
Wire-Speed Hardware-Assisted Traffic Filtering with
Mainstream Network Adapters

Luca Deri 1, Joseph Gasparakis 2, Peter Waskiewicz Jr 3, Francesco Fusco 4 5

1 ntop, Pisa, Italy

2 Intel Corporation, Embedded and Communications Group, Shannon, Ireland
3 Intel Corporation, LAN Access Division, Hillsboro, OR, USA

4 IBM Research - Zurich, Rüschlikon, Switzerland
5 ETH Zurich, Switzerland

deri@ntop.org, joseph.gasparakis@intel.com,
peter.p.waskiewicz.jr@intel.com, ffu@zurich.ibm.com

Abstract. Modern computer architectures are founded on multi-core
processors. In order to efficiently process network traffic, it is necessary to
dynamically split high-speed packet streams across cores based on the
monitoring goal. Most network adapters are multi-core aware but offer limited
facilities for assigning packets to processor cores.
In this paper we introduce a hybrid traffic analysis framework that leverages
flexible packet balancing mechanisms available on recent 10 Gbit commodity
network adapters not yet exploited by operating systems. The main contribution
of this paper is an open source hardware-assisted software layer for
dynamically configuring packet balancing policies in order to fully exploit
multi-core systems and enable 10 Gbit wire-speed network traffic analysis.

Keywords: High-speed network traffic monitoring, hardware-assisted dynamic
packet filtering, commodity hardware, operating system design.

1 Introduction

The complexity and heterogeneity of monitoring tasks, such as anomaly and intrusion
detection, traffic classification and application level analysis [1], gradually caused a
shift from dedicated network devices toward hybrid software and hardware
architectures which are more flexible and easier to maintain than dedicated
monitoring devices [2]. Along with hardware-based solutions [20], researchers have
demonstrated that the performance of traffic analysis applications running on
commodity hardware can be substantially improved by properly accelerating selected
operating system tasks [19, 21, 22]. However, the performance gap between pure
software solutions and hardware assisted ones has been significant. Recent advances
in off-the-shelf server technologies suggest that the gap can be substantially reduced.
In fact, modern servers are based on advanced multi-core processors featuring

integrated memory controllers and high-speed and low latency interconnections. In
addition, off-the-shelf network interface cards (NICs) are supporting new advanced
features such as message signaled interrupts (MSI-X), multi-queue capabilities and
virtualization support, which have been designed to boost the network performance in
specific scenarios. The trend is to introduce into NICs the logic for offloading
workstations from computationally intensive network operations. With the advent of
multi-core processors, balancing the networking workload among cores is necessary
in order to increase the networking performance of network services. Therefore,
modern interface cards provide multiple independent reception (RX) and transmission
(TX) queues and hardware traffic splitting techniques to distribute the traffic among
cores.
Unfortunately, traffic monitoring software did not fully benefit from these new
breakthrough technologies. The reason is that software layers on top of which
network monitoring applications are implemented, such as network device drivers and
operating systems, are not designed for exploiting these features for network
monitoring purposes.
In this work we present a flexible and extensible framework that simplifies the
development of complex and yet efficient traffic analysis applications running on
commodity hardware. The main contribution of this work is a novel traffic balancing
and filtering networking layer optimized for traffic analysis purposes that fully exploit
advanced features implemented by modern off-the-shelf NICs. The framework is
characterized by the following properties:
• It provides an API for hardware-assisted traffic filtering and balancing across cores.
• It can be deployed on sub-1000$/port commodity network adapters which are more

than an order of magnitude cheaper than dedicated traffic monitoring devices.
• The filtering mechanisms are flexible and able to address common problems

monitoring scenarios such as adaptively balancing the incoming traffic among cores
or dynamically filtering incoming traffic.

• It can be used as a building block for designing complex yet efficient monitoring
applications.

• It is publicly available at no cost under the GNU GPL license.

The rest of the paper is structured as follows. In section 2 we describe how the
software framework we designed few years ago could benefit from modern NICs in
particular for supporting in hardware those features we previously implemented in
software. In section 3 we position the work described in this paper against similar
efforts. Section 4 describes the design and implementation of a new software layer
that allowed us to offload traffic filtering to modern NICs. Finally section 5 describes
some common use cases we used to evaluate the developed solution hence to
demonstrate that this work is a major step ahead with respect to existing software-
only solutions.

2 Motivation and Scope of Work

The intrinsic dynamism of Internet protocols has increased the demand for flexible
monitoring frameworks designed to speed up the development of efficient and cost
effective applications capable to analyze modern network protocols. Nowadays, most
network monitoring infrastructures are built around hybrid frameworks combining the
flexibility of software and the performance of hardware accelerators designed to
offload network probes from selected computationally expensive tasks. The design of
hybrid frameworks requires expertise in software, firmware and hardware
development, as well substantial investments that have a negative impact on end-user
prices. In fact, since the target of these devices is a niche market, their price is in
order of magnitudes higher than commodity off-the-shelf network interfaces.
Packet capture accelerators are the most cost effective solution for improving
software based traffic monitoring applications. As packet capture is the cornerstone of
many passive monitoring application, capture accelerators have been able to provide
substantial speedups to traffic monitoring applications by allowing incoming traffic to
be copied directly into the address space of the analysis process without any CPU
assistance.
In our past research, we focused on pure-software traffic analysis frameworks. In
particular, we proposed filtering solutions that are capable to overcome the limitations
of the popular Berkley Packet Filter (BPF) [8], a rule-based traffic filtering
mechanisms provided by the majority of the operating systems. In [9] we describe a
traffic filtering mechanism that, contrary to BPF, can be reconfigured in real-time and
scale in terms of number of traffic filtering rules. In [10] we present a traffic filtering
and analysis framework named RTC-Mon that substantially simplifies the
development of modular and efficient traffic monitoring applications. The core of the
framework is a rule-based infrastructure that allows traffic analysis components to be
enabled over the traffic matching rules. By introducing services for IP de-
fragmentation, packet parsing and maintenance of flow state statistics, the
development efforts for implementing monitoring applications are substantially
reduced. The framework is useful for implementing traffic analysis applications, such
as VoIP and IPTV monitoring software, where traffic filters must be added/removed in
real-time.
In our previous works, we decided not to leverage any specific monitoring device in
order to reduce costs and simplify the deployment. In this work instead, we evaluate
the opportunity of accelerating our framework by exploiting mainstream NICs.
Unlike special purpose monitoring hardware, off-the-shelf network interfaces target
the mainstream market and therefore come at low end-customer prices. Even if these
NICs are not designed for accelerating monitoring software but rather tasks as
virtualization, some of their features can be successfully exploited for increasing the
performance of traffic analysis applications.

Modern off-the-shelf adapters provide several independent RX/TX queues and
hardware-based mechanisms such as Receive-Side-Scaling (RSS) that balance
network flows among RX queues mapped on processor cores. By splitting the traffic
among queues, the workload, both in terms of packet processing and interrupts can be
balanced across cores for better exploiting the intrinsic parallelism of modern
computing architectures. As of today, the majority of server class adapters in the
market are multi-queue enabled and support RSS for splitting the traffic across
queues. The main limitation of RSS is that the balancing policy is static hence it
cannot be adapted to changing traffic conditions. This represents a serious limitation
as workload unbalances correspond to scalability penalties. Even if it is possible to
augment RSS with software based traffic balancing policies, this approach is, in
practice, unfeasible for high-speed networks as the performance penalty is severe.
Therefore, NIC manufacturers are introducing the second generation traffic balancing
hardware mechanisms that are dynamically configurable in order to adapt traffic
balancing policies to every traffic condition. Although these mechanisms have been
introduced for enhancing general purpose networking, we believe that packet filtering
will also benefit from these breakthrough balancing technologies, and therefore, the
performance gap between special purpose monitoring devices and off-the-shelf
network adapters would be reduced.
In this work we present an advanced and yet easy to use open source software
framework that leverages the customizable hardware assisted traffic balancing and
filtering features introduced in modern NICs. As these filtering features will likely be
available in future NIC cards manufactured by various vendors just as happened with
RSS, we believe that this work is not limited only to the specific NIC we considered
in this paper, but it paves the way to supporting a new family of cheap 10 Gbit (and
40 Gbit in the future) network adapters.

3 Related Work

The industry followed three paths for accelerating software applications by means of
specialized hardware while preserving the software flexibility:
• Accelerate the capture process via packet capture accelerators [3, 4] that allow

incoming packets to be copied directly to the address space of monitoring
applications without any CPU intervention.

• Split the monitoring workload among different network probes using smart traffic
balancers [5] so that each probe receives and analyzes a portion of the traffic.

• Run traffic analysis software on programmable network cards based on network
processors [6] or massive parallel architectures [7]. Programmable network cards
are massive parallel architectures on a NIC. Monitoring applications are
implemented in C and executed on these device [7] that run a modified version of

Linux which simplifies the porting of existing applications on top of this special
purpose architecture. However, even if they have been able to substantially simplify
the development compared to network processors based cards, the porting is still
not trivial.

Most general purpose operating systems support rule based filtering mechanisms such
as the BPF where filtering expressions are compiled into an intermediate language
and interpreted by a virtual machine running at the kernel layer. PF_RING [11] is an
advanced network monitoring framework enhancing Linux with more flexible
filtering mechanisms implemented in software by means of kernel modules. NetVM
[15, 16] is a virtual machine designed to simplify the development and maintenance
of complex and yet efficient packet processing applications running on top of
heterogeneous network devices. FFPF [17] is an extensible and high-performance
packet capture and filtering architecture based on Linux. Contrary to our work, FFPF
does not leverage modern multi-core or multi-queue interfaces. The SCAMPI project
[18] provides a feature rich monitoring API but it has been designed to run on top of
specialized monitoring devices and therefore it yields poor performance when running
over commodity hardware. [22] describes a framework for high-speed networks
monitoring that provides features such as IP defragmentation and flow reassembly,
that relies on a pure-software implementation of a packet scheduling algorithm
proposed in [23]. Our work instead, exposes to the software layers an API to design
hardware assisted packet schedulers.
Capture accelerators based on FPGA, implement filtering mechanisms at the network
layer by means of rule sets (usually limited to 32 or 64) similar to BPF. Filtering runs
at wire-speed. As the rule set is not meant to be changed at runtime, its scope of
application is drastically limited. Often traffic filtering is used to mark packets and
balance them across DMA engines. Traffic balancing policies are similar to RSS and
are usually implemented at the FPGA layer and allow the traffic to be split among
cores within a multi-core processor. As for traffic filtering, dynamically updating the
traffic balancing policies at run-time is in practice unfeasible as a card reconfiguration
may require seconds if not minutes.

4 Framework Design

In our past research, we developed an extensible traffic analysis framework
implemented under the Linux Kernel called PF_RING [11] which accelerates packet
capture and implements packet parsing and filtering by means of dynamically
loadable kernel plugins. A user space library called libpfring provides an easy to use
API that allows user space applications to interact with the framework.

Fig. 1. PF_RING Monitoring Framework.

PF_RING runs on top of commodity network interface cards and can use both
standard NIC drivers or PF_RING optimized drivers. These drivers, available for
popular 1 and 10 Gbit adapters produced by vendors such as Intel and Broadcom,
push incoming packets directly to PF_RING without passing through the standard
kernel mechanisms hence accelerating capture speed.
PF_RING provides a flexible rule-based mechanism that allows users to assign
packets to kernel plugins which are then responsible to dissect, order in flows, and
compute flow metrics (e.g. voice quality) directly at the kernel layer without copying
packets to user space. For example, it is possible to configure PF_RING to dispatch
TCP packets on port 80 to the HTTP plugin, and UDP packets on port 5060 to the
SIP plugin. The same rule-based mechanism can be used for filtering out from
PF_RING analysis unwanted packets (e.g. discard packets coming from a specific
host or port) similar to what the firewalling layer does at an operating system level.
With the advent of multi-core systems and multi-queue adapters, PF_RING has been
extended with support of virtual RX queues [12], that enable specific plugins/user
space applications to receive traffic from specific RX queues. The PF_RING kernel
infrastructure is responsible to exploit facilities such as RSS for balancing and
assigning packets to cores while queue information is preserved in received packets.
In summary, PF_RING has become an advanced framework that thanks to its rule-
based mechanism, has been capable to simplify the engineering of modular
applications and not just accelerate packet capture. However, the rule-based
mechanism has been completely implemented in software, and therefore, it is
inefficient at very high speed such as 10 Gbit.
Last year Intel introduced X520, a 10 Gbit card based on the new 82599 ethernet
controller [13]. What makes this adapter interesting for PF_RING, is the ability to
support in hardware dynamically configurable flow affinity filters for classifying, load
balancing and dispatching traffic flows to processor cores. The filtering mechanisms
introduced by 82599 can be seen as a fine-grained RSS that allows selected flows to
be classified and dispatched towards specific cores based on configurable packet
filters and not on RSS hashing.

Network Interfaces

PF_RING

PF_RING Plugins

PF_RING-aware NIC Drivers

libpfring

PF_RING
Monitoring
Framework

U
se

r S
pa

ce
K

er
ne

l S
pa

ce

Fig. 2. Integrating 82599 with PF_RING.

The availability of this affinity facility in commodity adapters has been the natural
solution to address performance issues of PF_RING at 10 Gbit. Exploiting the flow
affinity filters is indeed attractive for:
• leveraging hardware facilities for dispatching packets across PF_RING plugins

enabled on selected RX queues;
• dropping unwanted packets in hardware inside the NIC before they hit the driver.

In a nutshell, flow affinity filters introduce new opportunities, not yet exploited by
operating systems and monitoring applications, for the implementation of hardware
assisted packet schedulers capable to accelerate traffic analysis applications by fully
exploiting the parallelism offered by multi-core architectures.
As we believe that 82599 is just the “first of a kind” and similar flow affinity filters
mechanisms will soon be introduced by other vendors, PF_RING has been extended
not only to exploit these features as implemented by 82599 but also to support future
NICs providing similar capabilities. For this reason we introduced a new hardware-
neutral software layer that is responsible for setting up specific flow affinity filtering
rules in hardware. This layer has not been designed for natively supporting the 82599
controller in PF_RING, but rather as a foundation layer for offloading selected
filtering tasks to those NICs that feature flow affinity filters. This means that:

• not all facilities offered by 82599 have been supported yet (e.g. IEEE 1588 time
synchronization), but only those (i.e. flow affinity filters) that can be currently
exploited by PF_RING for accelerating its operations (i.e. we have not added
support of 82599 in PF_RING, but rather exploited those 82599 features that can
accelerate PF_RING);

• adding support in PF_RING for flow affinity filters-like features in future NICs,
will not require PF_RING redesign but it will just require the implementation of
new extensions into PF_RING-enabled NIC drivers;

RX Packet

Match 5-tuple Filter

Match Flow
Director Filter

RSS

No

No

RX Queue
Assigned

RX Queue
defined by 5-
tuple Filter

RX Queue
defined by Flow
Director Filter

Yes

Yes

RX
Queue

RX
Queue

RX
Queue

RX
Queue

RX
Queue

PF_RING-aware Driver

PF_RING

• existing applications such as RTC-Mon will not need to be recoded (but just
slightly modified) in order to exploit flow affinity filters, as PF_RING
transparently sets in hardware the appropriate flow affinity filters.

PF_RING supports two families of filters: precise filters where the whole <vlan,
protocol, ip/port src, ip/port dst> tuple needs to be specified, and
wild card filters where some filter parameters can be unspecified (e.g. tcp and
port 80). When a packet is received, PF_RING uses the “best match first” policy,
so it will first try to match the packet against configured precise filters, and in case of
no match against wild card filters. Packets matching a filter will be passed to the
specified plugin or action, if configured. Hardware flow affinity filters support has
been added into PF_RING as follows:
• PF_RING-aware drivers notify (when the driver is loaded inside the kernel) the

PF_RING engine whenever a given NIC supports flow affinity filters.
• PF_RING has been extended with a new function named
handle_hw_filtering_rule() that allow precise and wild carded filters to
be added/removed inside NICs.

• For each NIC supporting flow affinity filters, PF_RING adds a virtual file whose
path is /proc/net/pf_ring/ethX/rules that network administrators, and
not just monitoring applications, can use for adding/removing filters by means of a
simple echo of a string on it. For instance echo “+(1,-1,tcp,
192.168.0.10,25,0.0.0.0,0)” > /proc/net/pf_ring/eth3/
rules, instructs PF_RING to add in the eth3 device a new filtering affinity rule
with id 1 and that sends all TCP packets from 192.168.0.10:25 to the core id -1.
Since the identifier -1 does not correspond to a physical processor core, this rule
allows packets matching the filter to be dropped at the NIC layer. Using another
existing queue id would simply advise the filtering mechanism to direct the packets
to the appropriate queue and hence through the SMP affinity mechanism in the
Linux kernel into the desired core.

In order not to modify the existing driver structure by introducing new hooks for
adding and removing filters, we decided to jeopardize some existing driver hooks.
The advantage is that all current drivers do not need to be changed, and this gives us a
way to migrate towards packet filtering integration when supported in Linux1. The
data structure used to pass filter specifications to drivers is generic and does not rely
on 82599 specific data types. In this way, the efforts for supporting future network
adapters providing similar features will be substantially reduced. 82599 provides
several types of filters including layer 2 and FCoE (Fibre Channel over Ethernet), but

1 In kernel 2.6.34 the ethtool, not the kernel itself, introduced limited support for EFD
thanks to patches we submitted to Linux kernel maintainers.

as PF_RING supports only precise and wild card filters, we focus only on 5-tuple and
flow director filters that are very close to PF_RING filters:

• 5-tuple filters (up to 128 filters can be defined in 82599) allow packets belonging
to flows identified by the 5-tuple <protocol, ip source, port source, ip destination,
port destination> to be forwarded to a specific RX queue. 5-tuple filters are
defined as <id, protocol, ip/port src, ip/port dst, target
RX queue id>. Some of the fields specified in a 5-tuple filter can be
“masked” (i.e. wild carded) in order to avoid comparing them against incoming
packets.

• Flow Director (FD) filters can be specified as precise (i.e. the filter members are
matched precisely against incoming packets) or hash (i.e. the packet hash is
compared against the filter hash, conceptually similar to bloom filters [14])
filters. 82599 supports up to 32k precise filters. The number of distinct hash
filters is not limited by design. However, the adoption of excessive hash filtering
rules may lead to false positives. FD filters are expressed as <slot id,
VLAN, protocol, ip netmask/port src, ip netmask/port
dst, target RX queue id>. Currently all configured filters must have
the same mask defined in 82599.

The 82599 adapter is quite different from many FPGA-based NICs as it does not use
a TCAM (Ternary Content Addressable Memory) for handling filters. This means that
a filter is configured by setting up specific NIC registers and, therefore, that the last
configured filter overwrites the previous register value. For this reason, it is not
possible to read from the NIC all configured filters, and therefore the driver has to
maintain the list of configured filters. The advantage of this approach is that, contrary
to many FPGA-based NICs where setting a filter requires card reconfiguration, in
82599 setting a filter is extremely fast and from the application point of view it takes
as long as the setsockopt() system call necessary to pass the filter specification
to the kernel, making this NIC usable in environments where filter configuration has
to be dynamically changed.

5 Use Cases and Validation

Validation has been performed using an IXIA XM12 10 Gbit traffic generator and a
NUMA computer using a single 6-core Xeon® X5650 (Westmere) CPU at 2.67GHz.
In all tests we have injected IPv4 UDP traffic with random payload at wire speed, and
compared the number of packets sent by the traffic generator with those reported by
pfcount, a simple packet-counting application running on top of PF_RING. pfcount
spawns and binds a thread per core (i.e. thread X is bound to core X). The injected
traffic contained 6 flows, each balanced to an individual core using hardware filtering

rules. Packets have been captured using the standard NAPI-based 82599 driver
enhanced with PF_RING and hardware filtering support.

Table 1. Hardware vs. Software Filtering Comparison

Frame Size
(Bytes)

Test 1Test 1 Test 2Test 2Frame Size
(Bytes) Software Filter

(Capture Rate)
Hardware Filter
(Capture Rate)

Software Filter
(CPU Load)

Hardware Filter
(CPU Load)

64 5.7% 6.3% 95.6% None
128 10.0% 11.6% 95.4% None
256 19.5% 23.2% 98.7% None
512 37.4% 42.3% 3.5% None
1024 99.8% 100% 3.3% None
1518 99.6% 100% < 0.1% None

In the first test we compared hardware (i.e. 82599) vs. software (i.e. PF_RING)
packet filtering using a single filtering rule that match for every incoming packet (i.e.
the entire traffic is forwarded to the user space). In the second test we have injected
traffic that does not match any configured filter, and verified that there is no load on
the CPU whenever hardware filters are used. On the contrary, what we observed with
software filters, is that for packets up to 256 bytes the CPU utilization was around
95%, and about 3% for larger packets. This leads us to the conclusion that in the
hybrid model of software and hardware filtering we propose, it is recommended to use
software filters only for medium to large packets.
In order to further improve packet capture, the authors have developed TNAPI [25], a
multithreaded RX queue polling mechanism that significantly improves packet
capture performance with respect to the standard Linux NAPI.

5.1 Realtime Multimedia Traffic Monitoring

As described earlier in this paper, RTC-Mon has been designed to efficiently handle
VoIP calls and video-on-demand traffic analysis at 1 Gbit. In order to scale the
solution to 10 Gbit, we have slightly modified the original RTC-Mon code as follows:
• A few 5-tuple filters have been configured:

• All the SIP signaling packets go to core 0.
• Non UDP (i.e. ICMP/TCP) packets are dropped.
• UDP traffic on popular ports (e.g. port 53 used by DNS) is also dropped.

• Whenever a new VoIP call has been setup, such call is tracked by adding two FD
filters (one per call direction) that send the voice traffic for the tracked call (i.e.
RTP traffic) to the same RX queue where the RTP plugin is active. In order to
evenly balance the traffic across queues, the queue ids used for voice traffic are
selected in round robin so that all queues have almost the same amount of traffic.

This setup has allowed RTC-Mon to operate efficiently in 10 Gbit links where VoIP is
only a portion of the overall traffic, thanks to 82599 filters used to discard packets not
belonging to calls being tracked. Unfortunately, not all unwanted packets have been
discarded and a small portion of them is still received by PF_RING. This is because
5-tuple filters are evaluated before FD filters, hence it is not possible to set 5-tuple
rule that discards all the remaining traffic because this would also discard traffic that
matched by FD filters. It is worth noting that the ability to setup thousands of flow
affinity filters with almost no latency is a key factor for using effectively 82599 in
cases where filter setup latency is crucial as with RTC-Mon.

5.2 Network Troubleshooting

Troubleshooting a heavily loaded 10 Gbit link using popular tools such as tcpdump
and wireshark [24] is almost impossible due to severe packet capture loss.
Furthermore, most commercial tools are not distributed with source code, hence it is
not possible to recompile them in order to take advantage of PF_RING flow affinity
filters. In this case, we used PF_RING’s /proc interface for setting a few traffic
filtering rules that discard in hardware unwanted traffic, hence pass to the Linux
kernel only those packets that must reach network monitoring applications. This
solution has the advantage that existing applications do not need to be modified, and
PF_RING is used just for allowing the network administrator to easily configure (e.g.
using a shell script) flow affinity filters without having to code a C/C++ application
sitting on top of libpfring.

5.3 Traffic Classification and Balancing

In case monitoring applications do not run on the same box where an 82599 based
NIC is installed (e.g. because they run on a non-Linux OS such as Windows), it is
possible to create a traffic filtering box using the pfreflect application part of
PF_RING, that filters incoming packets and copies them onto one or more NICs
based on the PF_RING filters configuration. As PF_RING filters (hence flow affinity
filters) are evaluated before reflection (i.e. packet bridging in PF_RING parlance), this
application can be used for creating an inexpensive traffic filtering box that can be
used for reducing the amount of traffic to analyze. If the filtered traffic is less than one
Gbit it can be forwarded onto a 1 Gbit card so that legacy measurements box do not
need to be updated to 10 Gbit. Furthermore as PF_RING supports traffic balancing, it
is possible to forward filtered traffic onto several output interfaces by balancing each
RX queue of 82599 onto a different output interface. This solution allows high-speed
links to be monitored and troubleshooted without having to purchase costly 10 Gbit
measurement boxes.

5.4 Lawful Interception of Internet Traffic

Since the approval of the wiretapping in the US in 1984, lawful interception (LI) has
become very popular. In LI a lawful authority requires to intercept and store specific
traffic for the purpose of analysis or evidence. In IP networks, this means that traffic
originated/directed to specific IPs or flowing on specific ports need to analyzed.
Doing this on a 10 Gbit link using software-based traffic filters can be inefficient as
packet loss might prevent captured traffic from being analyzed properly. In order to
implement a simple packet capture system driven by signaling protocols such as
Radius or DHCP, it is possible to setup (e.g. via the PF_RING /proc filesystem
interface) a few filtering rules that discard all traffic except signaling (similar to the
setup used in 5.2) and traffic belonging to target IPs that need to be intercepted.

5.5 Firewalling at 10 Gbit

The Linux netfilter/iptables firewall is quite efficient but it cannot operate with no loss
on heavily loaded 10 Gbit links. The use of 5-tuple filters can definitively help
dropping unwanted traffic or tracking NAT sessions using FD filters. Unfortunately
the Linux firewall is more flexible than 5-tuple filters, hence it is not possible to do a
one-to-one mapping between iptables rules and 5-tuple filters. This means that 82599
can be used to discard a large portion of incoming traffic but not all, leaving to
netfilter the duty of completing packet filtering. Nevertheless this hybrid, hardware
plus software, filtering architecture allows to significantly boost the firewall
performance in most situations. Currently we are add filters using the PF_RING /proc
filesystem interface as we have not yet added native 82599 support into netfilter.

6 Open Issues and Future Work

The main limitation of the current implementation is the lack of a compiler that
transparently compiles BPF filters into PF_RING (hence flow affinity) filters. Due to
this limitation, users must configure both BPF filters (e.g. on the command line while
starting the monitoring tool) and flow affinity filters (e.g. using the PF_RING /proc
filesystem). In future code releases we plan to implement such feature so that BPF-
aware applications (e.g. Wireshark) can still use BPF for setting filters while the
underlying kernel layers add automatically flow affinity filters in order to reduce the
amount of packets that will hit the BPF filtering engine. In addition to 5-tuple and FD
filters, 82599 also supports SYN filter that diverts to a specific core all incoming TCP
packets with the SYN flag set. While its support would be trivial from the 82599 point
of view, the PF_RING engine instead needs some extensions in order to add filters
that can select packets based on TCP flags.

Finally we would like to use 82599 in the context of OpenFlow switching, for
implementing efficient in-kernel switching across network applications without
requiring external switching equipment. From the hardware point of view, we
envisage that future NICs will further enhance flow affinity filters number and
expressiveness (e.g. adding the ability to filter tunneled traffic), add per-filter statistics
(e.g. number of packets and bytes that matched each filter) so that developers could
implement efficient NetFlow caches in hardware.

7 Conclusions

Monitoring the Internet is challenging as high-speed networks are becoming popular
and traffic patterns more complex. In order to satisfy the increasing performance
requirements and reduce deployment costs, modern network monitoring frameworks
should leverage those features offered by mainstream NICs that are introduced for
general-purpose networking and not fully exploited in the context of network
monitoring. This paper has presented an evolution of PF_RING, a monitoring
framework originally designed for accelerating packet capture, that exploits
hardware-based filtering mechanisms offered by the Intel 82599 based NICs and
likely future NICs. Thanks to flow affinity filters PF_RING can now fine-grain flow
balance packets across cores, classify traffic and discard unwanted communication
patterns directly into the NIC before packets hit the driver. The validation process has
demonstrated that many network applications can benefit from this work, making it
very general and usable also outside of the network monitoring domain. Not to
mention that it is finally possible to combine the speed of hardware with the flexibility
of software for effectively monitoring 10 Gbit networks using commodity network
adapters.

Availability. This work is distributed under the GNU GPL license and is available at
no cost form the PF_RING home page (http://www.ntop.org/PF_RING.html).

Acknowledgments. The authors would like to thank Intel and in particular Edward
Clinton and Richard P. Kelly for their support during this research work.

References

1. W. John and others, Passive internet measurement: Overview and guidelines based on
experiences, Computer Communications, vol. 33, issue 5 (2010).

2. G. Memik and W.H. Mangione-Smith, Specialized Hardware for Deep Network Packet
Filtering, Proc. of FPL 2002, Montpellier, France, (2002).

3. S. Donnelly, DAG Packet Capture Performance, White Paper, (2006).

http://www.ntop.org/PF_RING.html
http://www.ntop.org/PF_RING.html

4. Napatech Inc, The Napatech Protocol and Traffic Analysis Network Adapter, White
Paper, (2006).

5. cPacket Networks, cVu 320G: Aggregation, Complete Packet Inspection Filtering,
Automatic Flow Balancing, (2010).

6. P. Crowley and others, Characterizing processor architectures for programmable
network interfaces, Proc. of the 14th international conference on Supercomputing,
Santa Fe, New Mexico, (2000).

7. A. Agarwal, The Tile processor: A 64-core multi-core for embedded processing, Proc.
of HPEC Workshop, (2007)

8. S. McCanne and V. Jacobson, The BSD packet filter: A new architecture for user-level
packet capture, Proc. of Winter '93 USENIX Conference, (1993).

9. L. Deri, High-Speed Dynamic Packet Filtering, Journal of Network and System
Management, (2007).

10. F. Fusco and others, Enabling High-Speed and Extensible Real-Time Communications
Monitoring, In Proc of IM 2009, (2009).

11. L. Deri, Improving Passive Packet Capture: Beyond Device Polling, Proc. of SANE
2004, (2004).

12. L. Deri, Towards 10 Gbit NetFlow Monitoring Using Commodity Hardware, Proc. Joint
EMANICS/IRTF-NMRG Workshop, Munich, (2008).

13. Intel Corporation, 82599 10 GbE Controller Datasheet, Rev. 2.3, (2010).
14. B. Bloom, Space/time trade-offs in hash coding with allowable errors, Communications

of the ACM, July 1970.
15. F. Risso and others, Extending the NetPDL language to support traffic classification,

Proc. of IEEE Globecom, (2007).
16. L. Degioanni and others, Network virtual machine (NetVM): a new architecture for

efficient and portable packet processing applications, Proc. of 8th International
Conference on Telecommunications, (2005).

17. H. Bos and others, FFPF: Fairly fast packet filters, Proc. of OSDI ’04, (2004).
18. J. Coppens and others, SCAMPI: A Scalable and Programmable Architecture for

Monitoring Gigabit Networks, Proc. of E2EMON Workshop, (2003).
19. L. Deri, nCap: Wire-speed Packet Capture and Transmission, Proc. of E2EMON,

(2005).
20. L. Degioanni and G. Varenni, Introducing Scalability in Network Measurement: Toward

10 Gbps with Commodity Hardware, Proceedings of IMC ’04, (2004).
21. M. Smith and others, Enabling High-Performance Internet-Wide Measurements on

Windows, Proc. of PAM 2010, pp. 121-130, Zurich, Switzerland, (2010).
22. M. Dashtbozorgi and others, A scalable multi-core aware software architecture for high-

performance network monitoring, Proc. of the 2nd international conference on Security
of information and networks, pp. 117-122, Famagusta, Cyprus, (2009).

23. M. Dashtbozorgi and others, A high-performance software solution for packet capture
and transmission, Proc. of 2nd IEEE International Conference on Computer Science
and Information Technology, pp. 407-411, Beijing, China, (2009).

24. F. Fuentes and D. C. Kar, Ethereal vs. Tcpdump: a comparative study on packet sniffing
tools for educational purpose, Journal of Computing Sciences in Colleges, Vol. 20,
Issue 4, pp. 169 - 176 , (2005).

25. L. Deri and F. Fusco, Exploiting Commodity Multi-core Systems for Network Traffic
Analysis, Technical Report, http://luca.ntop.org/MulticorePacketCapture.pdf, (2009).

