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Abstract. Modern computer architectures are founded on multi-core 
processors. In order to  efficiently process network traffic, it is necessary to 
dynamically split  high-speed  packet streams across cores based on the 
monitoring goal. Most  network adapters are multi-core aware but offer limited 
facilities for assigning packets to processor cores.
In this paper we introduce a hybrid traffic analysis framework that leverages 
flexible packet balancing mechanisms available on recent  10 Gbit commodity 
network adapters not yet  exploited by operating systems. The main contribution 
of this paper is an open source hardware-assisted software layer for 
dynamically configuring packet balancing policies in order to fully exploit 
multi-core systems and enable 10 Gbit wire-speed network traffic analysis.

Keywords: High-speed network traffic monitoring, hardware-assisted  dynamic 
packet filtering, commodity hardware, operating system design.

1  Introduction

The complexity and heterogeneity of monitoring tasks, such as anomaly and intrusion 
detection, traffic classification and application level analysis [1], gradually caused a 
shift from dedicated network devices toward hybrid software and hardware 
architectures which are more flexible and easier to maintain than dedicated 
monitoring devices [2]. Along with hardware-based solutions [20], researchers have 
demonstrated that the performance of traffic analysis applications running on 
commodity hardware can be substantially improved by properly accelerating selected 
operating system tasks [19, 21, 22]. However, the performance gap between pure 
software solutions and hardware assisted ones has been significant. Recent advances 
in off-the-shelf server technologies suggest that the gap can be substantially reduced. 
In fact, modern servers are based on advanced multi-core processors featuring 



integrated memory controllers and high-speed and low latency interconnections. In 
addition, off-the-shelf network interface cards (NICs) are supporting new advanced 
features such as message signaled interrupts (MSI-X), multi-queue capabilities and 
virtualization support, which have been designed to boost the network performance in 
specific scenarios. The trend is to introduce into NICs the logic for offloading 
workstations from computationally intensive network operations. With the advent of 
multi-core processors, balancing the networking workload among cores is necessary 
in order to increase the networking performance of network services. Therefore, 
modern interface cards provide multiple independent reception (RX) and transmission 
(TX) queues and hardware traffic splitting techniques to distribute the traffic among 
cores.
Unfortunately, traffic monitoring software did not fully benefit from these new 
breakthrough technologies. The reason is that software layers on top of which 
network monitoring applications are implemented, such as network device drivers and 
operating systems, are not designed for exploiting these features for network 
monitoring purposes.
In this work we present a flexible and extensible framework that simplifies the 
development of complex and yet efficient traffic analysis applications running on 
commodity hardware. The main contribution of this work is a novel traffic balancing 
and filtering networking layer optimized for traffic analysis purposes that fully exploit 
advanced features implemented by modern off-the-shelf NICs. The framework is 
characterized by the following properties:
• It provides an API for hardware-assisted traffic filtering and balancing across cores.
• It can be deployed on sub-1000$/port commodity network adapters which are more 

than an order of magnitude cheaper than dedicated traffic monitoring devices.
• The filtering mechanisms are flexible and able to address common problems 

monitoring scenarios such as adaptively balancing the incoming traffic among cores 
or dynamically filtering incoming traffic. 

• It can be used as a building block for designing complex yet efficient monitoring 
applications.

• It is publicly available at no cost under the GNU GPL license.

The rest of the paper is structured as follows. In section 2 we describe how the 
software framework we designed few years ago could benefit from modern NICs in 
particular for supporting in hardware those features we previously implemented in 
software. In section 3 we position the work described in this paper against similar 
efforts. Section 4 describes the design and implementation of a new software layer 
that allowed us to offload traffic filtering to modern NICs. Finally section 5 describes 
some common use cases we used to evaluate the developed solution hence to 
demonstrate that this work is a major step ahead with respect to existing software-
only solutions.



2  Motivation and Scope of Work

The intrinsic dynamism of Internet protocols has increased the demand for flexible 
monitoring frameworks designed to speed up the development of efficient and cost 
effective applications capable to analyze modern network protocols. Nowadays, most 
network monitoring infrastructures are built around hybrid frameworks combining the 
flexibility of software and the performance of hardware accelerators designed to 
offload network probes from selected computationally expensive tasks. The design of  
hybrid frameworks requires expertise in software, firmware and hardware 
development, as well substantial investments that have a negative impact on end-user 
prices. In fact, since the target of these devices is a niche market, their price is in 
order of magnitudes higher than commodity off-the-shelf network interfaces.
Packet capture accelerators are the most cost effective solution for improving 
software based traffic monitoring applications. As packet capture is the cornerstone of 
many passive monitoring application, capture accelerators have been able to provide 
substantial speedups to traffic monitoring applications by allowing incoming traffic to 
be copied directly into the address space of the analysis process without any CPU 
assistance.
In our past research, we focused on pure-software traffic analysis frameworks. In 
particular, we proposed filtering solutions that are capable to overcome the limitations 
of the popular Berkley Packet Filter (BPF) [8], a rule-based traffic filtering 
mechanisms provided by the majority of the operating systems. In [9] we describe a 
traffic filtering mechanism that, contrary to BPF, can be reconfigured in real-time and 
scale in terms of number of traffic filtering rules. In [10]  we present a traffic filtering 
and analysis framework named RTC-Mon that substantially simplifies the 
development of modular and efficient traffic monitoring applications. The core of the 
framework is a rule-based infrastructure that allows traffic analysis components to be 
enabled over the traffic matching rules. By introducing services for IP de-
fragmentation, packet parsing and maintenance of flow state statistics, the 
development efforts for implementing monitoring applications are substantially 
reduced. The framework is useful for implementing traffic analysis applications, such 
as VoIP and IPTV monitoring software, where traffic filters must be added/removed in 
real-time.
In our previous works, we decided not to leverage any specific monitoring device in 
order to reduce costs and simplify the deployment. In this work instead, we evaluate 
the opportunity of accelerating our framework by exploiting mainstream NICs. 
Unlike special purpose monitoring hardware, off-the-shelf network interfaces target 
the mainstream market and therefore come at low end-customer prices. Even if these 
NICs are not designed for accelerating monitoring software but rather tasks as 
virtualization, some of their features can be successfully exploited for increasing the 
performance of traffic analysis applications.



Modern off-the-shelf adapters provide several independent RX/TX queues and 
hardware-based mechanisms such as Receive-Side-Scaling (RSS)  that balance 
network flows among RX queues mapped on processor cores. By splitting the traffic 
among queues, the workload, both in terms of packet processing and interrupts can be 
balanced across cores for better exploiting the intrinsic parallelism of modern 
computing architectures. As of today, the majority of server class adapters in the 
market are multi-queue enabled and support RSS for splitting the traffic across 
queues. The main limitation of RSS is that the balancing policy is static hence it 
cannot be adapted to changing traffic conditions. This represents a serious limitation 
as workload unbalances correspond to scalability penalties. Even if it is possible to 
augment RSS with software based traffic balancing policies, this approach is, in 
practice, unfeasible for high-speed networks as the performance penalty is severe. 
Therefore, NIC manufacturers are introducing the second generation traffic balancing 
hardware mechanisms that are dynamically configurable in order to adapt traffic 
balancing policies to every traffic condition. Although these mechanisms have been 
introduced for enhancing general purpose networking, we believe that packet filtering 
will also benefit from these breakthrough balancing technologies, and therefore, the 
performance gap between special purpose monitoring devices and off-the-shelf 
network adapters would be reduced.
In this work we present an advanced and yet easy to use open source software 
framework that leverages the customizable hardware assisted traffic balancing and 
filtering features introduced in modern NICs. As these filtering features will likely be 
available in future NIC cards manufactured by various vendors just as happened with 
RSS, we believe that this work is not limited only to the specific NIC we considered 
in this paper, but it paves the way to supporting a new family of cheap 10 Gbit (and 
40 Gbit in the future) network adapters.

3  Related Work

The industry followed three paths for accelerating software applications by means of 
specialized hardware while preserving the software flexibility:
• Accelerate the capture process via packet capture accelerators [3, 4] that allow 

incoming packets to be copied directly to the address space of monitoring 
applications without any CPU intervention.

• Split the monitoring workload among different network probes using smart traffic 
balancers [5] so that each probe receives and analyzes a portion of the traffic.

• Run traffic analysis software on programmable network cards based on network 
processors [6] or massive parallel architectures [7]. Programmable network cards 
are massive parallel architectures on a NIC. Monitoring applications are 
implemented in C and executed on these device [7]  that run a modified version of 



Linux which simplifies the porting of existing applications on top of this special 
purpose architecture. However, even if they have been able to substantially simplify 
the development compared to network processors based cards, the porting is still 
not trivial.

Most general purpose operating systems support rule based filtering mechanisms such 
as the BPF where filtering expressions are compiled into an intermediate language 
and interpreted by a virtual machine running at the kernel layer. PF_RING [11] is an 
advanced network monitoring framework enhancing Linux with more flexible 
filtering mechanisms implemented in software by means of kernel modules. NetVM 
[15, 16] is a virtual machine designed to simplify the development and maintenance 
of complex and yet efficient packet processing applications running on top of 
heterogeneous network devices. FFPF [17] is an extensible and high-performance 
packet capture and filtering architecture based on Linux. Contrary to our work, FFPF 
does not leverage modern multi-core or multi-queue interfaces. The SCAMPI project 
[18] provides a feature rich monitoring API but it has been designed to run on top of 
specialized monitoring devices and therefore it yields poor performance when running 
over commodity hardware. [22] describes a framework for high-speed networks 
monitoring that provides features such as IP defragmentation and flow reassembly, 
that relies on a pure-software implementation of a packet scheduling algorithm 
proposed in [23]. Our work instead, exposes to the software layers an API to design 
hardware assisted packet schedulers.
Capture accelerators based on FPGA, implement filtering mechanisms at the network 
layer by means of rule sets (usually limited to 32 or 64)  similar to BPF. Filtering runs 
at wire-speed. As the rule set is not meant to be changed at runtime, its scope of 
application is drastically limited. Often traffic filtering is used to mark packets and 
balance them across DMA engines. Traffic balancing policies are similar to RSS and 
are usually implemented at the FPGA layer and allow the traffic to be split among 
cores within a multi-core processor. As for traffic filtering, dynamically updating the 
traffic balancing policies at run-time is in practice unfeasible as a card reconfiguration 
may require seconds if not minutes.

4  Framework Design

In our past research, we developed an extensible traffic analysis framework 
implemented under the Linux Kernel called PF_RING [11] which accelerates packet 
capture and implements packet parsing and filtering by means of dynamically 
loadable kernel plugins. A user space library called libpfring provides an easy to use 
API that allows user space applications to interact with the framework.



Fig. 1. PF_RING Monitoring Framework.

PF_RING runs on top of commodity network interface cards and can use both 
standard NIC drivers or PF_RING optimized drivers. These drivers, available for 
popular 1 and 10 Gbit adapters produced by vendors such as Intel and Broadcom, 
push incoming packets directly to PF_RING without passing through the standard 
kernel mechanisms hence accelerating capture speed. 
PF_RING provides a flexible rule-based mechanism that allows users to assign 
packets to kernel plugins which are then responsible to dissect, order in flows, and 
compute flow metrics (e.g. voice quality)  directly at the kernel layer without copying 
packets to user space. For example, it is possible to configure PF_RING to dispatch 
TCP packets on port 80 to the HTTP plugin, and UDP packets on port 5060 to the 
SIP plugin. The same rule-based mechanism can be used for filtering out from 
PF_RING analysis unwanted packets (e.g. discard packets coming from a specific 
host or port) similar to what the firewalling layer does at an operating system level.
With the advent of multi-core systems and multi-queue adapters, PF_RING has been 
extended with support of virtual RX queues [12], that enable specific plugins/user 
space applications to receive traffic from specific RX queues. The PF_RING kernel 
infrastructure is responsible to exploit facilities such as RSS for balancing and 
assigning packets to cores while queue information is preserved in received packets. 
In summary, PF_RING has become an advanced framework that thanks to its rule-
based mechanism, has been capable to simplify the engineering of modular 
applications and not just accelerate packet capture. However, the rule-based 
mechanism has been completely implemented in software, and therefore, it is 
inefficient at very high speed such as 10 Gbit.
Last year Intel introduced X520, a 10 Gbit card based on the new 82599 ethernet 
controller [13]. What makes this adapter interesting for PF_RING, is the ability to 
support in hardware dynamically configurable flow affinity filters for classifying, load 
balancing and dispatching traffic flows to processor cores. The filtering mechanisms 
introduced by 82599 can be seen as a fine-grained RSS that allows selected flows to 
be classified and dispatched towards specific cores based on configurable packet 
filters and not on RSS hashing.
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Fig. 2. Integrating 82599 with PF_RING.

The availability of this affinity facility in commodity adapters has been the natural 
solution to address performance issues of PF_RING at 10 Gbit. Exploiting the flow 
affinity filters is indeed attractive for:
• leveraging hardware facilities for dispatching packets across PF_RING plugins 

enabled on selected RX queues;
• dropping unwanted packets in hardware inside the NIC before they hit the driver.

In a nutshell, flow affinity filters introduce new opportunities, not yet exploited by 
operating systems and monitoring applications, for the implementation of hardware 
assisted packet schedulers capable to accelerate traffic analysis applications by fully 
exploiting the parallelism offered by multi-core architectures. 
As we believe that 82599 is just the “first of a kind” and similar flow affinity filters 
mechanisms will soon be introduced by other vendors, PF_RING has been extended 
not only to exploit these features as implemented by 82599 but also to support future 
NICs providing similar capabilities. For this reason we introduced a new hardware-
neutral software layer that is responsible for setting up specific flow affinity filtering 
rules in hardware. This layer has not been designed for natively supporting the 82599 
controller in PF_RING, but rather as a foundation layer for offloading selected 
filtering tasks to those NICs that feature flow affinity filters. This means that:

• not all facilities offered by 82599 have been supported yet (e.g. IEEE 1588 time 
synchronization), but only those (i.e. flow affinity filters) that can be currently 
exploited by PF_RING for accelerating its operations (i.e. we have not added 
support of 82599 in PF_RING, but rather exploited those 82599 features that can 
accelerate PF_RING);

• adding support in PF_RING for flow affinity filters-like features in future NICs, 
will not require PF_RING redesign but it will just require the implementation of 
new extensions into PF_RING-enabled NIC drivers;
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• existing applications such as RTC-Mon will not need to be recoded (but just 
slightly modified)  in order to exploit flow affinity filters, as PF_RING 
transparently sets in hardware the appropriate flow affinity filters.

PF_RING supports two families of filters: precise filters where the whole <vlan, 
protocol, ip/port src, ip/port dst> tuple needs to be specified, and 
wild card filters where some filter parameters can be unspecified (e.g. tcp and 
port 80). When a packet is received, PF_RING uses the “best match first” policy, 
so it will first try to match the packet against configured precise filters, and in case of 
no match against wild card filters. Packets matching a filter will be passed to the 
specified plugin or action, if configured. Hardware flow affinity filters support has 
been added into PF_RING as follows:
• PF_RING-aware drivers notify (when the driver is loaded inside the kernel)  the 

PF_RING engine whenever a given NIC supports flow affinity filters.
• PF_RING has been extended with a new function named 
handle_hw_filtering_rule() that allow precise and wild carded filters to 
be added/removed inside NICs.

• For each NIC supporting flow affinity filters, PF_RING adds a virtual file whose 
path is /proc/net/pf_ring/ethX/rules that network administrators, and 
not just monitoring applications, can use for adding/removing filters by means of a 
simple echo of a string on it. For instance echo “+(1,-1,tcp,
192.168.0.10,25,0.0.0.0,0)” > /proc/net/pf_ring/eth3/
rules, instructs PF_RING to add in the eth3 device a new filtering affinity rule 
with id 1 and that sends all TCP packets from 192.168.0.10:25 to the core id -1. 
Since the identifier -1 does not correspond to a physical processor core, this rule 
allows packets matching the filter to be dropped at the NIC layer. Using another 
existing queue id would simply advise the filtering mechanism to direct the packets 
to the appropriate queue and hence through the SMP affinity mechanism in the 
Linux kernel into the desired core.

In order not to modify the existing driver structure by introducing new hooks for 
adding and removing filters, we decided to jeopardize some existing driver hooks. 
The advantage is that all current drivers do not need to be changed, and this gives us a 
way to migrate towards packet filtering integration when supported in Linux1. The 
data structure used to pass filter specifications to drivers is generic and does not rely 
on 82599 specific data types. In this way, the efforts for supporting future network 
adapters providing similar features will be substantially reduced. 82599 provides 
several types of filters including layer 2 and FCoE (Fibre Channel over Ethernet), but 

1 In kernel 2.6.34 the ethtool, not the kernel itself, introduced limited support for EFD 
thanks to patches we submitted to Linux kernel maintainers.



as PF_RING supports only precise and wild card filters, we focus only on 5-tuple and 
flow director filters that are very close to PF_RING filters:

• 5-tuple filters (up to 128 filters can be defined in 82599) allow packets belonging 
to flows identified by the 5-tuple <protocol, ip source, port source, ip destination, 
port destination> to be forwarded to a specific RX queue. 5-tuple filters are 
defined as <id, protocol, ip/port src, ip/port dst, target 
RX queue id>. Some of the fields specified in a 5-tuple filter can be 
“masked” (i.e. wild carded) in order to avoid comparing them against incoming 
packets.

• Flow Director (FD) filters can be specified as precise (i.e. the filter members are 
matched precisely against incoming packets) or hash (i.e. the packet hash is 
compared against the filter hash, conceptually similar to bloom filters [14]) 
filters. 82599 supports up to 32k precise filters. The number of distinct hash 
filters is not limited by design. However, the adoption of excessive hash filtering 
rules may lead to false positives. FD filters are expressed as <slot id, 
VLAN, protocol, ip netmask/port src, ip netmask/port 
dst, target RX queue id>. Currently all configured filters must have 
the same mask defined in 82599. 

The 82599 adapter is quite different from many FPGA-based NICs as it does not use 
a TCAM (Ternary Content Addressable Memory) for handling filters. This means that 
a filter is configured by setting up specific NIC registers and, therefore, that the last 
configured filter overwrites the previous register value. For this reason, it is not 
possible to read from the NIC all configured filters, and therefore the driver has to 
maintain the list of configured filters. The advantage of this approach is that, contrary 
to many FPGA-based NICs where setting a filter requires card reconfiguration, in 
82599 setting a filter is extremely fast and from the application point of view it takes 
as long as the setsockopt() system call necessary to pass the filter specification 
to the kernel, making this NIC usable in environments where filter configuration has 
to be dynamically changed.

5  Use Cases and Validation

Validation has been performed using an IXIA XM12 10 Gbit traffic generator and a 
NUMA computer using a single 6-core Xeon® X5650 (Westmere) CPU at 2.67GHz. 
In all tests we have injected IPv4 UDP traffic with random payload at wire speed, and 
compared the number of packets sent by the traffic generator with those reported by 
pfcount, a simple packet-counting application running on top of PF_RING. pfcount 
spawns and binds a thread per core (i.e. thread X is bound to core X). The injected 
traffic contained 6 flows, each balanced to an individual core using hardware filtering 



rules. Packets have been captured using the standard NAPI-based 82599 driver 
enhanced with PF_RING and hardware filtering support. 

Table 1.  Hardware vs. Software Filtering Comparison

Frame Size
(Bytes)

Test 1Test 1 Test 2Test 2Frame Size
(Bytes) Software Filter

(Capture Rate)
Hardware Filter
(Capture Rate)

Software Filter
(CPU Load)

Hardware Filter
(CPU Load)

64 5.7% 6.3% 95.6% None
128 10.0% 11.6% 95.4% None
256 19.5% 23.2% 98.7% None
512 37.4% 42.3% 3.5% None
1024 99.8% 100% 3.3% None
1518 99.6% 100% < 0.1% None

In the first test we compared hardware (i.e. 82599)  vs. software (i.e. PF_RING) 
packet filtering using a single filtering rule that match for every incoming packet (i.e. 
the entire traffic is forwarded to the user space). In the second test we have injected 
traffic that does not match any configured filter, and verified that there is no load on 
the CPU whenever hardware filters are used. On the contrary, what we observed with 
software filters, is that for packets up to 256 bytes the CPU utilization was around 
95%, and about 3% for larger packets. This leads us to the conclusion that in the 
hybrid model of software and hardware filtering we propose, it is recommended to use 
software filters only for medium to large packets.
In order to further improve packet capture, the authors have developed TNAPI [25], a 
multithreaded RX queue polling mechanism that significantly improves packet 
capture performance with respect to the standard Linux NAPI.

5.1 Realtime Multimedia Traffic Monitoring

As described earlier in this paper, RTC-Mon has been designed to efficiently handle 
VoIP calls and video-on-demand traffic analysis at 1 Gbit. In order to scale the 
solution to 10 Gbit, we have slightly modified the original RTC-Mon code as follows:
• A few 5-tuple filters have been configured:

• All the SIP signaling packets go to core 0.
• Non UDP (i.e. ICMP/TCP) packets are dropped.
• UDP traffic on popular ports (e.g. port 53 used by DNS) is also dropped.

• Whenever a new VoIP call has been setup, such call is tracked by adding two FD 
filters (one per call direction) that send the voice traffic for the tracked call (i.e. 
RTP traffic)  to the same RX queue where the RTP plugin is active. In order to 
evenly balance the traffic across queues, the queue ids used for voice traffic are 
selected in round robin so that all queues have almost the same amount of traffic.



This setup has allowed RTC-Mon to operate efficiently in 10 Gbit links where VoIP is 
only a portion of the overall traffic, thanks to 82599 filters used to discard packets not 
belonging to calls being tracked. Unfortunately, not all unwanted packets have been 
discarded and a small portion of them is still received by PF_RING. This is because 
5-tuple filters are evaluated before FD filters, hence it is not possible to set 5-tuple 
rule that discards all the remaining traffic because this would also discard traffic that 
matched by FD filters. It is worth noting that the ability to setup thousands of flow 
affinity filters with almost no latency is a key factor for using effectively 82599 in 
cases where filter setup latency is crucial as with RTC-Mon.

5.2 Network Troubleshooting

Troubleshooting a heavily loaded 10 Gbit link using popular tools such as tcpdump 
and wireshark [24] is almost impossible due to severe packet capture loss. 
Furthermore, most commercial tools are not distributed with source code, hence it is 
not possible to recompile them in order to take advantage of PF_RING flow affinity 
filters. In this case, we used PF_RING’s /proc interface for setting a few traffic 
filtering rules that discard in hardware unwanted traffic, hence pass to the Linux 
kernel only those packets that must reach network monitoring applications. This 
solution has the advantage that existing applications do not need to be modified, and 
PF_RING is used just for allowing the network administrator to easily configure (e.g. 
using a shell script)  flow affinity filters without having to code a C/C++ application 
sitting on top of libpfring. 

5.3 Traffic Classification and Balancing 

In case monitoring applications do not run on the same box where an 82599 based 
NIC is installed (e.g. because they run on a non-Linux OS such as Windows), it is 
possible to create a traffic filtering box using the pfreflect application part of 
PF_RING, that filters incoming packets and copies them onto one or more NICs 
based on the PF_RING filters configuration. As PF_RING filters (hence flow affinity 
filters) are evaluated before reflection (i.e. packet bridging in PF_RING parlance), this 
application can be used for creating an inexpensive traffic filtering box that can be 
used for reducing the amount of traffic to analyze. If the filtered traffic is less than one 
Gbit it can be forwarded onto a 1 Gbit card so that legacy measurements box do not 
need to be updated to 10 Gbit. Furthermore as PF_RING supports traffic balancing, it 
is possible to forward filtered traffic onto several output interfaces by balancing each 
RX queue of 82599 onto a different output interface. This solution allows high-speed 
links to be monitored and troubleshooted without having to purchase costly 10 Gbit 
measurement boxes.



5.4 Lawful Interception of Internet Traffic

Since the approval of the wiretapping in the US in 1984, lawful interception (LI) has 
become very popular. In LI a lawful authority requires to intercept and store specific 
traffic for the purpose of analysis or evidence. In IP networks, this means that traffic 
originated/directed to specific IPs or flowing on specific ports need to analyzed. 
Doing this on a 10 Gbit link using software-based traffic filters can be inefficient as 
packet loss might prevent captured traffic from being analyzed properly. In order to 
implement a simple packet capture system driven by signaling protocols such as 
Radius or DHCP, it is possible to setup (e.g. via the PF_RING /proc filesystem 
interface) a few filtering rules that discard all traffic except signaling (similar to the 
setup used in 5.2) and traffic belonging to target IPs that need to be intercepted.

5.5 Firewalling at 10 Gbit

The Linux netfilter/iptables firewall is quite efficient but it cannot operate with no loss 
on heavily loaded 10 Gbit links. The use of 5-tuple filters can definitively help 
dropping unwanted traffic or tracking NAT sessions using FD filters. Unfortunately 
the Linux firewall is more flexible than 5-tuple filters, hence it is not possible to do a 
one-to-one mapping between iptables rules and 5-tuple filters. This means that 82599 
can be used to discard a large portion of incoming traffic but not all, leaving to 
netfilter the duty of completing packet filtering. Nevertheless this hybrid, hardware 
plus software, filtering architecture allows to significantly boost the firewall 
performance in most situations. Currently we are add filters using the PF_RING /proc 
filesystem interface as we have not yet added native 82599 support into netfilter.

6  Open Issues and Future Work

The main limitation of the current implementation is the lack of a compiler that 
transparently compiles BPF filters into PF_RING (hence flow affinity) filters. Due to 
this limitation, users must configure both BPF filters (e.g. on the command line while 
starting the monitoring tool)  and flow affinity filters (e.g. using the PF_RING /proc 
filesystem). In future code releases we plan to implement such feature so that BPF-
aware applications (e.g. Wireshark) can still use BPF for setting filters while the 
underlying kernel layers add automatically flow affinity filters in order to reduce the 
amount of packets that will hit the BPF filtering engine. In addition to 5-tuple and FD 
filters, 82599 also supports SYN filter that diverts to a specific core all incoming TCP 
packets with the SYN flag set. While its support would be trivial from the 82599 point 
of view, the PF_RING engine instead needs some extensions in order to add filters 
that can select packets based on TCP flags.



Finally we would like to use 82599 in the context of OpenFlow switching, for 
implementing efficient in-kernel switching across network applications without 
requiring external switching equipment. From the hardware point of view, we 
envisage that future NICs will further enhance flow affinity filters number and 
expressiveness (e.g. adding the ability to filter tunneled traffic), add per-filter statistics 
(e.g. number of packets and bytes that matched each filter) so that developers could 
implement efficient NetFlow caches in hardware.

7  Conclusions

Monitoring the Internet is challenging as high-speed networks are becoming popular 
and traffic patterns more complex. In order to satisfy the increasing performance 
requirements and reduce deployment costs, modern network monitoring frameworks 
should leverage those features offered by mainstream NICs that are introduced for 
general-purpose networking and not fully exploited in the context of network 
monitoring. This paper has presented an evolution of PF_RING, a monitoring 
framework originally designed for accelerating packet capture, that exploits 
hardware-based filtering mechanisms offered by the Intel 82599 based NICs and 
likely future NICs.  Thanks to flow affinity filters PF_RING can now fine-grain flow 
balance packets across cores, classify traffic and discard unwanted communication 
patterns directly into the NIC before packets hit the driver. The validation process has 
demonstrated that many network applications can benefit from this work, making it 
very general and usable also outside of the network monitoring domain. Not to 
mention that it is finally possible to combine the speed of hardware with the flexibility 
of software for effectively monitoring 10 Gbit networks using commodity network 
adapters.

Availability. This work is distributed under the GNU GPL license and is available at 
no cost form the PF_RING home page (http://www.ntop.org/PF_RING.html).
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