonstrated that ntopng can effectively monitor 10 Gbit
traffic on commodity hardware due to its efficient processing
framework.

CODE AVAILABILITY
This work is distributed under the GNU GPLv3 license and

is freely available in source format at the ntop home page
https://svn.ntop.org/svn/ntop/trunk/ntopng/ for both Windows
and Unix systems including Linux, MacOS X, and FreeBSD.
The PF_RING framework used during the validation phase is
available from https://svn.ntop.org/svn/ntop/trunk/PF_RING/.

ACKNOWLEDGMENT
Our thanks to Italian Internet domain Registry that has

greatly supported the development of ntopng, Alexander
Tudor <a lex@ntop .org> and F i l ippo Fon tane l l i
<fontanelli@ntop.org> for their help and suggestions.

REFERENCES
1. P. Phaal, S. Panchen, and S. McKee, InMon Corporation's sFlow: A

Method for Monitoring Traffic in Switched and Routed Networks, RFC
3176, September 2001.

Pr
oc

es
se

d
(G

bi
t/s

)

0
1
2
3
4
5
6
7
8
9

10

Hosts
100 1K 10K 100K 1M

64-byte 128-byte 512-byte 1500-byte

H
os

ts

100

1K

10K

100K

1M

Memory Usage (MByte)
1 10 100 1000 10000

7.168
1.536

140
35

25

2. B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC 3954,
October 2004.

3. S. Leinen, Evaluation of Candidate Protocols for IP Flow Information
Export (IPFIX), RFC 3955, October 2004.

4. A. Caesar, Enabling NetFlow on a vSwitch, http://www.plixer.com/blog/
network-monitoring/enabling-netflow-on-a-vswitch/, May 2013.

5. R. Lämmel, Google’s MapReduce Programming Model — Revisited,
Science of Computer Programming, 2008.

6. R. Bendrath, M. Müller, The end of the net as we know it? Deep packet
inspection and internet governance, Journal of New Media & Society,
November 2011.

7. T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.1, RFC 4346, April 2006.

8. F. Fusco, M. Vlachos, X. Dimitropoulos, L. Deri, Indexing million of
packets per second using GPUs, Proceedings of IMC 2013 Conference,
October 2013.

9. N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous, R. Raghuraman,
L. Jianying, NetFPGA - An Open Platform for Gigabit-Rate Network
Switching and Routing, Proceeding of MSE ’07 Conference, June 2007.

10. F. Fusco, L. Deri, High Speed Network Traffic Analysis with Commodity
Multi-core System, Proceedings of IMC 2010 Conference, November
2010.

11. A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, kvm: The Linux
Virtual Machine Monitor, Proceedings of the 2007 Ottawa Linux
Symposium, July 2007.

12. P. Hintjens, ZeroMQ: Messaging for Many Applications, O’Reilly, 2013.
13. L. Deri, nProbe: an Open Source NetFlow Probe for Gigabit Networks  

Proceedings of Terena TNC 2003 Conference, 2003.
14. J. A. Kreibich, S. Sanfilippo, P. Noordhuis, Redis: the Definitive Guide:

Data Modelling, Caching, and Messaging, O’Reilly, 2014.
15. L. Deri, F. Fusco, Realtime MicroCloud-based Flow Aggregation for

Fixed and Mobile Networks, Proceedings of TRAC 2013 workshop, July
2013.

16. D. Crockford, The application/json Media Type for JavaScript Object
Notation (JSON), RFC 4627, 2006.

17. B. Harzog, Real-Time Monitoring: Almost Always a Lie, http://
performancecriticalapps.prelert.com/articles/share/281286/, December
2013.

18. ntop, nDPI, http://www.ntop.org/products/ndpi/, 2014.
19. T. Bujlow, V. Carela-Español, P. Barlet-Ros, Comparison of Deep Packet

Inspection (DPI) Tools for Traffic Classification, Technical Report,
Version 3, June 2013.

20. M. L. Reuven, At The Forge: Twitter Bootstrap, Linux Journal, June 2012.
21. L. Richardson, S. Ruby, RESTful Web Services, O’Reilly, 2007.
22. R. Gerhards, The Syslog Protocol, RFC 5424, March 2009.
23. 3GPP, General Packet Radio Service (GPRS); Service Description, Stage

2, Technical Specification 3GPP SP-56, V11.2.0, 2012.
24. M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, N. Feamster, Building a

Dynamic Reputation System for DNS., Proceedings of USENIX Security
Symposium, 2010.

25. M. Bostock, Data-Driven Documents (d3.js): a Visualization Framework
for Internet Browsers Running JavaScript, http://d3js.org, .2012.

26. M. Joshi, G. Chirag, Agent Base Network Traffic Monitoring,
International Journal of Innovative Research in Science, Engineering and
Technology, Vol. 2, Issue 5, May 2013.

27. B. Cook, Boundary Meter 2.0 – Design, http://boundary.com/blog/
2013/09/27/welcome-to-meter-2-design/, September 2013.

28. R. Lampert, et al., Vermont-A Versatile Monitoring Toolkit for IPFIX and
PSAMP, Proceedings of MonAM 2006, 2006.

29. C. Inacio, B. Trammell, Yaf: yet another flowmeter, Proceedings of the
24th LISA Conference, 2010.

30. A. Orebaugh, G. Ramirez, J. Beale, Wireshark & Ethereal Network
Protocol Analyzer Toolkit, Syngress, 2006.

31. Lancope Inc., StealthWatch Architecture, http://www.lancope.com/
products/stealthwatch-system/architecture/, 2014.

32. Riverbed Inc., Riverbed Cascade, http://www.riverbed.com/cascade/
products/riverbed-nba.php, 2014.

33. AppNeta Inc., Flow View, http://www.appneta.com/products/flowview/,
2014. 

http://luca.ntop.org/imc2013.pdf
http://conferences.sigcomm.org/imc/2013/program.html
http://boundary.com/blog/2013/09/27/welcome-to-meter-2-design/

