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ABSTRACT
The demand of highly flexible and easy to deploy network 
monitoring systems has pushed companies  toward software based 
network monitoring probes implemented with  commodity 
hardware rather than with expensive and highly specialized 
network devices. Deploying software probes under virtual 
machines executed on the same physical box is attractive for 
reducing deployment costs and for simplifying the management 
of advanced network monitoring architectures built  on top of 
heterogeneous monitoring tools (i.e. Intrusion Detection Systems 
and Performance Monitoring Systems). Unfortunately, software 
probes are usually not able to meet the performance requirements 
when deployed in virtualized environments as virtualization 
introduces severe performance bottlenecks when performing 
packet capture, which is the core activity of passive network 
monitoring systems.

This paper covers the design and implementation of vPF_RING, a 
novel framework for efficiently capturing packets on virtual 
machines running on commodity hardware. This solution allows 
network administrators to exploit the benefits of virtualization 
such as  reduced costs and centralized administration, while 
preserving the ability to capture packets at wire speed even when 
deploying applications in virtual machines. The validation process 
has demonstrated that this solution can be profitably used for 
multi-gigabit network monitoring, paving  the way to low-cost 
virtualized monitoring systems.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—DNS; C.2.3 [Network Operations]: Network 
monitoring.

General Terms
Measurement, Performance. 

Keywords
Virtualization, Packet Capture, Passive traffic monitoring.

1. INTRODUCTION AND MOTIVATION
In the past years, one of the industry trends is to optimize 
rack space and power consumption while simplifying 

administration by migrating physical servers onto Virtual 
Machines (VMs). 
In the context of network monitoring, the idea of running 
multiple monitoring systems on independent VMs 
deployed on the same physical box is definitely appealing. 
By running software probes in virtualized environment 
network administrator can delegate certain tasks (i.e. 
performance management) to third persons, each having 
full access and control over specific virtual machines. VMs 
are often used for implementing monitoring on demand: 
namely activate monitoring facilities on specific network 
locations whenever certain network conditions happen (e.g. 
security alert). In addition, virtualization provides 
substantial deployment benefits in all the cases where 
multiple monitoring applications require access to the 
entire (or a subset of) the network traffic for performing 
different analysis tasks. By running heterogeneous 
monitoring software on the same box the complexity of 
deploying systems responsible to simultaneously dispatch 
the traffic towards multiple network analysis boxes can be 
completely avoided.
Since traffic splitting or dispatching is usually implemented 
by deploying advanced hardware based multi-port network 
taps and management networks, virtualization in the 
context of network monitoring allows to substantially 
reduce the deployment costs of advanced multi-probe 
monitoring architectures.
Unfortunately, running multiple monitoring systems in 
virtualized environments is desirable but not yet a common 
practice mostly due to the severe performance bottlenecks 
that virtualization introduces in application performing 
network monitoring. The most critical performance 
bottleneck introduced by virtualization when used for 
network monitoring is caused by the inefficient 
implementation of packet capture, which is the most 
important building block for most network monitoring 
applications. In fact, passive network monitoring systems 
strongly depends on packet capture, which is the process of 
accessing the stream of packets flowing on a network link. 
The packet stream is captured for performing several tasks, 
including network troubleshooting, traffic accounting, 
security breaches detection, and performance monitoring. 
Depending on the number of monitoring systems and on Permission to make digital or hard copies of all or part of this work for 
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their nature, the same packet have to be captured several 
times. For instance an intrusion detection system (IDS) and 
a traffic accounting application might need the same 
packets for accomplishing their respective monitoring 
tasks. Depending on the criteria these systems use for 
classifying traffic [1], they might be interested in capturing 
all packets independently from their nature and content, or 
only a subset of packets that match specific filtering rules 
(e.g. all UDP packets sent by server 192.168.1.1) usually 
specified using BPF filters [2] or hardware-assisted 
filtering rules supported by modern network adapters [21]. 
The following figure shows the packet capture performance 
(packets are just captured and not processed) of a single 
VM running on a Kernel-based Virtual Machine (KVM) [3] 
while capturing packets using VirtIO-Net [4] on a quad-
core Xeon system.

Figure 1. Packet Capture Rate at 1 Gbit using KVM

Since packet capture performance under a KVM virtualized 
host is poor for small packets and acceptable only for 
medium/large packets, KVM virtual machines are not 
suitable for running network monitoring applications.

In the past years, the authors have developed PF_RING [5] 
[45], a Linux kernel module implementing a framework 
that can be profitably used for simplifying the development 
of efficient monitoring applications requiring high speed 
packet capture.  PF_RING substantially accelerates packet 
capture under the Linux operating system and for this 
reason is widely used on specific field such as for 
accelerating IDS/IPS and for passively monitoring network 
traffic using flow-based tools. Unfortunately, the 
framework does not provide packet capture acceleration 
under virtualized environments. In this work, we introduce 
virtual PF_RING (vPF_RING),  an high performance 
packet capture solution optimized for virtualized 
environments that solves the performance bottlenecks 
present in KVM when used for deploying multiple 
monitoring applications on the same physical box.  To 
improve the packet capture performance the authors 
capitalize on vNPlug, a novel framework that provides 
hypervisor bypass.

The rest of the paper is structured as follows. In section 2, 
we discuss how networking has changed with the advent of 
virtual machines. In section 3,  we cover the design of 
vNPlug a framework that implements support for 

0
25
50
75

100

64 128 256 512 1024 1500%
 P

ac
ke

t C
ap

tu
re

d

Packet Size (Bytes)

hypervisor-bypass. In section 4, we describe how vNPlug 
has been successfully used to create vPF_RING, an 
extension of PF_RING for virtualized environments. 
Finally in section 5, vPF_RING performance is evaluated.

2. RELATED WORK

2.1 Networking in Virtual Machines
Virtualization is appealing for the industry as it simplifies 
administrative tasks, while reducing costs and increasing 
scalability [29] [40]. In the past few years there have been 
many efforts to improve network performance on VMs [33] 
[34], both with hardware [37] and software solutions [36]. 
However, with the only exception of Endace, which offers 
the virtual DAG capture device (vDAG [18]), there are no 
other companies addressing the problem of using VMs for 
high-performance network monitoring but just for general 
network operations. A popular solution for bypassing the 
hypervisor during network operations is to map the 
network adapters directly inside the VM such as VMware 
VMDirectPath [31] [43]. We believe that this solution is 
sub-optimal for traffic monitoring because:

• Each VM would need a physical network port,  thus 
increasing:

• The operational costs due to the need of private per-
VM ports.

• The number of monitoring ports.

• The complexity required during live VM migration 
and reconfiguration, being each VM bound to a 
specific network port on which traffic to be analyzed 
is received.

• If multiple VMs running on the same host need to 
analyze the same traffic with different goals (e.g.  run a 
VM with an IDS and another VM with a NetFlow 
probe), it is necessary to use specialized hardware for 
duplicating the packets to be dispatched to each adapter.

• As packet capture is a costly activity in terms of CPU 
cycles required, capturing the same packet multiple times 
on various VMs running on the same hosts is more 
expensive than capturing the packet once and dispatching 
it to multiple VMs especially when having high 
throughputs and small packets.

• As hardware adapters are accessed directly by VMs, it is 
necessary to install native drivers into the guests,  adding 
an extra constrain to live migration with respect to 
virtualized adapters.

• Physical and virtual IRQ sharing, and device assignment 
dependencies [43] can jeopardize the performance of the 
system and make this solution effective only on 
specialized servers.

Paravirtualization [19] has been the first attempt to reduce 
the overhead of emulating real network devices. By 
implementing paravirtualization, the guest operating 
system is aware of being virtualized,  and cooperates with 



the hypervisor to virtualize the underlying hardware.  In 
other words, the guest uses custom drivers that use a direct 
path for communicating with the hypervisor.  Taking the 
example of VirtIO-Net [4], the paravirtualized network 
device in KVM, the burden on the hypervisor is reduced, 
and some optimizations, such as the VHost-Net support, 
attempt to reduce the number of system calls thus 
improving latency. Unfortunately the packet journey is not 
reduced as packets flow through virtual bridges and virtual 
TAP devices, and twice through the operating system.

Recently, network equipments manufactures have 
introduced technologies for enhancing networking on 
virtualized environments. For example, some Intel server 
class network interface cards (NICs) implement the Intel 
VMDq (Virtual Machine Device Queues) technology [8]. 
To abstract the network device and share it across multiple 
VMs, the hypervisor has to implement a software network 
switch, which usually introduce severe performance 
penalties.  As shown in Figure 2, VMDq-aware NICs 
implement all this in hardware thus preventing the in-
software switching overhead. By combining this 
technology with optimized paravirtualization techniques, it 
is possible to achieve high networking performance in VMs 
[9] [10].  Unfortunately packet capture cannot benefit from 
it,  as VMDq basically partitions the NIC into several 
virtual NICs but it does not feature mechanisms for:

• Accelerating packet capture.

• Capturing packets from all virtual queues, rather than 
from just the one assigned to the VM.

Along the path of VMDq, the Single Root I/O 
Virtualization technology [11] is a way of sharing a device 
in a virtualized environment, bypassing the hypervisor 
involvement in data movement.  As depicted in Figure 3, 
with this technology a single Ethernet port can be 
configured by the hypervisor to appear as multiple 
independent devices, each one with its own configuration 
space. The hypervisor assigns each Virtual Function (VF, 
lightweight PCIe functions) to a VM, providing 
independent memory space and DMA streams. PCIe PF 
(Physical Functions) is the physical device seen by the 
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Figure 2. Intel VMDq Technology

hypervisor on the host. Memory address translation 
technologies based on IOMMUs [12] [13], such as Intel 
VT-d [14] and AMD IOMMU, provide hardware assisted 
techniques to allow direct DMA transfers bypassing the 
hypervisor, while keeping isolation between host and VMs 
[30]. There are several projects following the same 
approach of the SR-IOV, with different designs of self-
virtualized devices for direct I/O [15] [16] [17]. All these 
techniques represent good solutions for common 
connectivity but, besides efficiency, they do not provide 
assistance in accelerating packet capture.

2.2 Packet Filtering
The previous section has shown various alternatives to 
implement efficient networking inside VMs. With 
paravirtualization,  packets pass through virtual bridges and 
virtual TAP devices if hardware support such as VMDq is 
not present.  Using VMDq-aware network devices or self-
virtualized devices [11] [15] [16] [17], packet filtering still 
happens in software as hardware filtering used by VMDq 
usually provides only MAC-address filtering and thus in-
NIC bridging that is disabled when the NIC is set in 
promiscuous mode. The result is that both with/without 
VMDq, packet filtering has to happen in software as 
modern NICs do not provide assistance for filtering packets 
when used in virtualized environments.

Early packet filtering is necessary to prevent packets from 
being discarded late in their journey to the VM, after that 
they have passed through several components.  This is 
because filtering on guest OS means that the packet has 
already reached the VM and thus that in case of packet not 
satisfying any filter it would result in wasted CPU cycles. 

Another side effect of in-VM filtering, is that all received 
packets need to be copied to each VM, whereas in case of 
early filtering,  just the packets matching the filters will be 
forwarded to VMs.

For specific application domains such as lawful 
interception, filtering at the VM level represents a major 
performance issue. This is because network operators 
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usually provide a shadow copy of all packets flowing 
through a link where several hundred users are connected, 
but only a small portion of them belong to users that need 
to be intercepted; the result is that most packets will be 
discarded except those belonging to the targets (i.e. those 
users that are being intercepted). This problem is even 
more visible if the same input traffic needs to be passed to 
various VMs, each performing a different type of analysis. 
For this reason early packet discard on the physical 
machine is very important as it avoid VMs to be over flood 
with packets that will be discarded later on. Lawful 
interception is a good example where the physical host 
receives all packets, and it both filters and dispatches to the 
VMs only those packets matching the individual filters set 
by each VM.

A possible solution to the problem is to replace virtual 
bridges with virtual switches such as Open vSwitch [26] 
[27]. Open vSwitch implements standard Ethernet 
switching, while providing high flexibility with full control 
on the forwarding table by implementing a superset of the 
OpenFlow protocol [28]. However, as mentioned in [26], 
the problem is that these switches cause high CPU 
utilization when switching packets, so latency and 
overhead of the paravirtualization solutions increases. On 
the contrary, hardware based OpenFlow switches [42], can  
potentially offload the VMs from packet filtering. This 
approach allows the load on VMs introduced by packet 
filtering to be reduced [29] [41], but limits the flexibility 
offered by virtualized environments (e.g. the migration of 
VM across physical machines is compromised) and limits 
filtering to what is offered by the switches.

In order to implement efficient VM filtering, it is necessary 
to discard packets in the physical machine as close as 
possible to the physical NIC. This way, only packets 
matching the filtering rules will continue their journey to 
the VMs, whereas others will be dropped immediately as 
depicted in Figure 4. In a nutshell, early packet filtering in 
the context of network monitoring is a key requirement for 
achieving a high performance.

Discarding packets on the physical machine leveraging on 
the PF_RING filtering support would be very useful in 
security when IDS (Intrusion Detection Systems) are used. 
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Figure 4. Early Packet Filtering

We have developed a PF_RING module, part of the 
PF_RING code distribution,  for the popular snort IDS 
named PF_RING DAQ (Data AcQuisition library) [46]. 
This module is responsible for receiving packets from 
PF_RING and dispatching them to snort. For each packet, 
snort emits a verdict that can be drop/pass and also white/
black-list. In the latter case, it would be very desirable to 
have a snort instance running on a VM able to set filtering 
rules inside the PF_RING kernel module running on the 
physical host by means of this DAQ module. The 
advantage is that unwanted packets/flows are discarded by 
PF_RING and never hit the VM. This would be a great 
advantage of early packet discarding that we want to offer 
inside the vPF_RING framework.

2.3 PF_RING and Operating System Bypass
PF_RING is a kernel-based extensible traffic analysis 
framework, that significantly improves the performance of 
packet capture. It reduces the journey of captured packets 
from wire to user-space, and features a flexible packet 
filtering system and an extensible plugin-based architecture 
for adding new functionality at runtime.

PF_RING can use both vanilla Linux drivers and 
PF_RING-aware drivers. The main difference is that the 
latter can push captured packets directly to the PF_RING 
kernel module thus reducing the packet journey with 
respect to Linux native packet capture. PF_RING supports 
a rich set of packet filtering mechanisms that allow users to 
specify actions (e.g. dump a packet to disk), whenever 
incoming packets match the filtering rules.  It also supports 
hardware filtering and packet steering capabilities when 
packet capture happens on modern network adapters, such 
as the Intel 82599 [21] and the Silicom PE210G2RS [22].  
With those adapters packets are filtered inside the NIC 
without any assistance from the main CPU as it happen 
with software packet filtering.  Hardware and software 
packet filtering, allow efficient applications processing 
packets directly inside the kernel to be easily implemented. 
Kernel based packet processing is more efficient than user-
space packet processing as packets do not have to be 
copied from kernel to user-space in case they don’t match 
any configured filter.

The PF_RING framework provides a user-space library 
that exposes an easy-to-use API for implementing 
monitoring applications. As depicted in Figure 5, through 
this library, ring buffers on which PF_RING is based, are 
directly mapped from kernel-space into user-space by using 
mmap(), reducing overheads and the number of data copies.

When an application wants to read a new packet, the 
library checks the ring:

• If there are new packets available, they get processed 
immediately.

• When no packets are found, a poll() is called in order to 
wait for new packets. When the poll() returns, the library 
checks again the ring for new packets.



In order to reduce the number of poll() calls and thus a 
continuous poll()-wake up-poll() transition, the PF_RING 
kernel module implements a dynamic polling mechanism 
that can be configured by packet capture applications. The 
poll() system call returns when at least X packets are 
available, where X can range from one to several thousand, 
or when the call times out, usually this is set to 10 msec. 
This mechanism allows CPU cycles to be preserved for 
those applications that do not need to process packet 
immediately, but it also enables low-latency applications to 
be implemented setting X to one.

As described above, the approach followed by PF_RING is 
to create a straight path for packets bypassing the operating 
system standard mechanisms by means of a memory-map 
from kernel-space to the address space of the monitoring 
application. With this solution, system calls other than the 
poll() are completely avoided. The operating system bypass 
approach is adopted in many research projects [23] [24] as 
well as commercial products such as those manufactured 
by companies such as Endace and Napatech, most of all in 
areas requiring intense I/O activity, and where low latency 
and high bandwidth are vital.

2.4 Hypervisor Bypass
The hypervisor involvement in all the VM I/O accesses 
ensures isolation and system integrity, but it also leads to 
longer latency and higher overhead compared to native I/O 
accesses in non-virtualized environments, thus becoming a 
bottleneck for I/O intensive workloads. 

In this paper, we propose a model that extends the 
PF_RING’s operating system bypass approach to the 
context of virtual environments,  thus creating a direct 
mapping between the host kernel-space and the guest user-
space. This approach aims to perform operations that 
require intensive workloads such as packet capture using a 
direct VM-to-physical host path, without the involvement 
of the hypervisor except during the setup phase. It is worth 
to note that as in native PF_RING, this does not mean that 
the hypervisor is completely bypassed in all operations, but 
just for those that are computationally expensive such as 
packet capture while it is still used for implementing packet 

Figure 5. PF_RING Architecture
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The hypervisor-bypass approach is not a novel idea: self-
virtualized devices for direct I/O, such as SR-IOV [35] 
capable ones, are an example. There are also some studies 
in the context of High Performance Computing (HPC) [6] 
[7] that have demonstrated that the hypervisor-bypass 
method can represent a very good solution in order to 
remove bottlenecks in systems with high I/O demands, 
especially those equipped with modern low latency and 
high bandwidth network interconnects.

3. vPF_RING DESIGN PRINCIPLES
In this section, we present the design and implementation 
of Virtual PF_RING (vPF_RING), that is based on vNPlug, 
a framework implementing the hypervisor-bypass,  also 
developed by the authors. Although the work presented on 
this paper addresses general issues that are not dependent 
on a specific virtualization framework, the authors focus 
only on KVM as it leverages Linux kernel capabilities, 
such as scheduling and memory management. KVM is a 
small and relatively simple software, present out-of-the-
box on the majority of Linux distributions, contrary to 
other similar solutions such as Xen that is not integrated 
into the mainstream kernel. Proprietary solutions such as 
VMware [38], which is widely accepted in the industry, 
have not been taken into account due to their license 
restrictions and because of the source code not being open 
and available [20].

KVM implements a kernel-based virtual machine on top of 
the Linux kernel, and exploits a modified version of 
QEMU [25] for emulating I/O devices. Implemented as 
kernel module, KVM supports native code execution by 
exploiting hardware virtualization extensions such as Intel 
VT and AMD Secure Virtual Machine.  Common tasks, 
such as scheduling and memory management, are delegated 
to the Linux kernel. VMs run as conventional user-space 
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processes making Linux unaware of dealing with a virtual 
system. 

vPF_RING, described later in section 3.2,  does not strictly 
depend on KVM but it mostly relies on PF_RING APIs. 
Instead, as described in the next section, the vNPlug 
framework has been designed on top of KVM for 
implementing the hypervisor-bypass approach (mapping 
memory, exchanging control messages, notifying events). 
Porting vNPlug to another hypervisor such as Xen, requires 
a complete code rewrite, contrary to the vPF_RING code 
that should not be  modified.

3.1 vNPlug Framework
The vNPlug framework exploits the hypervisor-bypass 
approach for achieving high packet capture performance in 
virtualized environments. It has been designed to be 
general enough for being used by every monitoring 
application and not just vPF_RING. For instance, the 
Linux native socket type PF_PACKET is quite similar to 
PF_RING as both use memory mapped buffers to exchange 
packets between kernel and user-space.  Porting 
PF_PACKET on top of vPF_RING-vNPlug is thus just a 
matter of time as it does not seem to have any technical 
challenge being the two socket types pretty similar. 

The framework follows a paravirtualization-like design, 
guests are aware of being virtualized and consequently the 
architecture is logically split in a guest and an host side 
block. 
The framework is logically divided into two main 
components. The first component, vNPlug-Dev, is 
responsible for:

• Mapping memory between the host kernel-space and the 
guest user-space.

• Implementing an efficient event notification that is 
necessary for VM/Host communications.

The second component, vNPlug-CTRL, is responsible for 
coordinating the host and guest side of applications by 
means of a control communication channel. The channel is 
required, for example, when an application needs to 
instrument its host-side back-end for filtering specific 
packets. 

As can be seen, applications built on top of the framework 
can access physical host resources that are usually not 
available in virtualized environments. In case of 
vPF_RING, applications executed under VMs can capture 
packets not only from VM’s network interfaces,  but also 
from physical host interfaces. This feature can be offered 
by building vPF_RING on top of the vNPlug framework.

vNPlug is implemented as a QEMU patch on the host side, 
and a Linux kernel module (vnplug.ko), based on both 
vNPlug-Dev and vNPlug-CTRL components, on the guest 
OS.

3.1.1 vNPlug-Dev
The original PF_RING maps kernel ring buffers to user-
space via memory-map. vNPlug-Dev allows to further 
memory-map these virtual memory areas to virtual 
machines. The initial memory-mapping happens through 
the hypervisor, whereas all packets are exchanged directly 
between the VM and the PF_RING sitting on the host 
without any hypervisor support.  This mapping is performed 
dynamically attaching additional blocks of memory via 
virtual PCI devices whenever a vPF_RING is created. 
Inside the VM, these memory regions can be accessed by 
ioremap(),  and mapped in virtual memory areas via the 
vnplug.ko kernel module that creates character devices that 
can be memory-mapped. Figure 7 depicts the vNPlug-Dev 
architecture.

vNPlug-Dev is dynamic by design as it allows dynamic 
memory-mapping to take place by means of virtual PCI 
devices. Therefore, the number of rings is not limited as it 
happens, for instance, in BSD systems where packets are 
captured from a limited number of statically allocated 
capture devices (/dev/bpfX).

The PCI hotplug support allows devices to be dynamically 
attached and removed from a running system. Even if 
hotplug is rarely used in practice, basic hotplug support is 
provided by the majority of modern operating systems, 
making hot-plugged devices immediately usable with 
limited effort. By exploiting the hotplug, it is possible to 
dynamically attach memory mappings to guests whenever 
necessary, making vPF_RING a very flexible system that 
does not have any limitation in terms of functionality and 
flexibility with respect to native PF_RING.

The event signaling functionality of the framework takes 
advantage of the irqfd and ioeventfd supports of KVM in 
order to provide a two-way notification mechanism, from 
host-to-guest and from guest-to-host. Both of them are 
based on the eventfd file descriptor for event notification, 
that is quite powerful yet flexible as it can be used from 
both user-space and kernel-space in order to signal/wait 
events. 

Using the irqfd support it is possible to send interrupts to 
the VM without passing through the QEMU process, which 

Figure 7. vNPlug-Dev Architecture
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is responsible to emulate the device on which interrupts are 
dispatched. In fact,  since virtual interrupts are injected to 
the guest via KVM, the irqfd support allows the latter to 
directly translate a signal on an eventfd into an interrupt, 
thus ensuring efficiency. At the same time, the MSI 
(Message Signaled Interrupt) support ensures flexibility, by 
using multiple vectors that simplifies the notification 
mechanism when several events are required. On the guest 
side, the framework has been inspired by the eventfd 
approach that uses a blocking read() on a character device 
for notifying user-space applications that an interrupt has 
been received.

ioeventfd is used to register arbitrary addresses of a MMIO 
(Memory-Mapped I/O) region belonging to a virtual 
device, along with a unique value and an eventfd. On the 
guest side, these MMIO regions are mapped in user-space. 
Whenever the guest OS writes a value to such MMIO 
region,  if the written value matches the registered value, 
then an event is triggered on the corresponding eventfd. 
This mechanism is quite efficient as it allows a lightweight 
exit (long enough to signal an eventfd in kernel-space by 
means of a KVM service routine), while a normal I/O 
operation on an emulated virtual device requires a costly 
VM exit.

3.1.2 vNPlug-CTRL
The component implements a message based 
communication channel that allows control messages to be 
exchanged between the guest side of the monitoring 
application and its back-end. For instance it can be used by 
an application to request the back-end to setup a new 
memory-mapping, or to filter packets. 

The vNPlug-CTRL component has been introduced for 
having a control channel totally independent from network 
communications,  and, as such, not susceptible to 
unintentional network configuration changes.

As depicted in Figure 8, the vNPlug-CTRL component 
implementation is based on the VirtIO interface for 
paravirtualization that is efficient and ensures low response 
times, but required a little more effort at development time 
compared to a network communication implementation. 
The two-way communication channel over VirtIO uses two 

virtqueue’s,  one for host-to-guest messages and one for the 
opposite direction. In order to send and receive messages 
from the guest user-space, the framework exposes common 
file operations (read and write) on a character device.

Through this communication channel,  the framework 
routes messages between the host-side and guest-side of 
applications. As multiple applications are supported,  each 
with multiple virtual devices, the framework uses a 
minimal and yet efficient protocol stack, depicted in Figure 
9. At the bottom of the stack, the VirtIO transport 
mechanism takes place, providing a two-way point-to-point 
communication channel between the two sides of the 
framework: guest and host side. At the second layer, a 
framework-level header allows the framework to 
distinguish between messages addressed to itself and those 
addressed to an application. At the third layer, an 
application-level header allows the framework to identify 
the application to which such message has to be delivered. 
From the fourth layer on, all is managed by the application, 
in order to identify internal operations and address virtual 
devices.

Figure 9. vNPlug-CTRL message routing

3.1.3 vNPlug API
In order to simplify the development of monitoring 
applications, the framework provides a simple API, that 
implements an abstraction layer on top of the implemented 
functions. Framework’s components get abstracted through 
two subsets of the interface: the host side API and the guest 
side API. 

The main features the interface provides:

• Host Side

• Registration and unregistration of the application 
back-end.

• Control messages reception and transmission.

• Virtual devices, for memory-mapping, creation and 
tear-down.

• Guest Side

• Control messages transmission and reception.

• Shared memory-mapping and unmapping in the 
virtual address space of the application.

• Event signaling/waiting functionalities.
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3.2 vPF_RING
vPF_RING is an extension of PF_RING for virtualized 
environments built on top of vNPlug. The design of 
original PF_RING lent itself particularly well to be adapted 
to the vNPlug framework. In fact,  on the host side, it only 
needed a few enhancements, keeping both the kernel 
module and the user-space library fully backward-
compatible with the original version. As the PF_RING 
library uses memory-mapping for exporting the packet 
capture ring from kernel-space into user-space, the virtual 
memory address returned by mmap() can be used by the 
framework to map it into the guest. In a nutshell, PF_RING 
is responsible for making this memory area available to the 
guest user-space.

Figure 10. vPF_RING design

The two-way event signaling support of the framework has 
been used for replacing the poll() calls used by PF_RING 
applications for being waken-up when new incoming 
packets are available. When an application on the guest-
side has to read a new packet, but no packets are ready to 
be read, the library on the guest-side informs the host side. 
This way, the host-side knows that if there are unread 
packets, or when a new one arrives, it has to send an 
interrupt to the guest-side that is waiting for packets. 
Furthermore an algorithm similar to the adaptive sleep of 
the PF_RING native library is used, in order to avoid many 
poll-equivalent calls. 

A new and thin library has been created on the guest-side 
for:

• Translating each call to the PF_RING library into control 
messages over the communication channel provided by 
the framework.

• Memory-mapping and event signaling/waiting 
mechanisms just described.

The vPF_RING back-end on the host-side, is also 
responsible of translating guest-to-host control messages 
into calls to the PF_RING library. It allows monitoring 
applications running on guests to:

• Read packets from kernel via memory-map and not 
through read() system calls as it happens with VirtIO.
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• Access host network interfaces in addition to guest 
network interfaces.

• Setup packet capture filters directory on the host 
PF_RING, thus implementing early packet filtering.

• Seamlessly develop applications, that can run unchanged 
both on physical or virtualized environments, easing the 
move towards a virtualized monitoring environment.

In a nutshell vPF_RING has been designed to be 
transparent to application developers, both in terms of 
features and packet capture speed.  The only visible 
difference is the device name from which packets are 
captured. With native PF_RING it is possible to capture 
packets just from physical interfaces. Using vPF_RING, it 
is possible to capture packets from both the VM’s virtual 
Ethernet device, and the physical host interface. In the 
former case,  vPF_RING operates as PF_RING when 
capturing packets from a host adapter (in this case from the 
VM virtual adapter). In the latter case, vPF_RING is not 
capturing from the VM’s interface but from the host’s 
physical interface.  As vPF_RING’s API is unchanged with 
respect to PF_RING, a special device naming convention 
has been used in order to instruct the framework to capture 
packets from the host interface. This is because host 
interfaces are not visible to the VM via standard Linux 
commands such as ifconfig, and also because interface 
name present on both the VM and host might be the same 
(e.g. eth0). For this reason in vPF_RING the following 
naming convention has been used: interface names with a  
“host:” prefix indicate host interface. For instance when a 
VM opens “eth0” it means that it wants to open the virtual 
VM eth0 interface; instead “host:eth0” means the eth0 
physical host interface.

vPF_RING honors all PF_RING capture extensions. For 
instance applications can capture traffic from a specific RX 
queue of a multi-queue adapter when using PF_RING-
aware driver [32],  and specify filtering and packet steering 
rules in hardware on adapters such as Intel 82599 [21]. On 
one hand, these are interesting features to have as for 
instance a VM having to analyze HTTP traffic, can capture 
traffic on RX queue X on which it has configured a 
hardware filter that sends to such queue only HTTP 
packets. On the other hand, like most kernel bypass 
technologies (e.g. the same PF_RING),  must be used 
properly as they circumvent some protection mechanisms, 
such as the insulation of the VM from host environment.

4. vPF_RING VALIDATION
vPF_RING validation and performance evaluation tests 
have been performed on a simple test bed, where an IXIA 
400 traffic generator has been used for sending packets to a 
server powered by an Intel Xeon X3440, running Linux 
kernel 2.6.36 and equipped with a dual Intel 82576 Gigabit 
Ethernet controller.  The IXIA 400 traffic generator is 
connected to the server via the two gigabit ports, and can 
generate network traffic at configurable rates, including the 
wire-rate, on both port regardless of the packet size. For 10 



Gigabit tests we have used a home-grown tool named 
pfsend with PF_RING DNA (Direct NIC Access) [47] for 
reproducing traffic at wire speed previously captured on a 
network backbone. This has allowed us to test vPF_RING 
under various conditions and with both synthetic and real 
network traffic. For the tests described later on this section, 
have been used forged packets in order to evaluate this 
work with different packet rates and sizes.

The performance of vPF_RING has been compared with 
the performance of native PF_RING 4.6.x running on a 
physical (non virtualized) host and PF_RING running on a 
virtual KVM environment (using the VirtIO-Net support 
with the VHost-Net optimization).  vPF_RING performance 
has also been positionedagainst VMware ESXi (using 
VMXNET 3, the latest version available of the VMware 
paravirtualized  network device). All the VMs used during 
the evaluation have a single-core virtual CPU and also run 
Linux kernel version 2.6.36.

The device driver used on the server on the host-side is the 
igb, developed by Intel, which is included in the Linux 
kernel. It is worth to remark that, although PF_RING 
supports PF_RING-aware optimized drivers to bypass the 
standard operating system’s mechanisms, we decided not to 
use them in order to evaluate our work on the worst case 
(i.e. without any packet capture acceleration exploiting 
specific network cards features). This is because we want 
to compare native VirtIO-Net agains vPF_RING, without 
accounting any vPF_RING performance benefit due to 
these optimized drivers.

Before describing the evaluating results, it is important to 
understand how the packet size affects the benchmarks. 
This parameter is relevant because the maximum packet 
rate that can be injected on a link depends on the packet 
size.  As shown in Table 1, at wire-rate, small packet sizes 
corresponds tohigher packet rates. The packet capture 
performance is affected by the packet rate, which can be as 
high as 1.4 Million of packets per seconds (Mpps) when 
the packet size is 64 bytes (minimum packet size) on 
Gigabit links, 14.880 Mpps on 10 Gigabit.

Table 1. Maximum Packet Rates

Line 
Speed 

Rates Per Frame Size (Kpps)Rates Per Frame Size (Kpps)Rates Per Frame Size (Kpps)Rates Per Frame Size (Kpps)Rates Per Frame Size (Kpps)Line 
Speed 

64 
Byte

128 
Byte

256 
Byte

512 
Byte

1024 
Byte

1 Gigabit 1488 844 452 234 119

10 Gigabit 14880 8445 4528 2349 1197

Another aspect worth to mention, is that with vPF_RING it 
is possible to use efficient packet filtering techniques 
within the host (in kernel-space or even in hardware), to 
further increase the performance. In fact, through the 
efficient communication channel provided by the vNPlug-
CTRL component, vPF_RING is capable to instrument the 
PF_RING module for setting a variety of efficient filters. 
However, as we are interested in evaluating our work in the 
worst case scenario, packet filtering has not been used.

Benchmarks have been done using pfcount, a simple packet 
capture application implemented on top of the PF_RING 
API. The application captures packets, updates some 
statistics, and then discards packets without doing any 
further processing.

In the first test we evaluate the packet capture performance 
when a single instance of pfcount processes the traffic 
injected at wire rate with different packet sizes on a single 
Gigabit link.

In Figure 11 we show that vPF_RING, similar to PF_RING 
on a native environment, is able to process packets at wire-
rate (without packet loss), for every packet size, up to the 
maximum rate (1.488 Mpps per port).
From the same figure we can observe that by using 
PF_RING in a virtual environment with the VirtIO-Net 
support (i.e. without the assistance of our framework),  it is 
possible to efficiently capture without packet loss only 
medium/large packets, when packet rates are not more than 
a few hundred Kpps.  In fact, with small packets severe 
packet drops can be observed. Results are slightly better 
when using PF_RING on a VMware ESXi virtual 
environment,  but we can still notice severe packet drops for 
high rates.

Figure 11. Packet Capture Rate (1 Gbit)
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In addition to packet capture, we evaluate the percentage of 
CPU idle time as reported by the top command utility. In 
this way, we can have an indication of the free CPU cycles 
available for packet processing.  Figure 12 shows that 
vPF_RING can cope with high packet rates while keeping 
the CPU relatively idle, almost the same percentage as the 
native solution. Instead,  with the VirtIO-Net support,  there 
is an higher overhead even if fewer packets per second are 
processed.

Figure 13 depicts the packet loss percentage that pfcount 
reports when using different capture mechanisms.  The 
result highlights that both vPF_RING and PF_RING allows 
packets to be captured without observing any packet loss 
for all packet sizes, including the minimum packet size 
corresponding to the highest packet rate (1.4 Mpps for 64 
byte packets).  On the contrary, when using VirtIO-Net,  the 
packet loss percentage is significant (as high as 90% in the 
case of 64 bytes packets), making it unsuitable for 
applications where 100% packet capture is required. A 

Figure 13. Packet Loss Percentage (1 Gbit)
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lower packet loss percentage can be observed when 
VMware ESXi is used; however also this solution cannot 
guarantee no packet loss.

A second test has been performed to evaluate the 
performance when two instances of the pfcount application, 
running on the same VM, process the traffic injected on 
two different Gbit interfaces. 

Figure 14 shows the aggregated packet capture rate that is 
achieved by running the two pfcount instances. Both 
vPF_RING and PF_RING are able to process up to nearly 
two million packets per second without packet loss (with 
an average of one million per instance).  When the packet 
rate on the wire increases further (with 64-byte packets at 
wire-speed) both capture mechanisms lose packets. 
However native PF_RING processes about half a million 
more than vPF_RING.

As the virtual machine where the two instances of pfcount 
have limited CPU resources, this result does not necessarily 
mean that vPF_RING offers a worse scalability than the 
native PF_RING. In fact, while the two instances of 
pfcount of the native solution can run concurrently on 
different cores of the same processor, we know that a 
virtual CPU, where the two application instances of the 
virtual solution are scheduled on, is itself scheduled as a 
normal thread by the host operating system.

Regarding the virtual solution without the framework, 
using the VirtIO-Net support,  performance are similar or 
even worse to the previous,  with up to one hundred 
thousand packets per second processed by each application 
instance. The conclusion is that even with large packets, 
packet loss is pretty severe. 

Figure 14. Total Captured Packets By Two pfcount 
Instances Running On The Same VM
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Figure 12. Idle CPU % During Capture on Host
as Reported by top (1 Gbit)
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Figure 15 depicts the percentage of CPU idle time, and it 
confirms that vPF_RING keeps the CPU relatively idle, 
even more that native PF_RING. This is because the native 
PF_RING is more efficient than the virtual version, thus it 
consumes packets more quickly hence calls poll() much 
more often that contributes to reduce the idle time. Instead 
the solution based on VirtIO-Net requires more CPU time 
even with a very low percentage of captured packets. 

Another test has been conducted for evaluating the 
performance of two instances of the application, each one 
processing one Gigabit of traffic on a different interface, 
but this time each running on a different VM. 

Figure 15. Idle CPU % When Two pfcount Instances
Are Running On The Same VM
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Figure 16. Total Captured Packets by Two pfcount 
Instances Running on Different VMs
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As shown in Figure 16, the total number of captured 
packets by both application instances has that same trend as 
in the previous test.  The only difference is that in this case 
for 64-byte packets the capture rate of vPF_RING is 
basically the same of the native PF_RING. This,  once 
again, confirms our hypothesis about scalability. In fact, in 
this case we have two virtual CPUs scheduled on the host, 
one for each VM, and on each virtual CPU an application 
instance is scheduled.

The solution based on VirtIO-Net, this time, seems to scale 
for large packets but, at high rates, performance is similar 
to the one observed in the previous tests. 

Figure 17 shows the percentage of CPU idle time. As one 
would guess, vPF_RING overhead is higher than the native 
PF_RING. The solution based on VirtIO-Net still requires 
many more CPU cycles,  even if its packet capture 
performance is lower.

Another series of tests has been performed in order to 
compare the packet capture performance offered by 
vPF_RING when capturing from a 10 Gigabit link, to the 
performance provided by the native PF_RING. pfsend on 
top of PF_RING DNA has been used to generate traffic at 
wire speed.  An Intel 82599 based Gigabit Ethernet 
interface has been used as a capture device. The server 
used is still an Intel Xeon X3440 running Linux kernel 
2.6.36. The device driver used for these tests,  on the host-
side, is a PF_RING-aware version of the ixgbe,  which is 
able to copy packets directly to PF_RING my means of 
Linux NAPI packet polling.

Figure 17 Idle CPU % When Two pfcount Instances
Are Running On Different VMs
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In the first of these tests, we evaluated the performance 
with a single application instance. Figure 18 shows that 
vPF_RING is able to match the packet capture performance 
offered by the native PF_RING.

A second test has been performed to evaluate the 
scalability, with two instances of pfcount capturing packets 
from the same interface, balancing the traffic across 
applications by means of RSS (Receive-Side Scaling) 
queues. In the virtual case, each pfcount instance is running 
on a different VM. As shown in Figure 19, also in this case, 
packet capture performance offered by vPF_RING is close 
to the one offered by the native PF_RING.
In order to further evaluate the scalability, another test has 
been conducted with four instances of pfcount. As in the 
previous test, the pfcount instances capture packets from 

Figure 18. Packet Capture Rate (10 Gigabit)

0
500

1000
1500
2000
2500
3000

64 128 256 512 1024 1500

Pa
ck

et
 R

at
e 

(K
pp

s)

Packet Size (Bytes)

Virtual PF_RING Native PF_RING

Figure 19. Captured Packets By Each Of The Two 
pfcount Instances Running On Different VMs (10 

Gigabit)
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the same interface. As depicted in Figure 20, vPF_RING 
offers packet capture performance comparable to the one 
provided by the native PF_RING.

In summary using vPF_RING has no performance penalty 
relative to native PF_RING (Figures 11,12). Relative to 
PF_RING in a VM:

•  vPF_RING is more than an order of magnitude faster 
with respect to the performance achieved by vanilla 
KVM. This means that thanks to vPF_RING it is finally 
possible to effectively perform traffic monitoring inside 
KVM-based VMs.

• For all packet sizs,  vPF_RING and PF_RING have 
comparable performance (Fig 14, 18).

5. OPEN ISSUES AND FUTURE WORK
The work described on this paper is an efficient and 
flexible solution to effective packet capture on VMs. 
Nevertheless there are a few areas where extra work is 
needed.
The main issue is live VM migration, as the hypervisor 
does not have knowledge of the resources allocated by the 
applications. This is in contrast to traditional device 
virtualization approaches, where the hypervisor is involved 
and it can suspend all the operations when live migration 
starts. While developing the framework we mostly focused 
on achieving high packet capture performance and we did 
not consider additional virtualization features, such as live 
migration. In the future we plan to address the issue for 
further increasing the flexibility offered by our solution.
Furthermore, it would be interesting to perform more 
detailed tests, look for further performance improvements, 
and evaluate the framework on VMs with multiple virtual 
CPUs investigating on scheduling and resource 
management.

Figure 20. Captured Packets By Each Of The Four 
pfcount Instances Running On Different VMs (10 

Gigabit)
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6. FINAL REMARKS
In the past few years there have been many efforts to 
improve network performance on VMs, both with hardware 
and software solutions.  However,  none of the available 
solution addresses the problem of using VMs for high-
performance network monitoring.

This paper used a well-known approach named hypervisor-
bypass, which allows packets to follow a straight path from 
kernel to VMs, thus avoiding per-packet overhead due to 
the hypervisor and system calls.  This mechanism has been 
successfully applied for implementing vPF_RING, a 
kernel-based extensible traffic analysis framework 
developed by the authors. The validation phase has 
confirmed that it can drastically improve packet capture 
performance,  often achieving packet capture rates and CPU 
usage close to those that can be obtained on bare hardware. 
This reducing the dropped packet rate up to 90% on 
Gigabit links with respect to preexisting open source 
software solutions, 55% with respect to commercial 
solutions such as VMware (or even more on faster links).

The outcome is that it is now possible to efficiently run 
multiple VMs on commodity hardware, each monitoring 
the same traffic for different purposes, without packet loss 
and with plenty of CPU cycles available for processing the 
captured traffic.

7. CODE AVAILABILITY
This work is distributed under the GNU GPL license and is 
available at the ntop home page http://www.ntop.org/
products/pf_ring/vpf_ring/.
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