

Proceedings of DSOM ’99, Zürich, Switzerland, October 1999. 1


Ntop: beyond Ping and Traceroute


Luca Deri1 2 and Stefano Suin2


The task of network management is becoming increasingly complex due to the increasing number of net-
worked computers running different operating systems and speaking various network protocols. Most of
network monitoring and diagnostic tools such as ping and traceroute are suitable just for tackling simple
connectivity problems. Complex network problems often need to be addressed using rather expensive
management tools or probes affordable only by mid-large companies.
This paper covers the design and the implementation of ntop, an open-source web-based network usage
monitor that enables users to track relevant network activities including network utilisation, established
connections, network protocol usage and traffic classification. ntop’s portability across various platforms,
its support of many network media, ease of use and lightweight CPU utilisation makes it suitable for peo-
ple who want to monitor their network without having to adopt a sophisticated yet expensive management
platform.


1 Background and Motivation
Popular tools such as ping and traceroute [16] have been used for years now for monitoring and de-
bugging simple network connectivity issues. Although these tools are often sufficient for tackling
simple problems, they have been created for monitoring network activities between two hosts. In
cases where the network problem to address is due to the interaction of traffic originated by multiple
hosts, these tools show their limits. Network sniffers such as tcpdump [9] or snoop are quite useful
for analysing network traffic but off-line applications are often necessary for correlating captured
data and identifying the network flows. Many commercial network sniffers are usually able to ana-
lyse data while capturing traffic but still these tools are quite primitive because they focus mainly
on the packet and not on global network activities. In other words, operators are able to virtually
know everything about the content of a single network packet whereas it is very difficult to extract
information concerning the whole network status when a network problem appears.
Similarly, network probes such as RMON agents [17] are quite powerful but unfortunately need so-
phisticated SNMP managers that are able to configure them properly, and analyse collected network
statistics. Due to this complexity and also the cost of such probes, RMON agents are basically used
uniquely by advanced network managers in large institutions.
Other tools for network monitoring such as NeTraMet [4] and NFR [14] offer advanced program-
ming languages for analyzing network flows and building statistical event records. Nevertheless
those tools have been designed as instrumentable network daemons suitable for monitoring net-
works in a mid/long time period whereas in some cases it is necessary to have a very simple tool
able to show the actual network status in human-readable format on a character-based terminal.


Even though operating systems have evolved rapidly, software companies did not pay enough at-
tention to network management. Due to this, the latest releases of popular operating systems still
offer no more than ping and traceroute. This is because companies often believe that if a network
problem is due to network connectivity then ping and traceroute are enough, whereas if the problem
is more complicated then a costly and complex network management tool has to be used.
The authors believe that this statement does not hold. In the Internet age, computer users need to
have access to simple yet powerful network monitor tools able to give answer to questions such as:


• Why is the local network performance so poor?


• Who is using most of the available network bandwidth?


• Which are the hosts currently decreasing the performance of the local NFS server?


• What is the bandwidth percentage actually used of my computer?


1.Finsiel S.p.A., Via Matteucci 34/b, 56124 Pisa. Email l.deri@finsiel.it.
2.Centro Serra, University of Pisa, Lungarno Pacinotti 43, Pisa, Italy. Email {deri, stefano}@unipi.it.







Proceedings of DSOM ’99, Zürich, Switzerland, October 1999. 2


• Which are the contacted peers and the amount of network traffic produced by each of the
processes running on my local computer?


• Which are the hosts that produce multicast traffic? 


ntop has been written to give a positive answer to all of the above questions. It has been initially
written by the authors for tackling performance problems of the campus network backbone. Similar
to the Unix top [3] tool that reports processes CPU usage, authors needed a simple tool able to report
the network top users (hence the term ntop) for quickly identifying those hosts that were currently
using most of the available network resources. ntop then evolved into a more flexible and powerful
tool as people over the Internet downloaded it and reported problems and suggestions. The follow-
ing sections cover architecture, the adopted design solutions and the inner details of the current ntop
implementation.


2 Inside ntop
ntop is an open-source software (http://www.opensource.org/) [15] application written using the
C language available free of charge under the GNU public licence. This statement does not just
mean that ntop’s source code is freely available on the Internet, but also that many requirements
came directly from early ntop adopters. The authors designed the first version of ntop and then ac-
commodated new requirements and extensions on the original architecture, strongly influenced by
the Webbin [7] architecture. ntop’s main design goals are:


• portability across Unix and non-Unix (e.g. Win32) platforms;


• simple and efficient application kernel with low resource (both memory and CPU) usage;


• minimal requirements (bare operating system) but capable of exploiting platform features, if
present (e.g. kernel threads);


• ability to present data both in a character-based terminal and a web browser;


• the network analysis output should be rich in content and easy to read.


The ntop architecture is shown in the following figure.


The packet sniffer collects network packets that are then passed to the packet analyser for process-
ing. Whenever traffic information has to be displayed, the report engine renders the requested in-
formation appropriately.


2.1 Packet Sniffer
The packet sniffer is the ntop component that potentially has more portability issues. In fact, unlike
other facilities such as threads, there is not a portable library for packet capture. Under Unix the lib-
pcap [12] library provides a portable and unified packet capture interface, whereas other operating
systems provide proprietary capture facility. Due to good design of libpcap and its relatively porta-
ble interface, the authors decided to use it as unified capture interface and then wrapped platform-
specific packet capture libraries (e.g. NDIS [13] on Win32) around pcap-like interface. This has the
advantage that the ntop code is unique whereas the platform-specific code is limited only to a file.
The packet sniffer supports different network interface types including PPP, Ethernet and Token


Packet Sniffer


Packet Analyser


Report Engine







Proceedings of DSOM ’99, Zürich, Switzerland, October 1999. 3


Ring and allows captured packets to be filtered before being processed by the analyser. Packet fil-
tering is based on the BPF filter [11] facility part of libpcap. Filters are specified using simple ex-
pressions as those accepted by tcpdump.
Packet capture libraries have small internal buffers that prevent applications from being able to han-
dle burst traffic. In order to overcome this problem hence reduce packet loss, ntop buffers captured
packets. This allows the packet analyser to be decoupled by the packet sniffer and not to loose pack-
ets due to bursty traffic. It is worth remembering that ntop can operate on switched networks (e.g.
an Ethernet network that makes use of switches) as well as on traditional networks. This is because
modern switches allow global network traffic (or virtual LANs) to be mirrored to a specified switch
port. ntop can then be activated on a host that is attached to such a port.


2.2 Packet Analyser
The packet analyser processes one packet at time. Packet headers are analysed according to the net-
work interface being used. This is because headers are different depending on the network interface
(e.g. the Token Ring header is different from the Ethernet one). Hosts information is stored in a large
hash table whose key is the 48 bit hardware (MAC) address that guarantees its uniqueness and allow
different network protocols other than IP to be handled (e.g. TCP/IP addresses are meaningless in
non-IP networks). Each entry contains several counters that keep track of the data sent/received by
the host, sorted according to the supported network protocols. For each packet, the hash entry cor-
responding to packet source and destination is retrieved or created if not yet present. Because it is
not possible to predict the number of different hosts whose packets will be handled by ntop, it would
be almost impossible to have a hash table large enough to accommodate all the possible hosts. When
is necessary (e.g. periodically or if there are no entries left) ntop purges the host table in order to
avoid exhausting all the available memory and creating huge tables that decrease the overall per-
formance. Purged entries correspond to hosts that have not sent/received data for a long period of
time. This guarantees that ntop’s memory utilisation does not grow indefinitely and that packet
processing time does not increase linearly with the number of active hosts. If the received packet is
a non-IP packet, the protocol entry counters are updated and the packet discarded. Instead if the re-
ceived packet is an IP packet, then further processing is performed.
Caching is performed in two steps. First level caching is semi-persistent and based upon GNU gd-
bm[18].


Fig. 2. ntop caching


Second level caching is implemented using a SQL database. ntop caches locally semi-persistent in-
formation such as IP address resolution (mapping numeric/symbolic IP address) and remote host
operating system (computed using the queso [2] tool). Network events (e.g. TCP sessions), perform-
ance data and other relevant information is stored permanently into the database. Storage happens
either periodically or whenever the garbage collector has to purge some data. ntop talks with the
database by means of a client application. Such a client dialogues with ntop via UDP and commu-
nicates with the database using ODBC (Open DataBase Connectivity protocol). Whenever some
network information has to be stored into the database, ntop sends the client one or more UDP pack-
ets containing valid SQL statements. The client, currently implemented in both Perl and Java, re-
ceives the packets and executes the statement on the local database via Perl DBI (DataBase
Interface) or Java JDBC (Java DataBase Connectivity) depending on the implementation language.
This architecture allows ntop to be decoupled from a specific database and able to communicate
with remote database (e.g. the main company database) while having a very simple and light data-
base client.


ntop SQL Database


SQL Client


ODBC


UDP
ODBC







Proceedings of DSOM ’99, Zürich, Switzerland, October 1999. 4


The host entry shown below contains a counter for each of the user-specified IP protocols. 


Fig. 3. Host Hashtable Entry


For each IP packet, the appropriate protocol counter is updated. If the packet is an IP fragment, ntop
retrieves information such as source and destination port from the fragment hash table. Whenever
the first packet fragment is encountered, fragment information is stored in the hash table using the
packet fragmentId as hash key. Fragment information is removed as soon as the last fragment has
been received. Because it might happen that some packets (including fragments) have been
dropped, the fragment table is periodically analysed and outdated information is purged from it. The
host entry also contains a list (initially empty) of the host’s active TCP connections. ntop maintains
the state of each TCP connection analysing the IP flags. Hence if the received packet is a TCP pack-
et, then the host TCP connection list also needs to be updated.


Although host traffic counters can be profitably used to analyse network traffic, in some cases it
might be necessary to study specific traffic that flows through some specified hosts. ntop allows us-
ers to specify network flows. A network flow is a stream of packets that matches a user-specified
rule. Rules are specified using BPF expressions. Similar to NeTraMet flows, ntop network flows
can be used for specifying traffic of particular interest. For instance a simple network flow could be
the “total traffic NFS traffic between host A, B and C”, whereas a more complex flow is “the total
number of TCP connections rejected by the host D”. Network flows can be very useful for debug-
ging network problems, gathering statistical data or tracking suspicious access to some specified
network resources.


2.3 Report Engine
The actual version of ntop can be started in two ways:


• interactive mode
ntop runs in a character-based terminal and users can interact using keyboard keys.


• web-mode
ntop acts as an HTTP server and allows remote users to analyse traffic statistics by means of
a web browser.


ntop has been designed for being independent of the way traffic reports are created. The current re-
port engine contains two emitters for both text-based terminals and HTML. Independence from the
way reports are created is very important in order to guarantee application evolution. In fact if a new
mark-up language such as XML has to be supported, only the report engine needs to be extended
whereas the rest of the application remains unchanged. It is worth noting that custom reports and
statistics can also be generated using data stored by ntop into the SQL database.


3 ntop at Work


3.1 Interactive Mode
When ntop is started in interactive mode, traffic information is shown in a character-based terminal
window as shown below.


Protocol Traffic Counters


IP Traffic Counters


TCP/UDP Connections Stats


Active TCP Connections List


Peers List







Proceedings of DSOM ’99, Zürich, Switzerland, October 1999. 5


Fig. 4. ntop: Interactive Mode


Column ➊ contains the list of hosts that have sent/received data, column ❷ specifies the actual host
state (S=send, R=receive, B=send/receive and I=idle). Column ❸ contains the total data sent/re-
ceived by each host, whereas column ❹ is a detailed view of the previous column. Users can change
the sort order or the shown protocols simply by pressing the appropriate keys. The terminal is up-
dated periodically as specified by the user. ➎ indicates the total observed traffic (packets and bytes)
since the time ntop has been started, whereas the actual and maximum network throughput is shown
in ❻.


3.2 Web Mode
The ntop interactive mode has been conceived as a quick network diagnostic tool for users who need
to have a quick look at the actual network traffic (e.g. when the network is slow and it is necessary
to find out which hosts are decreasing the overall performance). Instead, the web-mode turns ntop
into a full fledged web-based management application [10] as shown in the following figure.


Fig. 5. ntop: Web Mode


The web-mode has been designed as a long standing statistics gathering application able to provide
users a detailed view of the current and past network activities. The web interface has been selected
because it guarantees client independence and allows multiple users to be served. However, in order
to prevent unauthorised users from accessing sensitive data as traffic information, ntop implements







Proceedings of DSOM ’99, Zürich, Switzerland, October 1999. 6


the standard HTTP password protection scheme. Administrators can specify at user level what in-
formation can be presented to remote users in order to avoid exposing sensitive information to po-
tential hackers while giving the chance to show all the network statistics to selected people. Users
connect their web browsers directly to ntop that acts as an HTTP server. The entry page is divided
in two frames: the left frame is used for navigating through traffic information displayed in the right
frame. Users can fully customise the layout and change the menu content/position as needed. All
the relevant table columns are sortable simply by clicking on the column name. Whenever appro-
priate hyperlinks are used for correlating information. HTML pages are periodically refreshed au-
tomatically or on user request. Beside the information also shown in interactive mode, the web
mode contains additional statistics including:


• IP multicast.


• Host information
Data sent/received, contacted peers, active TCP sessions, TCP/UDP session history,
provided/used IP services, bandwidth currently in use.


• Traffic Statistics
Local (subnet) traffic, local vs. remote (outside specified/local subnets), remote vs. local,
packet statistics (similar to RMON), network throughput (actual, peak, average).


• Currently active TCP sessions.


• IP/non-IP Protocol Distribution
Distribution of the observed traffic according to both protocol and source/destination (local
vs. remote).


• Local subnet traffic matrix.


• Network Flows
Traffic statistics for each user-defined flow.


• Local network usage
Detailed statistics about open sockets, data sent/received, and contacted peers for each
process running on the host where ntop is active. 


ntop makes use of a tool named lsof [1] for calculating the local network usage. lsof is used at start-
up by ntop for getting the list of open IP ports for each of the running processes. ntop runs lsof pe-
riodically or whenever a remote host sends/receives data to/from a local port that was not active
when lsof was last executed. Although the use of lsof is not very elegant, it is justified by the fact
that there is no portable way to retrieve the list of open IP ports for each running process, and even
if ntop would implement that functionality, ntop has to periodically poll the kernel because there is
no way to be notified when a port is open/closed.


3.3 When to use ntop?
ntop can be profitably used to both monitor the network when some problems arise or just to analyse
the overall network status including but not limited to:


• Protocol monitor
Determine what protocols are used and identify those computers that speak unnecessary
protocols. For instance, the Windows™ operating system install by default protocols such as
NetBeui and IPX while most of the people use just TCP/IP.


• Network service usage
Services such as DNS and NFS can be easily monitored. This allows network administrators
to both analyse the impact of selected protocols on the overall network performance and
identify those applications (e.g an FTP server) that have been silently installed in the network
without authorisation.


• Network utilisation
ntop is able to identify what computers are using most of the network resources, as well as
graph network bandwidth usage over the time.


• Security







Proceedings of DSOM ’99, Zürich, Switzerland, October 1999. 7


Portscan, denial of service and other security flaws are traced by ntop and once stored on the
database can be used to identify those hosts that violated the overall network security.


In general, ntop combines features otherwise present in various tools not always easy to integrate.
Its unique user interface allows administrators to immediately take advantage of ntop without the
need to purchase and manage client applications that are necessary for tools such as RMON or Ne-
TraMet. In addition, database support makes ntop suitable not only for network problem debugging
but also for long standing network monitoring.


3.4 Performance Issues
ntop performance is quite good basically for five reasons:


• libpcap (or NDIS on Win32) performance is excellent;


• packet loss is very low (if any) because captured packets are buffered twice both inside the
kernel and ntop; 


• potentially long running actions (e.g. IP address resolution) are implemented asynchro-
nously;


• ntop spawns several threads that prevent user interaction (e.g. HTTP user requests) from
interfering with data collection;


• ntop makes extensive use of hash tables whose indexes are easy to compute yet fast during
information retrieval due to the nature of network addresses (e.g. they are unique and already
in 32/48 bit numeric format).


Users have tested ntop extensively on various network media running at different speeds. In general,
ntop performance is greatly influenced by the other running processes because some CPU-greedy
applications may take up the whole CPU cycles for a few seconds causing packet loss. Supposing
to run ntop on an average loaded host, tests shown that ntop can work with very low (if any) packet
loss on a 100 Mbit ethernet.
Nevertheless, performance is strongly influenced by per-packet processing. In fact the more net-
work flows are defined, the more processing time is required hence the higher is the probability of
dropping some packets. Due to the way ntop works, if a packet gets lost major problems may arise.
In fact suppose to loose the first fragment of a TCP packet containing the FIN flag. In this case there
are two problems:


• the fragment entry for the packet is not created, hence the following packets cannot be
handled properly;


• ntop does not know that a peer intends to close the TCP connection (three way handshake).


In order to overcome the above mentioned problems, ntop implements internal timeouts and peri-
odical garbage collection in order to purge old data and speculate about the state of active connec-
tions. For instance, if there is no data flowing on a connection for a very long period of time, then
the connection might have been closed. In this case ntop assumes that the connection has been
closed and then the connection entry is purged. This allows ntop to recover whenever some packets
get lost and not to get stuck waiting for some lost packet to arrive.


4 Lessons Learned
ntop has been a great exercise in many respects:


• ntop performance
It is a challenge to process packet efficiently while having rich traffic statistics. That is why
the C language has been preferred to other languages such as Java. In fact, the current ntop
version runs on hosts with very limited memory whereas an early prototype written in Java
had serious performance problems and needed a lot of memory (due to the use of JIT
compilers) that prevented it from running on average loaded networks.


• IP Protocol Stack
Almost every operating system uses IP flags differently, and some protocols (e.g. HTTP)







Proceedings of DSOM ’99, Zürich, Switzerland, October 1999. 8


make extensive use of IP flags for performance optimisation. This pushed the authors to
update the ntop TCP protocol engine (used to keep the status of the TCP connections) several
times before to reach the actual version. It is worth to note that tools like queso and nmap [8]
exploit peculiarities of IP stack implementation in order to guess the running operating
system.


• Open Source Software
The adoption of OSS allowed both ntop to be extensively tested on a very large number of
different systems and deeply influenced ntop’s design. In fact, many ntop features have been
implemented because some users asked for them and several problems have been fixed
because somebody studied the code, tackled the problem and sent back the code patch.


5 Future Work
Although ntop already contains many features that were not planned at the beginning, a few en-
hancements are necessary in order to increase its flexibility and make it open to extensions. Planned
enhacements include, but are not limited to:


• Operating System Integration
It is unknown to the authors why modern operating systems handle network communications
differently from processes. Processes can be listed, changed of priority, killed. The same
should be applied to network communications. For instance, users should be able to list and
terminate active TCP connections (even those that do not include the host where ntop runs)
as described in [5]. Security issues need to be further investigated.


• Application Extensibility
As of today ntop is a monolithic application that does not allow users to add new specific
features. It is the authors belief that user-specific extensions to the ntop kernel would not
make too much sense. A possible solution to this problem is the definition of a clean
programming interface that allows users to write software components (plugins) [6] able to
solve a specific problem. For instance if a user needs to periodically store in a database the
used network bandwidth, then a plugin could be written for this purpose. The use of plugins
allows users to extend ntop in a clean way by using specified interfaces without having to
extend the ntop core with new peculiar functionality.


• SNMP
The actual ntop implementation cannot be easily integrated with a management platform.
This is because ntop supports HTTP whereas management platforms usually speak SNMP.
The natural way to add SNMP support to ntop, would be the definition of a specific MIB (or
selected parts of existing MIBs) and the support of the SNMP protocol. In that way ntop could
act as a SNMP agent able to both handle incoming request and emit traps when some user-
specified thresholds are exceeded.


6 Final Remarks
This work attempted to demonstrate that it is possible to analyse network traffic without having to
purchase either expensive management platforms or network probes. Established tools such as ping
and traceroute can be profitably used for solving connectivity problems whereas ntop can be used
as a magnify lens for analysing global network traffic. The ntop interactive mode has been con-
ceived as a quick network diagnostic whereas the web mode provide users a detailed view of the
current and past network activities. ntop’s lightweight cpu utilisation, minimal requirements, and
support of various network media make it suitable for all those people who want to analyse network
traffic without having to afford an expensive management platform.


7 Availability
Both ntop and libpcap for Win32 are distributed under the GPL2 licence and can be downloaded
free of charge from both the ntop home page (http://www-serra.unipi.it/~ntop/) and other
mirrors on the Internet. Some Unix distributions including FreeBSD and Linux, come with ntop pre-
installed.







Proceedings of DSOM ’99, Zürich, Switzerland, October 1999. 9


8 Acknowledgments
The author would like to thank all the ntop users and early adopters who deeply influenced the de-
sign of the overall architecture with all their comments and suggestions. 


9 References


1. Abell V.: lsof, ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/ (1998).


2. Apostols E.: queso, http://www.apostols.org/ (1998).


3. Binns R.: top (1993).


4. Brownlee N.: NeTraMet v.4.2 Users’ Guide, http://www.auckland.an.nz/net/Ac-
counting/ (1998).


5. Claerhout B.: IP Spoof (1996).


6. Deri L.: Droplets: Breaking Monolithic Applications Apart, IBM Research Report RZ
2799 (1995).


7. Deri L.: Surfin’ Network Management Applications Across the Web, Proceedings of
2nd Int. IEEE Workshop on System and Network Management (1996).


8. Fyodor: Remote OS detection via TCP/IP stack fingerprinting, http://www.inse-
cure.org/nmap/nmap-fingerprinting-article.txt (1998).


9. Jacobson V., Leres C., and McCanne S.: tcpdump, Lawrence Berkeley National Labs,
ftp://ftp.ee.lbl.gov/ (1989).


10. Jander M.: Web-based Management: Welcome to the Revolution, Data Communica-
tions (1996).


11. S. McCanne and V. Jacobson: The BSD Packer Filter: A New Architecture for User-lev-
el Packet Capture, Proc. of 1993 Winter USENIX Conference, 1993.


12. S. McCanne, C.Leres and V. Jacobson: libpcap, Lawrence Berkeley National Labs,
ftp://ftp.ee.lbl.gov/ (1994).


13. Microsoft Corporation: NDIS Packet Driver 3.0 (1996).


14. Ranum M., and others: Implementing a Generalized Tool for Network Monitoring, Proc.
of LISA’97, USENIX 11th System Administration Conference, http://www.nfr.com/
forum/publications/LISA-97.htm (1997).


15. Raymond E.: The Cathedral and the Bazaar, http://www.tuxedo.org/~esr/ (1998).


16. Stevens R.: UNIX Network Programming, Volume 1, 2nd Edition (1998).


17. Waldbusser S.: Remote Network Monitoring Management Information Base, RFC 1757
(1995). 


18. Free Software Foundation, GNU gdbm, http://www.gnu.org/software/gdbm/
(1999).






