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Abstract—The use of the Internet as a medium for real-time
communications has grown significantly over the past few years.
However, the best-effort model of this network is not particularly
well-suited to the demands of users who are familiar with the
reliability, quality and security of the Public Switched Telephone
Network. If the growth is to continue, monitoring and real time
analysis of communication data will be needed in order to ensure
good call quality, and should degradation occur, to take corrective
action. Writing this type of monitoring application is difficult and
time consuming: VoIP traffic not only tends to use dynamic ports,
but its real-time nature, along with the fact that its packets tend
to be small, impose non-trivial performance requirements.

In this paper we present RTC-Mon, the Real-Time Commu-
nications Monitoring framework, which provides an extensible
platform for the quick development of high-speed, real-time
monitoring applications. While the focus is on VoIP traffic,
the framework is general and is capable of monitoring any
type of real-time communications trafficc We present testbed
performance results for the various components of RTC-Mon,
showing that it can monitor a large number of concurrent flows
without losing packets. In addition, we implemented a proof-of-
concept application that can not only track statistics about a
large number of calls and their users, but that consists of only
800 lines of code, showing that the framework is efficient and
that it also significantly reduces development time.

I. INTRODUCTION

The last few years have seen a sharp increase in the use
of the Internet for voice communications. While end-users are
part of the trend, placing cheap Voice-over IP (VoIP) calls,
service providers and enterprises are also benefiting from this
change. Indeed, VoIP means that the same network can be used
for both voice and data services, reducing equipment, opera-
tion and maintenance costs. Further, the use of IP enables the
creation of converging voice and video services not available
on traditional telephone networks.

Because of their experience with the PSTN (Public
Switched Telephone Network), users expect a high qual-
ity service when it comes to voice communications. More
specifically, the PSTN was designed, among other criteria,
to achieve 99.999% availability, provide good sound quality
and be resilient to attacks such as identify theft. However, the
design goals of the Internet were quite different, and so VoIP
presents a difficult set of challenges if it is to provide a service
akin to that of the PSTN.

In order to cope with these challenges, it is paramount to
monitor the network to ensure that the best-effort model of
IP does not result in degradation of important VoIP quality

of service criteria such as latency and packet loss, or that
if degradation occurs, it can be detected in real-time and
corrective action taken. However, monitoring VoIP is difficult
for many reasons. First, the monitoring system must correlate
separate signalling and media connections in order to generate
a report for a single communication; worse, these connections
tend to use dynamic ports, making the task even harder. In
addition, the real-time nature of VoIP means that monitoring
must also be done in real-time in order to quickly correct
service degradation when it happens. Performance is also a
concern, since VoIP communications are not only real-time
but tend to contain small packets, further taxing the monitoring
system.

These characteristics of VoIP mean that current solutions are
not well-suited to monitor this sort of traffic. General-purpose
monitoring tools do not have the ability to, among other
things, correlate signalling and media connections, provide an
analysis of VoIP quality of service metrics, nor track traffic
efficiently in real-time. Even the monitoring services provided
by VoIP devices such as SIP proxies are quite limited, often
providing only billing and call log facilities. While these
shortcomings are important enough, the bigger problem is that
these tools cannot be easily extended to support the necessary
functionality. In [5], the authors present a solution that has
some common features with this work, but their focus is
mostly on lower-layer protocols, and so it does not provide
an ideal platform for quick development of VoIP monitoring
applications. Hardware solutions exist but they are also hard
to extend, are usually difficult to program or customize and
are of course expensive compared to software-based platforms
running on commodity hardware.

It is clear that there is a need for a framework that will
allow for the development of VoIP monitoring applications
while meeting certain crucial goals. First, it should provide
basic VoIP monitoring mechanisms in order to minimize the
development time of applications. Second, the framework
should be easily extensible so that if this functionality proves
insufficient, developers could add to it without lots of effort.
Finally, the framework should be efficient in order to meet the
demands of real-time VoIP traffic monitoring.

In order to meet these goals we implemented RTC-Mon,
the Real-Time Communications Monitoring framework. We
designed RTC-Mon with the aim of helping software architects
develop VoIP monitoring applications scalable to ISP volume.



In addition, the framework grants high performance and us-
ability, hiding the complexity of traffic capture and protocol
analysis and thus reducing the time to market of complex
applications.

RTC-Mon consists of an extensible, kernel-level plugin
architecture, a SIP [20] plugin that performs high rate parsing
and filtering, an RTP [21] plugin that supports in-kernel media
analysis and a user-level VoIP library. In addition, we used
the framework to implement VoIP Console, a proof-of-concept
application that, despite being small (800 lines of code), can
track a large number of per-user and per-call statistics such as
the number of successful/attempted/rejected calls, call setup
time, the peers involved, and RTP streaming information.
Finally, we provide a testbed evaluation of RTC-Mon to show
that it is able to support all of this functionality while yielding
high performance.

II. RTC-MON FRAMEWORK OVERVIEW

As mentioned in the previous section, the characteristics of
real-time communications monitoring dictate several require-
ments when designing a framework for application develop-
ment, including flexibility, high performance, extensibility and
short development time. Flexibility and high performance are
necessary if we are to provide a framework that will allow for a
wide range of high performance applications. We implemented
RTC-Mon on Linux for a variety of reasons, including its open
source paradigm, the availability of kernel packages capable
of processing packets at high rates, and the fact that Linux is
used in a large range of platforms, from powerful servers to
less capable embedded devices.
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Fig. 1. RTC-Mon framework overview.

To achieve high performance, we relied on PF_RING [10], a
Linux kernel-level network socket that dramatically improves
packet capture speed. We expanded PF_RING by adding a
plugin architecture to it, thus allowing developers to extend
the framework by creating high performance, custom plugins
(see Figure 1).

In order to allow for short application development time,
we implemented plugins for SIP and RTP, two of the most

commonly used protocols for VoIP communications. In addi-
tion, we implemented a user-level VoIP library called libvoip
built on top of an extended libpfring, PF_RING’s library. The
libvoip library uses these two plugins and provides higher-
layer functionality to applications. Further, libvoip can be
easily extended to make use of custom plugins, as shown in
the figure. It is important to note that while we designed the
framework with VoIP monitoring in mind, it is flexible enough
to accommodate any other real-time monitoring functions.

One final requirement was that the framework should allow
for the quick development applications. To show that RTC-
Mon meets this requirement, we implemented a proof-of-
concept monitoring application called VoIP Console consisting
of only 800 lines of code. Despite its small size, VoIP Console
is quite capable of monitoring a large array of important VoIP
statistics.

The rest of the paper is organized as follows. Section III
discusses the extensions to PF_RING in detail, including the
plugin architecture. Section IV describes the user-level libvoip
library and Section V the proof-of-concept VoIP Console
application. Finally, Section VI provides a performance evalu-
ation of the various components of the framework and Section
VIII concludes.

III. EXTENDED PF_RING

PF_RING is a Linux kernel module providing a new type of
socket that, coupled with device polling, allows packets to be
captured at high rates. One of the advantages of the module is
that it is independent of device drivers, and so can be used with
any network card. In addition, PF_RING comes with libpfring,
a user-level library that allows applications transparent access
to the kernel-level sockets. Finally, we also chose it because
it is a mature project that has a wide and active community
of users.

While PF_RING has the basic mechanisms needed for
packet capture, we had to extend so that it would meet the
requirements of the RTC-Mon framework. PF_RING focuses
on IP-layer packets, and so we added IP defragmentation to it
in order to process higher layers in the kernel, thus achieving
higher performance. To make use of this functionality while
providing extensibility, we expanded PF_RING with a plugin
architecture that enables easy implementation of higher-layer
functions in the kernel. The rest of this section gives a detailed
discussion of this architecture as well as the SIP and RTP
plugins we implemented on it.

A. Plugin Architecture

We developed the plugin architecture so that developers
would be able to perform a variety of crucial monitoring
functions in the kernel, including packet payload parsing,
packet content filtering and traffic statistics computation. Plu-
gins are essentially kernel modules, providing a simple way
for developers to add support for functions and protocols
that the framework might not already come with. Further, the
architecture allows for packets to be handled by one or many



plugins before being discarded, thus enabling the development
of applications that rely on several protocols or functions.
The process begins by creating a PF_RING socket and
assigning it to an interface'. The socket has a set of rules
associated with it that decide which plugins to send packets
to. Each of these rules has three components: a filter, an ID
identifying the plugin to send the packet to in case the filter
matches, and an action ID that decides what happens to the
packet in case of a match once the plugin has processed it.
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Extended PF_RING overview with plugin architecture.

Figure 2 illustrates the basic architecture. First, PF_RING
receives a packet on a device and parses its headers up to
the transport layer, performing any IP defragmentation where
needed. It then goes through the socket’s set of rules one by
one, applying a rule’s associated plugin to a packet only if the
rule’s filter matches (for instance, a rule for an HTTP plugin
could have a filter for TCP packets with port 80).

The filtering mechanism requires a closer look. As shown
in the figure, filters can be of two types: hash or wildcard.
Hash filters are used when it is necessary to track a six-tuple
connection with the fields (vian id, protocol, source IP, source
port, destination IP, destination port) without incurring the
linear evaluation costs of a rule list. The hash is managed by
the plugin, thus giving it the power to decide what connections
to track and what state to keep; as we will show later, this is
used by the RTP plugin to track different calls.

Wildcard filters, on the other hand, are more flexible,
allowing to match, for example, all UDP packets going to
a specific port. These filters can also specify a higher-layer,
plugin-specific filter. In this way, a user could instrument the
system to process only INVITE messages (one of the types
of messages that SIP has).

We mentioned earlier that rules also have an action associ-
ated with them. If a packet matches a rule’s filter, the action
determines what happens to a packet after it has gone through
the rule and its plugin (if the packet does not match the rule
it is evaluated against the next rule). In our architecture, there
are three options for the action:

1) Continue rule evaluation.

2) Stop rule evaluation, send packet to user space.

3) Stop rule evaluation, do not send packet to user space.

The first option is straight-forward, allowing subsequent
rules and plugins in a socket’s set to also process packets
(see Figure 3). The other two stop the rule evaluation: if a
packet has already been handled by the appropriate plugin,
a developer can use one of these two options to prevent any

IPF_RING supports the creation of several sockets per interface, thus
allowing several independent applications to run on the same interface;
throughout our discussion we use only one socket for simplicity’s sake.

further and perhaps wasteful processing. Finally, a developer
might need to pass some of the information gathered up to
user space using option 2. Copying data to user space can be
costly, however, and so option 3 is there to allow a developer
to accumulate data in the plugin that an application can poll
from time to time; this is the mechanism used by the RTP
plugin described later in this section.

: NO
PACKET —»| RULE1 stop rule evaluation? RULE2 (— -..
YES
v

NO

lYES
USER SPACE
Fig. 3. Packet paths for all possible rule action types.

Creating a plugin for the architecture is simple and consists
of essentially implementing functions for parsing and filtering
traffic as well as for polling packet statistics from user space.
We now turn our attention to the implementation of two such
plugins for the SIP and RTP protocols.

B. Implemented Plugins

One of the most obvious features of VoIP monitoring
applications is calls monitoring, and so we needed to make
sure that the RTC-Mon framework supported this functionality.
Calls monitoring consists of measuring both the signaling per-
formance and analyzing the media traffic. For the former, the
framework should be able to provide metrics such as the call
setup time and the invite time (the time between the sending
of an invitation and the receipt of a “ringing” response). In
terms of media analysis, RTC-Mon should provide statistics
on packet loss, jitter and the number of out-of-order packets
for every active media stream.

In order to provide the basic kernel-level mechanisms
needed to meet these demands we implemented SIP and RTP
plugins. We chose these two since they are two of the most
popular signaling and media transport protocols currently in
use for VoIP communications. It is also important to note
that these are essentially kernel-level modules: providing SIP
filtering and RTP analysis at this level reduces the overall
system load due to memory copies and system calls.
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Fig. 4. Instance of PF_RING with SIP and RTP plugins.



The SIP plugin takes care of parsing the most important
parts of the message, including the start line and the To,
From, Call-ID and Cseq header fields; this provides the
basic information needed for applications to monitor signaling
performance (we decided not to perform more in-depth SIP
parsing in the kernel since not all applications may use the
extra information). The plugin also gives offsets to some other
information that might be useful in terms of monitoring, such
as the message type, the Contact and User-Agent header fields,
and the SIP message payload. Finally, the SIP plugin also
provides wildcard filtering that can be applied to any of the
parsed fields mentioned above.

Regarding RTP, we began with the observation that most of
the bandwidth consumed by VoIP communications is the result
of RTP streams. Consequently, a monitoring system will likely
receive a large amount of media traffic, causing a significant
number of context switches and system calls as it is passed to
user level. To improve performance, we implemented an RTP
plugin that performs the analysis of media traffic in the kernel
and provides this information to applications. For each RTP
stream the plugin computes the number of packets, the total
bytes, the number of out-of-order packets and the medium,
average and maximum jitter. In addition, the plugin stores
the last sequence number and the synchronization source field
(SSRO).

Figure 4 shows how the plugin architecture would look for
an application using the SIP and RTP plugins together. The
rule for RTP comes first, using a hash-based filter in order to
track connections. No information is copied to user space at
this stage, since the RTP plugin is designed to keep statistical
information and pass it up to user space only upon request.
The rule for RTP thus uses the “continue evaluation” action so
that packets will reach the SIP rule. This rule matches all UDP
traffic to ports 5060 and 5061 (the SIP well-known ports) and
uses the “stop rule evaluation and send to user space” option
to copy the parsed data and the packet up to user space. The
setup shown in the figure is precisely the one we use for the
VoIP console application we describe in Section V.

IV. USER-LEVEL VOIP LIBRARY

While PF_RING and the plugins give the high performance
and basic analysis needed for monitoring, RTC-Mon provides
higher level functionality in user space. To do so, we im-
plemented libvoip, a C++ VoIP analysis library that exploits
the features supplied by RTC-Mon’s kernel infrastructure,
thus allowing fast development of complex VoIP monitoring
applications.

While the library is quite capable of performing a number
of tasks including active call and user monitoring, our aim
when designing it was to provide an extensible framework
rather than a static library, since the functionality given will
never be enough to satisfy all applications. As a result, the
library takes care of carrying out standard tasks such as packet
dissection, leaving developers free to concentrate on writing
more complex library functions. With this in place, RTC-
Mon should be able to accommodate both basic monitoring

applications as well as those seeking to perform more involved
tasks.
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Fig. 5. Libvoip library overview.

Libvoip is an event-based library consisting mainly of a
dispatcher and trackers (see figure 5). The dispatcher takes
care of receiving packets and deciding which trackers to send
them to. Trackers are in charge of combining information from
different plugins and protocols in order to monitor a specific
characteristic of the traffic, such as the number of calls a user
has made. In addition, trackers are the mechanism by which
developers extend libvoip: monitoring a new metric is as easy
as implementing a new tracker and having the application
make use of it.

In more detail, the dispatcher periodically checks a ring
provided by PF_RING to see if a new packet (and its parsed
information from layers 2 through 4) is available. To figure
out which tracker to send a packet to, it first determines the
packet type (e.g., SIP) by checking the ID of the plugin that
processed it. With this information, the dispatcher then sends
the packet to all trackers that at start-up had registered interest
in this type of packet.

In order for the actual application to receive information,
it registers a callback function with a tracker; in this way,
whenever the tracker generates an event the function is called.
It is entirely up to the implementer of a tracker to decide what
types of events are generated, when they are generated, and
what type of information is passed up to the application. This
approach is flexible and simple: generating an event is as easy
as implementing a single function and setting a variable to a
value greater than 0.

In addition, trackers can perform further processing, such
as more in-depth parsing, analysis or keeping state. The
application could certainly take care of implementing these
functions, but providing them in a tracker means that not
only can other applications take advantage of them, but the
developer profits from the event-based mechanisms provided
by the library.

While the library is extensible, we have provided two
trackers, UserTracker and CallTracker in order to speed up



development time for applications that need basic VoIP com-
munications monitoring. UserTracker uses SIP information to
keep track of VoIP users. CallTracker, on the other hand,
combines SIP and RTP data to monitor call information and
can even handle monitoring behind NATS; it is this tracker
that takes care of polling the RTP plugin for analysis data.
In the next section we describe an application that makes use
of trackers as well as the rest of the RTC-Mon framework to
monitor VoIP communications.

V. VOIP CONSOLE APPLICATION

We designed the framework to, among other things, enable
fast development of monitoring applications. To demonstrate
this, we have built a proof-of-concept application on top of
RTC-Mon called VoIP Console. Since the framework already
provides most of the basic mechanisms needed to monitor
traffic, the application consists of only 800 lines of code yet it
is quite capable of tracking a large set of important statistics.
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VoIP Console application overview.

Fig. 6.

As shown in figure 6, VoIP Console is made up of several
components. The VoIP storer component uses the framework
to analyze the VoIP traffic. Since much of the complexity is
encapsulated in /ibvoip and the rest of RTC-Mon, the storer is
quite simple yet capable of providing a large set of information
arising from the analysis of VoIP traffic. To accomplish this,
we used the UserTracker and CallTracker described in the
previous section.

The information generated by the VoIP storer is saved in a
MySQL database and serves as the basis for the RRD Updater
component. This component handles time-varying data such as
the maximum number of concurrent calls. In order to achieve
this, the RRD Updater retrieves relevant information from the
VoIP database and stores it in a Round-Robin Database (RRD)
using RDDtool [18]. We decided to use a RRD since it can
store metrics in a constant and space-efficient manner.

The final component is the web interface, which compiles
data from the RRD and VoIP databases and publishes infor-
mation about users and calls to web clients. For each user,

the web interface shows the display name, the SIP name, the
number of successful/attempted/rejected calls, the number of
SIP methods, the last successful registration time and the user
agent. For each call, it gives the status (updated in real-time),
the peers involved, the call setup time, the invite time and
RTP streaming information (if the call has been successfully
established). As can be seen from the long list above, VoIP
Console provides, thanks to the RTC-Mon framework, quite a
lot of functionality for only a few hundred lines of code.

VI. EVALUATION

While the RTC-Mon framework provides flexibility and
reduces development time, we still need to show that it is
able to cope with high data rates when using a general purpose
computer to monitor traffic. To do so, we built a small testbed
and implemented all of the components of the framework,
testing them to see how well they perform.

Before discussing the evaluation results, it is worth mention-
ing two relevant parameters: packet size and the maximum
number of concurrent flows that a link can accommodate.
Packet size is important because smaller packets put higher
strain on the monitoring system. The number of flows, on the
other hand, gives a good idea of the maximum amount of state
that the system might need to keep in order to monitor all calls
currently active.

Both of these factors depend on the codec used. Different
phones (be them hardware or software-based) support different
codecs, and so there is a variety of them used in VoIP
communications. Figure 7 lists relevant information for some
of the most common codecs. To calculate these numbers
we assumed Ethernet Gigabit links and IP/UDP/RTP packets,
since this is the most common scenario. As can be seen, packet
sizes range from 78 to 218 bytes: it is important that our
experiments cover this entire range, since it is bounded by
the two most supported codecs, G.729 and G.711 (we arrived
at this conclusion by tallying up the supported codecs of 43
hardware and software phones from companies like Cisco,
Grandstream, Linksys, Siemens and Snom listed in [19]).

The figure further shows that the maximum number of
concurrent RTP flows for any of the codes is at most 48,000
or so. This latter is a theoretical number, since it assumes
perfect conditions and no other traffic on the link, but it gives
a worst-case figure. As a result, in the rest of the section we
will focus on number of flows from thousands up to 50,000.

One final factor worth keeping in mind is the maximum
theoretical rate for Gigabit Ethernet. Depending on packet size,
the actual rate on such a link is less than 1Gb, as a result of
header overheads; figure 8 shows the maximum theoretical
rates for the small packet sizes we are interested in. Please
note that the rates presented in the results are loss free (no
packets dropped).

A. Testbed

The testbed used for the experiments consists of an IXIA
400 traffic generator [15], two computers and an HP Procurve
1800 switch connecting them all (see figure 9). We used the



Sample Size | Sample Rate | Bit Rate | Packet Size | Eth. Bandwidth | Max Num. Flows
Codec (bytes) (ms) (Kbps) (bytes) (kbps) (Gb link)
G.711 80 10 64 218 87.2 11,468
G.726 20 5 32 138 55.2 18,116
G.726 15 5 24 118 47.2 21,186
G.728 10 5 16 118 31.5 31,780
G.729 10 10 8 78 31.2 32,051
iLBC 38 20 15.2 96 27.7 36,101
G.723.1 24 30 6.4 82 21.9 45,732
G.723.1 20 30 53 78 20.8 48,077
Fig. 7. Rate information for various common VoIP codecs. The figures assume Ethernet/IP/UDP/RTP headers.

Packet size | Size on wire Theo. Max | Theo. Max
(bytes) (bytes) (in Kpkts/s) (in Mb/s)
64 84 1488 762
100 120 1042 833
150 170 735 882
200 220 568 909
250 270 463 926

Fig. 8. Maximum theoretical rates for 1Gb Ethernet for small packet sizes.

IXIA 400 to generate trash UDP traffic, a computer to generate
VoIP traffic and another one as the monitoring system.
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Fig. 9. Experiment network topology showing the UDP traffic generator, the
VoIP generator and the network probe.
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The VoIP traffic generator consists of an Intel Centrino CPU
at 1.86Ghz with 512MB of memory running a Linux 2.6.24
kernel. The computer injects VoIP traffic by replaying a packet
trace with fcpreplay. The trace contained about 1,000 calls
each lasting 30 seconds: from [4] we know that calls typically
last about 100 seconds, and so we picked 30 seconds as a
worst-case scenario, since we could produce a higher call rate
with short calls, thus putting more load on the system. In
addition, the maximum number of concurrent calls in the trace
was about 200; while this may seem small, the tests were run
with a mixture of calls and other non-VoIP traffic, adding up
to as many as 50,000 concurrent flows.

The monitoring system has a Celeron processor running at
3.2Ghz, 4GB of memory, an Intel 1000 NIC and also runs a
Linux 2.6.24 kernel. It receives the combined traffic from the
UDP and the VoIP generators.

B. RTC-Mon Performance

In order to test the performance of the RTC-Mon framework
we decided to focus on RTP traffic. The reason for this is
that control traffic (for example SIP) represents only a small
fraction of all traffic of a VoIP call, and so it does not tax
the system nearly as much as the RTP traffic does. In more
detail, we mentioned earlier that calls typically last about 100
seconds. We ran a quick test capturing 100-second calls using
different codecs and found that SIP traffic was only 1% of the
total traffic. In addition, the RTP plugin puts further strain on

the system since it keeps state for each ongoing call. While we
also processed and analyzed SIP traffic, the tests are designed
to stress the RTP analysis, since we feel this dominates the
overall system performance.

As a first test, we wanted to see the system’s performance
when dealing with a mix of VoIP traffic and other UDP traffic.
More specifically, we were interested in the improvement
arising from analyzing traffic in the kernel plugins rather
than in user space. To do so, we first measured the load that
the RTC-Mon framework put on the CPU of the monitoring
computer. We then implemented a special version of libvoip
that performs the exact same analysis but does so in user level
rather than rely on kernel-level plugins. The monitoring was
driven by voipcapture, a minimal RTC-Mon application that
forces analysis of both signalling and media traffic, but does no
further processing, ignoring any events it receives. The results
in Figure 10 show that performing the analysis in the kernel
yields clear improvement regardless of the incoming packet
rate. Further, the figure demonstrates that the framework can
cope with large packet rates while keeping the CPU relatively
idle (between 80% and 20% for the whole Gigabit range). It
is also worth noting that the user-level analysis begins to drop
packets when the CPU idle percentage reaches O.
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Fig. 10.  Performance when filtering trash UDP traffic from VoIP traffic

(250-byte packets).

So far we have shown that RTC-Mon is quite capable of
picking out VoIP traffic from a loaded link and analyzing it;
we now turn our attention to how well the framework performs
when it has large amounts of traffic to analyze. In order to
help with this we wrote a small program, rtpcontrol, that
provides command-line control of the capture and analysis
of RTP traffic by allowing insertion of a configurable number
of RTP rules, each representing a monitored stream; packets
belonging to a stream are used to update the stream’s statistics.



Since we did not have a powerful VoIP traffic generator
handy, we used the IXIA 400 to generate UDP traffic and
configured the RTP plugin (using the rzpcontrol program)
so that it would consider these packets as malformed RTP
packets, thus forcing them to be analyzed. As mentioned at the
beginning of the section, a Gigabit Ethernet link can carry at
most about 50,000 RTP flows. To test this limit, we configured
the IXIA to generate up to this many flows, while setting the
VoIP traffic generator (a computer) to replay the VoIP packet
trace; the monitoring system tracked every single one of these
flows and kept statistics for them.
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Fig. 11. RTC-Mon performance when tracking large numbers of RTP flows.
User-level means that packets are copied to user space for payload analysis.

Figure 11 shows the results of these tests. It contains two
graphs per packet size, one representing the performance when
all of the analysis is done in the kernel, and another one when
the basic RTP analysis is done in the kernel but then the
packet is copied to user space (perhaps to analyze its payload).
As can be seen, RTC-Mon yields high rates when monitoring
even small packet sizes. For 128-byte packets and 30,000 RTP
rules, for instance, it can process traffic at about 600Mbps,
70% of the theoretical maximum; for 250-byte packets the rate
jumps to about 830Mbps, 90% of the maximum. As expected,
copying packets to user space results in a performance hit, but
even in this scenario RTC-Mon is able to process packets at
a very respectable S00Mbps for 128-byte packets and 50,000
RTP rules. It is worth noting that the kernel and user-level
curves tend to merge near the 50,000 limit because filter
processing begins to dominate the performance and in both
curves this is done in the kernel.

Another important factor concerning a monitoring system is
how quickly it can reconfigure the rules that determine what
traffic to track. To give a baseline number to compare to, we
decided to test the Berkeley Packet Filter [6] (BPF), since
it is the de-facto standard filtering mechanism for Unix-like
systems. We began by writing a simple C program that mea-
sures the time needed to compile a complex filter containing
many expressions (monitored RTP streams). For a filter with
200 expressions, the compile time was 800 milliseconds (we
tried filters with more expressions but the kernel refused them,
returning an error). This means that if we were monitoring
199 streams and wanted to monitor an extra one, it would
take at least this time before the system could track the new

stream. To put this into perspective, G.711 and G.729 generate
a voice packet every 20ms, so as many as 40 packets could
go untracked before the change takes place.

To test the time it takes to change filters in RTC-Mon, we
inserted (and removed) a single rule 500 times for each run,
and we repeated the experiment with a varying number of
rules installed in the monitoring system (see Figure 12). The
results clearly show that it is possible to insert rules much
faster than with BPF filters, and that removing them is even
quicker. In the worst case (inserting a rule with 50,000 rules
loaded), the total time is about 2 milliseconds, meaning that
at most a single G.711 or G.729 packet would go untracked.

Avg. Ins. | Max. Ins. | Avg. Del. | Max. Del.
# Rules (usec) (usec) (usec) (usec)
10,000 20.9 98 4.7 81
20,000 223 130 5.3 95
30,000 25.2 210 7.9 150
40,000 27.9 379 12.7 225
50,000 47.1 2037 19.1 527
Fig. 12. Time needed to change a rule (a monitored stream) in RTC-Mon.

Ins stands for insertion, del for deletion and usec for microseconds.

VII. RELATED WORK

Much research has been done analyzing the QoS network
parameters in order to test the feasibility of VoIP services
over current generation networks [23], [22], [7]. The passive
analysis approach has been used to perform speech quality
[8], [16] and signalling performance measurements [1]. While
these projects highlight the importance of VoIP monitoring,
they do not cover the need of software frameworks allowing
fast development of complex monitoring applications. Further,
they support a limited number of performance metrics and
they do not explicitly analyze the performance requirements
that a monitoring application may have, but limit themselves
to mentioning hardware cards as a solution.

Hardware cards [12] improve the performance when cap-
turing packets, leaving more spare CPU cycles to perform
monitoring tasks. However, they are expensive and offer
limited flexibility, since each card can usually only serve a
single monitoring application. Programmable network cards
such as TILExpress-64 [9] are capable of accelerating not
only packet capture but also their analysis, since they allow
the execution on the card of monitoring programs written in
C. They are easier to program than a network processor, but
porting C programs to them is not always an easy task.

The Click modular router [17] allows users to build effi-
cient network devices out of general-purpose computers by
providing a set of processing elements that are then connected
in various ways to create the desired device. While Click
yields very good performance, it is mostly aimed at lower-
layer functionality, and so it comes with very little application
layer elements. In addition, it does not provide a user-level
library, and so developing full applications with it cannot be
done as quickly as with RTC-Mon.

Mmdump(25] is a real-time version of the popular tcpdump
tool and it is implemented on top of libpcap. It parses



session control protocols like RTSP in order to discover the
dynamically negotiated ports and change the underlying BPF
filter. The dynamic filter reconfiguration needs to be quick
in order to not lose packets during the update. Unfortunately,
mmdump is slow due to its use of BPF. As a result, the aim of
BPF successors such as BPF+ [3], DPF [13] and PathFinder
[2], has been to optimize the time to evaluate complex filtering
expressions.

The work in [11] suggests the adoption of Bloom filters to
overcome some of the limitations of BPF and its successors;
this technique gives support for a large number of different
filters. While it is not able to perform content-based filtering,
it can still be used to filter RTP streams.

Content-based filtering, and in particular using information
from application layer protocols to filter at the kernel level is
one of the aims of Fairly Fast Packet Filter (FFPF) [5]. FFPF
is a high-performance packet capture and filtering architecture.
Like PF_RING, it employs shared memory buffers, reducing
system load due to packet copying and context switching.
Moreover, like xPF [14], it allows the execution of monitoring
programs inside the kernel. Unlike RTC-Mon, FFPF does
not provide SIP or RTP analysis, nor would implementing
this functionality or that of other protocols be simple since
IP defragmentation is not supported. The SCAMPI project
[24] does provide a powerful API, but it was designed to
work with specialized monitoring hardware and defaults to
using libpcap when run on commodity hardware, yielding poor
performance.

VIII. CONCLUSIONS

It is clear that monitoring is needed in order to ensure the
quality of real-time communications over the Internet. In this
paper we introduced RTC-Mon, the Real-Time Communica-
tions Monitoring framework, which provides an architecture
for quickly developing efficient and powerful monitoring ap-
plications. More importantly, RTC-Mon is extensible, making
it easy for a developer to add any advanced functionality
needed.

We presented testbed results showing that the framework
is quite efficient, tracking information for large amounts of
RTP flows even for small packet sizes while keeping the CPU
relatively idle. Further, we implemented a proof-of-concept
application on top of RTC-Mon that, despite consisting of only
800 lines of code, can efficiently track a large set of VoIP
quality metrics.

As future work we are looking into distributed monitoring
solutions based on RTC-Mon, since SIP and RTP flows
belonging to a call do not always follow similar paths. Further,
we are also in the process of implementing plugins for other
protocols such as RTCP in order to support other applications
like IPTV.
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