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Abstract—Monitoring network traffic has become 
increasingly challenging in terms of number of hosts, protocol 
proliferation and probe placement topologies. Virtualised 
environments and cloud services shifted the focus from dedicated 
hardware monitoring devices to virtual machine based, software 
traffic monitoring applications.  
This paper covers the design and implementation of ntopng, an 
open-source traffic monitoring application designed for high-
speed networks. ntopng’s key features are large networks real-
time analytics and the ability to characterise application 
protocols and user traffic behaviour. ntopng was extensively 
validated in various monitoring environments ranging from 
small networks to .it ccTLD traffic analysis. 

Keywords—Traffic monitoring, real-time analytics, open-source 
software, monitoring of virtual and cloud environments. 

I.  INTRODUCTION 
Network traffic monitoring standards such as sFlow [1] and 

NetFlow/IPFIX [2, 3] have been conceived at the beginning of 
the last decade. Both protocols have been designed for being 
embedded into physical network devices such as routers and 
switches where the network traffic is flowing. In order to keep 
up with the increasing network speeds, sFlow natively 
implements packet sampling in order to reduce the load on the 
monitoring probe. While both flow and packet sampling is 
supported in NetFlow/IPFIX, network administrators try to 
avoid these mechanisms in order to have accurate traffic 
measurement. Many routers have not upgraded their 
monitoring capabilities to support the increasing numbers of 
1/10G ports. Unless special probes are used, traffic analysis 
based on partial data results in inaccurate measurements. 

Physical devices cannot monitor virtualised environments 
because inter-VM traffic is not visible to the physical network 
interface. Over the years however, virtualisation software 
developers have created virtual network switches with the 
ability to mirror network traffic from virtual environments into 
physical Ethernet ports where monitoring probes can be 
attached. Recently, virtual switches such as VMware vSphere 
Distributed Switch or Open vSwitch natively support 
NetFlow/sFlow for inter-VM communications [4], thus 
facilitating the monitoring of virtual environments. These are 
only partial solutions because either v5 NetFlow (or v9 with 
basic information elements only) or inaccurate, sample-based 
sFlow are supported. Network managers need traffic 

monitoring tools that are able to spot bottlenecks and security 
issues while providing accurate information for 
troubleshooting the cause. This means that while NetFlow/
sFlow can prove a quantitative analysis in terms of traffic 
volume and TCP/UDP ports being used, they are unable to 
report the cause of the problems. For instance, NetFlow/IPFIX 
can be used to monitor the bandwidth used by the HTTP 
protocol but embedded NetFlow probes are unable to report 
that specific URLs are affected by large service time. 

Today a single application may be based on complex 
cloud-based services comprised of several processes 
distributed across a LAN. Until a few years ago web 
applications were constructed using a combination of web 
servers, Java-based business logic and a database servers. The 
adoption of cache servers (e.g. memcache and redis) and 
mapReduce-based databases [5] (e.g. Apache Cassandra and 
MongoDB) increased the applications’ architectural 
complexity. The distributed nature of this environment needs 
application level information to support effective network 
monitoring. For example, it is not sufficient to report which 
specific TCP connection has been affected by a long service 
time without reporting the nature of the transaction (e.g. the 
URL for HTTP, or the SQL query for a database server) that 
caused the bottleneck. Because modern services use dynamic 
TCP/UDP ports the network administrator needs to know what 
ports map to what application. The result is that traditional 
device-based traffic monitoring devices need to move towards 
software-based monitoring probes that increase network 
visibility at the user and application level. As this activity 
cannot be performed at network level (i.e. by observing traffic 
at a monitoring point that sees all traffic), software probes are 
installed on the physical/virtual servers where services are 
provided. This enables probes to observe the system internals 
and collect information (e.g. what user/process is responsible 
for a specific network connection) that would be otherwise 
difficult to analyse outside the system’s context just by 
looking at packets. 

Network administrators can then view virtual and cloud 
environments in real-time. The flow-based monitoring 
paradigm is by nature unable to produce real-time information 
[17]. Flows statistics such as throughput can be computed in 
flow collectors only for the duration of the flow, which is 
usually between 30 and 120 seconds (if not more). This means 
that using the flow paradigm, network administrators cannot 



have a real-time traffic view due to the latency intrinsic to this 
monitoring architecture (i.e. flows are first stored into the flow 
cache, then in the export cache, and finally sent to the 
collector) and also because flows can only report average 
values (i.e. the flow throughout can be computed by dividing 
the flow data volume for its duration) thus hiding, for instance, 
traffic spikes. 

The creation of ntopng, an open-source web-based 
monitoring console, was motivated by the challenges of 
monitoring modern network topologies and the limitations of 
current traffic monitoring protocols. The main goal of ntopng 
is the ability to provide a real-time view of network traffic 
flowing in large networks (i.e. a few hundred thousand hosts 
exchanging traffic on a multi-Gbit link) while providing 
dynamic analytics able to show key performance indicators 
and bottleneck root cause analysis. The rest of the paper is 
structured as follow. Section 2 describes the ntopng design 
goals. Section 3 covers the ntopng architecture and its major 
software components. Section 4 evaluates the ntopng 
implementation using both real and synthetic traffic. Section 5 
covers the open issues and future work items. Section 6 lists 
applications similar to ntopng, and finally section 7 concludes 
the paper. 

II. NTOPNG DESIGN GOALS 

ntopng’s design is based on the experience gained from 
creating its predecessor, named ntop (and thus the name ntop 
next generation or ntopng) and first introduced in 1998. When 
the original ntop was designed, networks were significantly 
different. ntopng’s design reflects new realities: 

• Today’s protocols are all IP-based, whereas 15 years ago 
many others existed (e.g. NetBIOS, AppleTalk, and IPX). 
Whereas only limited non-IP protocol support is needed, v4/
v6 needs additional, and more accurate, metrics including 
packet loss, retransmissions, and network latency. 

• In the past decade the number of computers connected to 
the Internet has risen significantly. Modern monitoring 
probes need to support hundreds of thousand of active hosts.  

• While computer processing power increased in the last 
decade according to the Moore’s law, system architecture 
support for increasing network interface speeds (10/10 Mbps 
to 10/40 today) has not always been proportional. As it will 
be later explained it is necessary to keep up with current 
network speeds without dropping packets. 

•  While non-IP protocols basically disappeared, 
application protocols have significantly increased and they 
still change rapidly as new popular applications appear (e.g. 
Skype). The association UDP/TCP port with an application 
protocol is no longer static, so unless other techniques, such 
as DPI (Deep Packet Inspection) [6] are in place, identifying 
applications based on ports is not reliable. 

• As TLS (Transport Layer Security) [7] is becoming 
pervasive and no longer limited to secure HTTP, network 
administrators need partial visibility of encrypted 
communications.  

• The HTTP protocol has greatly changed, as it is no 
longer used to carry, as originally designed, hypertext only. 
Instead, it is now used for many other purposes including 

audio/video streaming, firewall trespassing and in many 
peer-to-peer protocols. This means that today HTTP no 
longer identifies only web-related activities, and thus 
monitoring systems need to characterise HTTP traffic in 
detail. 

In addition to the above requirements, ntopng has been 
designed to satisfy the following goals: 

• Created as open-source software in order to let users 
study, improve, and modify it. Code availability is not a 
minor feature in networking as it enables users to compile 
and run the code on heterogeneous platforms and network 
environments. Furthermore, the adoption of this license 
allows existing open-source libraries and frameworks to be 
used by ntopng instead of coding everything from scratch as 
it often happens with closed-source applications. 

• Operate at 10 Gbit without packet loss on a network 
backbone where user traffic is flowing (i.e. average packet 
size is 512 bytes or more), and support at least 3 Mpps per 
core on a commodity system, so that a low-end quad-core 
server may monitor a 10 Gbit link with minimal size packets 
(64 bytes). 

• All monitoring data must be immediately available, with 
traffic counters updated in real-time without measurement 
latency and average counters that are otherwise typical of 
probe/collector architectures. 

• Traffic monitoring must be fully implemented in 
software with no specific hardware acceleration 
requirements. While many applications are now exploiting 
GPUs [8] or accelerated network adapters [9], monitoring 
virtual and cloud environments requires pure software-based 
applications that have no dependency on specific hardware 
and that can be migrated, as needed, across VMs. 

• In addition to raw packet capture, ntopng must support 
the collection of sFlow/NetFlow/IPFIX flows, so that legacy 
monitoring protocols can also be supported. 

• Ability to detect and characterise the most popular 
network protocols including (but not limited to) Skype, 
BitTorrent, multimedia (VoIP and streaming), social 
(FaceBook, Twitter), and business (Citrix, Webex). As it will 
be explained below, this goal has been achieved by 
developing a specific framework instead of including this 
logic within ntopng. This avoids the need of modifying 
ntopng when new protocols are added to the framework. 

• Embedded web-based GUI based on HTML5 and 
dynamic web pages so that real-time monitoring data can be 
displayed using a modern, vector-based graphical user 
interface. These requirements are the foundation for the 
creation of rich traffic analytics. 

• Scriptable and multi-threaded monitor engine so that 
dynamic web pages can be created and accessed by multiple 
clients simultaneously. 

• Efficient monitoring engine not only in terms of packet 
processing capacity, but in its ability to operate on a wide 
range of computers, including low-power embedded systems 
as well as multi-core high-end servers. Support of low-end 
systems is necessary in order to embed ntopng into existing 
network devices such as Linux-based routers. This feature is 



to provide a low-cost solution for monitoring distributed and 
SOHO (Small Office Home Office) networks. 

The following section covers in detail the ntopng software 
architecture and describes the various components on which 
the application is layered. 

III. NTOPNG SOFTWARE ARCHITECTURE 
ntopng is coded in C++ which enables source code 

portability across systems (e.g. X86, MIPS and ARM) and 
clean class-based design, while granting high execution speed. 

!  
1. ntopng Software Architecture. 

ntopng is divided in four software layers: 

• Ingress data layer: monitoring data can be raw packets 
captured from one or more network interfaces, or collected 
NetFlow/IPFIX/sFlow flows after having been preprocessed. 

• Monitoring engine: the ntopng core responsible for 
processing ingress data and consolidating traffic counters 
into memory. 

• Scripting engine: a thin C++ software layer that exports 
monitoring data to Lua-based scripts. 

• Egress data layer: interface towards external application 
that can access real-time monitoring data. 

A. Ingress Data Layer 
The ingress layer is responsible for receiving monitoring 

data. Currently three network interfaces are implemented: 
• libpcap Interface: capture raw packets by means of the 
popular libpcap library. 
• PF_RING Interface: capture raw packets using the open-
source PF_RING framework for Linux systems [10] 
developed by ntop for enhancing both packet capture and 
transmission speed. PF_RING is divided in two parts: a 
kernel module that efficiently interacts with the operating 

system and network drivers, and a user-space library that 
interacts with the kernel module, and implements an API 
used by PF_RING-based applications. The main difference 
between libpcap and PF_RING, is that when using the latter 
it is possible to capture/receive minimum size packets at 10 
Gbit with little CPU usage using commodity network 
adapters. PF_RING features these performance figures both 
on physical hosts and on Linux KVM-based virtual 
machines, thus paving the way to line-rate VM-based traffic 
monitoring. 
• ØMQ Interface. The ØMQ library [12] is an open-source 
portable messaging library coded in C++ that can be used to 
implement efficient distributed applications. In ntopng it has 
been used to receive traffic-related data from distributed 
systems. ntopng creates a ØMQ socket and waits for events 
formatted as JSON (JavaScript Object Notation) [16] strings 
encoded as “<element id>”: “<value>”, where <element id> 
is a numeric identifier as defined in the NetFlow/IPFIX 
RFCs. The advantages of this approach with respect of 
integrating a native flow collector, are manyfold : 

• The complexities of flow standards are not propagated 
to ntopng, because open-source applications such as 
nProbe [13] act as a proxy by converting flows into JSON 
strings delivered to ntopng via ØMQ. 
• Any non-flow network event can be collected using this 

mechanism. For instance, Linux firewall logs generated by 
netfilter, can be parsed and sent to ntopng just like in 
commercial products such as Cisco ASA. 

Each ingress interface is self-contained with no cross-
dependencies. When an interface is configured at startup, 
ntopng creates a data polling thread bound to it. All the data 
structures, described later in this section, used to store 
monitoring data are defined per-interface and are not global to 
ntopng. This has the advantage that each network interface can 
operate independently, likely on a different CPU core, to 
create a scalable system. This design choice is one of the 
reasons for ntopng’s superior data processing performance as 
will be shown in the following section. 

B. Monitoring Engine 

Data is consolidated in ntopng’s monitoring engine. This 
component is implemented as a single C++ class that is 
instantiated, one per ingress interface, in order to avoid 
performance bottlenecks due to locking when multiple 
interfaces are in use. Monitoring data is organised in flows and 
hosts, where by flow we mean a set of packets having the 
same 6-tuple (VLAN, Protocol, IP/Port Source/Destination) 
and not as defined in flow-based monitoring paradigms where 
flows have additional properties (e.g. flow duration and 
export). In ntopng a flow starts when the first packet of the 
flow arrives, and it ends when no new data belonging to the 
flow is observed for some time. Regardless of the ingress 
interface type, monitoring data is classified in flows. Each 
ntopng flow instance references two host instances (one for 
flow source and the other for flow destination) that are used to 
keep statistics about the two peers. This is the flow lifecycle: 
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• When a packet belonging to a new flow is received, the 
monitoring engine decodes the packet and searches a flow 
instance matching the packet. If not found, a flow instance is 
created along with the two flow host instances if not 
existing. 
• The flow and host counters (e.g. bytes and packets) are 

updated according to the received packets. 
• Periodically ntopng purges flows that have been idle for a 

while (e.g. 2 minutes with no new traffic received). Hosts 
with no active flows that have also been idle for some time 
are also purged from memory. 

Purging data from memory is necessary to avoid exhausting 
all available resources and discard information no longer 
relevant. However this does not mean that host information is 
lost after data purge but that it has been moved to a secondary 
cache. Fig. 1 shows that monitoring engine connects with 
Redis [14], a key-value in-memory data store. ntopng uses 
redis as data cache where it stores: 

• JSON-serialised representation of hosts that have been 
recently purged from memory, along with their traffic 
counters. This allows hosts to be restored in memory 
whenever they receive fresh traffic while saving ntopng 
memory. 
• In case ntopng has been configured to resolve IP address 

into symbolic names, redis stores the association numeric-to-
symbolic address. 
• ntopng configuration information. 
• Pending activities, such as the queue of numeric IPs, 

waiting to be resolved by ntopng.  

Redis has been selected over other popular databases (e.g. 
MySQL and memcached) for various reasons: 

• It is possible to specify whether stored data is persistent or 
temporary. For instance, numeric-to-symbolic data is set to 
be volatile so that it is automatically purged from redis 
memory after the specified duration with no action from 
ntopng. Other information such as configuration data is 
saved persistently as it happens with most databases. 
• Redis instances can be federated. As described in [15] 

ntopng and nProbe instances can collaborate and create a 
microcloud based on redis. This microcloud consolidates the 
monitoring information reported by instances of ntopng/
nProbe in order to share traffic information, and effectively 
monitor distributed networks. 
• ntopng can exploit the publish/subscribe mechanisms 

offered by redis in order to be notified when a specific event 
happens (e.g. a host is added to the cache) and thus easily 
create applications that execute specific actions based on 
triggers. This mechanism is exploited by ntopng to distribute 
traffic alerts to multiple consumers using the microcloud 
architecture described later on this section. 

In ntopng all the objects can be serialised in JSON. This 

design choice allows them to be easily stored/retrieved from 
redis, exported to third party applications (e.g. web apps), 
dumped on log files, and immediately used in web pages 
though Javascript. Through JSON object serialisation it is 
possible to migrate/replicate host/flow objects across ntopng 
instances. As mentioned above, JSON serialisation is also used 
to collect flows from nProbe via ØMQ and import network 
traffic information from other sources of data. 

In addition to the 6-tuple, ntopng attempts to detect the real 
application protocol carried by the flow. For collected flows, 
unless specified into the flow itself, the application protocol is 
inferred by inspecting the IP/ports used by the flows. For 
instance, if there is a flow from a local PC to a host belonging 
to the Dropbox Inc network on a non-known port, we assume 
that the flow uses the dropbox protocol. When network 
interfaces operate on raw packets, we need to inspect the 
packets’ payload. ntopng does application protocol discovery 
using nDPI [18], a home-grown GPLv3 C library for deep 
packet inspection. To date nDPI recognises over 170 protocols 
including popular ones such as BitTorrent, Skype, FaceBook, 
Twitter , Citrix and Webex. nDPI is based on an a protocol-1

independent engine that implements services common to all 
protocols, and protocol-specific dissectors that analyse all the 
supported protocols. If nDPI is unable to identify a protocol 
based on the packet payload it can try to infer the protocol 
based on the IP/port used (e.g. TCP on port 80 is likely to be 
HTTP). The library is designed to be used both in user-space 
inside applications like ntopng and nProbe, and in the kernel 
inside the Linux firewall. The advantage of having a clean 
separation between nDPI and ntopng is that it is possible to 
extend/modify these two components independently without 
polluting ntopng with protocol-related code. As described in 
[19], nDPI accuracy and speed is comparable to similar 
commercial products and often better than other open-source 
DPI toolkits. 

In addition to DPI, ntopng is able to characterise traffic 
based on its nature. An application’s protocol describes how 
data is transported on the wire, but it tells nothing about the 
nature of the traffic. 

! !  
2. Application Protocol Classification vs. Traffic Characterisation  

To that end ntopng natively integrates Internet domain 
categorisation services freely provided to ntopng users by 
http://block.si. For instance, traffic for cnn.com is tagged as 

 Please note that technically FaceBook is HTTP(S) traffic from/to FaceBook Inc. servers. This also applies to Twitter traffic. However nDPI assigns them a specific application protocol 1

Id in order to distinguish them from plain HTTP(S) traffic.



“News and Media”, whereas traffic for FaceBook is tagged as 
“Social”. It is thus possible to characterise host behaviour with 
respect to traffic type, and thus tag hosts that perform 
potentially dangerous traffic (e.g. access to sites whose content 
is controversial or potentially insecure) that is more likely to 
create security issues. This information may also be used to 
create host traffic patterns that can be used to detect potential 
issues, such as when a host changes its traffic pattern profile 
over time; this might indicate the presence of viruses or 
unwanted applications. Domain categorisation services are 
provided as a cloud-service and accessed by ntopng via HTTP. 
In order to reduce the number of requests and thus minimise 
the network traffic necessary for this service, categorisation 
responses are cached in redis similar to the IP/host DNS 
mapping explained earlier in this section. 

C. Scripting Engine 
The scripting engine sits on top of the monitoring engine, 

and it implements a Lua-based API for scripts that need to 
access monitoring data. ntopng embeds the Lua JIT (Just In 
Time) interpreter, and implements two Lua classes able to 
access ntopng internals. 

• interface: access to interface-related data, and to flow and 
host traffic statistics.  

• ntop: it allows scripts to interact with ntopng 
configuration and the redis cache. 

The scripting engine decouples data access from traffic 
processing through a simple Lua API. Scripts are executed 
when they are requested though the embedded web server, or 
based on periodic events. ntopng implements a small cron 
daemon that runs scripts periodically with one second 
granularity. Such scripts are used to perform periodic activities 
(e.g. dump the top hosts that sent/received traffic in the last 
minute) as well data housekeeping. For instance every night at 
midnight, ntopng runs a script that dumps on a SQLite database 
all the hosts monitored during the last 24 hours; this way 
ntopng implements a persistent historical view of the recent 
traffic activities. 

The clear separation of traffic processing from application 
logic has been a deliberate choice in ntopng. The processing 
engine (coded in C++) has been designed to do simple traffic-
related tasks that have to be performed quickly (e.g. receive a 
packet, parse it, update traffic statistics and move to the next 
packet). The application logic instead can change according to 
user needs and preferences and thus it has been coded with 
scripts that access the ntopng core by means of the Lua API. 
Given that the Lua JIT is very efficient in terms of processing 
speed, this solution allows users to modify the ntopng business 
logic by simply changing scripts instead of modifying the C++ 
engine. 
dirs = ntop.getDirs() 
package.path = dirs.installdir .. "/scripts/lua/
modules/?.lua;" .. package.path 
require "lua_utils" 
sendHTTPHeader('text/html') 
print('<html><head><title>ntop</title></
head><body>Hello ' .. os.date(“%d.%m.%Y”)) 
print('<li>Default ifname = ' .. 
interface.getDefaultIfName() 

3. Simple ntopng Lua Script 

When a script accesses an ntopng object, the result is 
returned to the Lua script as a Lua table object. In no case Lua 
references C++ object instances directly, thus avoiding costly/
error-prone object locks across languages. All ntopng data 
structures are lockless, and Lua scripts lock C++ data 
structures only if they scan the hosts or flows hash. Multiple 
scripts can be executed simultaneously, as the embedded Lua 
engine is multithreaded and reentrant. 

D. Egress Data Layer 
ntopng exports monitoring data through the embedded 

HTTP server that can trigger the execution of Lua scripts. The 
web GUI is based on the Twitter Bootstrap JavaScript 
framework [20] that enables the creation of dynamic web pages 
with limited coding. All charts are based on the D3.JS [25] that 
features a rich set of HTML5 components that can be used to 
represent monitoring data in an effective way. 

!  
4. ntopng HTML5 Web Interface 

The embedded web server serves static pages containing 
JavaScript code that triggers the execution of Lua scripts. Such 
scripts access ntopng monitoring data and return their results to 
the web browser in JSON format. Web pages are dynamically 
updated every second by the JavaScript code present in the 
web pages, that requests the execution of Lua scripts. 

As stated earlier in this section, ntopng can manipulate 
JSON objects natively, thus enabling non-HTML applications 
to use ntopng as a server for network traffic data as well. 
Through Lua scripts, it is possible to create REST-compliant 
(Representational State Transfer) [21] Web services on top of 
ntopng. 

Another way to export monitoring data from ntopng, is by 
means of log files. With the advent of high-capacity log 
processing applications such as Splunk and ElasticSearch/
Logstash, ntopng can complement traditional service 
application logs with traffic logs. This allows network 
administrators to correlate network traffic information to 
service status. Export in log files is performed through Lua 
scripts that can access the monitoring engine and dump data 
into log files or send it via the syslog protocol [22], a standard 
for remote message logging. 

IV. EVALUATION 
ntopng has been extensively tested by its users in various 

heterogeneous environments. This section reports the results of 
some validation tests performed on a lab using both synthetic 
and real traffic captured on a network. The tests have been 
performed using ntopng v.1.1.1 (r7100) on a system based on a 

http://www.apple.com


low-end Intel Xeon E3-1230 running at 3.30 GHz. ntopng 
monitors a 10 Gbit Intel network interface using PF_RING 
DNA v.5.6.1. The traffic generator and replay is pfsend, an 
open-source tool part of the PF_RING toolset. In case of real 
traffic, pfsend has reproduced in loop at line rate the pcap file 
captured on a real network. In the case of synthetic traffic, 
pfsend has generated the specified number of packets by 
forging packets with the specified hosts number. Please note 
that increasing the number of active hosts also increases the 
number of active flows handled by ntopng.  

The table below reports the test with traffic captured on a 
real network and reproduced by pfsend at line rate 

5. Tests Using Real Traffic (Average Packet Size 700 bytes) 

The result shows that ntopng is able to monitor a fully 
loaded 10 Gbit link without loss and with limited memory 
usage. Considered that the test system is a low-end server, this 
is a great result, which demonstrates that it is possible to 
monitor a fully loaded link with real traffic using commodity 
hardware and efficient software. Using synthetic traffic we 
have studied how the number of monitored hosts affects the 
ntopng performance. Increasing the cardinality of hosts and 
flows, ntopng has to perform heavier operations during data 
structure lookup and periodic data housekeeping. 

6. Synthetic Traffic: Packet Size/Hosts Number vs. Processed Packets (PPS) 

The above figure shows how the number of hosts and 
packet size influence the number of processes packets. Packet 
capture is not a bottleneck due to the use of PF_RING DNA. 
However, ntopng’s processing engine performance is reduced 
in proportion with the number of active hosts and flows. 
Although networks usually have no more than a few thousand 
active hosts, we tested ntopng’s performance across many 
conditions ranging from a small LAN (100 hosts), a medium 
ISP (10k hosts) and large ISP (100k hosts) to a backbone (1M 
hosts). The setup we used was worst case, because, in practice 

it is not a good choice to send traffic from a million hosts to 
the same ntopng monitoring interface. 

  

!  
7. pfdnacluster_master: PF_RING Zero Copy Traffic Balancing 

The PF_RING library named libzero has the ability to 
dispatch packets in zero-copy to applications, threads and 
KVM-based VMs. The open-source app l i ca t ion 
pfdnacluster_master  can read packets from multiple devices 2

and implement zero-copy traffic fan-out (i.e. the same ingress 
packet is replicated to various packet consumers) and/or traffic 
balancing. Balancing respects the flow-tuple, meaning that all 
packets of flow X will always be sent to the egress virtual 
interface Y; this mechanisms works also with encapsulated 
traffic such as GTP traffic used to encapsulate user traffic in 
mobile networks [23]. This application can create many egress 
virtual interfaces not limited by the number and type of 
physical interfaces from which packets are received. 

Thanks to PF_RING it is possible to balance ingress traffic 
to many virtual egress interfaces, all monitored by the same 
ntopng process that binds each packet processing thread to a 
different CPU core. This practice enables concurrent traffic 
processing, as it also reduces the number of hosts/flows 
handled per interface, thus increasing the overall performance. 
In our tests we have decided to measure the maximum 
processing capability per interface so that we can estimate the 
maximum ntopng processing capability according to the 
number of cores available on the system. Using the results 
reported in Fig. 5 and 6, using real traffic balanced across 
multiple virtual interfaces, ntopng could easily monitor 
multi-10 Gbit links, bringing real-time traffic monitoring to a 
new performance level. 

!  
8. Synthetic Traffic: Hosts Number vs. Processed Packets (PPS) 

Hosts  
Number PPS Gbps

CPU 
Load

Packet 
Drops

Memory 
Usage

350 1.735.000 10 80% 0% 27 MB

600 1.760.000 10 80% 0% 29 MB

Packet Size 64 bytes 128 bytes 512 bytes 1500 bytes

Hosts 
Number

Processed 
PPS

Processed 
PPS

Processed 
PPS

Processed 
PPS

100 8.100.000 8.130.000 2.332.090 2.332.090

1.000 7.200.000 6.580.000 2.332.090 820.210

10.000 5.091.000 4.000.000 2.332.090 819.000

100.000 2.080.000 2.000.000 1.680.000 819.000

1.000.000 17.800 17.000 17.000 17.000
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 Source code available at https://svn.ntop.org/svn/ntop/trunk/PF_RING/userland/examples/pfdnacluster_master.c2



The previous chart above depicts the data in Fig. 6 by 
positioning the processing speed with respect to the number of 
hosts. As reported in Fig. 5 using real traffic on a full 10 Gbit 
link we have approximately 1.7 Mpps. At that ingress rate, 
ntopng can successfully handle more than 100K active hosts 
per interface, thus making it suitable for a large ISP. The figure 
below shows the same information as Fig. 8 in terms of Gbps 
instead of PPS. 

!  
9. Synthetic Traffic: Hosts Number vs. Processed Packets (Gbps)  

Similar to processing performance, ntopng’s memory usage 
is greatly affected by the number of active hosts and flows. As 
the traffic is reproduced in loop, hosts and flows are never 
purged from memory as they receive continuously fresh new 
data. 

!  
10. Hosts Number vs. Memory Usage 

Memory usage ranges from 20 MB for 100 active hosts, to 
about 7 GB for 1 million hosts. Considered that low-end ARM-
based systems [26] such as the RaspberryPI and the 
BeagleBoard feature 512 MB of memory, their use enables the 
monitoring of ~40k simultaneous hosts and flows. This is an 
effective price-performance ratio given the cost ($25) and 
processing speed of such devices. ntopng code compiles out of 
the box on these devices and also on the low-cost (99$) 
Ubiquity EdgeMax router where it is able to process 1 Mpps. 

V. OPEN ISSUES AND FUTURE WORK ITEMS 

While we have successfully run ntopng on systems with 
limited computation power, we are aware that in order to 
monitor a highly distributed network such as cloud system, it 
is necessary to consolidate all data in a central location. As 
both VMs and small PCs have limited storage resources, we 
are working on the implementation of a cloud-based storage 

system that allows distributed ntopng instances to consolidate 
monitoring data onto the same data repository. 

Another future work item is the ability to further 
characterise network traffic by assigning it a security score. 
Various companies provide something called IP reputation 
[24] a number which the danger potential of a given IP. We are 
planning to integrate cloud-based reputation services into 
ntopng similarly to what we have done for domain 
categorisation. This would enable spot monitoring of hosts 
that generate potentially dangerous network traffic. 

VI. RELATED WORK 
When the original ntop had been introduced in 1998 it was 

the first traffic open-source monitoring application embedding 
a web server for serving monitoring data. Several commercial 
applications that are similar to ntopng are available from 
companies such as Boundary [26], AppNeta FlowView [33], 
Lancope StealthWatch [31], and Riverbed Cascade [32]. 
However, these applications are proprietary, often available 
only as a SaaS (Software as a Service) and based on the flow-
paradigm (thus not fully real-time nor highly accurate) These 
applications are difficult to integrate with other monitoring 
systems because they are self-contained. Many open source 
network-monitoring tools are also available : packet analysers 
such as Wireshark [30], flow-based tools such as Vermont 
(VERsatile MONitoring Toolkit) [27] or YAF (Yet Another 
Flowmeter) [29]. Yet, 15 years after its introduction, ntopng 
offers singular performance, openness and ease of integration. 

VII. FINAL REMARKS 
This paper presented ntopng, an open-source, real-time 

traffic monitoring application. ntopng is fully scriptable by 
means of an embedded Lua JIT interpreter, guaranteeing both 
flexibility and performance. Monitoring data is represented 
using HTML 5 served by the embedded web server, and it can 
be exported to external monitoring applications by means of a 
REST API or through log files that can be processed by 
distributed log processing platforms. Validations tests have 
demonstrated that ntopng can effectively monitor 10 Gbit 
traffic on commodity hardware due to its efficient processing 
framework. 

CODE AVAILABILITY 
This work is distributed under the GNU GPLv3 license and 

is freely available in source format at the ntop home page 
https://svn.ntop.org/svn/ntop/trunk/ntopng/ for both Windows 
and Unix systems including Linux, MacOS X, and FreeBSD. 
The PF_RING framework used during the validation phase is 
available from https://svn.ntop.org/svn/ntop/trunk/PF_RING/. 
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