
Combining System Visibility and Security Using eBPF

Luca Deri1,2, Samuele Sabella1 and Simone Mainardi2

1 IIT/CNR, Via Moruzzi 1, Pisa, Italy

2 ntop, Via Ponte a Piglieri 8, 56122 Pisa, Italy  
luca.deri@iit.cnr.it, {deri,sabella,mainardi}@ntop.org

Abstract. Network security is traditionally based on the analysis and dissection
of network packets. The widespread use of data encryption and the increase of
network traffic created many challenges in terms of visibility and performance,
making security tools less effective and both hard to deploy and maintain as
network size and speed increase. The advent of eBPF in modern Linux systems
enables introspection and adds the ability to inject code in the kernel at specific
tracepoints. This work leverages eBPF to combine system introspection with a
novel system-level security policer that enables the creation of fine-grained
security policies tailored for specific users, processes and containers. This is a
major advance for network security applications that can benefit from system
introspection to enrich information extracted from network packets, paving the
way for the implementation of system- and network-aware security polices that
combine visibility and security at a fraction of the computational cost of exist-
ing solutions.

Keywords: Traffic Monitoring, Network Security, eBPF, Software Containers.

1. Introduction and Motivation

Network-based Intrusion Detection Systems (IDSes) such as Snort, Suricata and Bro
[1,2] passively monitor network traffic obtained from mirror ports or network Termi-
nal Access Points (TAPs). Similar to antiviruses, most IDSes are signature-based: they
identify issues and emit alerts by extracting patterns - often referred to as signatures -
from the captured traffic and comparing them against a database of patterns of well-
known attacks. In order to carry on these activities, network packets have to be cap-
tured, defragmented and reassembled in streams, before their content can be com-
pared against the known signatures. Intrusion Prevention Systems (IPSes) are basical-
ly IDSes with the additional capability of passively bridging traffic across two net-
work interfaces: they let legitimate traffic go through, while dropping traffic matching
known signatures. Over the last decade, the increase of network speed combined with
the widespread use of data encryption has created many challenges to IDSes and
IPSes not only in terms of network performance, but also in terms of visibility as most
signatures cannot be detected when the traffic is encrypted. The following is an ex-

ample of an IDS rule that triggers an alert by searching the pattern configured in the
pcre section of the rule.
drop tcp $HOME_NET any -> $EXTERNAL_NET any (msg:”ET TROJAN Likely Bot
N i c k i n I R C (U S A + . .) ” ; f l o w : e s t a b l i s h e d , t o _ s e r v e r ;
flowbits:isset,is_proto_irc; content:”NICK “; pcre:”/NICK .*USA.*[0-9]
{3,}/i”; reference:url,doc.emergingthreats.net/2008124; classtype:tro-
jan-activity; sid:2008124; rev:2;)

In addition to the challenges above, the widespread use of operating-system level
virtualization also known as containerization, has created additional challenges to
network-based security application that rely on network packets. Containers rely on
operating system features that enable the creation of multiple isolated instances able
to see only a portion of the allocated resources believing them to be all that is avail-
able in the system. As containers are very lightweight with respect to virtual machines
(VMs), they have become popular to implement fine-grained systems [4] based on
microservices [3, 5]. For instance it is common to run hundred of containers on a sin-
gle physical computer, often part of a larger cluster. Virtualization has taken place also
at the level of networks, where physical networks have been replaced with software
components such as Open vSwitch [6] implementing distributed virtual multilayer
switches used by containers and VMs to communicate. This means that most of the
traffic exchanged across containers and processes running on a physical system never
hits the network wire as it stays inside the operating system, thus making IDSes and
IPSes blind to such virtualized communications. This lack of visibility limits the use
of packet-based security tools only to the traffic entering/leaving the physical host,
unless an IDS/IPS is deployed per container or VM, option that is unfeasible as this
would jeopardize the whole system performance. Alternatively, one can configure a
mirror port on Open vSwitch [7], but this determines a significant degradation of the
virtual switch performance. In addition, beside speed considerations, it is worth to
remark that containerized environments vary continuously as containers are spawned
or torn down dynamically [8], whereas network-security tools have a pretty static
configuration that might be unable to cope with these dynamically-changing topolo-
gies. Finally, it is beneficial for system-level security to keep track of a wider context
and not just look at the packets. For instance, packets neither carry the user nor the
process responsible for originating/receiving the traffic, information that would be
available at the system-level but that do not fit in packets. Inside a system, ap-
plications do not see packets at all, as they think in terms or peers to which the infor-
mation is delivered without having to delve in IP streams and packets.

This paper describes the design and the implementation of a novel tool that en-
ables communications visibility at the operating-system level by monitoring network
activities. This is implemented by exploiting Linux kernel probes and tracepoints to
intercept communications instead of using packets as traditional applications such as
IDSs do. This allows the tool to enrich network communications visibility with sys-
tem-level metadata, including source and destination processes, users and, optionally,
containers. With this rich set of information it is now possible to rethink security by
exploiting the correlation of network and system level metadata to implement fine-
grained security. This is the main contribution of this work.

The rest of the paper is structured as follows. Section 2 evaluates related work,
Section 3 describes the architecture design, Section 4 discusses the tool implementa-
tion and experiments, Section 5 highlights some future work activities, and finally
Section 6 concludes the paper.

2. Related Work

Sysdig [9] is a Linux kernel module that intercepts system calls and other system lev-
el events by leveraging on Linux tracepoints. This information is delivered to user-
space applications using packet-like marshalling. This allows tcpdump-like tools to
capture, store and replay them as it happens with network packets. As captured events
can be many, Sysdig features filters, named chisels, to let Sysdig-based applications
receive only the events that are relevant for them, thus reducing the amount of infor-
mation that needs to be moved from kernel to user-space. While Sysdig allows ap-
plications to easily have access to system-level information and for instance explore
the network communications without having to deal with packets, its design is sub-
optimal for network analysis. Indeed, to opportunely follow network communications,
typical calls to socket(), accept(), connect(), and bind() need to be
tracked in a way similar to what happens with packets that have to be defragmented
and reassembled in IP streams, activity that requires CPU cycles and memory. eBPF
[10], short for “enhanced Berkeley Packet Filter”, is a VM embedded in the Linux
kernel that allows applications to be loaded from user-space and injected for run into
the Linux kernel. eBPF was originally designed to filter network packets inside the
kernel, but then it has been extended to interact with Linux tracers called kprobes
(kernel probes) and uprobes (user-space probes). Contrary to Sysdig and pre-eBPF
Linux kernel tracers that deliver all collected information to user-space for analysis,
eBPF enables the creation of applications that can run inside the Linux kernel on the
eBPF VM and thus that delivers to user-space applications the requested information
metrics in a consolidated fashion. This has a positive impact on the overall perfor-
mance as only the necessary information is delivered to user-space and thus eBPF
probes are lightweight and do not affect the overall system performance, contrary to
what usually happens with Sysdig. By leveraging on the BPF compiler collection
(BCC), user-space applications can compile C applications to VM byte code and in-
ject them into the kernel for run. Results are reported to the application in a kernel-to-
userspace queue. The drawback of this approach is that BCC has to prevent ap-
plications from creating issues to the overall system when running inside the kernel.
For this reason, compiled applications have several limitations including the inability
to create loops (e.g. a while() or for() loop) or allocate a significant amount of
memory, thus limiting BCC applications to a sort of glue software between the kernel
and user-space. Both Sysdig and eBPF have enabled the creation of tools to inspect
network communications and enforce network policies. Cilium [11] is a platform that
allows eBPF programs to be created and injected on a container virtual ethernet for
enforcing network communications at the system-call level and not at the packet level
as the Linux firewall does. Cilium does not focus on visibility of container communi-
cations but it is designed to make sure network policies are enforced. Sysdig Falco
[12] instead is a sort of IDS for containers as it allows container actions (e.g. “start
application X”, “check if user root executes command Y”) to be monitored and alerts
to be triggered. As Falco is a passive tool, it is not possible to prevent unwanted ac-
tions to be executed but only to be detected and reported.

What is currently missing in all the above tools, is the ability to match network

with system events in order to provide complete visibility both at system and network
level, while preventing unwanted network communications to take place similar to
what IPSs currently do. This work tries to fill this gap.

3. Architecture Design And Implementation

The designed solution can be logically divided into two components:
• A library, libebpfflow, responsible for the generation of network-related eBPF

events;
• An application, ntopng, in charge of enriching network traffic data with events col-

lected from libebpfflow.
The following section describes the architecture and implementation of libebpfflow
and ntopng.

3.1. libebpfflow

The aim of libebpfflow is to intercept and propagate network-related system events.
In other words, it leverages eBPF to detect attempts to use the network by processes
running in the system. Specifically, libebpfflow:
• Detects Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)

communications involving processes executing in the system.
• Marshals detected communications into events with the details of the communica-

tion, not only from a network perspective (e.g. source and destination IP addresses)
but also from a system perspective (e.g. source and destination processes and sys-
tem users).

libebpfflow is implemented as C++ library that:
• Wraps eBPF C code necessary to interact with the kernel;
• Detects TCP/UDP communications and generate the corresponding events.

Fig. 1. eBPF Components Interaction.

3.1.1. Kernel Interaction with eBPF

During initialization, libebpfflow compiles the eBPF C code into bytecode. If the
bytecode satisfies the in-kernel verifier, which checks if the program terminates and is
safe to execute, native code is produced by using a Just in Time (JIT) compiler. The
native code is then activated into the kernel. This is also schematically represented in
Figure 1. Specific kernel probe handlers, named as kprobes, can be registered by the
library at a certain kernel instruction address to have them executed by the kernel
when the function is invoked:
• The entry handler, executed by the kernel right before the function call;
• The return handler, executed by the kernel right after the function return.
In the return handler it is possible to inspect the return value of the kernel function,
whereas in the entry hander it is possible to inspect the parameters passed to the func-
tion and make decisions before the function is actually called. libebpfflow can also be
instructed to prevent a certain function to be called, pretending it has failed the execu-
tion. For example, a web browser could be blocked when it tries to connect to remote
destinations on ports different from 80 and 443. This is possible using eBPF
bpf_override_return(), that provides the ability to artificially tell the kernel
to a report failure upon certain function calls. However the Linux kernel supports
override returns only on a small group of functions, which does not include the ones
concerning network activities. For this reason, the kernel has been patched to enable
this mechanism network communications. This mechanism works only in the entry
handler, as it would be too late to activate it into the return handler as the function
would have already been executed. Using this practice it is possible to prevent selec-
tive actions to be executed, and thus enforce arbitrarily-defined security policies.
Once the eBFP code has been uploaded, the injected code starts capturing network
events generated by the kernel, and pushes them on an event queue shared between
kernel and user-space. Each event is delivered in binary format wrapped in a C data
structure and includes:
• The time in nanoseconds since the first event has been recorded, useful to report

latency information that is computed as difference in time from kernel probe return
and kernel probe enter.

• Information about user, application, and container that has triggered the event, as
well other metrics such as the network latency for TCP communications.

• The return value of the called function, useful to trace calls that reported an error.
This value could help to monitor processes and users with a high-rate of failed calls
that might indicate anomalies or suspicious behavior.

3.1.2. Detecting TCP communications

In order to detect TCP communications, we have attached eBPF code to the following
functions:
• inet_csk_accept(): used by the Linux kernel to accept the next outstanding

connection and used by libebpfflow to detect accept events for IPv4 /v6 TCP con-
nections.

• tcp_connect() and tcp_v6_connect(): same as above but for TCP con-
nect events.

The kprobe attached to the inet_csk_accept() return handler, is able to report
network information such as addresses and ports, as well as the user id, task, and con-
tainer (if any) that handled the event. All this data is packed into a data structure that
is then copied to user space to be consumed by the application using libebpfflow. As
inet_csk_accept()returns the socket that will be used for the communication,
no state has to be kept between the invocation and the function return. Instead with
tcp_connect() and tcp_v6_connect(), it is necessary to keep a state be-
tween the function entry (where the socket is stored), and return (where the return
value is collected). For this purpose, an eBPF hash function is used to glue these
pieces together and thus be able to compute the TCP connection latency.

3.2. ntopng: Network Traffic Visibility

This section describes ntopng and how it has been extended to use libebpfflow. ntop-
ng [13] is an open source web-based network monitoring software coded by the au-
thors of this paper. It provides a real-time view of network traffic as well as analytics
and Key Performance Indicators (KPI) useful for timely identifying cybersecurity
flaws, troubleshooting connectivity issues, and analyzing the root cause of outages. At
its core, ntopng classifies each packet into a traffic flow. The goal of this classification
is to create meaningful summaries out of the raw network packets. Indeed, going
through every single packet can be overwhelming for the analyst - at 1Gbps one
would have to inspect 1 million packets for every second of analysis. A traffic flow,
that can be thought of as stateful representation of an ongoing connection [14], is
uniquely identified using the 5-tuple [15] composed of source/destination IP address/
port, and protocol. Such connections take place at the transport layer of the Internet
layered protocol suite [16] to provide end-to-end communications facilities between
remote parties. Therefore, having visibility into the flows equals to having visibility
into the communications that are taking place over the network. A web client such as
a browser requesting and fetching a page from a web server represents an example of
two remotely communicating parties. The initiator, that is, the party that initiates the
connection, is also referred to as the client. Similarly, the responder, that is, the party
that responds to the initiator, is also referred to as the server. At the flow level, a con-
nection is summarized into one flow, with associated metadata, including:
• Bytes and packets exchanged from the client to the server, and from the server to

the client.
• Cybersecurity and application performance monitoring indicators, as well as or oth-

er KPIs.
• Layer-7 application protocol of the communication (e.g., HTTP, HTTPS, YouTube,

NetFlix).
This contribution capitalizes on libebpfflow with the aim of extending ntopng to en-
rich flow metadata with:
• Client and server processes information, including Process IDs (PIDs), Thread IDs

(TIDs), and process names.

• Client and server users information, including User IDs (UIDs) and Group IDs
(GIDs).

To enrich flow metadata with processes and users, ntopng has been extended as fol-
low:
• eBPF event polling and dispatching;
• eBPF event-to-flow classification.

3.2.1. eBPF Event Polling and Dispatching

In order to poll eBPF events, ntopng calls libebpfflow ebpf_poll_event(),
passing it an event handler that gets called every time a new event is available. Inside
the handler, ntopng dispatches the event to a target monitored interface. Dispatching
is a necessary operation as ntopng can monitor multiple interfaces simultaneously,
whereas events do not carry information on the originating network interface. Dis-
patching, i.e., associating an event with its originating interface, is done using the
event source IP address. For instance events that are originated by loopback address
127.0.0.1 are dispatched only to the monitored loopback interface.

3.2.2. eBPF Event-to-Flow Classification

Ntopng interfaces continuously check for dispatched events before the processing of
every packet and even during idle periods. For every event received, event-to-flow
classification is performed to attach processes and users information contained in the
event to the flow that already contains network data. The event-to-flow classification
is performed as follow:
• A flow is searched in the interface cache using eventIP addresses, ports, and proto-

col.
• Process and user information is attached to the client or the server of the flow.
In order to search for a flow in the cache, source IP address and port, destination IP
address and port, and the transport protocol are extracted from the event. When an
existing flow is not found in the cache, a new flow is created and added to the cache.
Failing to find a flow in the cache is perfectly normal. Indeed, packets processing and
events handling are independent and non-synchronized one with the other. Therefore,
an eBPF event for a given flow can be processed by ntopng before the first packet of
that particular flow has been processed. For instance the eBPF TCP connect event is
sometimes observed before the three-way handshake SYN/SYN-ACK/ACK packet
sequence (that triggered it) is received, this because packet and event processing have
different queueing systems and timings. Depending on the event received, ntopng is
able to attach process and user information to the client or the server of the flow.
Specifically:
• A connect (TCP) or sendmsg (UDP) event is used to attach information to the flow

client.
• An accept (TCP) or recvmsg (UDP) event is used to attach information to flow

server.
Therefore, attaching process and user information to both the client and the server
requires two events. However, this information is not necessarily available for both

the client and the server. Information availability depends on whether the client, the
server or both processes are local to the resource running ntopng:
• When a local client communicates with a local server, then both client and server

process and user information is available.
• When a local client communicates with a remote server, ntopng has no eBPF event

visibility on the remote server. In this case, only client process and user information
is available.

• When a remote client communicates with a local server, ntopng has no eBPF event
visibility on the remote client. In this case, only server process and user information
is available.

Recall that eBPF events come from the kernel of the resource running ntopng. There-
fore, only processes and users that are local to the resource will be visible through
eBPF. As a future work, small ePBF probes will be created and disseminated in the
network with the aim of circumventing this limitation and have visibility also on re-
mote clients and servers.

4. Validation and Experiments

In this section, the implemented architecture is validated against some real-world sce-
narios, and evaluated its performance. The results contained in this section also show
how this work is different from similar approaches such as Sysdig Falco designed
only for container monitoring. In fact ntopng with libebpfflow not only allows to glue
network with system events, but also features long term monitoring capabilities. This
enables ntopng for instance to report an alert when a user or a process perform a net-
work scan, issue that cannot be reported by Falco as it currently focuses on single
events without clustering them with users and processes. This not to mention that Fal-
co is a pure passive tool that is unable to block unwanted actions, contrarily to the
proposed architecture that is well-suited for this. Blocking unwanted actions is an
ongoing activity as discussed in Section 5.

4.1. Identify Processes and Users Contacting Malware Hosts

As already discussed in the introduction, signature-based IDSs have been traditionally
used to detect cybersecurity flaws but, as traffic is becoming more and more encrypt-
ed, they are falling short. A simple way to effectively monitor connections involving

Fig. 2. An Alert for a Flow with Blacklisted Server.

malware hosts, is by means of IP blacklists. ntopng has built-in support IP blacklists.
By default, a malware list is loaded, and alerts are generated every time a host in the
blacklist tries to contact or is contacted by any other host. Other custom blacklists can
be loaded by the user. Custom and default blacklists are periodically refreshed to al-
ways be up to date. However, being able to identify a connection involving a malware
host, although fundamental to highlight the cybersecurity anomaly, fails to tell what is
the root cause of the trouble. For example, an infected host can be quickly identified
with the aforementioned alerts, as soon as it tries to contact a malware host, but none
can be said on which process or on which user is actually manifesting the infection
via the connection to the malware host. Being able to identify the actual process (and
the actual user) that is connecting to a malware host greatly reduces the time required
to remove the infection. To this aim, this contribution extends ntopng malware alerts
and enriches them with process and user information.
Figure 2 shows a malware alert as reported by ntopng. As it can be seen from the fig-
ure, ntopng is not only able to tell that host ubuntu18 has tried to contact blacklisted
host 188.247.135.53 on port 80, it is also able to tell that the user in the system that is
responsible for such contact is simone, who tried to reach the blacklisted host using a
curl process.

4.2. Binding Network Traffic with Processes, Containers and Users

Modern systems typically run processes for several users at the same time. System
administrators rely on users to create fine-grained Access Control Lists (ACLs) or to
allow only certain users to perform sensitive tasks. Different users have different priv-
ileges, ranging from nobody with the least rights and permissions on the system, to
the superuser root who has all rights and permissions. Being able to discover the
user’s processes that are actively generating network traffic is fundamental to confirm
users are behaving as planned by the system administrator and to unveil the following
flaws:
• Users abusing certain processes to generate anomalous volumes of traffic.
• Users generating network traffic through processes that are not supposed to create

network connections or exchange data over the Internet.

Fig. 3. ntopng: User’s Processes Generating Network Traffic.

• Users that are not supposed to generate network traffic using certain processes.
• Unprivileged users running processes that should communicate over the network

only when run by a superuser.
• Superusers running processes that would require lower privileges to communicate

over the network.
To possibly unveil these flaws, ntopng has been extended with the visualization of
users’ processes that generate or receive network traffic. For example, the donut chart
shown in Figure 3 shows all processes run by simone on host 127.0.0.1, both as client
and as a server. From the figure, it is possible to immediately determine that user si-
mone is currently running two processes that generate network traffic, namely ssh and
redis-cli. Process ssh accounts for the 26.7% of simone's network traffic, whereas
redis-cli accounts for the 73.3%.

4.3. Find The Layer-7 Application Protocols of a Process or a User

ntopng can detect over 250 Layer-7 application protocols, including those that are
considered potentially malicious. This list includes protocols such as Tor or even
long-term acceptable protocols such as SSH or SSL that in certain scenarios can hide
something more dangerous such as a VPN. By monitoring such protocols, it is possi-
ble to leverage ntopng to create a taxonomy of the system processes and users to see
how they use the network. In addition, being able to find the Layer-7 application pro-
tocols of a process or a user is fundamental for example to unveil the following is-
sues:
• A compromised process or user can use the network with certain suspicious Layer-7

application protocols
• A normal process or user is abusing the network by performing certain unexpected

Layer-7 application protocols.

4.4. Performance Evaluation

In order to validate this work, some testing tools have been coded to both measure the
loss of eBPF events and their latency in case of heavy system load. The tool is made
of a server application that accepts multiple TCP connections from different clients,
and a multithreaded client that connects to the server, sends a short message and im-
mediately closes the connection. With 10,000 client threads all running on the same
Ubuntu VM, event losses have been measured to be below 0.01% that is satisfactory
considered that the host was very unresponsive due to the heavy number of connec-
tions. This means that on typical system load, usually no eBPF events are lost.

Another experiment has measured the latency between the time a message is
queued by the kernel in the event queue, and the time it appears in the user-space
event queue. The kernel time has been read from the user-space using function
clock_gettime(CLOCK_MONOTONIC). The measurements reported an average
latency of about 5 usec with peak latency of 37 usec. This is a rather low latency
compared to libpcap used to capture the traffic. The conclusion is that eBPF events
are dropped only under heavy load and that the average latency is acceptable for our
use case in case of network and system monitoring.

5. Ongoing Activities

As stated in the previous sections, the goal of this work is not just to provide visibility
but also to prevent unwanted activities to happen. As stated previously, Cilium im-
plements security policies in containers by registering policies based on IP address
and ports, with some limited Layer-7 policies currently limited to HTTP and Kafka.
Cilium enforces policies by attaching eBPF programs to the lowest possible and most
performant point in the networking stack to both the Linux tc (traffic control) and
eXpress Data Path (XDP) layer. The drawback of this solution is that does not have
visibility in terms of users and processes as it is down the networking stack and thus
blind to system-level information. Other solutions such as libseccomp (Edge) are very
primitives and thus unusable to prevent unwanted activities. For this reason, libebpf-
flow is being extended with the ability to block functions and system calls that are not
compliant with the overall policy. In order to achieve this, Linux kernel had to be
patched to enable eBPF to block selected kernel functions. For instance, in order to
block calls to tcp_v4_connect() used to initiate a TCPv4 connection, the Linux
kernel source file tcp_ipv4.c has to be patched to enable eBPF error injection by
adding an extra line ALLOW_ERROR_INJECTION(tcp_connect,ERRNO). Cur-
rently libebpfflow allow to implement policies such as:
• User simone cannot start application curl when inside a container.
• Firefox cannot connect to the Internet.
• User paolo cannot accept incoming TCP connections outside of business hours.
While libebpfflow is proving to work also to block calls, there are still a few issues
that still need to be addressed. The main one is the inability to create loops in eBPF
that libebpfflow from handling more than 14 rules. Alternatives for this limitation are
actively being searched. Among the viable alternatives is the ability to store rules in
various kernel BPF hashes: one hash for user-based policies, another for processes,
and another for communications. While this looks an interesting solution, it has the
drawback that hash lookups would have to be performed for every tracked kernel
function, with a possible negative impact on the overall performance. Another alterna-
tive is the ability to generate policies in C code in user-space, compile them on-the-
flight and pass them to the kernel JIT. All alternatives are viable, but the main issue is
that none of them allows to setup thousand of rules due to the eBPF limitations in
terms of memory and lookup speed.

6. Final Remarks

This paper covers the design and implementation of a novel eBPF-based tool that
combines system and network visibility for the detection of security flaws and the
enforcement of security policies.. In the validation section, some real use cases have
been discussed in order to demonstrate that the integration of network and system
information is a step ahead with respect to pure packet-based approaches. In essence
this paper shows that the ability to go beyond IP addresses, protocols and ports en-

ables the creation of a new generation of security tools that keep into account system-
level metadata such as users, processes, and containers.

Code Availability

The ntopng source code is available at https://github.com/ntop/ntopng. As the libebpf-
flow is coded in C++, we have created a Python version of the library available at
https://github.com/samuelesabella/ebpflow that retains the same performance as the
eBPF code is injected in the Linux kernel, but that is easier to read and modify than
the original version.

References

1. Park, W. & Ahn: Performance Comparison and Detection Analysis in Snort and Suricata
Environment. In S. Wireless Pers Commun (2017) 94: 241.

2. Mehra P.: A brief study and comparison of Snort and Bro Open Source Network Intrusion
Detection Systems. In International Journal of Advanced Research in Computer and
Communication Engineering Vol. 1, Issue 6 (2012).

3. Bass, L., Weber, I., & Zhu, L.: DevOps: A software architect's perspective. Addison-Wes-
ley Professional (2015).

4. Newman, S.: Building microservices: designing fine-grained systems. O'Reilly Media, Inc
(2015).

5. Thönes, J.: Microservices. IEEE software, 32(1), 116-116 (2015).
6. Pfaff, B., Pettit, J., Koponen, T., Jackson, E. J., Zhou, A., Rajahalme, J., & Amidon, K.:

The Design and Implementation of Open vSwitch. In NSDI (Vol. 15, pp. 117-130) (2015).
7. Shanmugalingam, S., Ksentini, A., & Bertin, P.: DPDK Open vSwitch performance valida-

tion with mirroring feature. 23rd International Conference on ICT (pp. 1-6) (2016).
8. Bernstein, D.: Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Com-

puting, (3), 81-84 (2014).
9. Borello, G.: System and Application Monitoring and Troubleshooting with Sysdig. Usenix

Lisa 2015 conference (2015).
10.Gregg, B.: Linux Performance Analysis New Tools and Old Secrets. Usenix Lisa 2014

conference (2014).
11.Makowski, Ł., & Grosso, P.: Evaluation of virtualization and traffic filtering methods for

container networks. Future Generation Computer Systems (2018).
12.Stemm, M.: SELinux, Seccomp, Sysdig Falco, and you: A technical discussion. https://

sysdig.com/blog/selinux-seccomp-falco-technical-discussion/.
13.Deri, L., Martinelli, M. and Cardigliano, A.: Realtime High-Speed Network Traffic Moni-

toring Using ntopng. Usenix Lisa 2014 conference (pp. 70-80) (2014).
14.Brownlee, N., Mills, C. and Ruth, G.: RFC 2722 Traffic Flow Measurement: Architecture.
15.Bagnulo, M., Matthews, P. and Beijnum, I.V.: RFC 6146 Stateful NAT64: Network ad-

dress and protocol translation from IPv6 clients to IPv4 servers.
16.Stevens, W.R.: RFC 1122 TCP slow start, congestion avoidance, fast retransmit, and fast

recovery algorithms.

https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/

