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Abstract. Monitoring network traffic on 10 Gbit networks requires very efficient
tools capable of exploiting modern multicore computing architectures. Specialized
network cards can accelerate packet capture and thus reduce the processing over-
head, but they can not achieve adequate packet analysis performance. For this rea-
son most monitoring tools cannot cope with high network speeds.

We describe the design and implementation of ffProbe, a network traffic moni-
toring application built on top of FastFlow, combined with several optimized par-
allel programming patterns. We compare ffProbe with two popular network mon-
itoring probes. The results demonstrate that it can scale significantly better with
number of cores and thus may be suitable for monitoring 10 Gbit networks using
commodity servers.
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1. Introduction

The increasing number of applications running on top of IP networks is making ever
more urgent the need to implement very efficient network monitoring tools that can be
used for analysis of network traffic in differing contexts. Most network device vendors
provide proprietary hardware and software tools to support network monitoring and suit-
able protocols have been developed to allow data monitored by different hardware to be
analyzed [3]. In most cases, high performance network monitoring is implemented on
dedicated hardware: special network cards and/or special processors [13,9].

With the recent shift from single core to multicore processing elements, more and
more computing power is available on a single socket and nowadays architectures may
be bought for a few thousand dollars that sport up to 48 general purpose cores. The re-
sulting computing power makes feasible the possibility of implementing high speed/high
traffic network inspection/monitoring tools on non-dedicated hardware, rather than only
on specialized hardware. However, efficient multicore parallel program development,
such as that needed to implement this sort of network monitoring application, usually
requires substantial programming effort. While multicore programming environments
such as OpenMP provide the programmer with simple and quite intuitive programming
abstractions, the fine tuning of parallel applications on multicores is still a time con-
suming activity, requiring extensive knowledge of the multicore features when ultimate
performances are looked for.



To avoid such problems, advanced structured parallel programming environments
have been developed. These programming environments raise the level of abstraction
presented to the application programmer as compared to that presented by more classical
environments such as OpenMP. Rather than exposing mechanisms that the application
programmer may freely combine to implement his/her parallel application, these envi-
ronments provide the application programmer with a set of parallel patterns that can be
used—alone or in composition—as building blocks for implementing a wide range of par-
allel applications. In the work described here, we used one of these structured program-
ming frameworks to implement an efficient network monitoring application. The frame-
work used is FastFlow, providing the application programmer with a set of very efficient
parallel patterns including pipelines and task farms. These patterns are build on top of
a compact layer implementing lock-free and fence-free single producer single consumer
channels [2]. The resulting framework demonstrates the feasibility of efficient high-speed
network monitoring on commodity network servers and Ethernet adapter hardware.

The remainder of the paper is organized as follows: Sec. 2 and Sec. 2.1 introduce
high-speed traffic monitoring and related work. Sec. 3 discusses our original implemen-
tation of the NetFlow probe on top of FastFlow. Sec. 4 discusses the experiments and the
results validating the proposed probe architecture and finally Sec. 5 draws conclusions.

2. High-Speed Traffic Monitoring

The shift from 1 Gbit to 10 Gbit networks has pushed hardware manufacturers to find
new solutions for exploiting multicore architectures. The first goal is to use all the avail-
able cores for improving packet receive/transmission. For this reason, modern network
adapters feature multi-queue RX/TX, so that a physical network adapter is logically par-
titioned into several logical adapters each sharing the same MAC address and Ether-
net port. Incoming packets are decoded in hardware, and a hash value based on various
packet fields such as IP address, protocol and port is computed. Based on the hash value,
the network adapter places the packets in a specific queue. This way the kernel can si-
multaneously poll and transmit packets from each queue, thus maximizing the overall
performance. Unfortunately the operating systems are not mature enough to exploit this
feature, as they do not expose queues to user-space applications thus limiting them to
viewing the network adapter as a single entity. The outcome is that fetching packets in
parallel from the network adapter is not possible unless applications can directly access
the various queues. PF_RING [8] is a packet processing framework that we have devel-
oped that implements various mechanisms for enhancing packet processing and that also
allows applications to natively access adapters’ queues. Recently PF_RING has been en-
hanced with support of 10 Gbit DNA (Direct NIC Access) that allows applications to re-
ceive/transmit packets while completely bypassing the kernel, as they can access directly
the queues that have been previously mapped into user space memory. This means that
the cost of receiving/transmitting a packet is basically the cost of a memory read/write,
thus making 10 Gbit wire-rate packet RX/TX now manageable using commodity net-
work adapters.

Efficient packet receive/transmit is not the only problem in traffic monitoring. Net-
Flow [3] is the industry standard protocol for traffic monitoring. In NetFlow, packets are
classified in flows. A flow is defined as a set of packets all sharing common properties



such as source/destination IP address/port, protocol, ingress interface and type of service.
NetFlow probes are the applications responsible for managing flows. Often they are im-
plemented in routers, but they can also be implemented as software applications running
on servers. Flows are created when the first packet of a given flow has been received, and
they expire when a specified amount of time (e.g. 2 mins) has elapsed or if no packets
for the flow have been received for fixed period. When a flow has expired, it is packed
with other flows into a UDP packet formatted according to the NetFlow format and sent
to a NetFlow collector application that receives and stores it.

2.1. Related Work

Traditionally Netflow probes are embedded into network devices such as routers and L3
switches [1]. However the cost of specialized cards for implementing Netflow on routers
has prompted developers to create software probes that can run on standard servers. A
further driving force for software probes is the ability to create specialized probes [10]
focusing on selected traffic (e.g. http, peer-to-peer, and voice-over-IP) that would be too
costly to implement on network devices. On the other hand, the use of accelerating card
has ignited the development of hardware-accelerated Netflow probes [15]. Pure software
probes have been accelerated by moving some computationally expensive functions into
the kernel [7], [12], [4] to achieve performance close to line-rate using commodity hard-
ware. nProbe [5] is a mature NetFlow probe supporting various flow formats and avail-
able under the GPLv2 license. It can be used both as a single and multi-threaded appli-
cation. In single thread mode, incoming packets are captured, decoded, and processed by
the same thread. In multi-thread mode, there is one thread that captures packets and n
processing threads, with the communication among threads being implemented by means
of lock-free queues where incoming packets are copied after header hashing. Although
nProbe can sit on top of the widespread pcap API, to optimize performance, it exploits
some unique DNA features such as zero-copy packet capture and hardware-based flow
hashing to avoid computing in software flow hashes. This latter feature allows nProbe to
be started in standard or quick mode. In quick mode, nProbe uses the hardware-computed
flow hash to search for the flow using the hash, for increased performance. Softflowd is
an open-source software NetFlow traffic probe [11]. It supports various NetFlow ver-
sions and both IPv4 and IPv6 flows. Softflowd is single threaded: it cannot be configured
to spawn multiple threads to increase processing speed. Internally flows are kept on a
red-black tree. Whenever a packet is received, Softflowd decodes it and updates the tree.
Flows to be exported are computed by periodically navigating the tree according to vari-
ous criteria such as maximum flow lifetime and idle flow time. From the software point
of view, soft f1owd is a fairly simple application whose efficiency comes from its very
light internal design.

3. Probe Architecture

In this Section we describe the architecture of ffProbe in comparison with two other
popular open-source traffic probes: nProbe (see http://www.ntop.org/nProbe.
html) and softflowd (see http://code.google.com/p/softflowd/).
ffProbe is a new pipelined parallel implementation of a NetFlow [3] probe built
on top of FastFlow, a parallel programming framework for multicore platforms based



on non-blocking lock-free/fence-free synchronization mechanisms [6,2]. The FastFlow
framework is composed of a stack of layers that progressively abstracts out the program-
ming of shared-memory parallel applications. The goal of the stack is twofold: to ease
the development of applications and to make them very fast and scalable. FastFlow is
particularly targeted to the development of streaming applications.

FastFlow proved very effective for implementing and experimenting with different
versions of ffProbe, using different parallel patterns. The base ffProbe pipeline uses two
different types of stage: reader and worker (see Fig. 1, A). The reader stage captures
packets from the device using PF_RING [8] and for each packet extracts the information
needed by the probe (Source IP, L4 Source port, etc...). A hash function is applied to
this information and based on the returned value the reader decides to which worker this
packet is directed. The “task” that the reader sends forward to the workers list contains a
number of packets that are directed to different workers in the pipeline. Each worker will
fetch and process only its own packets. Eventually, the reader sends the task to the first
worker of the pipeline using the FastFlow SPSC (Single Producer Single Consumer)
bounded queue.

Extra readers can be used to try to improve performance. In this case each reader will
read from a different network interface or from different queues of the same interface.
The communication between the m readers and the first worker is implemented with m
independent SPSC FastFlow lock-free queues. The worker will extract the packets from
the input queues according to a non-blocking round-robin policy.

The ffProbe pipeline is parametric in the number of workers and this allows increase
or reduction of the pipeline length according to the resources available and to the inter
departure time of the reader. Each worker has a private hash table and the union of all
these tables represents the (logically global) table where all the flows are stored. By
avoiding any sharing of the table among worker stages' we avoid the typical problems
related to the cache invalidation.

Each worker, extracts from the received task the packets contained in its list and
updates its own local hash table partition with the data relative to these packets. To reduce
the latency of this phase, while a collision list is scanned to find the flow to update, the
collision list of the next flow is prefetched. After the update the worker checks a number
of flows in order to see if any of them has expired. The expired flows are then inserted
into another list of the task and this is sent to the next worker.

When the task eventually reaches the last worker, after the classical operations, the
exporting routine is called. This routine stores the expired flows and, if there is a suffi-
cient number of flows to be exported, sends them to the remote NetFlow collector using
UDP. If the latency of this routine is seen to be too high, it is possible to execute it in an
independent stage of the pipeline, located directly after the workers.

ffProbe maps the threads of the pipeline in such a way that over provisioning and
inter-chip communications are avoided. The user may manually modify this mapping, if
needed.

Using FastFlow structured programming model, we implemented several versions
of ffProbe, differing slightly in the kind of parallel pattern used. In particular, we used
the base ffProbe pipeline to build different configurations:

P1 A single pipeline composed by one reader and n workers (Fig. 1, A ).

'Each worker accesses a portion of the table.
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Figure 1. Different possible structuring of ffProbe.

P2 A single pipeline with m readers and n workers (Fig. 1, B).
P3 m pipelines, one for each queue (or interface). Each pipeline has one reader and
n workers (Fig. 1, C, with n = 1)).

All these different parallel versions of ffProbe have been experimented with and the as-
sociated results are presented and discussed in Sec. 4. It is worth pointing out that imple-
menting the different versions required modest programming effort, due to the facilities
offered by FastFlow in terms of parallel patterns and pattern composition. Similar par-
allel patterns may be used to implement distributed versions of ffProbe, with one node
capturing packets and directing them to ffProbe pipelines running on different nodes,
identified through appropriate hashing of the packet header.

4. Validation

In order to evaluate the ffProbe performance, we have used two different servers, namely
a dual quad core Xeon E5520 Nehalem (directory based cache coherency, with hyper
threading support, 8Mbytes Smart cache, running at 2.26GHz), and a single CPU 8-core
server based on the Intel Sandy Bridge controller and on low-end Xeon E3-1230 running
at 3.20 GHz. Both servers were equipped with a dual port 10 Gbit Intel-based Silicom
NICs. Ethernet ports were connected back-to-back with a crossed optical fiber patch, so
that one port is used for generating traffic and the other for receiving it. To minimize
the time spent capturing packets, we used PF_RING DNA (Direct NIC Access) that
allows the kernel to be bypassed when both sending and receiving packets. Applications
access packets by reading them in zero-copy mode from the NIC’s memory though the
PF_RING API. Traffic has been generated by replying at wire rate with various traffic
samples using pfsend, an application that is part of the PF_RING framework. The
traffic samples used include both synthetic and real traffic captured on a network. In order
to evaluate the application performance in the worst case, we have also created a few
traffic samples that contain up to one million concurrent flows, all starting and ending
at the same time. Such traces put significant pressure on applications as the analyzed
flows are both created and expired at the same time resulting in a peak of workload. By



contrast, traces captured from real networks, although containing traffic spikes, do not
represent the worst case, as due to variable size packets, the greatest observed rate does
not exceed SMpps, which is much less of what we can generate with a synthetic trace.
Such traces contain minimal size packets (60 bytes) so that the network receive rate can
match the maximum theoretical rate. Note that real networks on average are not loaded
above 50% of their capacity as network operators want to avoid dropping packets due to
traffic peaks. Furthermore the average packet size on real networks is 512 bytes which
translates to 2.35 Mpps. As pfsend and probes both run on the same physical machine,
we have reserved one core to pfsend, and so probes can use up to 7 processor cores.
Each RX queue has been mapped to the corresponding core, so that : —¢h core is mapped
to the ¢ — th RX queue. During tests we configured probes to export flows every minute
using the NetFlow v5 format that is the common flow format supported by all probes.

4.1. ffProbe

We ran several tests using ffProbe. In particular we looked for top performances and
scalability when using different ffProbe structures, such as those mentioned in Sec. 3.
Fig. 2 shows the results obtained from analyzing traffic containing 500K synthetic flows
as well as the memory footprints measured in the different experiments. As different
versions of the ffProbe application are only significant for particular reader and worker
stage configurations in the ffProbe pipeline(s), the figures report only results for the
meaningful configurations, and thus values relative to some parallelism degrees are miss-
ing. In particular, in Fig. 2 (left) the ffProbe curve stops one step before those of the
other tools as FastFlow uses one core for scheduling and so we have one core less for
the ffProbe stages.

A single pipeline (see Fig. 1, A ) performs quite well, scaling with the increased
number of threads used. It is worth pointing out that the configuration “1R + 1W” dou-
bles the performance of the sequential probe, as the split of work between reader and
worker in this case already guarantees a notable performance increment. The configura-
tion B in Fig. 1 was not as good as the previous one, indeed. The problem here is that
moving from threads on the same socket to threads on different sockets the performance
gain decreases. However, our preliminary results show that performance continues to in-
crease, while keeping a constant memory footprint. By using two pipelines (Fig. 1, C ),
each reading from its own PF_RING queue, ffProbe reached the same performance as
nProbe, while using only 4 threads. With this solution the pipelines are executed in inde-
pendent processes so we can avoid inter-chip communication. This allows us to increase
the parallelism degree and to manage higher rates, provided that the threads belonging
to the same process are executed on cores on the same chip. We also performed some
tests with one million flows, and we obtained a peak performance of 9.68 Mpps (without
losses) with 6 threads. Overall, the results achieved using ffProbe are significantly better
than those achieved using multicores with more conventional programming techniques
(e.g. [14]). In all cases, the CPU utilization for the cores used was close to 100%, which
is in part due to the peculiarities of the FastFlow implementation: in order to guaran-
tee lock and fence free communications, the fine grain contention is solved using busy
waiting.

In our opinion these results show that ffProbe exploits limited degree multicore ar-
chitectures better that other NetFlow probe implementations and the scalability demon-
strated indicates better results may be achieved on larger multicore configurations.
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Figure 2. Performance and memory footprint comparison: different versions of ffProbe, nProbe, softflowd
4.2. Comparing with nProbe and softflowd

As nProbe has been optimized for single-thread mode, we have tested it spawning one
instance per RX queue. A set of single threaded nProbe instances in standard mode (each
processing a different message queue) can handle up 8.9 Mpps, whereas in quick mode
10.25 Mpps. The use of threads can improve the processing speed of the single nProbe
instance, even though the scalability is not linear: adding more than two threads is of
little/no help (see Fig. 2). We believe that, although nProbe includes lock-free data struc-
tures, when using multiple threads incoming packets need to be copied into a queue,
and so we lose the zero-copy advantage of DNA. Furthermore due to the application
design, increasing the number of processing threads leaves fewer cycles to the export
thread, thus jeopardizing the performance. For this reason we believe that the optimal
solution is to use one single threaded nProbe instance per queue. The memory footprint
of nProbe is slightly larger that that of ffProbe, mainly due to the larger buckets used to
store information, while the CPU utilization, as in ffProbe, is close to 100%.

As soft flowd is a single threaded application, we can test it in only one configu-
ration and spawn one instance per core and RX queue. On average we can handle about
500K pps per instance which translates to about 3.5 Mpps in total when using 7 cores.

5. Conclusions

This paper has confirmed that modern, pattern based parallel programming techniques
can be profitably used to implement a NetFlow probe on state-of-the-art multicore archi-
tectures. The pattern based programming environment allowed experimentation with dif-
ferent versions (as far as parallel exploitation is concerned) of the probe with relatively
little programming effort. The validation has confirmed that different parallel structur-
ing of the probe achieve different peak performances, and that some of them scale quite
well with the number of cores. The processing performance observer during experiments



confirmed that this technology is able to monitor multi-10 Gbit networks when using
average size packets, making it suitable for large scale monitoring deployments.
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