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Abstract. Large-scale network monitoring systems require efficient storage and 
consolidation of measurement data. Relational databases and popular tools such 
as the Round-Robin Database show their limitations when handling a large 
number of time series. This is because data access time greatly increases with 
the cardinality of data and number of measurements. The result is that monitor-
ing systems are forced to store very few metrics at low frequency in order to 
grant data access within acceptable time boundaries. 
   This paper describes a novel compressed time series database named tsdb 
whose goal is to allow large time series to be stored and consolidated in real-
time with limited disk space usage. The validation has demonstrated the advan-
tage of tsdb over traditional approaches, and has shown that tsdb is suitable for 
handling a large number of time series. 
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1 Introduction and Motivation 

The demand of (near) real-time monitoring as well as the analysis of high-speed 
networks has put several constraints on monitoring systems. Users are demanding 
solutions able to interactively drill-down data while simultaneously collecting 
(hundred of) thousand metrics from various network sensors. In order to increase 
measurement accuracy, network administrators often reduce the sampling frequency 
of counters and gauges. If some years ago, a sampling period of 5 minutes was 
acceptable, nowadays network administrators require higher frequency samples for 
detecting anomalies that would not be detected by monitoring the same data at lower 
frequencies. For instance, detection of traffic spikes and microbursts require tenth (if 
not hundred) samples per second. The consequence of this trend is that monitoring 
systems produce an ever-increasing amount of data that needs to be stored and 
analyzed in a limited amount of time.  

With the advent of multi-Gbit networks, the traffic being analyzed and the corres-
ponding number of measured metrics increased significantly. Periodically accounting 
host traffic for a /24 subnet is very different from performing the same activity on a 
network backbone. In the latter case, monitoring systems cannot tolerate delays while 
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saving/reading data from/to the disk, as data access slow-down would prevent the 
system from carrying on the tasks within the expected timeframe. 

As discussed in the following section, both relational databases and specialized 
tools such as the rrdtool [3], are used in the industry for handling time series. A time 
series is a sequence of data points measured at uniform time intervals (e.g. every 5 
minutes) [16]. Unfortunately both solutions are only capable of satisfying require-
ments coming from small to medium environments, where the number of monitored 
metrics does not exceed a few tenth of thousand. However, collecting a much higher 
number of time series is not uncommon these days. Even a simple ntop installation [4] 
deployed for monitoring a medium network, has to keep track of several tens of thou-
sand metrics just for keeping a few counters (e.g. bytes/packets sent/received). If ad-
ditional counters are measured (e.g. traffic per protocol and network), the dataset size 
can quickly increase. According to the tests we carried on, existing open-source solu-
tions and relational databases are affected by serious scalability issues when collect-
ing hundreds of thousands (millions) metrics, making them practically unusable for 
large monitoring systems. In fact, without scalable and efficient time series handling 
tools, monitoring systems cannot store data at fine-grained granularity and are forced 
to decrease the monitoring accuracy. The lack of open-source tools for an efficient 
handling of time series has been the main motivation for creating a new open-source 
time series database for time series called tsdb. 

The rest of the paper is organized as follows. Section 2 analyzes the various alter-
natives for handling time series. Section 3 presents the design and implementation of 
tsdb. Section 4 covers the tsdb validation and compares it with similar tools. Section 5 
highlights some open issues and future work items. 

2 Background and Related Work 

2.1 Database Systems 

For years network developers have used relational databases for storing network data 
persistently. Data with uniform characteristics are organized in tables linked by 
relationships. Each table is logically divided in columns and rows, where a row is 
uniquely identified by means of a primary key. Data stored on the database can be 
modified and deleted. Unfortunately network data is not characterized by many 
relationships, it is usually unchangeable (i.e. changing measured data might indicate a 
counterfeit), and the same data is repeated over time at every measurement interval, 
making relational databases not convenient for handling this type of data. 

The reasons are manifold: 

• At every measurement interval, tables are populated with fresh data that increases 
table cardinality. The consequence is that table cardinality as well the space taken 
on disk increases with the number of measurements. 

• As soon as table indexes become large enough to prevent themselves to be cached, 
data retrieval becomes significantly slow [21, 14] thus jeopardizing the perfor-
mance of applications sitting on top of the database. 
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A partial solution for avoiding these slowdowns is the use of binary large objects 
(BLOB) for storing time series. In this case the drawback is that the database is 
unable to search directly on blobs. As it can just read/store raw data, it must delegate 
to third party applications the implementation of such retrieval, and data management 
facilities. In order to address these issues with relational databases, time series 
database servers (TSDS) [1] have been created. They have been designed for enabling 
efficient data retrieval within some defined date/time ranges, as well for handling date 
and timezone conversions. Unfortunately TSDS are mostly used in the industry, and 
the only open-source alternative OpenTSDB [2], has a pretty complex architecture 
with several components interacting over a network, making it suitable only for 
distributed systems. 

2.2 Round Robin Database  

The Round-Robin Database (RRD) is a great alternative to relational databases for 
storing time series. It implements a file-based persistent circular buffer where data is 
stored according to its timestamp. When the database is created it is necessary to 
specify the data lifetime as well the frequency (named step in the rrd parlance) at 
which data is stored. For instance, it is possible to store a value every 5 minutes for at 
most 30 days. As all the information is specified at database creation, rrd files do not 
grow over time: their size is static and as large as the circular buffer. Each rrd 
database can store multiple time series, not necessarily all sharing the same lifetime 
and frequency parameters. 

Typically rrd databases are small in size (64 KB or less) and stored as files on disk. 
Database files can be manipulated using a command-line tool named rrdtool, with no 
network access (e.g. via SQL-like query languages) typical of relational databases. 
Both rrdtool and its companion librrdtool library have been designed as tools to be 
accessed from the command line. Therefore, everything is file centric. Each database 
manipulation requires the library to open, manipulate, and save the file. If multiple 
operations have be performed on the same rrd file, the library needs to 
open/save/close the file multiple times. Another limitation is that most of the library 
functions require parameters to be specified in the argc/argv format, as required by 
the main() C function. The consequence is that due to these design shortcomings, it is 
not practically possible to define rrd databases with hundreds or thousands time se-
ries, thus limiting each rrd file to a few series. 

This means that: 

• The order of magnitude of rrd database files on disk is the same as the number of 
time series we need to handle. 

• When we need to manipulate time series, we have to open/save/close as many files 
as the number of time series we plan to manipulate. 

Although the rrdtool uses mmap() system call to reduce the number of read/write 
operations when updating an rrd or extracting a time series, the fact that rrd relies on 
the filesystem underneath is a matter of fact. Databases implement their internal data 
indexing and housekeeping, whereas in the rrd world this is delegated to the 
filesystem. Table 1 shows how rrdtool behaves while creating and updating a simple 
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rrd archive (Ubuntu Linux 11.04 64 bit, Intel i7 860, SATA 3 Gb/s, ext4 filesystem). 
Note that in the RRD ecosystem, as the database is created as a circular buffer able to 
contain all defined time series, we use the term update (i.e. replace, if any, the 
previous value in the circular buffer) rather than the term append that is more 
appropriate for relational databases. 

Table 1. rrdtool performance while creating and update rrd’s 

Number of RRDs RRD Creation (Total) RRD Update (Total) 

10 0.53 sec 0.24 sec 

100 5.34 sec 2.76 sec 

1,000 58.13 sec 53.97 sec 

10,000 600.74 sec 467.89 sec 

 
The time spent per RRD is almost constant across all runs, with a limited increase 

with the number of files, probably due to disk management. We also performed addi-
tional tests using RAID, RAM disks, and various file systems (i.e. ext3, XFS, Oracle 
brtfs). Some setups reported better results with respect to Table 1, however the overall 
performance did not change significantly. This is because each rrd operation takes a 
few milliseconds; even if minimized, it needs to be multiplied for all rrds we plan to 
manipulate. This boils down to the conclusion that rrd is not able to manipulate a 
large number of time series within limited time boundaries. For example on our test 
system we have not been able to update more that 64k rrd’s within 5 minutes time, 
although in our system no other application was accessing the disk and using CPU 
cycles. 

The reasons for this behavior are manifold: 

• RRD is file oriented, thus its performance cannot exceed the performance of the 
filesystem and disk it relies on. 

• Each rrd file contains no more than a few time series, so at each time step all rrd 
databases need to be updated. 

The rrd community has realized this limitation, and therefore on large installations a 
caching RRD daemon named rrdcached is used to cache updates in memory and 
perform them periodically. Even if this solution can reduce the number of rrd updates, 
it does not decrease the cost of per-rrd manipulation. Therefore, manipulating hundred 
of thousands (millions) rrds requires hours, making RRD unsuitable for effectively 
monitoring a large number of time series. 

2.3 Additional Time Series Database and Tools 

In addition to relational databases and rrdtool, there are other tools designed for 
handling time series such as TelegraphCQ [17], STATStream [18], and iSAX [19]. 
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These tools had a large impact on research, but some of them are not maintained 
anymore, and others are just software prototypes used to validate the research work. 

2.4 Numeric Databases and Compression 

Compressing time series data can be fundamental not only for the obvious storage 
size reduction but also for improving performance. This is because less data needs to 
be read/written on disk. Suppose your data is stored in a block device (e.g. hard disk), 
reducing the data size by a factor of two, only half of the blocks will be read/written 
with respect to the same system when not using compression. The drawback is that 
compression has a cost in terms of time that is negligible if compared to the time 
required for moving mechanical parts (e.g. heads) of a hard disk. 

Time series compression has applications in many network monitoring contexts 
where thousands if not million of monitoring metrics have to be collected at high 
frequency. The strategy to be chosen for compressing time series highly depends on 
the context. First of all, there are domains where a lossless compression is mandatory 
and others where an approximated representation of the time series is sufficient (lossy 
compression). The most widely used lossy time series compressors are based on con-
cepts coming from signal theory and exploit specific properties, such as seasonality, 
to approximate the discrete signal represented by the time series of values. The ratio-
nale of these methods is to represent the signal in the frequency domain instead of the 
time domain to capture important signal properties such as periodicity. By capturing 
predominant patterns, lossy time series compression techniques enable operations 
such as nearest neighbor searches, and pattern searches [5] directly in the compressed 
domain, that are not possible with lossless compression techniques unless additional 
indexes are used. The main drawback of lossy compression techniques is that they 
rely on specific patterns for providing a good approximation of the given time series. 
This is the main reason why lossy compression has been rarely applied to network 
monitoring contexts, where the patterns of time series can drastically change due to 
anomalous events or to transient networking issues. 

Lossless time series compression can be achieved by applying general-purpose 
lossless compression techniques, such as the popular Lempel-Ziv based compressors 
[6], or other compression techniques designed for better capturing and exploiting 
specific data patterns, such as the presence of long sequences of repeated symbols, or 
geometry distributions [7]. High-speed lossless compression of numerical values has 
been an active research topic during the last decade and has been driven by high-
speed compression requirements coming from columnar databases [8] and informa-
tion retrieval [9]. The main research focus has been on designing compressors opti-
mized for achieving high compression and decompression speed rather than for 
achieving compression ratios as close as possible to the optimum. High-compression 
speeds, and more importantly decompression speeds are desired in all the contexts 
where the data has to be stored in a compressed form for reducing the volumes, but 
still frequently accessed for answering queries. If the compressors are able to provide 
a decompression speed that is higher than the read I/O bandwidth, then the compres-
sion is not only beneficial for reducing the volumes, but also, and more importantly 
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for reducing the query response time. Among the family of speed-optimized compres-
sors, Simple9 [9] and PFor [10] stand out for their performance. Both compressors 
achieve high decompression performance by optimizing the decompression routines 
for avoiding conditional branches, which are the bottleneck of current and future su-
per-scalar processors. Compared to general-purpose compressors, the performance of 
high-speed integer compressors, both in terms of compression ratio and decompres-
sion speed, is more dependent on the data to be compressed. It has been shown that 
high-speed variant of LZ based compressors, such as LZO, have to be preferred over 
high-speed integer compressors, in case of data composed of many distinct numerical 
values [11]. 

3 tsdb: Design Goals and Implementation 

As stated in the previous sections, both relational databases and tools like rrdtool are 
suitable for handling a limited number of time series as their performance is not 
satisfactory when the time series number increases (e.g. 100k or more). This has been 
the motivation for designing a new type of database named time series data base 
(tsdb) which is able to: 

1. Handle millions of time series with minimal append and data extraction time. 
2. Perform updates/appends on all the time series, as well as on a subset of them. 
3. Add, remove and re-add time series as needed, without having to reconfigure or 

rearrange its structure. 
4. Avoid data consolidation during append as in the RRD database. Thus it is possible 

to update/modify past data just by appending fresh data to the database, contrary to 
RRD where past data cannot be modified at all. If necessary, modification of exist-
ing data points can be prevented in tsdb. 

5. Provide compressed data storage on a single file for all the time series. Backup and 
synchronization across network storage servers are easier without having to handle 
millions of files as with RRD database. 

6. Support for time-limited series, so that the database will automatically purge data if 
older than the specified limit, similar to what rrdtool does. 

7. Store time series in its native value without any aggregation (e.g. 
min/max/average) that might lead to loss of accuracy. 

8. Support data extraction mechanisms for creating content suitable for web 2.0 ap-
plications that might plot data on a dynamic web page. 

9. Provide simultaneous accesses to multiple applications, without writers blocking 
data readers. 

Tsdb stores the database on disk and accesses it through a C API. It has been designed 
as a better RRD, able to handle millions of time series with limited disk space 
requirements and to feature fast data insert/retrieval for interactive use. For this reason 
both time series insertion and extraction have strict time requirements. Fast insertions 
are required to limit the latency between measurements and their consolidation into 
the database. High-speed retrievals are essential for minimizing the response time 
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when, for example, web-based applications interactively read from the database Table 
1 shows how the rrdtool speed limits the update time (e.g. it takes about 90 minutes to 
update 1 million series). This automatically implies the determination of a lower 
bound on the time interval between two consecutive measurements. The more time 
series are handled, the less often measurements can happen. For example, 90 minutes 
is the minimum time interval between two consecutive measurements in the previous 
case. Smaller time intervals would end up in determining buffer overflows. 

As limiting data append time is critical, it is necessary to arrange time series so that 
their manipulation does not take too long. Databases and rrdtool arrange data on a 
per-time-series rather than on a per-measurement basis. This means that each individ-
ual rrd database contains all the values of a given series, so that at each measurement 
interval all the rrd database files have to be updated. Conversely, if data were ar-
ranged on a per-measurement basis, each update would have required the manipula-
tion of a single rrd database. In a certain sense, rrdtool arranges data on disk in a way 
that is orthogonal to the more natural per-measurement way. It is worth noting that 
similar comments can be made for relational databases, where data is arranged per 
row (i.e. per time series) instead of per column (i.e. per measurement interval). 
Changing the way data is arranged, significantly increases the database append speed 
but it has a negative impact on data retrieval. In fact whenever all the data points of a 
time series have to be retrieved, it is necessary to crawl across all the measurement 
intervals that fall within the time range of interest. 
In tsdb all the time series stored in the same database share the same time intervals, so 
that all the series have the same number of data points and begin at the same time. For 
instance, all the series start October 1st 2011, and their samples are collected every 5 
minutes. One one hand, this looks like a limitation with respect to other tools such as 
rrdtool where each rrd is independent. On the other hand, this is a nice feature for 
several reasons: 

1. As all the series share the same time, comparing and extracting data points is 
simple and immune to time manipulation issues. 

2. In real life, samples are collected at fixed-time intervals (e.g. once an hour) so it 
does not make sense to have different time points for series stored into the same 
database. 

Having a uniform time across all the series, enables us to simplify the database 
design. tsdb has been developed incrementally. We started from a simple design, 
satisfying only a subset of the requirements discussed above and moved towards the 
current version, which satisfies them all. 

In order to minimize the tsdb append time, we decided to arrange data per time in-
terval. In early prototypes tsdb was implemented as a large extensible array, mapped 
on disk using the mmap() system call, with the time series in the rows and the meas-
ured values in the columns. The adoption of memory mapping minimized memory 
usage while creating a data structure large enough for storing all the data. Adding new 
measured values is straightforward as we simply need to add rows as in databases. 
This design guarantees very fast append time thanks to memory mapping and operat-
ing system caching. In fact data append basically happens in memory and a limited  
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Fig. 1. (a) Time series arranged in an early tsdb prototype, (b) Compressed time series in the 
current tsdb implementation 

slow-down is experienced only when the cache is flushed to disk. Concurrent opera-
tions are straightforward to implement, at least within the same process, as multiple 
threads see the database as a plain memory area. Inter-thread communication and 
synchronization can be avoided, unless the same memory locations need to be written 
by multiple threads. Unfortunately this design has also some drawbacks such as: 

1. Data on disk is not compressed and thus its size increases linearly with the num-
ber of time series and data points. 

2. Once the database is created, it is not possible to add/delete time series without 
rearranging the whole array. 

3. Time series cannot be identified with a symbolic name but only by its index in the 
array, thus requiring an additional name to the index mapping facility. 

In order to overcome these limitations, the current tsdb design is no longer a flat array 
but it is based on a key/value database used for: 

1. Storing database metadata such as inter-measurement time interval duration (e.g. 
1 hour), number of stored series and time of the last data update. 

2. Associating time series name with a numerical index that is used to uniquely refer-
ence it inside the database. This mapping is more than a name-to-index association 
as it also contains the time ranges where such association is valid. For instance, 
suppose tsdb assigns index Y to a time series named X, added on January 1st 2011. 
If on March 1st 2011 X is dropped, the values until that day will be preserved into 
the database, but the index Y will be made available for new time series that might 
be later added to the database. If on June 23rd 2011, X is added again, a new index 
K will be assigned to it. Using the name-to-index mapping, tsdb is able to properly 
return all the data points values for X, according to the selected time interval, or the 
value ‘undefined’ for the intervals where X is undefined. 

3. Storing time series according to the time interval. Suppose tsdb has to store val-
ues obtained from a measurement made on July 11th 2011 at 15:00. First, it con-
verts the time into Unix epoch (1310389200 in the previous case). Then it creates 
a database entry identified by such epoch value. Tsdb is also responsible for nor-
malizing the time according to the database configuration as well as for handling 
timezone conversion (i.e. all epochs are stored in GTM, Greenwich Mean Time). 
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The current tsdb database implementation is written in C and it is based on 
BerkeleyDB [13]. During the implementation of tsdb we have also explored other 
embedded databases such as GNU gdbm, but we have preferred BerkeleyDB as it is 
much faster when the database has several entries. Furthermore this database is 
resilient to crashes as it implements advanced techniques for preventing data loss, and 
it is commercially supported by a well-established database company such as Oracle. 
Contrary to many file-based databases such as SQLlite and gdbm, multiple clients can 
concurrently extract data. The tsdb library is implemented in about 1000 lines of code 
with data points represented as 32-bit integers. When data points for a new time 
interval are made available, tsdb creates an in memory array with an entry for each 
time series to be stored. For each time series it writes the corresponding measured 
value into the array. When the array is populated, tsdb stores it into the database using 
as key the epoch corresponding to the data. As motivated later in this section, data 
points for a given epoch are split in chunks of 10k elements and not saved all with the 
same epoch key. The key named convention we used is X-Y, where X is the epoch, 
and Y is the chunk id. For instance if we need to save 15k data points for epoch X, we 
will save the first 10k data points with key X-0, and the remaining 5k points with key 
X-1. In order to save space, prior to store data points, tsdb compresses and stores 
them in memory using QuickLZ [11] that we chose for its small memory footprint 
and high compression speed. As previously explained we did not evaluate the use of 
lossy compression as we are interested in storing exact values and completely avoid 
any approximation issues. 

In addition to efficient storage of data points, it is essential to provide efficient data 
retrieval. As tsdb database records contain data points for a given epoch, when access-
ing data spanning across multiple time intervals, it would be necessary to decompress 
all the records falling within such interval before extracting the values. In order to 
minimize the amount of data to be decompressed and thus to reduce the data retrieval 
time, data points at a given epoch are grouped together and then saved into the data-
base. From our tests, a good compromise between decompression speed and compres-
sion ratio is to group data points in chunks not larger than 10k elements. Even with a 
million of time series spanning one year and dumped at 1-hour intervals, the number 
of records is 876 k that is not a large number for the tsdb database. 

In case most time series need to be analyzed, it is more efficient to convert a tsdb 
database in a format where all the data points of a time series are contiguous and un-
compressed. In order to extract a single time series, we must decompress the chunk 
containing it for each time interval of interest (see Figure 1b). Assume each chunk 
contain data points for w time series (w=10k in the previous discussion). If the cost of 
decompressing a chunk  is O(w), we have that extracting all the w times series yields 
an amortized cost per series which is O(1). We can apply this reasoning also to the 
whole tsdb database. If the total number of time series in the database is N, you have 
ceiling(N/w) chunks for each time interval. Since each chunk requires O(w) time to 
be decompressed, the cost for decompressing a time interval of the whole database is 
O(N) and consequently the amortized cost per time series is O(1). However, the total 
cost for decompressing a whole database grows linearly with the number T of time 
intervals of interest since the previous operations have to be performed T times. 
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The tsdb database comes with a simple C API for creating applications based on it, 
as well as companion applications for storing and extracting data from the database, 
including a utility for extracting time series form tsdb and dumping them into an rrd 
database. This allows developers to use tsdb as a “faster rrd” while preserving back-
wards compatibility with rrd that is widely used in the network monitoring communi-
ty. The following section explains how tsdb has been validated in real life, and  
compares its performance with similar tools. 

4 tsdb Validation 

tsdb has been created for effectively monitoring the Italian “.it” DNS registry, where 
two authors of this paper are currently working. In particular, we want to keep track 
of DNS queries for each individual “.it” Internet domain. At the time of writing such 
domains are more than 2.2 million. Before creating tsdb, we have used other 
databases such as MySQL and also advanced no_SQL [20] key-value databases such 
as Redis that natively supports the set data type, which we used for implementing 
time series. Both solutions perform reasonably well when handling a limited number 
of time series, but unfortunately their performance does not scale with the number of 
time series. For this reasons we have coded a few C test applications for comparing 
the various solutions. Figure 2 shows typical performance of the tools we have 
evaluated, when adding a variable number of data points on an empty database. It is 
worth mentioning that: 

• With rrdtool and Redis, the number of database keys corresponds to the number of 
domains. Whenever new data points are added, the number of keys does not 
change as data points are added to the list of values associated with each key. 

• Due to the nature of relational databases and thus of MySQL, whenever a new data 
point is added a new record with key <timestamp, key> is created, thus increasing 
the cardinality of table. This also happens with tsdb but at a much lower pace as 
records are packed in chunks of 10k records. 
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The rrd performance started at 1600 updates/sec with small databases, and it de-
creases to 32 updates/sec after processing a few thousand records. We believe that the 
bottleneck is the disk subsystem, as rrdtool requires open/update/save for each rrd 
file. Redis performance is acceptable but still not comparable with the tsdb perfor-
mance. In fact, this database is optimized for in-memory operations, so as long as 
there is free memory its performance is good. As soon as the available (8 GB) memo-
ry is exhausted (by Redis) the performance becomes poor (~ 30 updates/sec) and the 
system becomes due to disk swap. MySQL append performance of about 200k 
records/sec is only second to tsdb (that is almost 1M records/sec). Thanks to the use 
of QuickLZ, data compression ratio of data chunks is 1:5 in average with no noticea-
ble performance degradation with respect to uncompressed data when appending data 
to tsdb. Storing fewer data has not just space but also performance advantages as pre-
viously discussed. For understanding disk space requirements of tsdb, we have 
created a monitoring application that saves in a tsdb database the number of queries 
for all “.it” DNS domains (approximately 2.2 million). Data retrieval is efficient, es-
pecially if compared with the performance offered by relational databases such as 
MySQL. To better position tsdb against MySQL, we have created two databases in 
both formats, containing the time series containing the time series for all .it Internet 
domains over a period of several months with daily measurements (i.e. one data point 
per domain per day). As we are monitoring the .it DNS since about 6 months, in order 
to simulate a larger dataset, we have replicated the data across several months. For 
tsdb we have used a single-file database for all tests instead of creating a database per 
year in order to create smarter queries that would only target a specific set of yearly 
databases. The MySQL table is defined as follows: CREATE TABLE `do-
mains_summary` ( `day` int(11) NOT NULL, `domain_id` int(10) 
unsigned NOT NULL, `num_queries` int(11) NOT NULL, UNIQUE KEY 

`day` (`day`,`domain_id`)) ENGINE=MyISAM DEFAULT CHARSET=latin1. 
We have performed the same tests for both tsdb and MySQL with the exception for 
the largest dataset where only tsdb has been tested. In fact we believe that in this case 
the MySQL database would be partitioned based on the day, thus queries across sev-
eral years would basically be as fast as the same query for a single year.  

Table 2. tsdb vs. MySQL: (a) Database Size and (b) Search Time 

Months of DNS Data MySQL Database 
Size/Rows 

tsdb Database Size/Keys 

6 8.2 GB ~ 300 M 0.8 GB ~ 41.6 K 

18 25.0 GB ~ 900 M 2.6 GB ~ 125.6 K 

69 - - 6.3 GB ~ 497 K 

 
Months of DNS Data MySQL Search Time tsdb Search Time 

6 82 sec (40 sec) 2.21 sec (1.88 sec) 

18 135 sec (124 sec) 2.47 sec (2.29 sec) 

69 - 2.78 sec (2.31 sec) 
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In order to prevent data caching from affecting tests results, all search tests have 
been performed after a reboot. Table 2a compares the databases size. Thanks to data 
compression, tsdb is about 1:10 of the equivalent MySQL database. The use of 
chunks data aggregation allows the cardinality of tsdb keys to be greatly reduced. 
Please note that whenever Internet domains have no queries for a given day, in 
MySQL we do not insert a record (in tsdb the space is taken anyway although com-
pressed at a higher ratio) explaining why the number of MySQL records is less than 
the number of tsdb keys multiplied by 10k (i.e. the chunk size). Table 2b shows the 
results when extracting 6 months of data for a single domain. Even on search time, 
tsdb performs dramatically better than MySQL, being also characterized by a lower 
pace when searching on larger files. In order to understand how cache affects results, 
between brackets we have put the time taken for immediately repeating the same 
query using a different domain name. We believe that in tsdb (a) the limited benefit of 
data caching, combined with (b) slightly flickering search time (i.e. searching two 
different Internet domains is not performed in the same amount of time) is due to data 
compression. This is because decompression times as well compression ratio are not 
completely uniform across data chunks. 

Figure 3 shows a tool we created for exporting data from tsdb via JSON (Java-
Script Object Notation) to a 2.0 web application that dynamically shows queries ori-
ginated by a specific Autonomous System (AS) to the .it DNS servers. This has been 
possible only because the tsdb data extraction is so quick that we can perform it inte-
ractively on a dynamic web page. 

 

Fig. 3. tsdb time series export to a Web 2.0 interface 

As previously discussed, tsdb does not have to be considered just as better tool for 
handling time series but rather as an enabling technology. One of the projects where 
we are working on at IIT/CNR focuses on monitoring the Internet AS-level structure. 
Within the scope of this project we have created a BGP (Border Gateway Protocol) 
client that connects to a border gateway and gets BGP updates from the router. Route 
changes are logged to file, and consolidated using custom tools we developed. So far 
we have used a relational database for tracking route changes. However we were not 
satisfied as its speed decreased over time due to the number of stored records. For this 
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reason we migrated the system to tsdb where we maintain AS and route time series. 
This allowed us to both store data points at a much higher granularity (15 minutes in 
tsdb vs. one day in the relational database) and save disk space with respect to the 
previous solution. Having a higher granularity is a prerequisite for analyzing Internet 
topology changes and understanding its dynamics. 

5 Open Issues and Future Work 

So far tsdb is a library and a set of command line tools. We are planning to develop a 
tsdb server that can be remotely queried and instrumented through a network 
connection. We believe that the Redis query language is a good example of how to 
implement this in a simple and elegant way. 

We are also trying to explore how tsdb could be enhanced for finding similarities 
between stored time series [15]. This is important for identifying Internet domains 
with overlapping behavior in DNS traffic, and autonomous systems with by similar 
route changes with the same time interval. 

6 Final Remarks 

Efficient time series handling is are very common requirement in many network 
monitoring contexts. Even if there is a significant amount of works described in 
literature, we have not been able to identify a tool for efficiently handling millions of 
time series in a simple yet effective way, and thus we have developed tsdb. 

Its excellent performance when compared to similar tools and its simple design, 
makes it easy to integrate into existing applications. The validation phase has con-
firmed that tsdb can be effectively used for storing and analyzing a large number of 
time series in real life scenarios using limited disk space and characterized by ap-
pend/search performances that are orders of magnitude better than the current state of 
the art. Finally, its backward compatibility with the popular rrdtool simplifies the 
migration of large existing infrastructures built upon rrdtool to tsdb. 

Availability. This work is distributed under the GNU GPL license and it can be 
downloaded from https://svn.ntop.org/svn/ntop/trunk/tsdb/. 
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