
vPF_RING: Towards Wire-Speed
Network Monitoring Using Virtual Machines

Alfredo Cardigliano 1
Luca Deri 1 2

1 ntop, 2 IIT-CNR
Pisa, Italy

Joseph Gasparakis
Intel Corporation
Shannon, Ireland

Francesco Fusco
IBM Research

Rüschlikon, Switzerland

{cardigliano, deri}@ntop.org joseph.gasparakis@intel.com ffu@zurich.ibm.com

ABSTRACT
The demand of highly flexible and easy to deploy network
monitoring systems has pushed companies toward software based
network monitoring probes implemented with commodity
hardware rather than with expensive and highly specialized
network devices. Deploying software probes under virtual
machines executed on the same physical box is attractive for
reducing deployment costs and for simplifying the management
of advanced network monitoring architectures built on top of
heterogeneous monitoring tools (i.e. Intrusion Detection Systems
and Performance Monitoring Systems). Unfortunately, software
probes are usually not able to meet the performance requirements
when deployed in virtualized environments as virtualization
introduces severe performance bottlenecks when performing
packet capture, which is the core activity of passive network
monitoring systems.

This paper covers the design and implementation of vPF_RING, a
novel framework for efficiently capturing packets on virtual
machines running on commodity hardware. This solution allows
network administrators to exploit the benefits of virtualization
such as reduced costs and centralized administration, while
preserving the ability to capture packets at wire speed even when
deploying applications in virtual machines. The validation process
has demonstrated that this solution can be profitably used for
multi-gigabit network monitoring, paving the way to low-cost
virtualized monitoring systems.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—DNS; C.2.3 [Network Operations]: Network
monitoring.

General Terms
Measurement, Performance.

Keywords
Virtualization, Packet Capture, Passive traffic monitoring.

1. INTRODUCTION AND MOTIVATION
In the past years, one of the industry trends is to optimize
rack space and power consumption while simplifying

administration by migrating physical servers onto Virtual
Machines (VMs).
In the context of network monitoring, the idea of running
multiple monitoring systems on independent VMs
deployed on the same physical box is definitely appealing.
By running software probes in virtualized environment
network administrator can delegate certain tasks (i.e.
performance management) to third persons, each having
full access and control over specific virtual machines. VMs
are often used for implementing monitoring on demand:
namely activate monitoring facilities on specific network
locations whenever certain network conditions happen (e.g.
security alert). In addition, virtualization provides
substantial deployment benefits in all the cases where
multiple monitoring applications require access to the
entire (or a subset of) the network traffic for performing
different analysis tasks. By running heterogeneous
monitoring software on the same box the complexity of
deploying systems responsible to simultaneously dispatch
the traffic towards multiple network analysis boxes can be
completely avoided.
Since traffic splitting or dispatching is usually implemented
by deploying advanced hardware based multi-port network
taps and management networks, virtualization in the
context of network monitoring allows to substantially
reduce the deployment costs of advanced multi-probe
monitoring architectures.
Unfortunately, running multiple monitoring systems in
virtualized environments is desirable but not yet a common
practice mostly due to the severe performance bottlenecks
that virtualization introduces in application performing
network monitoring. The most critical performance
bottleneck introduced by virtualization when used for
network monitoring is caused by the inefficient
implementation of packet capture, which is the most
important building block for most network monitoring
applications. In fact, passive network monitoring systems
strongly depends on packet capture, which is the process of
accessing the stream of packets flowing on a network link.
The packet stream is captured for performing several tasks,
including network troubleshooting, traffic accounting,
security breaches detection, and performance monitoring.
Depending on the number of monitoring systems and on Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IMC’11, November 2–4, 2011, Berlin, Germany.
Copyright 2011 ACM 978-1-4503-1013-0/11/11...$10.00.

mailto:joseph.gasparakis@intel.com
mailto:joseph.gasparakis@intel.com

their nature, the same packet have to be captured several
times. For instance an intrusion detection system (IDS) and
a traffic accounting application might need the same
packets for accomplishing their respective monitoring
tasks. Depending on the criteria these systems use for
classifying traffic [1], they might be interested in capturing
all packets independently from their nature and content, or
only a subset of packets that match specific filtering rules
(e.g. all UDP packets sent by server 192.168.1.1) usually
specified using BPF filters [2] or hardware-assisted
filtering rules supported by modern network adapters [21].
The following figure shows the packet capture performance
(packets are just captured and not processed) of a single
VM running on a Kernel-based Virtual Machine (KVM) [3]
while capturing packets using VirtIO-Net [4] on a quad-
core Xeon system.

Figure 1. Packet Capture Rate at 1 Gbit using KVM

Since packet capture performance under a KVM virtualized
host is poor for small packets and acceptable only for
medium/large packets, KVM virtual machines are not
suitable for running network monitoring applications.

In the past years, the authors have developed PF_RING [5]
[45], a Linux kernel module implementing a framework
that can be profitably used for simplifying the development
of efficient monitoring applications requiring high speed
packet capture. PF_RING substantially accelerates packet
capture under the Linux operating system and for this
reason is widely used on specific field such as for
accelerating IDS/IPS and for passively monitoring network
traffic using flow-based tools. Unfortunately, the
framework does not provide packet capture acceleration
under virtualized environments. In this work, we introduce
virtual PF_RING (vPF_RING), an high performance
packet capture solution optimized for virtualized
environments that solves the performance bottlenecks
present in KVM when used for deploying multiple
monitoring applications on the same physical box. To
improve the packet capture performance the authors
capitalize on vNPlug, a novel framework that provides
hypervisor bypass.

The rest of the paper is structured as follows. In section 2,
we discuss how networking has changed with the advent of
virtual machines. In section 3, we cover the design of
vNPlug a framework that implements support for

0
25
50
75

100

64 128 256 512 1024 1500%
 P

ac
ke

t C
ap

tu
re

d

Packet Size (Bytes)

hypervisor-bypass. In section 4, we describe how vNPlug
has been successfully used to create vPF_RING, an
extension of PF_RING for virtualized environments.
Finally in section 5, vPF_RING performance is evaluated.

2. RELATED WORK

2.1 Networking in Virtual Machines
Virtualization is appealing for the industry as it simplifies
administrative tasks, while reducing costs and increasing
scalability [29] [40]. In the past few years there have been
many efforts to improve network performance on VMs [33]
[34], both with hardware [37] and software solutions [36].
However, with the only exception of Endace, which offers
the virtual DAG capture device (vDAG [18]), there are no
other companies addressing the problem of using VMs for
high-performance network monitoring but just for general
network operations. A popular solution for bypassing the
hypervisor during network operations is to map the
network adapters directly inside the VM such as VMware
VMDirectPath [31] [43]. We believe that this solution is
sub-optimal for traffic monitoring because:

• Each VM would need a physical network port, thus
increasing:

• The operational costs due to the need of private per-
VM ports.

• The number of monitoring ports.

• The complexity required during live VM migration
and reconfiguration, being each VM bound to a
specific network port on which traffic to be analyzed
is received.

• If multiple VMs running on the same host need to
analyze the same traffic with different goals (e.g. run a
VM with an IDS and another VM with a NetFlow
probe), it is necessary to use specialized hardware for
duplicating the packets to be dispatched to each adapter.

• As packet capture is a costly activity in terms of CPU
cycles required, capturing the same packet multiple times
on various VMs running on the same hosts is more
expensive than capturing the packet once and dispatching
it to multiple VMs especially when having high
throughputs and small packets.

• As hardware adapters are accessed directly by VMs, it is
necessary to install native drivers into the guests, adding
an extra constrain to live migration with respect to
virtualized adapters.

• Physical and virtual IRQ sharing, and device assignment
dependencies [43] can jeopardize the performance of the
system and make this solution effective only on
specialized servers.

Paravirtualization [19] has been the first attempt to reduce
the overhead of emulating real network devices. By
implementing paravirtualization, the guest operating
system is aware of being virtualized, and cooperates with

the hypervisor to virtualize the underlying hardware. In
other words, the guest uses custom drivers that use a direct
path for communicating with the hypervisor. Taking the
example of VirtIO-Net [4], the paravirtualized network
device in KVM, the burden on the hypervisor is reduced,
and some optimizations, such as the VHost-Net support,
attempt to reduce the number of system calls thus
improving latency. Unfortunately the packet journey is not
reduced as packets flow through virtual bridges and virtual
TAP devices, and twice through the operating system.

Recently, network equipments manufactures have
introduced technologies for enhancing networking on
virtualized environments. For example, some Intel server
class network interface cards (NICs) implement the Intel
VMDq (Virtual Machine Device Queues) technology [8].
To abstract the network device and share it across multiple
VMs, the hypervisor has to implement a software network
switch, which usually introduce severe performance
penalties. As shown in Figure 2, VMDq-aware NICs
implement all this in hardware thus preventing the in-
software switching overhead. By combining this
technology with optimized paravirtualization techniques, it
is possible to achieve high networking performance in VMs
[9] [10]. Unfortunately packet capture cannot benefit from
it, as VMDq basically partitions the NIC into several
virtual NICs but it does not feature mechanisms for:

• Accelerating packet capture.

• Capturing packets from all virtual queues, rather than
from just the one assigned to the VM.

Along the path of VMDq, the Single Root I/O
Virtualization technology [11] is a way of sharing a device
in a virtualized environment, bypassing the hypervisor
involvement in data movement. As depicted in Figure 3,
with this technology a single Ethernet port can be
configured by the hypervisor to appear as multiple
independent devices, each one with its own configuration
space. The hypervisor assigns each Virtual Function (VF,
lightweight PCIe functions) to a VM, providing
independent memory space and DMA streams. PCIe PF
(Physical Functions) is the physical device seen by the

VM1 VM3 VMn

L2 Software Switch

Hypervisor

VM2

VMDq Enabled NIC

L2 Hardware Classifier/Sorter

Network

Figure 2. Intel VMDq Technology

hypervisor on the host. Memory address translation
technologies based on IOMMUs [12] [13], such as Intel
VT-d [14] and AMD IOMMU, provide hardware assisted
techniques to allow direct DMA transfers bypassing the
hypervisor, while keeping isolation between host and VMs
[30]. There are several projects following the same
approach of the SR-IOV, with different designs of self-
virtualized devices for direct I/O [15] [16] [17]. All these
techniques represent good solutions for common
connectivity but, besides efficiency, they do not provide
assistance in accelerating packet capture.

2.2 Packet Filtering
The previous section has shown various alternatives to
implement efficient networking inside VMs. With
paravirtualization, packets pass through virtual bridges and
virtual TAP devices if hardware support such as VMDq is
not present. Using VMDq-aware network devices or self-
virtualized devices [11] [15] [16] [17], packet filtering still
happens in software as hardware filtering used by VMDq
usually provides only MAC-address filtering and thus in-
NIC bridging that is disabled when the NIC is set in
promiscuous mode. The result is that both with/without
VMDq, packet filtering has to happen in software as
modern NICs do not provide assistance for filtering packets
when used in virtualized environments.

Early packet filtering is necessary to prevent packets from
being discarded late in their journey to the VM, after that
they have passed through several components. This is
because filtering on guest OS means that the packet has
already reached the VM and thus that in case of packet not
satisfying any filter it would result in wasted CPU cycles.

Another side effect of in-VM filtering, is that all received
packets need to be copied to each VM, whereas in case of
early filtering, just the packets matching the filters will be
forwarded to VMs.

For specific application domains such as lawful
interception, filtering at the VM level represents a major
performance issue. This is because network operators

Hypervisor

SR-IOV Enabled NIC

PCIe PF PCIe VFnPCIe VF1

NIC driver

VM1

NIC driver

VM2

NIC driver

VM3

NIC driver

VMm

NIC driver

L2 Software Switch

Internet

Figure 3. SR-IOV Technology

usually provide a shadow copy of all packets flowing
through a link where several hundred users are connected,
but only a small portion of them belong to users that need
to be intercepted; the result is that most packets will be
discarded except those belonging to the targets (i.e. those
users that are being intercepted). This problem is even
more visible if the same input traffic needs to be passed to
various VMs, each performing a different type of analysis.
For this reason early packet discard on the physical
machine is very important as it avoid VMs to be over flood
with packets that will be discarded later on. Lawful
interception is a good example where the physical host
receives all packets, and it both filters and dispatches to the
VMs only those packets matching the individual filters set
by each VM.

A possible solution to the problem is to replace virtual
bridges with virtual switches such as Open vSwitch [26]
[27]. Open vSwitch implements standard Ethernet
switching, while providing high flexibility with full control
on the forwarding table by implementing a superset of the
OpenFlow protocol [28]. However, as mentioned in [26],
the problem is that these switches cause high CPU
utilization when switching packets, so latency and
overhead of the paravirtualization solutions increases. On
the contrary, hardware based OpenFlow switches [42], can
potentially offload the VMs from packet filtering. This
approach allows the load on VMs introduced by packet
filtering to be reduced [29] [41], but limits the flexibility
offered by virtualized environments (e.g. the migration of
VM across physical machines is compromised) and limits
filtering to what is offered by the switches.

In order to implement efficient VM filtering, it is necessary
to discard packets in the physical machine as close as
possible to the physical NIC. This way, only packets
matching the filtering rules will continue their journey to
the VMs, whereas others will be dropped immediately as
depicted in Figure 4. In a nutshell, early packet filtering in
the context of network monitoring is a key requirement for
achieving a high performance.

Discarding packets on the physical machine leveraging on
the PF_RING filtering support would be very useful in
security when IDS (Intrusion Detection Systems) are used.

VM 1

Applications

Operating
System

VM 2

Operating
System

Applications

Host
Packet

FIltering

Figure 4. Early Packet Filtering

We have developed a PF_RING module, part of the
PF_RING code distribution, for the popular snort IDS
named PF_RING DAQ (Data AcQuisition library) [46].
This module is responsible for receiving packets from
PF_RING and dispatching them to snort. For each packet,
snort emits a verdict that can be drop/pass and also white/
black-list. In the latter case, it would be very desirable to
have a snort instance running on a VM able to set filtering
rules inside the PF_RING kernel module running on the
physical host by means of this DAQ module. The
advantage is that unwanted packets/flows are discarded by
PF_RING and never hit the VM. This would be a great
advantage of early packet discarding that we want to offer
inside the vPF_RING framework.

2.3 PF_RING and Operating System Bypass
PF_RING is a kernel-based extensible traffic analysis
framework, that significantly improves the performance of
packet capture. It reduces the journey of captured packets
from wire to user-space, and features a flexible packet
filtering system and an extensible plugin-based architecture
for adding new functionality at runtime.

PF_RING can use both vanilla Linux drivers and
PF_RING-aware drivers. The main difference is that the
latter can push captured packets directly to the PF_RING
kernel module thus reducing the packet journey with
respect to Linux native packet capture. PF_RING supports
a rich set of packet filtering mechanisms that allow users to
specify actions (e.g. dump a packet to disk), whenever
incoming packets match the filtering rules. It also supports
hardware filtering and packet steering capabilities when
packet capture happens on modern network adapters, such
as the Intel 82599 [21] and the Silicom PE210G2RS [22].
With those adapters packets are filtered inside the NIC
without any assistance from the main CPU as it happen
with software packet filtering. Hardware and software
packet filtering, allow efficient applications processing
packets directly inside the kernel to be easily implemented.
Kernel based packet processing is more efficient than user-
space packet processing as packets do not have to be
copied from kernel to user-space in case they don’t match
any configured filter.

The PF_RING framework provides a user-space library
that exposes an easy-to-use API for implementing
monitoring applications. As depicted in Figure 5, through
this library, ring buffers on which PF_RING is based, are
directly mapped from kernel-space into user-space by using
mmap(), reducing overheads and the number of data copies.

When an application wants to read a new packet, the
library checks the ring:

• If there are new packets available, they get processed
immediately.

• When no packets are found, a poll() is called in order to
wait for new packets. When the poll() returns, the library
checks again the ring for new packets.

In order to reduce the number of poll() calls and thus a
continuous poll()-wake up-poll() transition, the PF_RING
kernel module implements a dynamic polling mechanism
that can be configured by packet capture applications. The
poll() system call returns when at least X packets are
available, where X can range from one to several thousand,
or when the call times out, usually this is set to 10 msec.
This mechanism allows CPU cycles to be preserved for
those applications that do not need to process packet
immediately, but it also enables low-latency applications to
be implemented setting X to one.

As described above, the approach followed by PF_RING is
to create a straight path for packets bypassing the operating
system standard mechanisms by means of a memory-map
from kernel-space to the address space of the monitoring
application. With this solution, system calls other than the
poll() are completely avoided. The operating system bypass
approach is adopted in many research projects [23] [24] as
well as commercial products such as those manufactured
by companies such as Endace and Napatech, most of all in
areas requiring intense I/O activity, and where low latency
and high bandwidth are vital.

2.4 Hypervisor Bypass
The hypervisor involvement in all the VM I/O accesses
ensures isolation and system integrity, but it also leads to
longer latency and higher overhead compared to native I/O
accesses in non-virtualized environments, thus becoming a
bottleneck for I/O intensive workloads.

In this paper, we propose a model that extends the
PF_RING’s operating system bypass approach to the
context of virtual environments, thus creating a direct
mapping between the host kernel-space and the guest user-
space. This approach aims to perform operations that
require intensive workloads such as packet capture using a
direct VM-to-physical host path, without the involvement
of the hypervisor except during the setup phase. It is worth
to note that as in native PF_RING, this does not mean that
the hypervisor is completely bypassed in all operations, but
just for those that are computationally expensive such as
packet capture while it is still used for implementing packet

Figure 5. PF_RING Architecture

Application 1 Application 2

Standard
Linux Network Stack

ring ring

user-space
kernel

PF_RING

Enhanced
drivers

Standard
drivers

mmap()

polling. In this view, hypervisor overhead does not affect
packet capture performance because this component is
fully bypassed when packets are read from the PF_RING
ring sitting on the host.

Figure 6. Hypervisor Bypass

The hypervisor-bypass approach is not a novel idea: self-
virtualized devices for direct I/O, such as SR-IOV [35]
capable ones, are an example. There are also some studies
in the context of High Performance Computing (HPC) [6]
[7] that have demonstrated that the hypervisor-bypass
method can represent a very good solution in order to
remove bottlenecks in systems with high I/O demands,
especially those equipped with modern low latency and
high bandwidth network interconnects.

3. vPF_RING DESIGN PRINCIPLES
In this section, we present the design and implementation
of Virtual PF_RING (vPF_RING), that is based on vNPlug,
a framework implementing the hypervisor-bypass, also
developed by the authors. Although the work presented on
this paper addresses general issues that are not dependent
on a specific virtualization framework, the authors focus
only on KVM as it leverages Linux kernel capabilities,
such as scheduling and memory management. KVM is a
small and relatively simple software, present out-of-the-
box on the majority of Linux distributions, contrary to
other similar solutions such as Xen that is not integrated
into the mainstream kernel. Proprietary solutions such as
VMware [38], which is widely accepted in the industry,
have not been taken into account due to their license
restrictions and because of the source code not being open
and available [20].

KVM implements a kernel-based virtual machine on top of
the Linux kernel, and exploits a modified version of
QEMU [25] for emulating I/O devices. Implemented as
kernel module, KVM supports native code execution by
exploiting hardware virtualization extensions such as Intel
VT and AMD Secure Virtual Machine. Common tasks,
such as scheduling and memory management, are delegated
to the Linux kernel. VMs run as conventional user-space

Application

VM
Host

Operating System

Operating System

Hypervisor

user-space
kernel-space

user-space
kernel-space

Hypervisor
bypass

Operating
System
bypass PF_RING

processes making Linux unaware of dealing with a virtual
system.

vPF_RING, described later in section 3.2, does not strictly
depend on KVM but it mostly relies on PF_RING APIs.
Instead, as described in the next section, the vNPlug
framework has been designed on top of KVM for
implementing the hypervisor-bypass approach (mapping
memory, exchanging control messages, notifying events).
Porting vNPlug to another hypervisor such as Xen, requires
a complete code rewrite, contrary to the vPF_RING code
that should not be modified.

3.1 vNPlug Framework
The vNPlug framework exploits the hypervisor-bypass
approach for achieving high packet capture performance in
virtualized environments. It has been designed to be
general enough for being used by every monitoring
application and not just vPF_RING. For instance, the
Linux native socket type PF_PACKET is quite similar to
PF_RING as both use memory mapped buffers to exchange
packets between kernel and user-space. Porting
PF_PACKET on top of vPF_RING-vNPlug is thus just a
matter of time as it does not seem to have any technical
challenge being the two socket types pretty similar.

The framework follows a paravirtualization-like design,
guests are aware of being virtualized and consequently the
architecture is logically split in a guest and an host side
block.
The framework is logically divided into two main
components. The first component, vNPlug-Dev, is
responsible for:

• Mapping memory between the host kernel-space and the
guest user-space.

• Implementing an efficient event notification that is
necessary for VM/Host communications.

The second component, vNPlug-CTRL, is responsible for
coordinating the host and guest side of applications by
means of a control communication channel. The channel is
required, for example, when an application needs to
instrument its host-side back-end for filtering specific
packets.

As can be seen, applications built on top of the framework
can access physical host resources that are usually not
available in virtualized environments. In case of
vPF_RING, applications executed under VMs can capture
packets not only from VM’s network interfaces, but also
from physical host interfaces. This feature can be offered
by building vPF_RING on top of the vNPlug framework.

vNPlug is implemented as a QEMU patch on the host side,
and a Linux kernel module (vnplug.ko), based on both
vNPlug-Dev and vNPlug-CTRL components, on the guest
OS.

3.1.1 vNPlug-Dev
The original PF_RING maps kernel ring buffers to user-
space via memory-map. vNPlug-Dev allows to further
memory-map these virtual memory areas to virtual
machines. The initial memory-mapping happens through
the hypervisor, whereas all packets are exchanged directly
between the VM and the PF_RING sitting on the host
without any hypervisor support. This mapping is performed
dynamically attaching additional blocks of memory via
virtual PCI devices whenever a vPF_RING is created.
Inside the VM, these memory regions can be accessed by
ioremap(), and mapped in virtual memory areas via the
vnplug.ko kernel module that creates character devices that
can be memory-mapped. Figure 7 depicts the vNPlug-Dev
architecture.

vNPlug-Dev is dynamic by design as it allows dynamic
memory-mapping to take place by means of virtual PCI
devices. Therefore, the number of rings is not limited as it
happens, for instance, in BSD systems where packets are
captured from a limited number of statically allocated
capture devices (/dev/bpfX).

The PCI hotplug support allows devices to be dynamically
attached and removed from a running system. Even if
hotplug is rarely used in practice, basic hotplug support is
provided by the majority of modern operating systems,
making hot-plugged devices immediately usable with
limited effort. By exploiting the hotplug, it is possible to
dynamically attach memory mappings to guests whenever
necessary, making vPF_RING a very flexible system that
does not have any limitation in terms of functionality and
flexibility with respect to native PF_RING.

The event signaling functionality of the framework takes
advantage of the irqfd and ioeventfd supports of KVM in
order to provide a two-way notification mechanism, from
host-to-guest and from guest-to-host. Both of them are
based on the eventfd file descriptor for event notification,
that is quite powerful yet flexible as it can be used from
both user-space and kernel-space in order to signal/wait
events.

Using the irqfd support it is possible to send interrupts to
the VM without passing through the QEMU process, which

Figure 7. vNPlug-Dev Architecture

Host Kernel

QEMU

KVM

Guest

Application
backend

Application

vNPlug-Dev
vNPlug-Dev

kernel

userspace

vNPlug-Dev
Virtual Device

In-kernel
App. backend

qemu_ram_alloc_from_ptr()

mmap()

mmap()

irqfd ioeventfd

is responsible to emulate the device on which interrupts are
dispatched. In fact, since virtual interrupts are injected to
the guest via KVM, the irqfd support allows the latter to
directly translate a signal on an eventfd into an interrupt,
thus ensuring efficiency. At the same time, the MSI
(Message Signaled Interrupt) support ensures flexibility, by
using multiple vectors that simplifies the notification
mechanism when several events are required. On the guest
side, the framework has been inspired by the eventfd
approach that uses a blocking read() on a character device
for notifying user-space applications that an interrupt has
been received.

ioeventfd is used to register arbitrary addresses of a MMIO
(Memory-Mapped I/O) region belonging to a virtual
device, along with a unique value and an eventfd. On the
guest side, these MMIO regions are mapped in user-space.
Whenever the guest OS writes a value to such MMIO
region, if the written value matches the registered value,
then an event is triggered on the corresponding eventfd.
This mechanism is quite efficient as it allows a lightweight
exit (long enough to signal an eventfd in kernel-space by
means of a KVM service routine), while a normal I/O
operation on an emulated virtual device requires a costly
VM exit.

3.1.2 vNPlug-CTRL
The component implements a message based
communication channel that allows control messages to be
exchanged between the guest side of the monitoring
application and its back-end. For instance it can be used by
an application to request the back-end to setup a new
memory-mapping, or to filter packets.

The vNPlug-CTRL component has been introduced for
having a control channel totally independent from network
communications, and, as such, not susceptible to
unintentional network configuration changes.

As depicted in Figure 8, the vNPlug-CTRL component
implementation is based on the VirtIO interface for
paravirtualization that is efficient and ensures low response
times, but required a little more effort at development time
compared to a network communication implementation.
The two-way communication channel over VirtIO uses two

virtqueue’s, one for host-to-guest messages and one for the
opposite direction. In order to send and receive messages
from the guest user-space, the framework exposes common
file operations (read and write) on a character device.

Through this communication channel, the framework
routes messages between the host-side and guest-side of
applications. As multiple applications are supported, each
with multiple virtual devices, the framework uses a
minimal and yet efficient protocol stack, depicted in Figure
9. At the bottom of the stack, the VirtIO transport
mechanism takes place, providing a two-way point-to-point
communication channel between the two sides of the
framework: guest and host side. At the second layer, a
framework-level header allows the framework to
distinguish between messages addressed to itself and those
addressed to an application. At the third layer, an
application-level header allows the framework to identify
the application to which such message has to be delivered.
From the fourth layer on, all is managed by the application,
in order to identify internal operations and address virtual
devices.

Figure 9. vNPlug-CTRL message routing

3.1.3 vNPlug API
In order to simplify the development of monitoring
applications, the framework provides a simple API, that
implements an abstraction layer on top of the implemented
functions. Framework’s components get abstracted through
two subsets of the interface: the host side API and the guest
side API.

The main features the interface provides:

• Host Side

• Registration and unregistration of the application
back-end.

• Control messages reception and transmission.

• Virtual devices, for memory-mapping, creation and
tear-down.

• Guest Side

• Control messages transmission and reception.

• Shared memory-mapping and unmapping in the
virtual address space of the application.

• Event signaling/waiting functionalities.

Virtio

Host side Guest side

App1
back-end

App2
back-end

App1
instance1

App1
instance2

Framework

App2
instance1

Framework

Virtual
Device

1

Virtual
Device

2

Virtual
Device

3

Mapping
1

Mapping
2

Mapping
3

Figure 8. vNPlug-CTRL component.

Host Kernel

QEMU

KVM

Guest

App
back-end

Application

vNPlug-
CTRL

vNPlug-CTRL

kernel

user-space

Virtio-over-PCI

push() get_buf()

pop() add_buf()
virtqueue

3.2 vPF_RING
vPF_RING is an extension of PF_RING for virtualized
environments built on top of vNPlug. The design of
original PF_RING lent itself particularly well to be adapted
to the vNPlug framework. In fact, on the host side, it only
needed a few enhancements, keeping both the kernel
module and the user-space library fully backward-
compatible with the original version. As the PF_RING
library uses memory-mapping for exporting the packet
capture ring from kernel-space into user-space, the virtual
memory address returned by mmap() can be used by the
framework to map it into the guest. In a nutshell, PF_RING
is responsible for making this memory area available to the
guest user-space.

Figure 10. vPF_RING design

The two-way event signaling support of the framework has
been used for replacing the poll() calls used by PF_RING
applications for being waken-up when new incoming
packets are available. When an application on the guest-
side has to read a new packet, but no packets are ready to
be read, the library on the guest-side informs the host side.
This way, the host-side knows that if there are unread
packets, or when a new one arrives, it has to send an
interrupt to the guest-side that is waiting for packets.
Furthermore an algorithm similar to the adaptive sleep of
the PF_RING native library is used, in order to avoid many
poll-equivalent calls.

A new and thin library has been created on the guest-side
for:

• Translating each call to the PF_RING library into control
messages over the communication channel provided by
the framework.

• Memory-mapping and event signaling/waiting
mechanisms just described.

The vPF_RING back-end on the host-side, is also
responsible of translating guest-to-host control messages
into calls to the PF_RING library. It allows monitoring
applications running on guests to:

• Read packets from kernel via memory-map and not
through read() system calls as it happens with VirtIO.

Host Kernel

QEMU

KVM

Guest

A
P
I

A
P
I

vNPlug-CTRL

vNPlug-Dev

vNPlug-CTRL

vNPlug-Dev

libpfring

irqfd ioeventfd

PF_RING
module

Virtual
PF_RING
back-end

Virtual
PF_RING

• Access host network interfaces in addition to guest
network interfaces.

• Setup packet capture filters directory on the host
PF_RING, thus implementing early packet filtering.

• Seamlessly develop applications, that can run unchanged
both on physical or virtualized environments, easing the
move towards a virtualized monitoring environment.

In a nutshell vPF_RING has been designed to be
transparent to application developers, both in terms of
features and packet capture speed. The only visible
difference is the device name from which packets are
captured. With native PF_RING it is possible to capture
packets just from physical interfaces. Using vPF_RING, it
is possible to capture packets from both the VM’s virtual
Ethernet device, and the physical host interface. In the
former case, vPF_RING operates as PF_RING when
capturing packets from a host adapter (in this case from the
VM virtual adapter). In the latter case, vPF_RING is not
capturing from the VM’s interface but from the host’s
physical interface. As vPF_RING’s API is unchanged with
respect to PF_RING, a special device naming convention
has been used in order to instruct the framework to capture
packets from the host interface. This is because host
interfaces are not visible to the VM via standard Linux
commands such as ifconfig, and also because interface
name present on both the VM and host might be the same
(e.g. eth0). For this reason in vPF_RING the following
naming convention has been used: interface names with a
“host:” prefix indicate host interface. For instance when a
VM opens “eth0” it means that it wants to open the virtual
VM eth0 interface; instead “host:eth0” means the eth0
physical host interface.

vPF_RING honors all PF_RING capture extensions. For
instance applications can capture traffic from a specific RX
queue of a multi-queue adapter when using PF_RING-
aware driver [32], and specify filtering and packet steering
rules in hardware on adapters such as Intel 82599 [21]. On
one hand, these are interesting features to have as for
instance a VM having to analyze HTTP traffic, can capture
traffic on RX queue X on which it has configured a
hardware filter that sends to such queue only HTTP
packets. On the other hand, like most kernel bypass
technologies (e.g. the same PF_RING), must be used
properly as they circumvent some protection mechanisms,
such as the insulation of the VM from host environment.

4. vPF_RING VALIDATION
vPF_RING validation and performance evaluation tests
have been performed on a simple test bed, where an IXIA
400 traffic generator has been used for sending packets to a
server powered by an Intel Xeon X3440, running Linux
kernel 2.6.36 and equipped with a dual Intel 82576 Gigabit
Ethernet controller. The IXIA 400 traffic generator is
connected to the server via the two gigabit ports, and can
generate network traffic at configurable rates, including the
wire-rate, on both port regardless of the packet size. For 10

Gigabit tests we have used a home-grown tool named
pfsend with PF_RING DNA (Direct NIC Access) [47] for
reproducing traffic at wire speed previously captured on a
network backbone. This has allowed us to test vPF_RING
under various conditions and with both synthetic and real
network traffic. For the tests described later on this section,
have been used forged packets in order to evaluate this
work with different packet rates and sizes.

The performance of vPF_RING has been compared with
the performance of native PF_RING 4.6.x running on a
physical (non virtualized) host and PF_RING running on a
virtual KVM environment (using the VirtIO-Net support
with the VHost-Net optimization). vPF_RING performance
has also been positionedagainst VMware ESXi (using
VMXNET 3, the latest version available of the VMware
paravirtualized network device). All the VMs used during
the evaluation have a single-core virtual CPU and also run
Linux kernel version 2.6.36.

The device driver used on the server on the host-side is the
igb, developed by Intel, which is included in the Linux
kernel. It is worth to remark that, although PF_RING
supports PF_RING-aware optimized drivers to bypass the
standard operating system’s mechanisms, we decided not to
use them in order to evaluate our work on the worst case
(i.e. without any packet capture acceleration exploiting
specific network cards features). This is because we want
to compare native VirtIO-Net agains vPF_RING, without
accounting any vPF_RING performance benefit due to
these optimized drivers.

Before describing the evaluating results, it is important to
understand how the packet size affects the benchmarks.
This parameter is relevant because the maximum packet
rate that can be injected on a link depends on the packet
size. As shown in Table 1, at wire-rate, small packet sizes
corresponds tohigher packet rates. The packet capture
performance is affected by the packet rate, which can be as
high as 1.4 Million of packets per seconds (Mpps) when
the packet size is 64 bytes (minimum packet size) on
Gigabit links, 14.880 Mpps on 10 Gigabit.

Table 1. Maximum Packet Rates

Line
Speed

Rates Per Frame Size (Kpps)Rates Per Frame Size (Kpps)Rates Per Frame Size (Kpps)Rates Per Frame Size (Kpps)Rates Per Frame Size (Kpps)Line
Speed

64
Byte

128
Byte

256
Byte

512
Byte

1024
Byte

1 Gigabit 1488 844 452 234 119

10 Gigabit 14880 8445 4528 2349 1197

Another aspect worth to mention, is that with vPF_RING it
is possible to use efficient packet filtering techniques
within the host (in kernel-space or even in hardware), to
further increase the performance. In fact, through the
efficient communication channel provided by the vNPlug-
CTRL component, vPF_RING is capable to instrument the
PF_RING module for setting a variety of efficient filters.
However, as we are interested in evaluating our work in the
worst case scenario, packet filtering has not been used.

Benchmarks have been done using pfcount, a simple packet
capture application implemented on top of the PF_RING
API. The application captures packets, updates some
statistics, and then discards packets without doing any
further processing.

In the first test we evaluate the packet capture performance
when a single instance of pfcount processes the traffic
injected at wire rate with different packet sizes on a single
Gigabit link.

In Figure 11 we show that vPF_RING, similar to PF_RING
on a native environment, is able to process packets at wire-
rate (without packet loss), for every packet size, up to the
maximum rate (1.488 Mpps per port).
From the same figure we can observe that by using
PF_RING in a virtual environment with the VirtIO-Net
support (i.e. without the assistance of our framework), it is
possible to efficiently capture without packet loss only
medium/large packets, when packet rates are not more than
a few hundred Kpps. In fact, with small packets severe
packet drops can be observed. Results are slightly better
when using PF_RING on a VMware ESXi virtual
environment, but we can still notice severe packet drops for
high rates.

Figure 11. Packet Capture Rate (1 Gbit)

0

500

1000

1500

64 128 256 512 1024

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Virtual PF_RING Virtio-Net VhostNet
Native PF_RING Generated traffic
ESXi VMXNET 3

In addition to packet capture, we evaluate the percentage of
CPU idle time as reported by the top command utility. In
this way, we can have an indication of the free CPU cycles
available for packet processing. Figure 12 shows that
vPF_RING can cope with high packet rates while keeping
the CPU relatively idle, almost the same percentage as the
native solution. Instead, with the VirtIO-Net support, there
is an higher overhead even if fewer packets per second are
processed.

Figure 13 depicts the packet loss percentage that pfcount
reports when using different capture mechanisms. The
result highlights that both vPF_RING and PF_RING allows
packets to be captured without observing any packet loss
for all packet sizes, including the minimum packet size
corresponding to the highest packet rate (1.4 Mpps for 64
byte packets). On the contrary, when using VirtIO-Net, the
packet loss percentage is significant (as high as 90% in the
case of 64 bytes packets), making it unsuitable for
applications where 100% packet capture is required. A

Figure 13. Packet Loss Percentage (1 Gbit)

0

20

40

60

80

100

64 128 256 512 1024

%
 P

ac
ke

t L
os

s

Packet Size (Bytes)

Virtual PF_RING Virtio-Net VhostNet
Native PF_RING ESXi VMXNET 3

lower packet loss percentage can be observed when
VMware ESXi is used; however also this solution cannot
guarantee no packet loss.

A second test has been performed to evaluate the
performance when two instances of the pfcount application,
running on the same VM, process the traffic injected on
two different Gbit interfaces.

Figure 14 shows the aggregated packet capture rate that is
achieved by running the two pfcount instances. Both
vPF_RING and PF_RING are able to process up to nearly
two million packets per second without packet loss (with
an average of one million per instance). When the packet
rate on the wire increases further (with 64-byte packets at
wire-speed) both capture mechanisms lose packets.
However native PF_RING processes about half a million
more than vPF_RING.

As the virtual machine where the two instances of pfcount
have limited CPU resources, this result does not necessarily
mean that vPF_RING offers a worse scalability than the
native PF_RING. In fact, while the two instances of
pfcount of the native solution can run concurrently on
different cores of the same processor, we know that a
virtual CPU, where the two application instances of the
virtual solution are scheduled on, is itself scheduled as a
normal thread by the host operating system.

Regarding the virtual solution without the framework,
using the VirtIO-Net support, performance are similar or
even worse to the previous, with up to one hundred
thousand packets per second processed by each application
instance. The conclusion is that even with large packets,
packet loss is pretty severe.

Figure 14. Total Captured Packets By Two pfcount
Instances Running On The Same VM

0
500

1000
1500
2000
2500
3000

64 128 256 512 1024

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Virtual PF_RING Virtio-Net VhostNet
Native PF_RING Generated traffic

Figure 12. Idle CPU % During Capture on Host
as Reported by top (1 Gbit)

0

20

40

60

80

100

64 128 256 512 1024

%
 Id

le

Packet Size (Bytes)

Virtual PF_RING Virtio-Net VhostNet
Native PF_RING

Figure 15 depicts the percentage of CPU idle time, and it
confirms that vPF_RING keeps the CPU relatively idle,
even more that native PF_RING. This is because the native
PF_RING is more efficient than the virtual version, thus it
consumes packets more quickly hence calls poll() much
more often that contributes to reduce the idle time. Instead
the solution based on VirtIO-Net requires more CPU time
even with a very low percentage of captured packets.

Another test has been conducted for evaluating the
performance of two instances of the application, each one
processing one Gigabit of traffic on a different interface,
but this time each running on a different VM.

Figure 15. Idle CPU % When Two pfcount Instances
Are Running On The Same VM

0

20

40

60

80

100

64 128 256 512 1024

%
 Id

le

Packet Size (Bytes)

Virtual PF_RING Virtio-Net VhostNet
Native PF_RING

Figure 16. Total Captured Packets by Two pfcount
Instances Running on Different VMs

0
500

1000
1500
2000
2500
3000

64 128 256 512 1024

Pa
ck

et
 ra

te
 (K

pp
s)

Packet Size (Bytes)

Virtual PF_RING Virtio-Net VhostNet
Native PF_RING Generated traffic

As shown in Figure 16, the total number of captured
packets by both application instances has that same trend as
in the previous test. The only difference is that in this case
for 64-byte packets the capture rate of vPF_RING is
basically the same of the native PF_RING. This, once
again, confirms our hypothesis about scalability. In fact, in
this case we have two virtual CPUs scheduled on the host,
one for each VM, and on each virtual CPU an application
instance is scheduled.

The solution based on VirtIO-Net, this time, seems to scale
for large packets but, at high rates, performance is similar
to the one observed in the previous tests.

Figure 17 shows the percentage of CPU idle time. As one
would guess, vPF_RING overhead is higher than the native
PF_RING. The solution based on VirtIO-Net still requires
many more CPU cycles, even if its packet capture
performance is lower.

Another series of tests has been performed in order to
compare the packet capture performance offered by
vPF_RING when capturing from a 10 Gigabit link, to the
performance provided by the native PF_RING. pfsend on
top of PF_RING DNA has been used to generate traffic at
wire speed. An Intel 82599 based Gigabit Ethernet
interface has been used as a capture device. The server
used is still an Intel Xeon X3440 running Linux kernel
2.6.36. The device driver used for these tests, on the host-
side, is a PF_RING-aware version of the ixgbe, which is
able to copy packets directly to PF_RING my means of
Linux NAPI packet polling.

Figure 17 Idle CPU % When Two pfcount Instances
Are Running On Different VMs

0

20

40

60

80

100

64 128 256 512 1024
%

 Id
le

Packet Size (Bytes)

Virtual PF_RING Virtio-Net VhostNet
Native PF_RING

In the first of these tests, we evaluated the performance
with a single application instance. Figure 18 shows that
vPF_RING is able to match the packet capture performance
offered by the native PF_RING.

A second test has been performed to evaluate the
scalability, with two instances of pfcount capturing packets
from the same interface, balancing the traffic across
applications by means of RSS (Receive-Side Scaling)
queues. In the virtual case, each pfcount instance is running
on a different VM. As shown in Figure 19, also in this case,
packet capture performance offered by vPF_RING is close
to the one offered by the native PF_RING.
In order to further evaluate the scalability, another test has
been conducted with four instances of pfcount. As in the
previous test, the pfcount instances capture packets from

Figure 18. Packet Capture Rate (10 Gigabit)

0
500

1000
1500
2000
2500
3000

64 128 256 512 1024 1500

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Virtual PF_RING Native PF_RING

Figure 19. Captured Packets By Each Of The Two
pfcount Instances Running On Different VMs (10

Gigabit)

0

500

1000

1500

64 128 256 512 1024 1500

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Virtual PF_RING Native PF_RING

the same interface. As depicted in Figure 20, vPF_RING
offers packet capture performance comparable to the one
provided by the native PF_RING.

In summary using vPF_RING has no performance penalty
relative to native PF_RING (Figures 11,12). Relative to
PF_RING in a VM:

• vPF_RING is more than an order of magnitude faster
with respect to the performance achieved by vanilla
KVM. This means that thanks to vPF_RING it is finally
possible to effectively perform traffic monitoring inside
KVM-based VMs.

• For all packet sizs, vPF_RING and PF_RING have
comparable performance (Fig 14, 18).

5. OPEN ISSUES AND FUTURE WORK
The work described on this paper is an efficient and
flexible solution to effective packet capture on VMs.
Nevertheless there are a few areas where extra work is
needed.
The main issue is live VM migration, as the hypervisor
does not have knowledge of the resources allocated by the
applications. This is in contrast to traditional device
virtualization approaches, where the hypervisor is involved
and it can suspend all the operations when live migration
starts. While developing the framework we mostly focused
on achieving high packet capture performance and we did
not consider additional virtualization features, such as live
migration. In the future we plan to address the issue for
further increasing the flexibility offered by our solution.
Furthermore, it would be interesting to perform more
detailed tests, look for further performance improvements,
and evaluate the framework on VMs with multiple virtual
CPUs investigating on scheduling and resource
management.

Figure 20. Captured Packets By Each Of The Four
pfcount Instances Running On Different VMs (10

Gigabit)

0

500

1000

64 128 256 512 1024 1500

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Virtual PF_RING Native PF_RING

6. FINAL REMARKS
In the past few years there have been many efforts to
improve network performance on VMs, both with hardware
and software solutions. However, none of the available
solution addresses the problem of using VMs for high-
performance network monitoring.

This paper used a well-known approach named hypervisor-
bypass, which allows packets to follow a straight path from
kernel to VMs, thus avoiding per-packet overhead due to
the hypervisor and system calls. This mechanism has been
successfully applied for implementing vPF_RING, a
kernel-based extensible traffic analysis framework
developed by the authors. The validation phase has
confirmed that it can drastically improve packet capture
performance, often achieving packet capture rates and CPU
usage close to those that can be obtained on bare hardware.
This reducing the dropped packet rate up to 90% on
Gigabit links with respect to preexisting open source
software solutions, 55% with respect to commercial
solutions such as VMware (or even more on faster links).

The outcome is that it is now possible to efficiently run
multiple VMs on commodity hardware, each monitoring
the same traffic for different purposes, without packet loss
and with plenty of CPU cycles available for processing the
captured traffic.

7. CODE AVAILABILITY
This work is distributed under the GNU GPL license and is
available at the ntop home page http://www.ntop.org/
products/pf_ring/vpf_ring/.

8. ACKNOWLEDGEMENTS
Our thanks to Silicom Ltd. that has greatly supported this
research work and provided network equipment used
during tests.

9. REFERENCES
[1] F. Baboescu and G. Varghese, Scalable packet

classification, Proc. of ACM Sigcomm, 2001.
[2] S. McCanne and V. Jacobson, The BSD Packet Filter:

A New Architecture for User-level Packet Capture,
Proc. of USENIX Conference, 1993.

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A.
Liguori, kvm: the Linux virtual machine monitor, Proc.
of 2007 Ottawa Linux Symposium, July 2007.

[4] R. Russell, VirtIO: Towards a De-Facto Standard for
Virtual I/O Devices, SIGOPS Operating Systems
Review, Vol. 42, Issue 5, July 2008.

[5] L. Deri, Improving Passive Packet Capture: Beyond
Device Polling, Proc. of SANE 2004, 2004.

[6] W. Huang et al., A case for high performance
computing with virtual machines, Proc. of the 20th

annual international conference on Supercomputing,
2006.

[7] J. Liu et al., High performance VMM-bypass I/O in
virtual machines, Proc. of USENIX annual conference,
2006.

[8] R. Hiremane and S. Chinni, Virtual Machine Device
Queues: An Integral Part of Intel Virtualization
Technology for Connectivity that Delivers Enhanced
Network Performance, Intel Corporation, White Paper,
2007.

[9] K.K. Ram et al., Achieving 10 Gb/s using safe and
transparent network interface virtualization, Proc. of
the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, 2009.

[10] J.R. Santos et al., Bridging the gap between software
and hardware techniques for i/o virtualization, Proc. of
USENIX 2008 Annual Technical Conference on
Annual Technical Conference, 2008.

[11] PCI-SIG, Single Root I/O Virtualization and Sharing
Specification, Revision 1.0, 2007.

[12] M. Ben-Yehuda et al., Utilizing IOMMUs for
virtualization in Linux and Xen, Proc. of the 2006
Ottawa Linux Symposium, 2006.

[13] M.D. Hummel et al., Address translation for input/
output (I/O) devices and interrupt remapping for I/O
devices in an I/O memory management unit
(IOMMU), US Patent 7’653’803, 2010.

[14] S. Muthrasanallur et al., Intel Virtualization
Technology for Directed I/O, Intel Corporation, 2006.

[15] J. LeVasseur et al.,Standardized but flexible I/O for
self-virtualizing devices, Proc. of the First conference
on I/O virtualization, USENIX Association, 2008.

[16] H. Raj and K. Schwan, High performance and scalable
I/O virtualization via self-virtualized devices, Proc. of
the 16th international symposium on High
performance distributed computing, ACM, 2007.

[17] J. Shafer et al., Concurrent direct network access for
virtual machine monitors, Proc. of IEEE 13th
International Symposium on High Performance
Computer Architecture, 2007.

[18] Endace, OSm 4.2 vDAG (Virtualized DAG), http://
www.endace.com/endace-operating-system-for-
network-monitoring-osm.html, June 2011.

[19] L. Youseff at al., Paravirtualization for HPC Systems,
Proc. of Workshop on Xen in High-Performance
Cluster and Grid Computing, 2006.

[20] K. Adams and O. Agesen, A Comparison of Software
and Hardware Techniques for x86 Virtualization,
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), 2006.

[21] L. Deri et al., Wire-Speed Hardware-Assisted Traffic
Filtering with Mainstream Network Adapters, Proc. of
NEMA 2010 Workshop, October 2010.

[22] Silicom Ltd., PCIe Packet Processor Server Adapter
PE210G2RS, http://www.silicom-usa.com/default.asp?
contentID=2144, 2010.

[23] A. Biswas, A High Performance Real-time Packet
Capturing Architecture for Network Management
Systems, Masters Thesis, Concordia University, 2005.

[24] L. Degioanni and G. Varenni, Introducing Scalability
in Network Measurement: Toward 10 Gbps with
Commodity Hardware, Proc. of IMC ’04, 2004.

[25] F. Bellard, QEMU, a Fast and Portable Dynamic
Translator, Proc. of the USENIX Annual Technical
Conference, FREENIX Track, 2005.

[26] J. Pettit et al., Virtual Switching in an Era of Advanced
Edges, 2nd Workshop on Data Center – Converged and
Virtual Ethernet Switching (DC-CAVES), Sept. 2010.

[27] B. Pfaff et al., Extending networking into the
virtualization layer, Proc. of HotNets, October 2009.

[28] N. McKeown et al., OpenFlow: enabling innovation in
campus networks, ACM SIGCOMM Computer
Communication Review 38.2 (2008),.

[29] A. Greenhalgh et al., Flowstream Architectures, Proc.
of WowKiVS 2009 Conference, 2009.

[30] Intel Corporation, 82599 10GbE Controller Datasheet,
Revision 2.3, April 2010.

[31] Intel Corporation and VMware Inc., Enabling I/O-
Intensive Applications for Server Virtualization, White
Paper, 2009.

[32] Luca Deri et al., High Speed Network Traffic Analysis
with Commodity Multi-core Systems, Proc. of IMC
2010, November 2010.

[33] B. Plaff et al., Extending Networking into the
Virtualization Layer, Proc. of 8th HotNets Workshop,
October 2009.

[34] N. Chowdhury and R . Bou taba , Ne twork
virtualization: state of the art and research challenges,
IEEE Communications Magazine, July 2009.0

[35] Y. Dong at al., SR-IOV networking in Xen:
architecture, design and implementation, Proc. of
WIOV'08, 2008.

[36] S. Rixner, Network Virtualization: Breaking the
Performance Barrier, ACM Queue Magazine, Vol. 6
Issue 1, Jan./Feb 2008.

[37] D. Unnikrishnan et al., Scalable network virtualization
using FPGAs, Proc. of ACM FPGA '10, 2010.

[38] E. L. Haletky, VMware ESX Server in the Enterprise:
Planning and Securing Virtualization Servers, ISBN
0132302071, 2008.

[39] J. Wiegert et al., Challenges for Scalable Networking
in a Virtualized Server, Proc. of 16th ICCCN
Conference, 2007.

[40] N. Niebert et al., Network Virtualization: A Viable
Path Towards the Future Internet, Strategic Workshop,
2007.

[41] R. Sherwood et al. FlowVisor: A Network
Virtualization Layer. Technical Report Openflow-
tr-2009-1, Stanford University, 2009.

[42] R. Sherwood et al., Carving research slices out of your
production networks with OpenFlow. ACM
SIGCOMM Computer Communication Review, 2010.

[43] VMware Inc . ,Conf igura t ion Examples and
Troubleshooting for VMDirectPath, Technical Note,
2010.

[44] L. Deri, nCap: Wire-speed Packet Capture and
Transmission, Proc. of E2EMON Workshop, 2005.

[45] L. Braun et al., Comparing and Improving Current
Packet Capturing Solutions Based On Commodity
Hardware, Proc. of. IMC '10, November 2010.

[46] Russ Combs, Snort 2.9 Essentials: The DAQ, http://
vrt-blog.snort.org/2010/08/snort-29-essentials-
daq.html, August 2010.

[47] ntop, PF_RING DNA, http://www.ntop.org/products/
pf_ring/dna/, September 2011.

