
Static vs. Dynamic CMIP/SNMP
Network Management Using

CORBA
Luca Deri

IBM Zurich Research Laboratory1, University of Berne2

Bela Ban
IBM Zurich Research Laboratory1, University of Zürich3

The increasing complexity and heterogeneity of modern networks is
pushing industry and research to look for a single and consistent way of
managing networks. With the advent of open object-oriented distributed
computing models such as CORBA, there are efforts to make the operational
and management models the same, i.e. to manage and operate the network
using CORBA.

The aim of this paper is to show some techniques that allow to manage
CMIP/SNMP network resources using CORBA. Static techniques which map
each managed object class into a corresponding CORBA interface are
compared with dynamic techniques which rely on runtime information.
Finally this paper demonstrates that CORBA-based network management
applications are becoming attractive in terms of efficiency and application
size, overcoming limitations of early solutions.

Keywords: Network Management, CMIP, SNMP, CORBA, Scripting Language.

1. Introduction

With the growing impact of CORBA [OMG] in the telecommunications sector,
the need has risen to employ CORBA to manage CMIP/SNMP agents. Since the
CORBA object model (using IDL as specification language) is easier to learn
than CMIP [CMIP] and SNMP [SNMP], anyone who is able to create CORBA
applications can immediately use services offered by CMIP/SNMP agents,
given a CORBA interface to them, without having to have a specific knowledge
about CMIP or SNMP. It is the authors' opinion that this asset will become a
widespread need as more applications in the telecommunications business
will be programmed using CORBA. Given the large investment of carriers in
CMIP/SNMP, however, there will still be a need to manage CMIP/SNMP agents

1 IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland. Email:

{lde, bba}@zurich.ibm.com, WWW: http://www.zurich.ibm.com/~{lde, bba}/.
2 Universität Bern, Institut für Informatik und angewandte Mathematik, Software Composition Group, Neubrückstrasse 10,

3012 Bern, Switzerland. Email: deri@iam.unibe.ch, WWW: http://iamwww.unibe.ch/~deri/.

in the future. If CORBA can be employed to transparently manage those, then a
smooth transition/cooperation between the two worlds can be achieved. If a
strategy of a company is to move towards CORBA, then they can still access
their legacy agents, maybe gradually phasing them out and replacing them by
CORBA applications.

There are several, partly orthogonal, partly overlapping, approaches that use
CORBA for CMIP/SNMP management which w i l l be outlined and compared in
this paper. We present two schemes that use CORBA in a dynamic manner for
network management and contrast them to static approaches. The structure
of the paper is as follows: first, we w i l l give a short overview of CORBA.
Then, a static and two dynamic approaches to use CORBA for network
management will be presented and compared with each other, with the focus
being on the dynamic approaches. Finally, some conclusion will be drawn.

2. CORBA Overview

CORBA allows instances to be created locally or remotely either in local
host or on a remote one. If the instance is remote it can be accessed from
every CORBA compliant client, whereas local instances can be accessed only
by the application that created it.

Implementation
Repository

CORBA
server

CORBA object
server

client
application

Interface
Repository

Figure A: Components of CORBA runtime application environment

On each host on which CORBA instances are to be created there is a daemon
called CORBA server which is responsible for handling object
creation/deletion and other requests sent by client applications4. In order to
serve such requests, the server accesses two databases: interface repository
and implementation repository. The interface repository is a persistent type
repository of objects representing the elements of interface definitions and
is created and maintained based on information supplied in the IDL source file.

The implementation repository is a database which contains the
implementation definitions of CORBA objects, i.e. the shared information
about the location of the libraries which implement the CORBA objects and the
classes which are offered by a server. Whenever a client application creates a
remote object, the server uses the implementation repository in order to have
access to the code that implements the requested CORBA object and starts a
server application where the CORBA object gets instantiated. The client
application receives back from the object creation a proxy pointer, allocated
in the client’s address space, which points to the real instance created in the
server application. Due to this, clients are not allowed to manipulate
instances directly but they do access them transparently through the proxy
instances. Instead, if the instances are created locally, i.e. in the client
address space, there is no interaction with the server and the instances
behave like a normal non- CORBA instance. Nevertheless if the instance i s
created locally, the instance is “private” to the process hence there is no way
for external processes to access it.

CORBA interfaces are processed as follows:

IDL
Compiler

IDL
File C++ Stubs

User
Code

Implementation
Repository

Interface
Repository

C++
Compiler

Bindings Sh. Lib.

Figure B: CORBA Interfaces Implementation using the C++ language

The IDL compiler compiles the IDL file, updates the interface repository and
generates C++5 stubs for each interface method. The stubs are empty hence
they need to be implemented by the user. Once this step has been done, the
stubs are compiled and a shared library is generated. Such library is then
added to the implementation repository. It is now possible create CORBA
instances.

5 In our case the C++ emitter has been selected. Similar considerations can be done for other languages such as C, Java or

3. Using CORBA for Network Management

3.1. Static Approach

In this section we will present a static mapping method which is currently
being defined by X/Open.

3.1.1. XoJIDM

X/Open's Joint Inter-Domain Management task force (XoJIDM) is working on
the mapping between GDMO/ASN.1 and IDL and vice-versa (only the f i rst
mapping is of interest to us here). Their approach consists of two parts: the
first is Specification Translation [Spec95] and defines the static translation
of GDMO/ASN.1 to IDL while the second is called Interaction Translation
[Int95] and deals with how the mapping is used at runtime. The goal is to
translate the MIB of an agent (GDMO/ASN.1) to CORBA IDL which can
subsequently be used to manage the agent using CORBA. The approach is shown
in the figure below:

client

Client Stubs Server Stubs
(Skeleton)

Server Stubs Implementation
(XOM/XMP based)

server

GDMO/ASN.1

IDL
Compiler

GDMO/ASN.1-IDL
Translator

Figure C: XoJIDM Specification and Interaction Translation

The GDMO/ASN.1 documents describing the agent's MIB are translated to IDL
and then to a server implementation. GDMO templates are mapped to IDL
interfaces and actions and attributes to operations where for each GDMO
attribute, a potential GET-, REPLACE-, ADD-, REMOVE-, and SET-TO-DEFAULT-
operation is defined. Each ASN.1 type is translated to a corresponding IDL
type, e.g. SEQUENCE is mapped to an IDL struct, OCTET STRING to string etc.
The generated IDL interfaces representing GDMO class templates will include

IDL attributes generated from ASN.1 types. IDL is then compiled to produce
the client and server stubs in the desired language binding (e.g. C++). The
server stub and the implementation code generated by the GDMO/ASN.1-IDL
compiler are compiled and linked to produce a CORBA implementation. The
client stubs are compiled and linked with the user application. Information
about available CORBA interfaces (which represent CMIP instances) i s
contained in the generated client stubs and therefore known to the client at
compile time. At runtime, the client proxies will forward any request they
receive to their corresponding objects in the CORBA server. These will use the
implementation code generated by the GDMO/ASN.1-IDL compiler to
communicate with the managed objects in an agent using CMIP/SNMP (e.g. by
using the XOM/XMP API [XOM][XMP]).

3.2. Dynamic Approaches

The limitations of the static CMIP/SNMP to CORBA mappings and their
extreme complexity has been the main reason that pushed the authors towards
a more dynamic approach to the problem. In this section we will present two
dynamic models defined by the authors which use CORBA for network
management.

3.2.1. GOM

The Generic Object Model (GOM) [Ban] is a framework for management of
instances of multiple object models such as CORBA, CMIP or SNMP.

Meta-Information
Database

Conversion

IDLGDMO/ASN.1

GOM
Objects

X.700 Objects

Figure D: GOM Architecture

It uses the concept of reification, modelling elements of object-oriented
models as objects themselves [Maes]. Thus, al l CORBA interfaces or GDMO
class templates that will ever be encountered are mapped to an instance of

the generic GOM class GenObj, al l attributes to instances of Attribute and a l l
values to instances of Val. The interface of class GenObj is shown below:

class ArgList;
class Val;
class Attribute; // contains Val

class GenObj {
 private:

List<Attribute> attributes;
 public:

Val* Get(const char* attrname);
bool Set(const char* attrname, Val& new_val);
Val* Execute(const char* opname, ArgList& args);
[...]

};

It has a list of attributes and operations which are instances of the classes
Attribute and Operation respectively. Since client applications do not have to
include type information about available classes at compile-time, they
typically have a very small size. Also, when a specification is modified,
clients do not have to be recompiled, but it is only the modified specification
that has to be parsed and fed into the Metadata Information Database (MID)
(c.f. below). Once it is there, adapters (see below) that use that specific type
information just have to flush their metadata cache in order to access the
modified type information, which is a runtime operation. Having no tight
binding between client and server and providing a reified object model has a
number of advantages especially in X.700 which is more complex than CORBA.
It is for example possible to accommodate conditional packages on a as-
needed basis, which means that no elements of conditional packages will be
initially available when an instance is created. When a request is sent to the
instance referring to an attribute residing in a conditional package, the
attribute w i l l be created ad hoc using the MID and w i l l be added to the
instance's attribute list. This scheme of on-demand loading allows for
memory-sensitive applications to be created. Another example is the use of
the X.700 ANY DEFINED BY type which is a type that can be determined only at
runtime using metadata. It is simply not possible to map this type at compile
time to an IDL interface or C++ class in the static approach. As shown above,
there is one proxy instance of GenObj in the client's address space for each
underlying object, be it a CMIP, SNMP or CORBA object. Requests sent to those
proxy instances will be forwarded to an adapter which knows how to translate
between the generic and exactly one specific model.

Since, contrary to the static approaches described above, there is no
compiled-in knowledge of any classes in the system, adapters rely entirely on
metadata about the CORBA, SNMP or CMIP classes available to perform their
work. GOM includes a MID which is a repository of type information about the
various specific models. It is populated by compilers, e.g. in the case of

CORBA, an IDL compiler will parse the IDL specifications and add metadata
about CORBA interfaces, their operations and attributes to the MID. In the case
of X.700, a GDMO compiler w i l l add metadata about GDMO templates, their
operations and attributes and an ASN.1 compiler w i l l provide information
about the ASN.1 types. Conceptually, the MID is a single logical database,
whereas it uses a separate database for each object model internally. The MID
can also be used for other purposes such as lookup of type information for
interpreters or debuggers, documentation of class specifications etc.

3.2.1.1. GOMscript

In order to handle instances of GOM, a C++-like interpreter has been written
which lets users create, access and delete instances either interactively or by
running scripts. GOMscript6 has simple values such as numbers, booleans,
strings and aggregate values such as structs, unions and lists. It has the usual
control statements for repetition (for, while) and conditional branching (if, else)
and is object-oriented in the sense that it implements (single) inheritance,
polymorphism and encapsulation. Its core is very small and can be extended
(additional functions and classes) through user-written components [Deri95]
which are located in shared libraries. GOMscript can be started in daemon
mode in which it waits for (potentially remote) clients to send script to be
executed. This allows for implementation of simple roaming agents [Mage96]
which are essentially scripts moving from machine to machine and taking
their state with them. The architecture is shown below:

GOM

CORBA X.700

GOMscript

GOM

CORBA X.700

GOMscript

Script

MigrationHost
A

Host
B

Figure E: Fig. 8: GOMscript as an Execution Platform for Roaming
Agents

At any time during its execution, a script may decide to migrate to a
different machine. To do so it simply calls a GOMscript function which has as
parameters the name of the target host and the port number. This will pack
the currently running script and the state (a dump of the symbol table) into a
TCP message which is subsequently sent to the target machine. There, another
interpreter receives the message, sets its init ia l state from the dumped
symbol table data and starts execution of the script in a separate process.

Since CORBA object references are values in the symbol table that can be
dumped to a data stream as well, it is possible for roaming agents to have
access to some global CORBA instance to which they can refer during their
trips7. An example of a script for a roaming agent is presented in the next
section.

3.2.2. CORBA-Liaison

Liaison [Deri96a] is a software application which allows to manage
CMIP/SNMP resources through the Web. The core element of Liaison is the
Proxy server which is based on a special type of software components called
droplets [Deri95] that have the ability to be replaced and added at runtime
allowing to dynamically modify and extend the behaviour of the application
that contains them. Among the droplet part of Liaison’s standard
configuration, there are some which allow Java/C++ applications to do
network management through Liaison. Basically Liaison provides some
Java/C++ classes, called external bindings [Deri96b], which are linked to the
C++ application or Java applet and which allows management operations to be
performed. The management application uses the external bindings as normal
classes, invoking methods, creating/deleting instances. Transparently,
external bindings communicate with the Proxy server using the HTTP [HTTP]
protocol, used extensively in the Internet by the World-Wide Web.

Proxy ServerC++ Application
Java Applet

HTTP

CMIP/SNMP

Droplets

Figure F: Liaison’s Java/C++ Bindings

Whenever a method of the external bindings that performs a management
operation (e.g. CMIP M-SET) is called, an HTTP request is sent to the Proxy.
Such an HTTP request contains al l the parameters necessary to issue the
management request. The Proxy issues the management request, receives the
response(s) and handles all the possible errors. Once the operation has been
completed, an HTTP response containing the result of the operation is sent
back to the application. This mechanism allows external applications to do
network management in a simple and effective way by exploiting Liaison and
without having to handle the complexity of management protocols. In fact,
external bindings deal only with object oriented concepts shielding

completely the underlying management protocol.

Based on external bindings some CORBA interfaces to the CMIP/SNMP
protocols have been defined. An important design choice has been to do not
map each CMIP/SNMP object to a CORBA object like seen in other translation
methods, but to map the CMIP/SNMP protocols to CORBA in a very generic way.
This choice has been motivated by the following reasons:

• ability to fully support CMIP/SNMP from CORBA
• low complexity and flexibil ity since there is no need to generate new

CORBA classes for new CMIP/SNMP objects that need to be supported
• user-defined abstraction level: users can define further CORBA classes

based on the basic ones depending on their needs without having to pay
the complexity of having a CORBA class for each CMIP/SNMP object even
if not all of them are currently used.

CORBA-Liaison interfaces (CL) for CMIP/SNMP, defined using the IDL
(Interface Definition Language) language, have been implemented using DSOM
[DSOM], IBM’s CORBA compliant ORB (Object Request Broker). Since we do not
rely on any specific characteristic of DSOM, similar considerations can be
done for other CORBA implementations. ASN.1 datatypes, l ike external
bindings datatypes, have been mapped to strings, hence to the native string IDL
datatype. CL interfaces representing CMIP and SNMP objects, defined in a way
very similar to Liaison’s external binding, are depicted below:

DSOMSNMPObjDSOMCMIPObj

DSOMInformation

SOMObject

Figure G: CL Interfaces for CMIP/SNMP

The interface DSOMInformation contains the information relative to the request
and to the response(s). Internally the values are stores in a hash table where
the attributeId constitutes the key and the attributeValue the value of each
table entry. The use of hash table associated with the mapping of values into
strings allows to handle objects independently from their class and
complexity. In the case of CMIP, the presentation layer or a thin layer on top
of the stack, converts attribute values into strings and vice–versa, whereas in
the case of SNMP is the Proxy that handles the conversion.

interface DSOMInformation: SOMObject {
void SetAttribute(in string name, in string value); // Stores a value into the table
string GetAttribute(in string name); // Retrieves a value
void RemoveAttribute(in string name); // Remove an attribute from the table
sequence <string> GetAttributes(); // Returns all the attribute values
sequence <string> GetAttributeKeys(); // Returns all the attribute keys
void RemoveAllAttributes(); // Table clean up
[...]

}

Being DSOMInformation built upon a hashtable, it is possible to retrieve and store
elements efficiently and to have only a few methods that handle al l the
situations. In order to further simplify the attribute manipulation, the classes
DSOMSNMPObj and DSOMCMIPObj have been defined. These classes simplify the access to
DSOMInformation by defining some sort of macros such as
DSOMCMIPObj::GetObjectInstance() which are mapped into calls to DSOMInformation methods
(DSOMInformation::GetAttribute(“objectInstance”) in this case). C++ methods of CL are
almost identical to the ones defined in the corresponding class part of the
external bindings hence the stub implementation has been very
straightforward. The similarity between these interfaces and the
corresponding classes part of the external bindings has the advantage that
developers can use both DSOM and the external bindings, having to learn just
one object model. Additionally, code can be written once and them slightly
modified to use either the C++/Java external bindings or the C++/Java
language bindings of the DSOM interfaces. This is because methods and classes
have the same names and parameters. The following example shows how a
simple program based on the external bindings can make use of the DSOM
interfaces by simply adding the code shown in bold. The code fragment below
reads the value of the attribute systemTitle of the instance
genericNetworkId=Net1@systemId=(name Telco) using the CMIP protocol.

Environment ev;
SOM_InitEnvironment(&ev); SOMD_Init(&ev); /* Initialization */

try {
Liaison_DSOMCMIPObj *cmip = new Liaison_DSOMCMIPObj(&ev);
cmip->UseProxy(&ev, "adl.zurich.ibm.com”); /* Uses the Proxy server running on host adl */

 cmip->SetAgentAET(&ev, p, "MIBCTL" /* CMIP Agent AE-Title */);
cmip->SetObjectClass(&ev, "system");
cmip->SetObjectInstance(&ev, "genericNetworkId=Net1@systemId=(name Telco)");
cmip->SetAttribute(&ev, "systemTitle", "");
cmip->CMIPGetAttributes(&ev); // Issue the CMIP M-GET request

 if(somExceptionId(&ev) == NO_EXCEPTION)
printf(“systemTitle is: %s\n”, cmip->GetAttribute(&ev, “systemTitle”));

delete cmip;
} catch(char *exc) { printf(“Caught exception: %s“, exc); }

SOMD_Uninit(&ev); SOM_UninitEnvironment(&ev); /* Termination */

Basically the only code that has to be added is related to:
• the DSOM initialisation/termination

• the Environment parameter needed in each DSOM method call
• exception handling that cannot catch all the DSOM exceptions using the

try/catch mechanism since DSOM may use the Environment parameter to
report about error conditions.

The design choice to implement the DSOM stubs using the external bindings
instead of wrapping the whole Proxy into a DSOM object has the following
advantages:

• since the external bindings are quite light, the DSOM interfaces
implementation is very light (less than 70Kb)

• DSOM has to be installed only by users that need to access the Proxy
using DSOM, i.e. applications based on external bindings do not need to
have DSOM installed in order to run

• DSOM allows to create objects on hosts where the Proxy is not installed
exploiting a remote Proxy, without the need to have DSOM installed on
the host where such Proxy runs (the communication DSOM server/Proxy is
HTTP based)

• depending on the situation, users can decide to access services provided
by the Proxy using HTTP, DSOM or both (if the Proxy would have be
wrapped in a CORBA object then users would need DSOM to access the
Proxy)

• it is possible to manage hosts outside firewalls using a local Proxy and
DSOM interfaces since they are based on HTTP (DSOM cannot cross
firewalls, HTTP can).

The drawback of this solution is that every time a management operation
need to be issued, there is a communication between the DSOM client, the
DSOM server and the Proxy instead of having the Proxy contained inside the
DSOM server. In the tests we have performed, the slowdown of the proposed
solution is not more than 10-20% with respect to a ful l integration of the
Proxy inside a DSOM object. Considering the many advantages of this solution
with respect to a total DSOM integration, we believe that this overhead is
acceptable and almost neglectable if client applications can perform multiple
operations concurrently (multithread) without active wait.

3.2.2.1. Managing CORBA-Liaison Interfaces with GOMscript

Using GOMscript, CL interfaces can be handled interactively or by running
scripts, thus allowing for simple management tasks to be automated. The code
using the C++ language bindings of Liaisons CORBA interfaces shown
previously, can thus be rewritten as follows (using script form):

 system_name="genericNetwokId=Net1@systemId=(name Telco)";

 cmip=new Obj("", "::Liaison::DSOMCMIPObj", "adl.zurich.ibm.com");

 cmip.UseProxy("adl.zurich.ibm.com");
 cmip.SetObjectClass("system");
 cmip.SetObjectInstance(system_name);
 cmip.SetAttribute("systemTitle", "");
 cmip.CMIPGetAttributes();

 if(GetEx() == NULL) {
 println "systemTitle is " + cmip.GetAttribute("systemTitle");
 }

GOMscript can make use of the Liaison CORBA interfaces for implementing
simple roaming agents for network management tasks. Agents may for
example be sent to different locations to perform data collection and filtering
tasks the result of which are periodically sent back to a central CORBA
instance. A sample script is shown below:

if(hosts == NULL)
 hosts=#("adl", "saz", "mut", "kis"); // list of hosts to visit

if(collector == NULL) {
 collector=new Obj("CORBA", "Collector", "adl"); // "adl" is central loc.
}

if(hosts.Length() > 0) {
 target_host=hosts.At(0);
 hosts.Delete(0); // otherwise we loop since the script is always
 // sent to the same location !
 SendAgent(target_host, 10000, "", ""); // will know 'hosts' and
 // 'collector' at target location
}

/* Now start the assigned task */
snmp_obj=new Obj("", "::Liaison::DSOMSNMPObj", ""); // create local snmp obj
snmp_obj.SetSnmpAgentAddress("", 160); // local snmpd is used
hostname=GetHostname();
while(true) {
 out_requests=snmp_obj.GetAttribute("ifOutRequests.0");
 // get more interesting data ...
 collector.UpdateAttr(hostname, // primary key
 "ifOutRequests.0", // secondary key

 out_requests); // data
 Sleep(60); // sleep 1 minute
}

First the script is sent to a set of machines determined in hosts. As long as
the l ist is not empty, the script w i l l propagate a copy of itself (and its
current state) to the next member of the list. Having done this, the assigned
work can be started. An SNMP object is created and a value retrieved
(ifOutRequests.0). This value is then sent to a central CORBA instance where it
may be accessed by other clients for examination. Since values can be
summarised, correlated or filtered by an agent before sending them to the
global CORBA instance, a sort of event filtering mechanism could be easily
implemented.

Since different sets of classes and functions may be available on various
machines in the network, GOMscript allows to check for the existence of
classes and functions before usage. Also, since GOMscript is based on GOM, it
is possible to dynamically find out what classes are available on a certain
system and use their services. Consider the case of a Printer class which offers
a service named Print: an agent can always invoke this service on any object
that offers a service of the same signature regardless of whether the class is
derived from some common base class or the agent has (compiled-in)
knowledge of the Printer class.

4. Static vs. Dynamic Mapping

The work done on using CORBA for network management as described above
can be broadly divided into two categories: approaches which statically
translate GDMO/ASN.1 to generate code which is included by management
applications that therefore know at compile time the extent of classes that
they can handle, and dynamic approaches without dependency on compile time
knowledge since they are either string- or metadata-based. The following
table lists some of the major differences between the various approaches:

CORBA-Liaison GOM
[Ban]

XoJIDM
[Int95][Spec95]

Mapping Type Dynamic Semi-dynamic Static

Typing Untyped Runtime-type checked Strong

Type Checking Runtime
(by Proxy and the OSI Stack)

Runtime
(using metadata)

Compile Time

Implementation
size

Small
(<70Bk irregardless of the
type/number of managed

objects)

Medium
(it needs a metadata

repository)

Large
(it includes a mass of

generated
types/methods)

ASN.1/CORBA
type mapping

All datatypes are mapped to
a string

Datatypes are mapped to
a small set of GOM types

(15)

Every datatype is mapped
to an equivalent CORBA
type (sometimes more

than one)

CMIP/SNMP:Corb
aClasses

N:1 N:15 N:M (N <= M)

CMIP Support Yes Yes
(except for M-EVENT-

REPORT and M-ACTION)

Yes

SNMP Support Yes No
(no SNMP adapters

currently available)

Yes

The CORBA Liaison (CL) interface approach is completely untyped since all
types are mapped to strings. Conversion between strings and the desired data

type of the host language (e.g. C++) has to be done by the programmer. This may
be easy for simple types such as strings or numbers, but increases complexity
for the programmer considerably for aggregate types such as structs or
sequences. Also, probability for introduction of errors in user-written
conversion functions increases. This trade-off, however, was accepted by CL
because its main goal was the creation of a light-weight model for network
management that should be flexible (no compiled-in knowledge) and that
should be integrated with the World Wide Web [HTTP] which uses strings as
the major data type anyway. Also, network management is nowadays st i l l
predominantly based on SNMP which uses mainly atomic data types such as
strings or integers. The programmer specifying the types in a string-based
syntax which will be runtime checked by the Proxy in the case of SNMP, or by
the OSI stack in the case of CMIP. Compared to the static approaches with
their strong typing enforced at compile time, GOM enforces typing at runtime
using metadata. Contrary to CL, which knows only the string type, it has types
for representation of classes (GenObj), attributes (Attribute) and values (Val,
Integer, String, Struct, Sequence etc.). Whereas CL maps al l types to strings, GOM
maps them to an instance of this set of fixed types, and the static approach
maps each type to a corresponding IDL type.

Whereas the static approaches fully integrate the translated code into the
target type system using the target's native types (e.g. C++), GOM offers an
abstraction of the target's type system (ca. 15 types) as API to the user
whereas the API of CL is the single type string. In the case of the static
approaches, the client of the API may mix types of the target system and the
generated code since they are the same whereas using GOM, native (C++) types
have to be converted to/from GOM types (e.g. int to instance of Integer)8. Using
CL, it is the responsibility of the client to convert the string types to/from the
native type system (C++, Java etc.). The dynamic approaches have two major
advantages over the static ones: they typically produce smaller client
applications and they are much more flexible. Since clients do not possess a-
priori knowledge about classes available in the system, but rather use strings
or metadata, they are independent from class modifications and can continue
working while clients using the static approach may need to be recompiled.
This is an essential asset in areas such as topology browsers and roaming
agents (c.f. above) that do not know all the classes they will encounter when
compiled. Including at compile time a fixed set of classes may yield
potentially large client applications that have to pay (in terms of size) for all
the classes they carry with them even if only a few are actually used. In the
dynamic approaches, when a client needs to handle a new/modified class,
either the latter's metadata is dynamically loaded (GOM) or it needn't be
loaded since a string type represents all types (CL). An area where metadata
is useful or needed are X.700's conditional packages, attributes and the

ANY/ANY DEFINED BY ASN.1 types which can only be resolved to a correct type
at runtime.

5. Conclusion

This article shows that management of OSI and SNMP network resources
through CORBA is possible and feasible. The two main directions of research
currently done on using CORBA with network management have been analysed
and compared. Besides known techniques, this paper described a novel
technique named CORBA-Liaison. Relevant characteristics of this technique
are: efficient, full CMIP/SNMP protocol support, light and simple object model
independent from a particular CORBA implementation.

The goal of this paper was not to demonstrate that one approach is better
than another but to understand the benefits and limitations and then to
identify the solution that better fits user requirements. Finally this paper has
shown that CORBA-based SNMP/CMIP management is now becoming a mature
technique which overcomes most of the limitations of early solutions.

6. References

[ASN1] ISO/IEC, CCITT, Specification of Abstract Syntax Notation One
(ASN.1), ISO/IEC 8824, CCITT Recommendation X.208, 1988.

[Ban] B. Ban, Towards a Generic Object-Oriented Model for Multi-
Domain Management, Proceedings of ECOOP ’96 Workshop on
Systems and Network Management, Linz, Austria, July 1996

[CMIP] ISO/IEC, CCITT, Information Technology-OSI, Common Management
Information Protocol (CMIP)-Part 1: Specification ISO/IEC 9596-
1, CCITT Recommendation X.711, 1991.

[Deri95] L. Deri, Droplets: Breaking Monolithic Applications Apart, IBM
Research Report RZ 2799, September 1995.

[Deri96a] L. Deri, Surfin’ Network Management Resources Across the Web,
Proceedings of 2nd Intl. IEEE Workshop on Systems and Network
Management, Toronto, June 1996.

[Deri96b] L. Deri, Network Management for the 90s, Proceedings of ECOOP
’96 Workshop on Systems and Network Management, Linz, Austria,
July 1996.

[DSOM] IBM Corporation, DSOM Development Toolkit, October 1994.

[Hierro] J. Hierro, Architectural Issues For Using CORBA Technology in OSI
Systems Management, Append of draft to XoJIDM forum, August
1994.

[HTTP] T. Berners-Lee, R. Fielding and H. Nielsen, HyperText Transfer
Protocol-HTTP/1.0, Internet Draft, 10/16/1995.

[Int95] Joint Inter-Domain Working Group, X/Open and Network
Management Forum, Inter-Domain Management Specifications:
Preliminary CORBA/CMISE Interaction Translation Architecture,
April 1995.

[Maes] P. Maes, Concepts and Experiments in Computational Reflection,
Proceedings of the 2nd OOPSLA Conference, 1987, pp. 147-155.

[Mage96] T. Magedanz and T. Eckardt, Mobile Software Agents: A New
Paradigm for Telecommunications Management, Proceedings of
2nd Intl. IEEE Workshop on Systems Management. Toronto, Ontario,
1996.

[OMG] Object Management Group, The Common Object Request Broker:
Architecture and Specification, Revision 2.0, July 1995.

[SNMP] J. Case, M. Fedor, M. Schoffstall and C. Davin, The Simple Network
Management Protocol (SNMP), RFC 1157, May 1990.

[Spec95] Joint Inter-Domain Working Group, X/Open and Network
Management Forum, Inter-Domain Management Specifications:
Specification Translation, April 1995.

[XMP] X/Open Company Ltd., Systems Management: Management Protocol
API (XMP), X/Open Document C306, March 1994.

[XOM] X/Open Company Ltd., OSI-Abstract-Data Manipulation API (XOM),
X/Open Document C315, February 1994.

