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Abstract. The analysis of packet payload is mandatory for network security and
traffic monitoring applications. The computational cost of this activity pushed the
industry towards hardware-assisted deep packet inspection (DPI) that have the dis-
advantage of being more expensive and less flexible.

This paper covers the design and implementation of a new DPI framework us-
ing FastFlow, a skeleton-based parallel programming library targeting efficient
streaming on multi-core architectures. The experimental results demonstrate the ef-
ficiency of the DPI framework proposed, proving the feasibility to perform 10Gbit
DPI analysis using modern commodity hardware.
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Introduction

When the Internet was designed, all routing and security protocols were conceived to
process traffic only based on packet headers. When the original equation TCP/UDP port
equal application port could no longer be applied as developers started to implement ser-
vices over dynamic ports, network monitor companies started to develop packet payload
analysis tools aimed at identifying the application protocol being used, or at enforcing
laws and copyright.

This trend was further fostered by the introduction of IDS/IPS systems (Intrusion
Detection/Prevention Systems) that inspect all packets with the purpose of detecting ma-
licious traffic. These have been the driving forces for the development of DPI (Deep
Packet Inspection) tools and frameworks able to inspect packet payload and thus easing
the development of applications using them.

Most tools are accelerated using custom hardware network cards such as those based
on FPGAs (Field Programmable Gate Array) [1] or proprietary silicon [2] such as chips
produced by companies like Cavium, Radisys or Netronome. The use of specialized
hardware for accelerating packet inspections and to be sure to fully cope with high-
speed network traffic, makes DPI solutions expensive, bound to few vendors, and thus
unsuitable for being used for the development of open systems that need to rely on DPI.

Beside the nDPI [3], L7Filter [4] and libprotoident [5] projects, the open-source
community does not offer alternatives for software-based freely available DPI tools able
to sustain high-speed (10Gbit or more) packet analysis [6].
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This work aims to design a high-performance, all-software, DPI framework able to
exploit multi-core system capabilities with the purpose of simplifying the development
of network applications and to achieve the same level of performance of DPI tools based
on proprietary silicon.

The remainder of the paper is structured as follows: Sec. 1 briefly outlines the DPI
process. Sec. 2 introduces FastFlow, whereas Sec. 3 discusses the DPI framework over-
all design using FastFlow. Sec. 4 discusses the results of a set of experiments validating
the design and implementation choices. Finally, Sec. 5 presents related work and Sec. 6
draws conclusions.

1. DPI

The identification of the application protocol (e.g. HTTP, SMTP, Skype, etc.) is per-
formed by extracting the information contained in the packet header and often from the
packet payload. To correctly extract the data carried by the protocol it is in general nec-
essary to manage expensive operations so that this kind of processing is typically imple-
mented (at least in part) through dedicated hardware. However, full software solutions
are more appealing because they are more flexible and economical.

To identify the application flows, packets are classified in sets of packets all sharing
the same <SOURCE IP ADDRESS, DESTINATION IP ADDRESS, SOURCE PORT, DESTINATION

PORT, LAYER 4 PROTOCOL (E.G. TCP/UDP)> key. These sets are called ”flows” and for
each of them, in order to correctly reconstruct and identify the application communica-
tion, further information have to be stored in suitable data structures (typically an hash
table). Considering the processing of TCP connections, when a TCP segment is received
we need to perform the following steps:
Step1 Decode the packet headers in order to extract the 5-tuple key characterising the

bidirectional flow to which the packet belongs.
Step2 Apply a symmetric hash function on the key, obtaining the bucket of the hash

table containing the state of the flow of the received packet. We implemented some
well known hash functions: Murmur3 [7], 32 bits FNV-1a [8], BKDR and a simple
function computed by summing the 5 fields of the key. The programmer can use
any of these functions when configuring the framework.

Step3 Access the table to obtain the current state of the flow.
Step4 Manage the TCP stream and, if the segment is out of order, store it for future

reassembly by storing the packet payload.
Step5 Infer the protocol carried by the segment using specific inspectors (one for each

supported protocol) by using previously collected information about the flow and
analyzing the current packet. For example, to detect the HTTP protocol, the HTTP
inspector could search inside the packet the strings representing HTTP methods
(e.g. “GET”, “PUT”, “POST”, etc.). To be more robust, it is also possible to use
data collected from previously received packet for that flow, for example by corre-
lating HTTP responses with HTTP requests.

Step6 If required, after protocol identification, further processing can be applied on the
packet to extract protocol specific metadata information (e.g. HTTP URL, SMTP
recipient, POP3 body, etc.).

If the flow protocol was already identified, the steps 4 and 5 can be skipped returning
the result of the previous identification.



Figure 1. FastFlow skeletons: task-farm (with and without Collector) and pipeline.

2. FastFlow

FastFlow is a stream parallel programming framework providing the application pro-
grammers with ready-to-use, efficient and customizable stream parallel design skeletons
[9]. FastFlow has been originally designed to target modern shared-cache multi-core.
The result is a complete stream parallel programming framework able to successfully
exploit parallelism in the computation of very fine grain tasks [10]. This is exactly what
is needed to implement an high-performance parallel DPI engine, taking into account
that single packet processing may require fairly small amount of work (even few tenths
of clock cycles) and, the packet arrival rate may be extremely high.

FastFlow provides the application programmer with different, fully customizable
and composable stream parallel skeletons including : a pipeline skeleton, with arbitrary
number of stages, and a task-farm skeleton, with an arbitrary number of “worker” pro-
cesses, each one independently executing tasks appearing on the input stream.

The farm skeleton is implemented using one or two additional concurrent entities, as
shown in Fig. 1. One mandatory thread, the Emitter (E), which schedules tasks from the
input stream towards the pool of worker threads. The default scheduling policy is round-
robin, but different policies (e.g. on-demand, broadcast) are provided by the framework
and, in addition, the application programmer may easily implement ad-hoc scheduling
policies, if needed. Another (optional) thread, the Collector (C), eventually gathers the
results computed by the worker threads and delivers them to the output stream. The de-
fault gathering policy is first-come first-served basis, but different policies are imple-
mented in the framework and, if needed, may be used by the application programmer. If
the Collector thread is not present, the task-farm skeleton may appear only as last stage
of a FastFlow pipeline and the results are then delivered in main memory (or into files).

Communication channels between threads are implemented using lock-free Single-
Producer Single-Consumer FIFO queues, with messages carrying data pointers rather
than plain data copies [11].

3. Parallelisation using FastFlow

Considering that operations on different application flows are independent, the idea was
to assign different groups of network flows to different concurrent modules such that
they may be processed in parallel. Accordingly, we structured the framework (called
PEAFOWL [12]) as a task-farm skeleton, having the flow table carefully partitioned among
the set of workers. The requirement is that each worker processes only the network flows
belonging to its own table partition. This way we avoid any true-sharing of the data-
structure and the additional overhead of synchronization among workers.

In order to fulfill this requirement, we provided the FastFlow task-farm Emitter with
an ad-hoc scheduling function which distributes to each worker exactly those packets



belonging to the flows contained in its partition. Consequently, the Emitter needs first to
extract the key of the flow and then, as in the sequential case, to determine the bucket of
the table where the flow has been allocated. Once the bucket has been found, the Emitter
can easily derive the partition to which it belongs and, therefore, can forward the packet
to the correct worker. Using this kind of parallelisation and considering the operations we
described in Sec. 1, the Emitter sequentially performs steps 1. and 2. while each worker
performs steps from 3. to 6. over different network flows in parallel. Apart from the

Figure 2. PEAFOWL structure when header parsing is parallelised using a task-farm (the L3 FARM).

communication channels between the Emitter and each worker, there is no data sharing,
thus allowing each worker to advance in its execution without any further delay. Anyhow,
false-sharing could happen between two threads accessing to some specific buckets (e.g.
worker i accesses to the last bucket of partition i and worker i + 1 accesses the first
bucket of partition i + 1). In this case we could have two different buckets used by two
distinct threads on the same cache line producing data invalidation without having real
sharing. Nevertheless, since the hash functions used produce well-distributed results (see
[13]), the impact on performance of the false-sharing is very limited. However, since the
latency required to parse the network and transport headers and to apply the hash function
is not negligible, in some cases the Emitter may limit the framework scalability. To avoid
this sequential bottleneck, in presence of high traffic rate, the Emitter is replaced with a
second task-farm (L3 FARM) where each worker executes the header parsing steps (i.e.
the same steps previously executed by the Emitter), obtaining a two-stage pipeline where
each stage is a task-farm (L3 FARM and L7 FARM, respectively 1), as shown in Fig. 2.

For the L3 FARM, any scheduling strategy can be used in principle. However, we
want scheduling and gathering strategies suitable to preserve the ordering of the packets
in such a way that they exit from the first stage in the same order they arrive from the
network. In this way, if the packets belonging to the same flow were already ordered, they
will arrive in the correct order to the second farm and immediatly after to the protocols
inspectors. Consequently, the framework can avoid the overhead of TCP reordering when
it is not really needed. In Sec. 4 we will analyze the performance improvement obtained
by using an order preserving scheduling strategy for the L3 FARM.

4. Experimental results

In this section, the design choices as well as the overall performance of the framework is
assessed using a set of experiments. The platform used for the experiments is a NUMA

1L3 stands for ISO/OSI Layers 3 and 4 processing. L7 stands for Layers 5 to 7 processing.



workstation having two INTEL XEON E5-2650 @ 2.00GHZ nodes with a total of 16
cores (2-way hyperthreading). Each NUMA node has 16GB of main memory, 20MB of
shared L3 cache, 256KB and 32KB of core private L2 and L1 caches, respectively.

To test the framework under the maximum load, we first measured the performance
reading packets directly from the main memory of the platform (first loading the entire
pcap file [14] at the beginning and then starting analyzing it), then we considered the
performance when packets are read from a 10Gbits network card (NIC).

Dataset IPv4 IPv4 Description

packets flows

Synthetic 1428043 13314 Synthetic dataset
Darpa 1308081 38985 From http://www.ll.mit.edu/mission/

communications/cyber/CSTcorpora/ideval/data

Local 524761 17939 Captured from local network
Table 1. Datasets used for the experiments

We used the datasets reported in Table 1. Each dataset is read multiple times in order
to have sufficient input bandwidth. All experiments have been executed multiple times,
and when the error bars are plotted, they represent any significant standard deviation
from the mean value.

We start analyzing the number of packets per seconds successfully processed by the
framework when only the protocol identification is executed on the 3 datasets considered.
Figure 3 plots the bandwidth obtained varying the number of threads used. The frame-
work has been set-up to use 2 task-farm (both L3 and L7), so we have 4 threads used
for scheduling and gathering purposes (E3,C3 and E7,C7 in Fig. 2) and at least 1 worker
thread for each of the two farms. As can be seen, the framework is able to process from
27.5 (DARPA dataset) to 36.3 (Synthetic dataset) Mpps (Millions of packets per second).
Considering that a single sequential thread is able to sustain up to 4.2 Mpps we obtain a
maximum speedup of 8.6× for the protocol identification phase.

It is worth pointing out that, the protocol of an application flow is typically identified
by inspecting only the first packets of the flow (typically the first 2-3 packets). For all
the remaining packets, the cost of the inspection is not payed and each packet therefore
incurs only in the hash-table access overhead (which is always needed for each packet
to check if the flow was already identified). This is the reason why, on average, the
processing of a single packet is a very fine grain operation. On the platform considered,
the Synthetic dataset has an average computation time per packet of about 100ns.

We also analyzed the case where protocol identification alone is not sufficient for
the application and further packet processing capabilities are required (Step 6 in Sec. 1).
We evaluated the scalability of the framework by increasing the computation time of
the processing function executed for each identified packet. The scalability has been
computed against the sequential time obtained when analyzing 500 times the Synthetic
dataset and then varying the number of workers in the 2 farms in order to obtain the best
performance. As sketched in Fig. 4, the obtained scalability is almost linear even for very
low latency processing functions. When 12 worker threads are used in total (#W4+#W7),
the configuration used is: 6 + 6 for the protocol identification only, 4 + 8 and 3 + 9 for
the cases 150ns and 250ns, respectively.

As described in Sec. 3, when the Emitter of the L7 FARM is parallelised and re-
placed by the L3 FARM, it is possible that packets leave the L3 FARM out-of-order. To
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avoid this issue, the FastFlow task-farm skeleton has been extended with a scheduling
strategy which preserves input/output packet ordering. Figure 5 compares the scalability
obtained by the two non order preserving strategies, round-robin (RR) and on-demand
(OD), which require an explicit reordering of packets in the Collector thread (C3 in
Fig. 2), with the new strategy (Order preserving RR). The new strategy provides better
results with respect to the other two both in terms of speedup and in terms of stability, be-
cause the overhead introduced by the ordered RR is smaller than the extra latency intro-
duced by the explicit reordering of packets in the farm Collector. This can be explained
by observing that the new strategy enforce ordering only when it is actually needed.

Finally, we measure the performance when the data is read from a 10Gbit IN-
TEL 82598EB DUAL PORT NIC, with the two fiber ports connected back-to-back. The
PF_RING Linux kernel module [15] has been used to improve the packet capture speed.
The packets contained in the Synthetic dataset are sent over one network port using a
packets sender application provided with the PF_RING kernel module, and they are
read from the other port using the framework. Thanks to the low latency mechanisms
provided by PF_RING module, we are able to read and write minimum packet sizes (60
bytes) at line rate from the NIC without any packet drop.

A simple demo application has been implemented to show the potential of the frame-
work in a real setting. The application scans all the HTTP traffic searching for virus sig-
natures. The check is performed by calling an HTTP callback in each worker thread for
all packets containing a chunk of an HTTP body. The patter matching algorithm used is a



modified version of the Aho-Corasick pattern matching algorithm [16]. For this applica-
tion scenario, the average computation granularity per packet is such that the Emitter of
the L7 FARM is not a bottleneck of the system, thus the framework has been configured to
use only one single task-farm. Figure 6 plots the bandwidth achieved varying the number
of threads comparing the case when packets are read from main memory or directly from
the NIC. The performance obtained in the latter case, is higher with regards to the one
obtained reading packets from main memory. This can be explained considering that the
card driver stores the first 64 bytes of the packet directly in the core cache of the Emit-
ter thread (the one reading from the NIC), and this reduces both latency for the header
parsing and memory contention.

Considering the experimental results, we can state that the PEAFOWL framework is
able to obtain performance close to ideal for the HTTP virus signatures search applica-
tion.

5. Related Work

With respect to well known existing open-source tools, instead of focusing on the num-
ber of supported protocols, we characterize this work by providing an efficient run-time
support for multi-core architectures giving to the application programmer the possibility
to specify in a simple way the callback used to process specific data carried by the proto-
col. In the Table 2 we compare PEAFOWL with OpenDPI/nDPI [3], libprotoident [5] and
l7filter [4] against a number of important features.

PEAFOWL OpenDPI/nDPI libprotoident L7filter

IPv4 and IPv6 normalization Yes No Yes Yes

Flow management Yes No Yes Yes

TCP normalization Yes No Yes Yes

Arbitrary metadata processing Yes No No No

Multi-core support Yes No No No

Supported protocols 10 117/141 250 112
Table 2. Comparison between PEAFOWL with well known open-source DPI libraries.

From a performance perspective, we compare the sequential version of PEAFOWL

with the nDPI library on the same platform used for the tests and under similar conditions
(disabling for nDPI all not needed protocols), obtaining the results shown in Table 3.

Bandwidth (Mpps) % of Identified Traffic

Synthetic Darpa Local Synthetic Darpa Local

nDPI 3.55 2.16 3.06 94.4% 29.3% 40.5%
PEAFOWL (seq.) 4.44 3.36 3.63 94.4% 29.7% 42.5%

Table 3. PEAFOWL (sequential version) vs. nDPI over different datasets

As can be seen in Table 3, PEAFOWL exhibits slightly better performance (and com-
parable quality for the protocols implemented) with respect to nDPI. However, since
nDPI has been designed to support lots of application protocols, its internal data struc-
tures are bigger than the ones used in PEAFOWL (even though unused protocols have been
disabled), therefore it has less advantages from cache spatial locality for the datasets
considered.



6. Conclusions and Future Work

This paper presents the design and implementation of a framework called PEAFOWL for
efficient DPI analysis on modern multi-core architectures.

The performance obtained shows that PEAFOWL is able to achieve good speedup also
when the very low latency protocol identification tasks are executed. The results have
been also validated studying the capabilities of the framework in a real HTTP packet
inspection application where close to ideal performance is obtained. The measured per-
formance clearly indicates that: i) the availability of a larger number of cores may further
improve the bandwidth of our DPI framework thus paving the way to multi-10 Gbit traf-
fic analysis, and ii) it is possible to successfully perform high-speed DPI analysis using
commodity hardware and open software solutions.

As a future work we have planned to introduce adaptivity in the framework in order
to automatically increase or decrease the number of concurrent threads in the FastFlow
task-farm and to automatically modify the skeleton structure in order to avoid possible
sequential bottleneck.
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