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Abstract. Network security is traditionally based on the analysis and dissection 
of network packets. The widespread use of data encryption and the increase of 
network traffic created many challenges in terms of visibility and performance, 
making security tools less effective and both hard to deploy and maintain as 
network size and speed increase. The advent of eBPF in modern Linux systems 
enables introspection and adds the ability to inject code in the kernel at specific 
tracepoints. This work leverages eBPF to combine system introspection with a 
novel system-level security policer that enables the creation of fine-grained 
security policies tailored for specific users, processes and containers. This is a 
major advance for network security applications that can benefit from system 
introspection to enrich information extracted from network packets, paving the 
way for the implementation of system- and network-aware security polices that 
combine visibility and security at a fraction of the computational cost of exist-
ing solutions. 
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1. Introduction and Motivation 

Network-based Intrusion Detection Systems (IDSes) such as Snort, Suricata and Bro 
[1,2] passively monitor network traffic obtained from mirror ports or network Termi-
nal Access Points (TAPs). Similar to antiviruses, most IDSes are signature-based: they 
identify issues and emit alerts by extracting patterns - often referred to as signatures - 
from the captured traffic and comparing them against a database of patterns of well-
known attacks. In order to carry on these activities, network packets have to be cap-
tured, defragmented and reassembled in streams, before their content can be com-
pared against the known signatures. Intrusion Prevention Systems (IPSes) are basical-
ly IDSes with the additional capability of passively bridging traffic across two net-
work interfaces: they let legitimate traffic go through, while dropping traffic matching 
known signatures. Over the last decade, the increase of network speed combined with 
the widespread use of data encryption has created many challenges to IDSes and 
IPSes not only in terms of network performance, but also in terms of visibility as most 
signatures cannot be detected when the traffic is encrypted. The following is an ex-



ample of an IDS rule that triggers an alert by searching the pattern configured in the 
pcre section of the rule. 
drop tcp $HOME_NET any -> $EXTERNAL_NET any (msg:”ET TROJAN Likely Bot 
N i c k i n I R C ( U S A + . . ) ” ; f l o w : e s t a b l i s h e d , t o _ s e r v e r ; 
flowbits:isset,is_proto_irc; content:”NICK “; pcre:”/NICK .*USA.*[0-9]
{3,}/i”; reference:url,doc.emergingthreats.net/2008124; classtype:tro-
jan-activity; sid:2008124; rev:2;) 

In addition to the challenges above, the widespread use of operating-system level 
virtualization also known as containerization, has created additional challenges to 
network-based security application that rely on network packets. Containers rely on 
operating system features that enable the creation of multiple isolated instances able 
to see only a portion of the allocated resources believing them to be all that is avail-
able in the system. As containers are very lightweight with respect to virtual machines 
(VMs), they have become popular to implement fine-grained systems [4] based on 
microservices [3, 5]. For instance it is common to run hundred of containers on a sin-
gle physical computer, often part of a larger cluster. Virtualization has taken place also 
at the level of networks, where physical networks have been replaced with software 
components such as Open vSwitch [6] implementing distributed virtual multilayer 
switches used by containers and VMs to communicate. This means that most of the 
traffic exchanged across containers and processes running on a physical system never 
hits the network wire as it stays inside the operating system, thus making IDSes and 
IPSes blind to such virtualized communications. This lack of visibility limits the use 
of packet-based security tools only to the traffic entering/leaving the physical host, 
unless an IDS/IPS is deployed per container or VM, option that is unfeasible as this 
would jeopardize the whole system performance. Alternatively, one can configure a 
mirror port on Open vSwitch [7], but this determines a significant degradation of the 
virtual switch performance. In addition, beside speed considerations, it is worth to 
remark that containerized environments vary continuously as containers are spawned 
or torn down dynamically [8], whereas network-security tools have a pretty static 
configuration that might be unable to cope with these dynamically-changing topolo-
gies. Finally, it is beneficial for system-level security to keep track of a wider context 
and not just look at the packets. For instance, packets neither carry the user nor the 
process responsible for originating/receiving the traffic, information that would be 
available at the system-level but that do not fit in packets. Inside a system, ap-
plications do not see packets at all, as they think in terms or peers to which the infor-
mation is delivered without having to delve in IP streams and packets. 

This paper describes the design and the implementation of a novel tool that en-
ables communications visibility at the operating-system level by monitoring network 
activities. This is implemented by exploiting Linux kernel probes and tracepoints to 
intercept communications instead of using packets as traditional applications such as 
IDSs do. This allows the tool to enrich network communications visibility with sys-
tem-level metadata, including source and destination processes, users and, optionally, 
containers. With this rich set of information it is now possible to rethink security by 
exploiting the correlation of network and system level metadata to implement fine-
grained security. This is the main contribution of this work. 

The rest of the paper is structured as follows. Section 2 evaluates related work, 
Section 3 describes the architecture design, Section 4 discusses the tool implementa-
tion and experiments, Section 5 highlights some future work activities, and finally 
Section 6 concludes the paper.  



2. Related Work 

Sysdig [9] is a Linux kernel module that intercepts system calls and other system lev-
el events by leveraging on Linux tracepoints. This information is delivered to user-
space applications using packet-like marshalling. This allows tcpdump-like tools to 
capture, store and replay them as it happens with network packets. As captured events 
can be many, Sysdig features filters, named chisels, to let Sysdig-based applications 
receive only the events that are relevant for them, thus reducing the amount of infor-
mation that needs to be moved from kernel to user-space. While Sysdig allows ap-
plications to easily have access to system-level information and for instance explore 
the network communications without having to deal with packets, its design is sub-
optimal for network analysis. Indeed, to opportunely follow network communications, 
typical calls to socket(), accept(), connect(), and bind() need to be 
tracked in a way similar to what happens with packets that have to be defragmented 
and reassembled in IP streams, activity that requires CPU cycles and memory. eBPF 
[10], short for “enhanced Berkeley Packet Filter”, is a VM embedded in the Linux 
kernel that allows applications to be loaded from user-space and injected for run into 
the Linux kernel. eBPF was originally designed to filter network packets inside the 
kernel, but then it has been extended to interact with Linux tracers called kprobes 
(kernel probes) and uprobes (user-space probes). Contrary to Sysdig and pre-eBPF 
Linux kernel tracers that deliver all collected information to user-space for analysis, 
eBPF enables the creation of applications that can run inside the Linux kernel on the 
eBPF VM and thus that delivers to user-space applications the requested information 
metrics in a consolidated fashion. This has a positive impact on the overall perfor-
mance as only the necessary information is delivered to user-space and thus eBPF 
probes are lightweight and do not affect the overall system performance, contrary to 
what usually happens with Sysdig. By leveraging on the BPF compiler collection 
(BCC), user-space applications can compile C applications to VM byte code and in-
ject them into the kernel for run. Results are reported to the application in a kernel-to-
userspace queue. The drawback of this approach is that BCC has to prevent ap-
plications from creating issues to the overall system when running inside the kernel. 
For this reason, compiled applications have several limitations including the inability 
to create loops (e.g. a while() or for() loop) or allocate a significant amount of 
memory, thus limiting BCC applications to a sort of glue software between the kernel 
and user-space. Both Sysdig and eBPF have enabled the creation of tools to inspect 
network communications and enforce network policies. Cilium [11] is a platform that 
allows eBPF programs to be created and injected on a container virtual ethernet for 
enforcing network communications at the system-call level and not at the packet level 
as the Linux firewall does. Cilium does not focus on visibility of container communi-
cations but it is designed to make sure network policies are enforced. Sysdig Falco 
[12] instead is a sort of IDS for containers as it allows container actions (e.g. “start 
application X”, “check if user root executes command Y”) to be monitored and alerts 
to be triggered. As Falco is a passive tool, it is not possible to prevent unwanted ac-
tions to be executed but only to be detected and reported. 

What is currently missing in all the above tools, is the ability to match network 



with system events in order to provide complete visibility both at system and network 
level, while preventing unwanted network communications to take place similar to 
what IPSs currently do. This work tries to fill this gap. 

3. Architecture Design And Implementation 

The designed solution can be logically divided into two components: 
• A library, libebpfflow, responsible for the generation of network-related eBPF 

events; 
• An application, ntopng, in charge of enriching network traffic data with events col-

lected from libebpfflow. 
The following section describes the architecture and implementation of libebpfflow 
and ntopng. 

3.1. libebpfflow 

The aim of libebpfflow is to intercept and propagate network-related system events. 
In other words, it leverages eBPF to detect attempts to use the network by processes 
running in the system. Specifically, libebpfflow: 
• Detects Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) 

communications involving processes executing in the system. 
• Marshals detected communications into events with the details of the communica-

tion, not only from a network perspective (e.g. source and destination IP addresses) 
but also from a system perspective (e.g. source and destination processes and sys-
tem users). 

libebpfflow is implemented as C++ library that: 
• Wraps eBPF C code necessary to interact with the kernel; 
• Detects TCP/UDP communications and generate the corresponding events.  

Fig. 1. eBPF Components Interaction.



3.1.1. Kernel Interaction with eBPF 

During initialization, libebpfflow compiles the eBPF C code into bytecode. If the 
bytecode satisfies the in-kernel verifier, which checks if the program terminates and is 
safe to execute, native code is produced by using a Just in Time (JIT) compiler. The 
native code is then activated into the kernel. This is also schematically represented in 
Figure 1. Specific kernel probe handlers, named as kprobes, can be registered by the 
library at a certain kernel instruction address to have them executed by the kernel 
when the function is invoked: 
• The entry handler, executed by the kernel right before the function call; 
• The return handler, executed by the kernel right after the function return. 
In the return handler it is possible to inspect the return value of the kernel function, 
whereas in the entry hander it is possible to inspect the parameters passed to the func-
tion and make decisions before the function is actually called. libebpfflow can also be 
instructed to prevent a certain function to be called, pretending it has failed the execu-
tion. For example, a web browser could be blocked when it tries to connect to remote 
destinations on ports different from 80 and 443. This is possible using eBPF 
bpf_override_return(), that provides the ability to artificially tell the kernel 
to a report failure upon certain function calls. However the Linux kernel supports 
override returns only on a small group of functions, which does not include the ones 
concerning network activities. For this reason, the kernel has been patched to enable 
this mechanism network communications. This mechanism works only in the entry 
handler, as it would be too late to activate it into the return handler as the function 
would have already been executed. Using this practice it is possible to prevent selec-
tive actions to be executed, and thus enforce arbitrarily-defined security policies. 
Once the eBFP code has been uploaded, the injected code starts capturing network 
events generated by the kernel, and pushes them on an event queue shared between 
kernel and user-space. Each event is delivered in binary format wrapped in a C data 
structure and includes: 
• The time in nanoseconds since the first event has been recorded, useful to report 

latency information that is computed as difference in time from kernel probe return 
and kernel probe enter. 

• Information about user, application, and container that has triggered the event, as 
well other metrics such as the network latency for TCP communications. 

• The return value of the called function, useful to trace calls that reported an error. 
This value could help to monitor processes and users with a high-rate of failed calls 
that might indicate anomalies or suspicious behavior. 

3.1.2. Detecting TCP communications 

In order to detect TCP communications, we have attached eBPF code to the following 
functions: 
• inet_csk_accept(): used by the Linux kernel to accept the next outstanding 

connection and used by libebpfflow to detect accept events for IPv4 /v6 TCP con-
nections. 



• tcp_connect() and tcp_v6_connect(): same as above but for TCP con-
nect events. 

The kprobe attached to the inet_csk_accept() return handler, is able to report 
network information such as addresses and ports, as well as the user id, task, and con-
tainer (if any) that handled the event. All this data is packed into a data structure that 
is then copied to user space to be consumed by the application using libebpfflow. As 
inet_csk_accept()returns the socket that will be used for the communication, 
no state has to be kept between the invocation and the function return. Instead with 
tcp_connect() and tcp_v6_connect(), it is necessary to keep a state be-
tween the function entry (where the socket is stored), and return (where the return 
value is collected). For this purpose, an eBPF hash function is used to glue these 
pieces together and thus be able to compute the TCP connection latency.  

3.2. ntopng: Network Traffic Visibility 

This section describes ntopng and how it has been extended to use libebpfflow. ntop-
ng [13] is an open source web-based network monitoring software coded by the au-
thors of this paper. It provides a real-time view of network traffic as well as analytics 
and Key Performance Indicators (KPI) useful for timely identifying cybersecurity 
flaws, troubleshooting connectivity issues, and analyzing the root cause of outages. At 
its core, ntopng classifies each packet into a traffic flow. The goal of this classification 
is to create meaningful summaries out of the raw network packets. Indeed, going 
through every single packet can be overwhelming for the analyst - at 1Gbps one 
would have to inspect 1 million packets for every second of analysis. A traffic flow, 
that can be thought of as stateful representation of an ongoing connection [14], is 
uniquely identified using the 5-tuple [15] composed of source/destination IP address/
port, and protocol. Such connections take place at the transport layer of the Internet 
layered protocol suite [16] to provide end-to-end communications facilities between 
remote parties. Therefore, having visibility into the flows equals to having visibility 
into the communications that are taking place over the network. A web client such as 
a browser requesting and fetching a page from a web server represents an example of 
two remotely communicating parties. The initiator, that is, the party that initiates the 
connection, is also referred to as the client. Similarly, the responder, that is, the party 
that responds to the initiator, is also referred to as the server. At the flow level, a con-
nection is summarized into one flow, with associated metadata, including: 
• Bytes and packets exchanged from the client to the server, and from the server to 

the client. 
• Cybersecurity and application performance monitoring indicators, as well as or oth-

er KPIs. 
• Layer-7 application protocol of the communication (e.g., HTTP, HTTPS, YouTube, 

NetFlix). 
This contribution capitalizes on libebpfflow with the aim of extending ntopng to en-
rich flow metadata with: 
• Client and server processes information, including Process IDs (PIDs), Thread IDs 

(TIDs), and process names. 



• Client and server users information, including User IDs (UIDs) and Group IDs 
(GIDs). 

To enrich flow metadata with processes and users, ntopng has been extended as fol-
low: 
• eBPF event polling and dispatching; 
• eBPF event-to-flow classification. 

3.2.1. eBPF Event Polling and Dispatching 

In order to poll eBPF events, ntopng calls libebpfflow ebpf_poll_event(), 
passing it an event handler that gets called every time a new event is available. Inside 
the handler, ntopng dispatches the event to a target monitored interface. Dispatching 
is a necessary operation as ntopng can monitor multiple interfaces simultaneously, 
whereas events do not carry information on the originating network interface. Dis-
patching, i.e., associating an event with its originating interface, is done using the 
event source IP address. For instance events that are originated by loopback address 
127.0.0.1 are dispatched only to the monitored loopback interface.  

3.2.2. eBPF Event-to-Flow Classification 

Ntopng interfaces continuously check for dispatched events before the processing of 
every packet and even during idle periods. For every event received, event-to-flow 
classification is performed to attach processes and users information contained in the 
event to the flow that already contains network data. The event-to-flow classification 
is performed as follow: 
• A flow is searched in the interface cache using eventIP addresses, ports, and proto-

col. 
• Process and user information is attached to the client or the server of the flow. 
In order to search for a flow in the cache, source IP address and port, destination IP 
address and port, and the transport protocol are extracted from the event. When an 
existing flow is not found in the cache, a new flow is created and added to the cache. 
Failing to find a flow in the cache is perfectly normal. Indeed, packets processing and 
events handling are independent and non-synchronized one with the other. Therefore, 
an eBPF event for a given flow can be processed by ntopng before the first packet of 
that particular flow has been processed. For instance the eBPF TCP connect event is 
sometimes observed before the three-way handshake SYN/SYN-ACK/ACK packet 
sequence (that triggered it) is received, this because packet and event processing have 
different queueing systems and timings. Depending on the event received, ntopng is 
able to attach process and user information to the client or the server of the flow. 
Specifically: 
• A connect (TCP) or sendmsg (UDP) event is used to attach information to the flow 

client. 
• An accept (TCP) or recvmsg (UDP) event is used to attach information to flow 

server. 
Therefore, attaching process and user information to both the client and the server 
requires two events. However, this information is not necessarily available for both 



the client and the server. Information availability depends on whether the client, the 
server or both processes are local to the resource running ntopng: 
• When a local client communicates with a local server, then both client and server 

process and user information is available. 
• When a local client communicates with a remote server, ntopng has no eBPF event 

visibility on the remote server. In this case, only client process and user information 
is available. 

• When a remote client communicates with a local server, ntopng has no eBPF event 
visibility on the remote client. In this case, only server process and user information 
is available. 

Recall that eBPF events come from the kernel of the resource running ntopng. There-
fore, only processes and users that are local to the resource will be visible through 
eBPF. As a future work, small ePBF probes will be created and disseminated in the 
network with the aim of circumventing this limitation and have visibility also on re-
mote clients and servers. 

4. Validation and Experiments 

In this section, the implemented architecture is validated against some real-world sce-
narios, and evaluated its performance. The results contained in this section also show 
how this work is different from similar approaches such as Sysdig Falco designed 
only for container monitoring. In fact ntopng with libebpfflow not only allows to glue 
network with system events, but also features long term monitoring capabilities. This 
enables ntopng for instance to report an alert when a user or a process perform a net-
work scan, issue that cannot be reported by Falco as it currently focuses on single 
events without clustering them with users and processes. This not to mention that Fal-
co is a pure passive tool that is unable to block unwanted actions, contrarily to the 
proposed architecture that is well-suited for this. Blocking unwanted actions is an 
ongoing activity as discussed in Section 5. 

4.1. Identify Processes and Users Contacting Malware Hosts 

As already discussed in the introduction, signature-based IDSs have been traditionally 
used to detect cybersecurity flaws but, as traffic is becoming more and more encrypt-
ed, they are falling short. A simple way to effectively monitor connections involving 

Fig. 2. An Alert for a Flow with Blacklisted Server. 



malware hosts, is by means of IP blacklists. ntopng has built-in support IP blacklists. 
By default, a malware list is loaded, and alerts are generated every time a host in the 
blacklist tries to contact or is contacted by any other host. Other custom blacklists can 
be loaded by the user. Custom and default blacklists are periodically refreshed to al-
ways be up to date. However, being able to identify a connection involving a malware 
host, although fundamental to highlight the cybersecurity anomaly, fails to tell what is 
the root cause of the trouble. For example, an infected host can be quickly identified 
with the aforementioned alerts, as soon as it tries to contact a malware host, but none 
can be said on which process or on which user is actually manifesting the infection 
via the connection to the malware host. Being able to identify the actual process (and 
the actual user) that is connecting to a malware host greatly reduces the time required 
to remove the infection. To this aim, this contribution extends ntopng malware alerts 
and enriches them with process and user information. 
Figure 2 shows a malware alert as reported by ntopng. As it can be seen from the fig-
ure, ntopng is not only able to tell that host ubuntu18 has tried to contact blacklisted 
host 188.247.135.53 on port 80, it is also able to tell that the user in the system that is 
responsible for such contact is simone, who tried to reach the blacklisted host using a 
curl process. 

4.2. Binding Network Traffic with Processes, Containers and Users 

Modern systems typically run processes for several users at the same time. System 
administrators rely on users to create fine-grained Access Control Lists (ACLs) or to 
allow only certain users to perform sensitive tasks. Different users have different priv-
ileges, ranging from nobody with the least rights and permissions on the system, to 
the superuser root who has all rights and permissions. Being able to discover the 
user’s processes that are actively generating network traffic is fundamental to confirm 
users are behaving as planned by the system administrator and to unveil the following 
flaws: 
• Users abusing certain processes to generate anomalous volumes of traffic. 
• Users generating network traffic through processes that are not supposed to create 

network connections or exchange data over the Internet. 

Fig. 3. ntopng: User’s Processes Generating Network Traffic.



• Users that are not supposed to generate network traffic using certain processes. 
• Unprivileged users running processes that should communicate over the network 

only when run by a superuser. 
• Superusers running processes that would require lower privileges to communicate 

over the network. 
To possibly unveil these flaws, ntopng has been extended with the visualization of 
users’ processes that generate or receive network traffic. For example, the donut chart 
shown in Figure 3 shows all processes run by simone on host 127.0.0.1, both as client 
and as a server. From the figure, it is possible to immediately determine that user si-
mone is currently running two processes that generate network traffic, namely ssh and 
redis-cli. Process ssh accounts for the 26.7% of simone's network traffic, whereas 
redis-cli accounts for the 73.3%. 

4.3. Find The Layer-7 Application Protocols of a Process or a User 

ntopng can detect over 250 Layer-7 application protocols, including those that are 
considered potentially malicious. This list includes protocols such as Tor or even 
long-term acceptable protocols such as SSH or SSL that in certain scenarios can hide 
something more dangerous such as a VPN. By monitoring such protocols, it is possi-
ble to leverage ntopng to create a taxonomy of the system processes and users to see 
how they use the network. In addition, being able to find the Layer-7 application pro-
tocols of a process or a user is fundamental for example to unveil the following is-
sues: 
• A compromised process or user can use the network with certain suspicious Layer-7 

application protocols 
• A normal process or user is abusing the network by performing certain unexpected 

Layer-7 application protocols. 

4.4. Performance Evaluation 

In order to validate this work, some testing tools have been coded to both measure the 
loss of eBPF events and their latency in case of heavy system load. The tool is made 
of a server application that accepts multiple TCP connections from different clients, 
and a multithreaded client that connects to the server, sends a short message and im-
mediately closes the connection. With 10,000 client threads all running on the same 
Ubuntu VM, event losses have been measured to be below 0.01% that is satisfactory 
considered that the host was very unresponsive due to the heavy number of connec-
tions. This means that on typical system load, usually no eBPF events are lost. 

Another experiment has measured the latency between the time a message is 
queued by the kernel in the event queue, and the time it appears in the user-space 
event queue. The kernel time has been read from the user-space using function 
clock_gettime(CLOCK_MONOTONIC). The measurements reported an average 
latency of about 5 usec with peak latency of 37 usec. This is a rather low latency 
compared to libpcap used to capture the traffic. The conclusion is that eBPF events 
are dropped only under heavy load and that the average latency is acceptable for our 
use case in case of network and system monitoring.  



5. Ongoing Activities 

As stated in the previous sections, the goal of this work is not just to provide visibility 
but also to prevent unwanted activities to happen. As stated previously, Cilium im-
plements security policies in containers by registering policies based on IP address 
and ports, with some limited Layer-7 policies currently limited to HTTP and Kafka. 
Cilium enforces policies by attaching eBPF programs to the lowest possible and most 
performant point in the networking stack to both the Linux tc (traffic control) and 
eXpress Data Path (XDP) layer. The drawback of this solution is that does not have 
visibility in terms of users and processes as it is down the networking stack and thus 
blind to system-level information. Other solutions such as libseccomp (Edge) are very 
primitives and thus unusable to prevent unwanted activities. For this reason, libebpf-
flow is being extended with the ability to block functions and system calls that are not 
compliant with the overall policy. In order to achieve this, Linux kernel had to be 
patched to enable eBPF to block selected kernel functions. For instance, in order to 
block calls to tcp_v4_connect() used to initiate a TCPv4 connection, the Linux 
kernel source file tcp_ipv4.c has to be patched to enable eBPF error injection by 
adding an extra line ALLOW_ERROR_INJECTION(tcp_connect,ERRNO). Cur-
rently libebpfflow allow to implement policies such as: 
• User simone cannot start application curl when inside a container. 
• Firefox cannot connect to the Internet. 
• User paolo cannot accept incoming TCP connections outside of business hours. 
While libebpfflow is proving to work also to block calls, there are still a few issues 
that still need to be addressed. The main one is the inability to create loops in eBPF 
that libebpfflow from handling more than 14 rules. Alternatives for this limitation are 
actively being searched. Among the viable alternatives is the ability to store rules in 
various kernel BPF hashes: one hash for user-based policies, another for processes, 
and another for communications. While this looks an interesting solution, it has the 
drawback that hash lookups would have to be performed for every tracked kernel 
function, with a possible negative impact on the overall performance. Another alterna-
tive is the ability to generate policies in C code in user-space, compile them on-the-
flight and pass them to the kernel JIT. All alternatives are viable, but the main issue is 
that none of them allows to setup thousand of rules due to the eBPF limitations in 
terms of memory and lookup speed. 

6. Final Remarks 

This paper covers the design and implementation of a novel eBPF-based tool that 
combines system and network visibility for the detection of security flaws and the 
enforcement of security policies.. In the validation section, some real use cases have 
been discussed in order to demonstrate that the integration of network and system 
information is a step ahead with respect to pure packet-based approaches. In essence 
this paper shows that the ability to go beyond IP addresses, protocols and ports en-



ables the creation of a new generation of security tools that keep into account system-
level metadata such as users, processes, and containers. 

Code Availability 

The ntopng source code is available at https://github.com/ntop/ntopng. As the libebpf-
flow is coded in C++, we have created a Python version of the library available at 
https://github.com/samuelesabella/ebpflow that retains the same performance as the 
eBPF code is injected in the Linux kernel, but that is easier to read and modify than 
the original version. 
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