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Abstract Internet is becoming a global IT infrastructure serving interactive and
real-time services ubiquitously accessible by heterogeneous network-enabled de-
vices. In the Internet of Services (IoS) era, monitoring infrastructures must provide
to network operators fine-grained service-specific information which can be derived
by dissecting application level protocols. To accommodate these new monitoring
requirements network probes must be flexible, easy to extend and still be capable
of analyzing high-speed network streams. Despite the increased complexity, soft-
ware and hardware technologies on top of which network probes are implemented
have been designed when monitoring requirements were substantially different and
almost left unchanged. As a result, implementing modern probes is challenging and
time consuming. In this paper we identify desirable features for reducing the work
required to develop complex probes, and we present a home-grown comprehen-
sive software framework that significantly simplifies the creation of service-oriented
monitoring applications.

1 Introduction

Recent advances in wireless networks and consumer electronics technologies
changed the way we are using the internet. The future internet will become a global
IT infrastructure providing interactive and real-time services, hence the name in-
ternet of Services (IoS), ubiquitously accessible by heterogeneous network-enabled
devices.
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Understanding service behaviour and measuring the services quality over time
is necessary in order to reduce costs while preserving user satisfaction. The quality
of service is affected by network performance metrics, such as latency and band-
width, but also depends on the entire network infrastructure which includes server
machines, software and so on. Therefore, network operators and service providers
are gradually shifting from a network centric monitoring approach to a service cen-
tric monitoring approach that provides a comprehensive and integrated view of the
network and allows them to discover the root causes of service quality degradation.

The paradigm shift substantially increased the complexity of monitoring infras-
tructures. In fact, network probes, which are the key measurement components
in today’s monitoring architectures, are not only responsible for measuring basic
network-level performance metrics (e.g. number of packets), but also for provid-
ing detailed service-oriented metrics. Some of these metrics, such as transaction
latency, can only be measured by performing flow-level analysis [6] up to the appli-
cation layer and not by analyzing single packets out of a flow context. As services
are often composed of several concurrent communication flows, it is also necessary
to correlate them in order to compute service-dependent metrics. For instance, the
overall download time of an HTML page has to include the time for retrieving all
the external objects (e.g. images) referred from the main page.

The introduction of application layer protocols analysis drastically changed re-
quirements in terms of flexibility, performance, and programmability. Flexibility
is required in order to accommodate new requirements (e.g. new protocols) and
changed monitoring conditions (e.g. an existing location-fixed service is migrated
to a cloud architecture). Performance is necessary for preventing packet drops while
coping with the increased packet processing costs due to service-level analysis. Pro-
grammability is desirable in order to reduce the work required to extend probes and
to adapt them to changing monitoring requirements. As explained in the next sec-
tion, the rush for performance might have a negative impact on programmability as
the use of custom or closed hardware architectures often imposes severe limitations
to software applications. As a matter of fact, hardware devices are driving applica-
tion design and not the other way round, thus jeopardizing flexibility and limiting
portability of software applications.

The increasing complexity of monitoring tasks imposed by service-oriented net-
work monitoring did not result in any major evolution of hardware and software
monitoring frameworks on top of which network probes are built. This happened
because both industries and research communities focused on specific tasks (e.g.
packet capture) rather than on the creation of a comprehensive architecture allowing
pluggable modules to be included or replaced in order to satisfy new monitoring
requirements. This has been the driving force for the definition of a novel monitor-
ing framework that is modular, programmable by means of software components
running on commodity hardware and still capable of exploiting modern hardware
technologies.

The rest of the paper is structured as follows. Section 2 lists the basic components
that monitoring applications require as building blocks, and compares the state of
the art of hardware and software frameworks for network monitoring. Section 3 de-
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scribes the monitoring framework we have developed and positions it against simi-
lar approaches. Section 4 validates the framework against some general monitoring
scenarios. Section 5 concludes the paper.

2 Towards Service-oriented Network Monitoring

The simplest traffic monitoring application is responsible for capturing traffic and
computing packet-based metrics such as the total TCP traffic sent by a specific host.
Flow-based monitoring applications, such as NetFlow/IPFIX [7] probes, go beyond
this model by adding per-flow metrics which are derived from packet header infor-
mation. Service-oriented network monitoring applications are capable of providing
detailed information about services and not just about network communications.
The following paragraphs describe common tasks that makes service-oriented mon-
itoring applications substantially different from the ones listed above.

Payload Inspection. This activity is a prerequisite for properly decoding service
primitives. This includes the inspection of tunnels (e.g. GRE and GTP) and en-
capsulations (e.g. PPTP) as well as the reconstruction of the original encapsulated
payload. As of today, packet parsing is usually implemented from scratch in every
application, as, beside rare exceptions [13], packet capture libraries such as libp-
cap [18] do not feature it, or do not release the source code such as NetBee [4]
hence limiting their use to selected projects. Commercial libraries such as Hyper-
scan [1] feature high-speed DPI, whereas QosMOS [2] implements several protocol
decoders but tight the application to their closed-source development environments.
Wireshark [20] is the richest network protocol analyzer in terms of protocol sup-
ported but unfortunately packet decoding and flow analysis code are tight to the
application and not available as library, making it unsuitable for integration into
applications.

Service-level Packet Filtering. Most legacy filtering mechanisms such as Berkley
Packet Filter (BPF) [19] do not allow the traffic to be filtered by using application-
specific fields, whereas other frameworks such as FFPF [5] allow users to define
application-specific filters but do not return to applications parsing information nor
handle flows. Another limitation of the above technologies is the inability of ef-
ficiently adding/removing large number of dynamic filters, which is necessary for
tracking services using dynamic ports such as VoIP and FTP. Contrary to BPF and
FFPF, Swift [22] has been designed for offering low latency filter updates, but its
scalability in terms of number of configurable filtering rules is limited.

Flow State Persistence. Maintaining protocol state and service-specific perfor-
mance metrics (e.g. call setup time for VoIP) is necessary for service processing.
This increases both processing workload and memory footprint. In addition, service-
oriented monitoring applications require scalable, highly efficient and flexible (in
terms of data types) storage architectures [15] capable of storing the retrieved ser-
vice oriented metrics.
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Flow Reconstruction. Per-flow packet sequence reordering, defragmentation, and
IP datagram reassembly of PDUs spanning across multiple TCP segments must
be performed before inspecting service primitives. Performing these tasks substan-
tially increases both packet processing cost and memory footprint, and, therefore
it must be enabled only when necessary. In addition, implementing robust and ef-
ficient TCP and IP re-assemblers is not trivial [11, 21]. Another important task is
to partition the flow into sub-flows whenever several service communications are
pipelined over the same connection. For instance in HTTP/1.1 peers can exchange
several requests/responses over the same TCP connection.

Packet Capture. Packet loss during capture is not tolerated as it prevents service
primitives from being interpreted. Instead, packet and flow-based applications can
tolerate limited loss as it leads to inaccurate results while not breaking the overall
monitoring system. It is worth noting that in service-oriented monitoring, packet
capture is no longer the most resource consuming task, as this is a minor activity
when compared to the increased packet processing costs.

Per-flow Traffic Balancing. Balancing the workload among processing units is nec-
essary in order to leverage modern parallel architectures. When performing service
oriented monitoring, packet processing costs depend on the particular traffic to be
analyzed and, therefore, balancing packets across units may lead to workload un-
balances.

The introduction of service analysis in monitoring infrastructures for high-speed
networks raised the demand for flexible monitoring devices capable of speeding up
traffic analysis applications. During the years monitoring device vendors focused
mostly on performance, neglecting other aspects such as application programmabil-
ity and portability across different devices designed for traffic analysis acceleration.
The lack of common design guidelines across vendors has prevented the creation of
a widely accepted and hardware transparent software layer beyond libpcap, which
offers primitives limited to packet capture and network device management. Hard-
ware vendors attempted to increase the processing performance in various ways
including:

Capture accelerators. Packet capture accelerators such as DAG cards [12], are
special purpose FPGA-based network interfaces that allow the incoming traffic to
be captured and copied to the address space of the monitoring application without
CPU intervention and without requiring packets to flow through the kernel layers.
Often they also provide mechanisms for balancing the traffic among processor cores
and filtering packets, although they are usually limited in features and are not meant
to be changed in real-time as they require card reprogramming that may take sec-
onds if not minutes. The main advantage of these hardware devices is the ease of
programmability as applications can still run on commodity hardware while signifi-
cantly improving their packet capture performance. For this reason capture acceler-
ators have been widely accepted by the industry as they represent a simple solution
for accelerating traffic monitoring applications, but at the same time they are of lim-
ited help in complex monitoring applications. This is because packet capture is no
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longer the most resource intensive task, and therefore the speed-up achievable with
packet accelerators is becoming less significant, but still not marginal.

Strong Multi-core Systems. Some vendors have embedded strong multi-core sys-
tems on network adapters in order to efficiently process packets as close as possible
to the network link. Massive multi-core architectures, such as Tilera [3] use a mesh
of up to 64 cores embedded directly on the network adapter. The result is that packet
capture is no longer a cost as packets are processed directly on the network adapter
without the need to move them to the main processor. Another advantage is that the
card runs a Linux flavor and that applications can be implemented in standard C,
thus significantly easing the development process.

Network Processors. Network processor boards, such as Intel 80579 [16], are spe-
cial purpose monitoring devices that allow monitoring software to be executed by
a processor specifically optimized for packet processing. The emphasis on speed
resulted in unconventional hardware architectures providing coprocessors and sev-
eral packet processing units. Developing applications for network processors is not
trivial and requires a deep understanding of low-level architectural details which are
usually vendor and model specific. Using external libraries for performing traffic
analysis tasks is not always easy either, because applications must be implemented
using languages which are similar to C, but not necessarily C compliant.

3 A Programmable Network Monitoring Framework

For a few years we have been developing an open-source kernel module for Linux
systems named PF RING [8] that we originally introduced for accelerating packet
capture on commodity hardware. Over the years we have realized that it was nec-
essary to go beyond the initial goals and to create a comprehensive framework able
to tackle additional issues such as the one listed in the previous section. PF RING
is now a modular monitoring framework that allows developers to focus on imple-
menting monitoring applications without having to deal with low-level details such
as packets handling. PF RING represents an easy to use, yet efficient monitoring
framework for developing component based monitoring application. In addition, it
provides a hardware transparent filtering mechanism that can be eventually acceler-
ated by exploiting features available on modern commodity network adapters.

PF RING substantially increases packet capture performance. Packets can be
captured using standard Linux NIC drivers, but also using capture optimized drivers
that allow the kernel to be completely bypassed and modern multi-core processors
to be exploited. As of today, we have enhanced 1 and 10 Gbit drivers for popular
network adapters by adding support for PF RING. When running on modern servers
and commodity network adapters, PF RING can capture at wire rate from multiple
Gbit links, and over 5 Mpps from 10 Gbit networks [9].

In addition to legacy BPF filters, PF RING provides more advanced filtering
mechanisms that can be used for filtering out unwanted traffic, but also for dis-
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Fig. 1 Packet and Flow Management in PF RING.

patching packets across analysis components. There are two families of filters: ex-
act filters (i.e. all filter fields are specified) and wild-carded filters (i.e. at least one
filter element has value ’any’) where filter fields include MAC address, VLAN, pro-
tocol, IP v4/v6 addresses, and application ports. Exact filters are evaluated before
wild-carded filters. Contrary to BPF, PF RING parses the packet, and then checks
filtering rules on it. Parsing information is returned as metadata to applications con-
suming the received packet. Packets are parsed once regardless of the number of
consumers and filtering rules. Whenever a filter matches, PF RING executes the
action bound to it. Actions can range from simple packet dropping to more com-
plex operations such as sending packets matching the filter to a network adapter for
transmission (a.k.a. packet reflection).

PF RING analysis components are plugins implemented as dynamically loadable
kernel modules, and identified by a unique numeric identifier that can be associated
with one (or more) filtering rule. When a packet matches a rule, the corresponding
plugin callback is executed. Developers can define plugin hooks for filtering pack-
ets up to layer seven, and forwarding parsing information to the user-space as part
of the packet metadata. Therefore, by combining filters and analysis components
users can specify L7 filters such as ”return only HTTP packets with method POST”,
which, contrary to what happens for instance in Wireshark, are executed directly
at the kernel layer. Filtering rules can specify a plugin id, thus packets matching
such a rule are then passed to the specified plugin for further processing. So far,
PF RING plugins include support for VoIP (Voice Over IP) [14], HTTP, and multi-
media streaming.

In PF RING, flows are used to identify and maintain state for packets matching
an exact filter. They can be created automatically by means of plugin actions that
are executed whenever a received packet matched. For instance a FTP monitoring
application dissecting the control connection by means of a plugin, can add a new
exact filtering rule for the tracking data connection as soon as the FTP client initiates
a file transfer. For each flow, plugins can keep the state and maintain information
about the flow being analyzed. For instance the HTTP plugin maintains information
about response code and throughput, whereas the RTP plugin computes jitter and
packet loss of voice packets. In a nutshell, the combination of filtering rules and



Towards Monitoring Programmability in Future Internet: challenges and solutions 7

plugins, enables application developers to create powerful monitoring applications
by means of simple configuration rules.

PF RING is implemented as a Linux kernel module that can be compiled with-
out patching the kernel source. A user-space library named libpfring, communi-
cates with the kernel module by means of PF RING socket and allows applications
to transparently interact with the kernel module. Packets are copied by the kernel
module into a circular memory buffer that is memory-mapped to user-space. This
means that user-space applications can read packets from the buffer without issu-
ing system calls. PF RING sockets are bound to one physical network interface on
which packets are received. As modern network adapters support NIC virtualiza-
tion and MSI-X (message signaled interrupts), on multi-core systems PF RING can
give applications access to the various virtual RX queues contrary to vanilla Linux,
which merges all queues into one. This means that hardware-based mechanisms
such as RSS (Receive-Side-Scaling) for balancing network flows among RX queues
mapped on processor cores, can be exploited by PF RING applications to bound to
a virtual RX queue in order to receive a portion of the traffic. This solution enables
scalability as applications can be partitioned into threads or processes, each bound
to a RX queue, that can process a portion of the traffic as highlighted in the Figure 2.
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Fig. 2 Flow Balancing and RX Queues in PF RING.

In some cases it might be useful to overcome RSS and assign selected flows to
a specific RX queue in order to create specialized traffic analysis applications each
sitting on a specific queue. In order to achieve this goal, we have recently added into
PF RING support for the latest generation of network adapters such as Intel 82599
controller that allows the driver to force flow balancing to cores by means of a
mechanism called flow director (FD) [17]. Binding specific network flows to a non-
existing core (e.g. to a core id that is greater than the number of available processor
cores) instructs the adapter to drop such flow, hence implementing a wire-speed
traffic filter and balancer. PF RING comes with a specialized driver for this adapter
that allows applications to transparently set FD rules [10] whenever a filtering rule
is set. This means that whenever an application adds/removes a filtering rule, the
PF RING filtering engine attempts to transparently set the filter in hardware if the
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adapter supports it. The result is that unwanted packets are dropped before they
hit the driver, hence reducing the amount of packets that need to be processed in
software. Captured packets are still filtered in software as the network adapter might
not support at all or feature limited hardware filtering capabilities with respect to the
filtering rules supported by PF RING.

The combination of native multi-core/virtual RX support, support of hardware
flow filtering/balancing, and in-kernel protocol dissection and analysis, makes the
PF RING framework ideal for the creation of modular and efficient traffic monitor-
ing applications. The following section shows how this technology can be efficiently
used for creating service-oriented monitoring applications.

4 Using PF RING For Network Service Monitoring

Over the years, network applications have been constantly updated to implement
the latest innovations in security. Although firewalls and IPS (Intrusion Prevention
Systems) have been deployed at network borders in order to prevent unwanted com-
munications, it is still necessary to deploy monitoring applications for discovering
traffic that circumvents the security policies. This trend is driven, for example, by
the use of generic protocols such as HTTP for transporting data and by the spread of
technologies for creating network overlays on which freely exchange data. Security
threats are also caused by unauthenticated service requests, user service abuse, mis-
behaving clients and permissive access rules. Web-services technologies and cloud
computing are examples of traffic that needs to be carefully inspected in order to
implement what is generally called trustworthy Internet. Although most Internet
protocols are managed by many security systems already available on the market, it
is often necessary to implement fine-grained tools for controlling selected protocol
requests and also checking those protocols (e.g. network database communications)
that are often not supported by monitoring appliances. Given this, it is necessary to
move from packet to service-oriented monitoring in order to monitor the expected
service agreements and usage policies. This requires:

• Going beyond packet header monitoring and inspecting the packet payload in
order to analyze the service parameters and validate the responses.

• Computing detailed service metrics in addition to generic metrics such as
throughput, latency and used bandwidth.

• Correlating various service requests in order to create a unique service data
record rather than several service access requests all related to the same mas-
ter request.

PF RING simplifies the process of building service-oriented applications as it
provides:

• Filtering, balancing and packet reflection capabilities for implementing simple
packet filtering and balancing devices. This allows network administrators to bal-
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ance the monitoring workload across processor cores which is a key requirement
for performing complex resource consuming analysis tasks. To the best of our
knowledge, PF RING is the only open-source framework that can successfully
exploit native hardware flow prioritization mechanisms implemented by modern
network adapters in the context of traffic monitoring.

• An extensible plugin-based architecture that can be used for inspecting vari-
ous protocols including Internet (e.g. web and email) and transactional (e.g.
database) communications. Developers can focus on dissecting and analyzing
packets while leaving the duty of dividing packets per-flow, reordering and dis-
carding duplicates to the framework. The framework is responsible for maintain-
ing per-flow information including protocol metrics and service request parame-
ters.

• Filtering rules for early discarding packets that are not due to be analyzed, and
for dissecting selected flows using a specific plugin.

• Correlating flows by exploiting the intra-flow framework mechanisms, for alert-
ing specific plugins whenever a certain flow is created, deleted or updated.

As of today, the PF RING framework has been successfully used for simplify-
ing the development of complex and yet efficient monitoring software for real-time
services [14] and HTTP-based applications. The performance evaluation of the fil-
tering infrastructure can be found in [10], whereas [9] reports the packet capture
performance.

5 Conclusions

In this paper we showed that network monitoring goals have changed in the past
years and that the focus shifted from packet-level analysis to fine-grained service
monitoring. The shift requires easy to develop and extend monitoring probes ca-
pable for performing complex analysis tasks on modern high-speed networks by
leveraging the latest innovations in computer hardware. High-performance and ease
of extensibility can be achieved by creating simple building blocks for handling
various low-level activities which allows application developers to focus only on
the specific problem they are tackling. From a survey of the various software and
hardware technologies available, we came to the conclusion that even if there are
several solutions available for tackling specific monitoring problems, there is not a
comprehensive framework that can be used as a foundation for developing complex
monitoring applications. This has been the driving force for creating PF RING, an
open-source flow analysis framework developed by the authors, which has been suc-
cessfully used to tackle different service monitoring problems including real-time
analysis of multimedia streams and web communications.
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