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Abstract—Network traffic analysis has been traditionally 
limited to packet header, because the transport protocol and 
application ports were usually sufficient to identify the 
application protocol. With the advent of port-independent, peer-
to-peer and encrypted protocols, the task of identifying 
application protocols has become increasingly challenging, thus 
creating a motivation for creating tools and libraries for network 
protocol classification.  
 
This paper covers the design and implementation of nDPI, an 
open-source library for protocol classification using both packet 
header and payload. nDPI has been extensively validated in 
various monitoring projects ranging from Linux kernel protocol 
classification, to analysis of 10 Gbit traffic, reporting both high 
protocol detection accuracy and efficiency. 

Keywords—Passive traffic classification, deep-packet-
inspection, network traffic monitoring.  

I. INTRODUCTION 
In the early days of the Internet, network traffic protocols 

were identified by a protocol and port. For instance the SMTP 
protocol used TCP and port 25 while telnet used TCP on port 
23. This well-know protocol/port association is specified in 
the /etc/protocols file which is part of every Unix-based 
operating system. Over time the use of static ports has become 
a problem with the advent of RPC (Remote Procedure Call); 
therefore specific applications such as rpcbind and portmap 
were developed to handle dynamic mappings. Historically, 
application ports up to 1024 identified essential system services 
such as email or remote system login and hence require super-
user privileges; their port-to-protocol binding has been 
preserved till this day. Remaining ports above 1024 are used 
for user-defined services and are generally dynamic. 

Protocol identification is often not reliable even when a 
static port is used. A case in point is TCP/80 used for HTTP. 
Originally HTTP was created to carry web-related resources 
such as HTML pages and decorative content. However, its 
extensibility (in no small part due to its header flexibility and 
MIME type specification) along with its native integration in 
web browsers HTTP is now often used to carry non web-
related resources. For instance, it is now the de-facto protocol 
for downloading/uploading files, thus replacing the FTP (File 
Transfer Protocol), which was designed specifically for that 
purpose. The pervasive use of HTTP and its native support of 

firewalls (i.e. a firewall recognises and validates the protocol 
header), has made HTTP (and its secure counterpart HTTPS) 
the ideal developer choice when creating a new protocol that 
has to traverse a firewall without restrictions. Many peer-to-
peer protocols and popular applications (e.g. Skype) use HTTP 
as last resort when they need to pass through a firewall in case 
all other ports are blocked. We have created traffic reports from 
various networks, ranging from academic sites to commercial 
ISPs, and realised that HTTP is by far the most widely used 
protocol. This does not mean that users mostly use it for 
surfing the web. This protocol is extensively used by social 
networks, geographical maps, and video-streaming services. In 
other words the equation TCP/80 = web is no longer valid. 

The characterisation of network protocols is required not 
only for creating accurate network traffic reports, but 
increasingly, for overall network security needs. Modern 
firewalls combine IP/protocol/port based security with 
selected protocol inspection in order to validate protocols, in 
particular those based on UDP (e.g. SNMP - Simple Network 
Management Protocol - and DNS - Domain Name System). 
VoIP protocols, such as SIP and H.323, are inspected for 
specific information (e.g. the IP and port where voice and 
video will flow) that allows the firewall to know what IP/ports 
to open to allow media flow. Cisco NBAR (Network-based 
Application Recognition) devices [1], and Palo Alto Networks 
application-based firewalls [2] have pioneered application-
protocol based traffic management. Today these traffic 
inspection facilities are available on every modern network 
security device because the binding port/protocol scheme no 
longer holds.  

The need to increase network traffic visibility has created a 
need for DPI (Deep Traffic Inspection) libraries to replace the 
first generation of port-based tools [21]. Payload analysis [22], 
however, uses extensive computational resource [15]. This 
difficulty triggered the development of statistical analysis 
based approaches [28] often based on Machine-Learning 
Algorithms (MLA) [13, 20] instead of direct payload 
inspection. These methods often rely on statistical protocol 
properties such as packet size and intra-packet arrival time 
distributions. Although some authors claim these algorithms 
provide high detection accuracy [3, 4], real-life tests [5, 6, 10, 
12, 14, 19] have demonstrated that: 

• Such protocols are able to classify only a few traffic 
categories (an order of magnitude less than DPI libraries) 



and thus less suitable for fine protocol granularity detection 
applications. 

• Some tests show a significant rate of inaccuracy 
suggesting that such methods may be useful in passive 
traffic analysis, but unlikely to be used for mission critical 
applications, such as traffic blocking. 

These needs constitute the motivation for developing an 
efficient open-source DPI library where efficiency is defined 
by the requirement to monitor 10 Gbps traffic using solely 
commodity hardware (i.e. not specialised hardware needed). 
The use of open source is essential because: 

• Commercial DPI libraries are very expensive both in 
terms of one-time license fee and yearly maintenance costs. 
Sometimes their price is set based on yearly customers 
revenues, rather than on a fixed per-license fee, thus further 
complicating the price scheme. 

• Closed-source DPI toolkits are often not extensible by 
end-users. This means that developers willing to add new/
custom protocols support need to request these changes to 
the toolkits manufacturer. In essence, users are therefore at 
the mercy of DPI library vendors in terms of cost and 
schedule. 

• Open-source tools cannot incorporate commercial DPI 
libraries as they are subject to NDA (Non-Disclosure 
Agreement) that makes them unsuitable to be mixed with 
open-source software and included into the operating system 
kernel. 

Although deep packet inspection has been a hot topic for a 
long time, beside some rare exceptions most research works 
have not lead to the creation of a publicly available DPI toolkit 
but limited their scope to prototypes or prof-of-concept tools. 
The need to create an efficient open-source DPI library for 
network monitoring has been the motivation for this work. 
Because DPI is a dual use technology, its users need to have 
source code to ensure that it is free of trojans or malware. 

The rest of the paper is structured as follow. Section 2 
describes the motivation of this work, and it explains how 
nDPI is different from its predecessor OpenDPI [17]. Section 3 
covers the nDPI design and implementation. Section 4 
describes the validation process, and finally section 5 
concludes the paper. 

II. BACKGROUND AND MOTIVATION 
DPI is defined as the analysis of a packet’s data payload in 

real time (i.e. DPI processing must be faster than the traffic rate 
to be monitored as otherwise it would result in packet drops) at 
a given physical location. Inspection is motivated by various 
reasons including application protocol identification, traffic 
pattern analysis and metadata (e.g. user name) extraction. 
Some proprietary DPI library vendors such as iPoque, 
QOSMOS, and Vineyard cover all aspects, whereas others, 
such as libprotoident [7], UPC [8], L7-filter [9], and TIE [18] 
limit their scope to protocol identification [24, 25, 26].  

Protocol detection may also be implemented using pattern 
matching or by using specialised protocol decoders. The 
former approach is inefficient due to the use of regular-
expressions [23] and error-prone because: 

• It does not reconstruct packets in 6-tuple flows (VLAN, 
Protocol, IP/port source/destination) thus missing cross-
packet matches. 

• Searching for patterns within an un-decoded payload can 
lead to out of context search data (e.g. an email including 
an excerpt from a HTTP connection might be confused 
with web-traffic) or mismatches when specific packet 
fields (e.g. NetBIOS host name) are encoded. 

Application drive the selection of the appropriate DPI 
library. We chose to focus on network traffic monitoring that 
can range from passive packet analysis to active inline packet 
policy enforcement. A DPI library must have include the 
following features: 

• High-reliability protocol detection for inline, per 
application, protocol policy enforcement. 

• Library extensibility is needed for new protocols and 
runtime in sub-protocols definition. This feature is 
required because new protocols appear from time to time 
or evolve (e.g. the Skype protocol has changed 
significantly since after the Microsoft acquisition). 
Permanent library maintenance is therefore required. 

• Ability to integrate under an open source license for use 
by existing open-source applications and embedding into 
an operating system’s kernel. As already discussed, full 
source code availability is essential to safeguard privacy.  

• Extraction of basic network metrics (e.g. network and 
application latency) and metadata (e.g. DNS query/
response) that can be used within monitoring 
applications thus avoiding duplicate packet decoding, 
once in the DPI library and also in the monitoring 
application. 

Our focus is therefore reliable protocol detection using 
protocol decoders combined with the ability to extract selected 
metadata parameter for the use of applications that is this 
library. This enables the extraction of selected metadata 
parameters that can then be used by applications using the DPI 
library. Other open-source protocol detection libraries, such as 
libprotoident, are limited in scope because it does not extract 
metadata and only analyses the first 4 bytes of payload in each 
direction for protocol detection. Because commercial DPI 
libraries could not be used a starting basis we chose OpenDPI, 
an open-source predecessor of the commercial iPoque PACE 
(Protocol and Application Classification Engine), which is no 
longer maintained by its developers. OpenDPI has been 
designed to be both an application protocol detection and 
metadata extraction library. Because it has been unmaintained 
for some time, the library did not include any modern protocol 
(e.g. Skype); the code was largely prototype quality and likely 
used as a proof of concept for the commercial product. A point 
in favour of OpenDPI was the fact that it was distributed under 
the GPLv3 license that allows developers to include it in 
software applications without being bound to an NDA or other 
restrictions typical of commercial DPI products. Furthermore 
an open-source license allows the code to be inspected, key 
requirement when the packet payload is inspected and 
potentially private information might leak. Our choice of 
OpenDPI as starting point was driven by these reasons. We 
then proceeded to make specific changes relating to issues we 
have identified. These reasons were the drivers for its choice. 



We identified specific issues and made the requisite change to 
address them. 
A. From OpenDPI to nDPI 

The OpenDPI library is written in C language and it is 
divided in two main components: 

• The core library is responsible for handling raw packets, 
decoding IP layer three/four, and extracting basic 
information such as IP address and port. 

• The plugin dissectors that are responsible for detecting 
the ~100 protocols supported by OpenDPI. 

nDPI has inherited this two-layer architecture but it has 
addressed several issues present in the OpenDPI design: 

• The OpenDPI library was designed to be extensible, but 
in practice the data structures used internally were static. For 
instance, many data-types and bitmaps, used to keep the 
state for all supported protocols, were bound to specific 
sizes (e.g. 128 bits) and thus limiting the number of 
identifiable protocols. 

• Whenever a protocol was detected, the library tried to 
find further protocol matches instead of just returning the 
first match. The result was a performance penalty without a 
real need of requiring extra detection work. 

• No encrypted protocol support (e.g. HTTPs). While 
encryption is designed to preserve privacy and regular DPI 
libraries are not expected to decode the some information 
can be gleaned to suggest the nature of the information 
carried on a specific connection. 

• OpenDPI was not designed to be a reentrant (i.e. thread-
safe) library. This required multi-threaded applications to 
create several instances of the library or add semaphores in 
order to avoid multiple threads to modify the same data at the 
same time. Per thread library state was required to support 
reentrancy. This was a substantial change that touched many 
many data structures across most library components. 
OpenDPI also made wide use of global variables; this too 
had to change in order to make the library thread-safe and 
not require semaphores. 

• Many parts of OpenDPI suggest problematic design 
choices. For instance, the library was performing much per 
flow initialisation instead of doing them once. The result was 
that applications using the library had to pay an unnecessary 
performance penalty whenever a new connection was passed 
to OpenDPI for application detection. We believe that these 
design choices might have been due to the fact that the 
library was probably used as prototype/playground for the 
commercial version of library, and so overtime the code 
needed some cleaning. 

• The protocol dissection was non-hierarchical. In other 
words whenever a new connection needed to be analysed, 
the library was not applying the dissectors based on their 
matching probability. For instance, if there is a connection 
on TCP port 80, OpenDPI was not trying the HTTP 
dissector first, but it was applying dissectors in the same 
order as they were registered in the library. 

• The library had no runtime configuration capability; the 
only way to define new dissectors was to code them in C 

anew. While this is usually a good policy for efficiency 
reasons, at times more flexibility is needed. For instance, if a 
given user needs to define a custom protocol Y as TCP/port-
X it would be easier to have a runtime configuration 
directive instead of changing the library code. OpenDPI 
assumes that the library must have a dissector for all 
supported protocols, a difficult goal to achieve in reality. In 
particular, in closed-environments such as a LAN, specific 
hosts use proprietary/custom protocols that flow on specific 
ports/protocols; in this case it is more convenient for the 
user to detect them from the packet header rather than from 
its payload. 

• OpenDPI has not been designed to extract any metadata 
from analysed traffic. On one hand this preserves privacy, 
but on the other it requires monitoring applications to 
decode the application traffic again in order to extract basic 
information such as the URL from HTTP traffic. Reporting 
this information does not add any overhead to the library as 
it is decoded anyway when parsing the packet payload. 

In sum OpenDPI has been a good starting point for nDPI 
because we did not have to start from scratch. Many 
components of the original library have been changed in order 
to address the issues we have identified. This was the ground 
work necessary to start the creation of an efficient DPI library 
and extending the set of supported. Not surprisingly, the 
number of protocols recognised has an impact on both DPI 
detection performance and protocol recognition. The more 
protocols recognised, the more time spent on detection 
whenever a specific traffic pattern is not identified and thus all 
the possible protocol decoders have to be tested for match. 
This means that DPI libraries supporting many protocols may 
be slower in specific situation than those supporting fewer. 
Another impact on performance is due to metadata extraction: 
the richer the set of extracted attributes, the slower the 
processing. Although specific activities such as string and 
pattern matching can be accelerated on specialised hardware 
platforms such as Cavium and RMI, or using GPUs [27], we 
have decided not to use any of these cards, in order to let the 
library operate on all hardware platforms. 

nDPI was designed to be used by applications that need to 
detect the application protocol of communication flow. Its 
focus is on Internet traffic, thus all the available dissectors 
support standard protocols (e.g. HTTP and SMTP) or selected 
proprietary ones (e.g. Skype or Citrix) that are popular across 
the Internet community. In the latter case, as protocol 
specifications are not publicly available, we had to create the 
dissectors by reverse-engineering network traffic created by 
their proprietary applications. Although nDPI can extract 
specific metadata (e.g. HTTP URL) from analysed traffic, it 
has not been designed as a library to be used in fields such as 
lawful interception or data leak prevention; its primary goal is 
to characterise network traffic. Similar to OpenDPI, nDPI can 
be used both inside the Linux kernel and in user-space 
applications. As portability is one of the primary goals for open 
source applications, nDPI has been ported to most operating 
systems including Linux, Windows, MacOS X and the BSD 
family. In terms of CPU architectures, it currently runs on x86 
(32 and 64 bits), MIPS and ARM processors. 



III. NDPI DESIGN AND IMPLEMENTATION 
In nDPI an application protocol is defined by a unique 

numeric protocol Id, and a symbolic protocol name (e.g. 
Skype). Applications using nDPI will probably use the protocol 
Id whereas humans the corresponding name. In nDPI a 
protocol includes both network protocols such as SMTP or 
DNS, and communications over network protocols. For 
instance in nDPI, Facebook and Twitter are two protocols, 
although from the network point of view they are 
communications from/to Facebook/Twitter servers used by the 
two popular social networks. A protocol is usually detected by 
a traffic dissector written in C, but it can be defined also in 
terms of protocol/port, IP address (e.g. traffic from/to specific 
networks), and protocol attributes. For instance the Dropbox 
traffic is identified by both the dissector for LAN-based 
communications, and by tagging as Dropbox the HTTP traffic 
on which the ‘Host’ header field is set to ‘*.dropbox.com’. As 
explained later in this section, the nDPI library includes the 
detection of over 170 protocols, but it can also be further 
extended at runtime using a configuration file. 

The nDPI library inherits some of OpenDPI design, where 
the library code is used for implementing general functions, 
and protocol dissection is implemented in plugins. All the 
library code is now fully reentrant, meaning that applications 
based on nDPI do not need to use locks or other techniques to 
serialise operations. All the library initialisation is performed 
only once at startup, without a runtime penalty when a new 
packet needs to be dissected. nDPI expects the caller to provide 
the packet divided in flows (i.e. set of packets with the same 
VLAN, protocol, IP/port source/destination), and that the 
packet has been decoded up to layer three. This means that the 
caller has to handle all the layer-2 encapsulations such as 
VLAN and MPLS, by leaving to nDPI the task of decoding the 
packet from the IP layer up. nDPI comes with a simple test 
application named pcapReader.c  that shows how to implement 1

packet classification and provides utility functions for efficient 
flow processing. The protocol dissectors are registered with 
attributes such as the default protocol and port. This means for 
instance that the HTTP dissector specifies the default TCP/80, 
and the DNS dissector TCP/UDP on port 53. This practice has 
two advantages: 

• Packets belonging to an unclassified flow (i.e. a flow for 
which the application protocol has not been detected yet) are 
passed to all dissectors registered starting from the most 
likely one. For instance, a TCP packet on port 80, is first 
passed to the HTTP protocol and then if not detected is 
passed to the remaining registered dissectors. Of course only 
dissectors for TCP protocols are considered, whereas those 
for non-TCP protocols are not. This solution, on average, 
reduces the number of dissectors that are tested, and 
decreases the matching time because the most likely 
dissector is checked first. Note that this optimisation does 
not prevent detecting HTTP on non-standard ports, but it 
increases the detection performance by first testing the most 
likely case. 

• When a flow is unclassified (e.g. nDPI has tried all 
dissectors but none has matched), nDPI can guess the 
application protocol by checking whether there was a 

protocol registered for the protocol/port used by the flow. 
Note that a flow can be unclassified not just because of 
protocol dissectors limitations, but also because not all flow 
packets where passed to nDPI. A typical example is the case 
when nDPI has to dissect packets belonging to a flow whose 
beginning has not been analysed (e.g. nDPI has been 
activated after the flow start). 

The protocol recognition lifecycle for a new flow is the 
following: 

• nDPI decodes the layer 3 and 4 of the packet. 

• In case there is a dissector registered for the packet 
protocol/port, such dissector is tried first. 

• In case of no match, all the registered dissectors for the 
packet protocol (i.e. in case of a UDP packet, all UDP 
dissectors are tried, but no non-UDP dissector is considered) 
are tried. If a dissector cannot match a packet, it has two 
options: either the match failed because the analysed packet 
will never match (e.g. a DNS packet passed to the SNMP 
dissector), or it failed but it may be that future packets will 
match. In the former case, the dissector will not be 
considered for future packets belonging to the same flow, 
whereas in the latter the dissector will still be considered for 
future packets belonging to the same flow. 

• Protocol detection ends as soon as a dissector matches. 

A typical nDPI user question is the number of packets 
needed to detect the application protocol, or decided that a 
given flow is unknown. From experience we have learned that 
the answer is protocol dependent. For most UDP-based 
protocols such as DNS, NetFlow or SNMP one packet is 
enough to make this decision. Unfortunately there are other 
UDP-based protocols such as BitTorrent whose signature might 
require up to 8 packets in order to be detected. This leads us to 
the rule of thumb that in nDPI at most 8 packets per direction 
are enough to make a decision. 
A. Handling Encrypted Traffic 

Like it or not, the trend of Internet traffic is towards 
encrypted communications. Due to security and privacy 
concerns, HTTPS is slowly replacing HTTP not just for secure 
transactions but also for sending tweets and messages to 
mobile terminals, posting notes, and performing searches. 
Identifying this traffic as SSL is not enough, but it is necessary 
to bet ter character ise i t . When using encrypted 
communications, the only part of the data exchange that can be 
decoded is the initial key exchange. nDPI contains a decoder 
for SSL that extracts the host name of the contacted server. 
This information is placed in the nDPI flow metadata similar to 
what happens with in the HTTP decoded when extracting the 
server host name from the ‘Host:’ HTTP header. With this 
approach we can: 

• Identify known services and tag them according to the 
server name. For instance an encrypted communication 
towards a server named ‘api.twitter.com’ is marked as 
Twitter, ‘maps.google.com’ as Google maps, and 
‘*.whatsapp.net’ as the WhatsApp messaging protocol. 

 The application source code is available at https://svn.ntop.org/svn/ntop/trunk/nDPI/example/pcapReader.c1



• Discover self-signed SSL certificates. This information is 
important as it might indicate that the connection is not safe, 
not just in terms of data leak, but also in terms of the activity 
behind the communication. For instance symmetric (i.e. the 
traffic is not predominant in one direction such as in HTTPS, 
where the client sends little traffic with respect to the traffic 
sent by the server) long standing SSL connections with self-
signed certificates often hide SSL VPNs. 

As described later in this section, nDPI contains internally a 
configuration for many known protocols that are discovered 
using the above technique. In addition, it is possible to add at 
runtime a configuration file that further extends the set of 
detected protocols so that new ones can be defined without 
changing the protocol dissector. Please note that with the 
advent of CDN (Content Delivery Networks) this is probably 
the only way of identifying the application protocol, as at any 
given time the same server (identified with a single IP address) 
can deliver two different services provided by two customers 
using the same CDN. As a fallback, nDPI can identify specific 
application protocols using the IP address. For instance nDPI 
detects many Apple-provided services such as iTunes and 
iMessage, but in addition to that it marks as Apple (generic 
protocol) all communications that have not been identified 
more in details by the available dissector but that have been 
exchanged with the Apple-registered IP addresses (i.e. 
17.0.0.0/8). 

B. Extending nDPI 
As previously explained, nDPI users can define protocols 

not just by adding a new protocol dissector, but also providing 
a configuration file at runtime. The file format is the following. 
# Format: 
# <tcp|udp>:<port>,<tcp|udp>:<port>,.....@<proto> 

tcp:81,tcp:8181@HTTP 
udp:5061-5062@SIP 
tcp:860,udp:860,tcp:3260,udp:3260@iSCSI 
tcp:3000@ntop 

# Subprotocols 
# Format: 
# host:"<value>",host:"<value>",.....@<subproto> 

host:"googlesyndacation.com"@Google 
host:"venere.com"@Venere 
host:"kataweb.it",host:"repubblica.it"@Repubblica 

1. nDPI Configuration File. 

New protocols are defined by name. When nDPI detects 
that a protocol name is already defined (e.g. in the above 
example SIP and HTTP are handled by the native dissector), 
the configuration file extends the default configuration already 
present in nDPI. For instance in the previous example, 
whenever nDPI sees TCP traffic on port 81 or 8181 it tags it as 
HTTP. Additionally, nDPI can also identify a protocol using 
strings that are matched against metadata extracted from the 
nDPI flow such as HTTP Host and SSL certificate server name. 
The defined strings are stored on a automata based on the 
Multifast  library that implements string matching according to 2

the Aho-Corasick algorithm. This library is quite efficient: at 
startup the automata creation takes little time (i.e. almost 
instantaneous with tenth of strings, or some seconds with 
hundred thousand strings), then this library configured 
performs over 10 Gbps during search when configured with 
hundred thousand strings. 

IV. NDPI VALIDATION 
There are recent papers that compare the nDPI accuracy in 

terms of protocol detection against other DPI toolkits. Their 
conclusion is that “nDPI and libprotoident were successful at 
correctly classifying most (although admittedly not all) of the 
applications that we examined and only one of the evaluated 
applications could not be classified by both tools” [12], and 
“the best accuracy we obtained from nDPI (91 points), PACE 
(82 points), UPC MLA (79 points), and Libprotoident (78 
points)” [5]. These tests have shown that nDPI is pretty 
accurate, even more accurate than PACE, the commercial 
version of the old OpenDPI library on which nDPI is based. 
We are aware that nDPI had some false positives with Skype 
and BitTorrent due heuristics use. In the latest nDPI versions 
(svn revision 7249 or newer), we have decided to remove the 
use of these heuristics, so that we have basically eliminated 
false positives at the cost of slightly increasing the number of 
undetected flows when using these two protocols. 

As there are many extensive tests on nDPI protocol 
detection accuracy, this paper focuses on nDPI performance. 
To that end we have developed an application named 
pcapReader  that can both capture from a physical network 3

device and read packets from a pcap file. In order to test nDPI 
on a physical network at 10 Gbps, we have used the test 
application on top of PF_RING [16], which allows applications 
on commodity hardware to process packets in RX/TX at 10 
Gbps line rate for any packet size. For our tests we have used a 
pcap file of over 3 million packets, captured on a 
heterogeneous environment thus including both LAN protocols 
(e.g. NFS and NetBios) and Internet protocols (e.g. Skype and 
DropBox). We have used a PC running Ubuntu Linux 13.10 
(kernel 3.11.0-15) on a 8 core Intel i7 860. We have bound the 
application to a single core, in order to test it in the worst case, 
and see how the application can scale when using multiple 
cores. The test outcome is depicted below: 
# taskset -c 1 ./pcapReader -i ~/test.pcap 

Using nDPI (r7253) 

pcap file contains 

IP packets: 3000543 of 3295278 packets 

IP bytes: 1043493248(avg pkt size 316 bytes) 

Unique flows: 500  

nDPI throughout: 3.42 M pps / 8.85 Gb/sec 

Guessed flow protocols: 82  

1. nDPI Validation Test Outcome. 

The outcome has demonstrated that the test application 
processes packets at an average speed of 3.5 Mpps / 8.85 Gbps 

 http://multifast.sourceforge.net2

 https://svn.ntop.org/svn/ntop/trunk/nDPI/example/pcapReader.c3



using a single core. As the test pcap file using during the test 
has been captured on a real network, it contained some flows 
that already begun at the time the packet capture started. nDPI 
detects a flow protocol by looking at the initial flow packets, so 
some flows are detected due to this reason. For undetected 
flows, nDPI can guess the protocol by using the flow protocol/
port registered during startup or it can leave the flows 
undetected. When using this test application over PF_RING 
DNA on a 10 Gbps Intel adapter, it is possible to use the 
network driver with hardware flow balancing. In this way we 
can start one instance of the test application per virtual queue, 
binding each instance to a different core. In sum 10 Gbps 
traffic can be inspected when balanced across two cores (the 
above tests show DPI at 8 Gbps using a single core) using the 
modestly priced commodity hardware we used in our tests. 

In terms of memory usage, nDPI needs some memory to 
load the configuration and automata used for string-based 
matching. This memory used by nDPI is ~210 KB with no 
custom configuration loaded, that increases of ~25 KB when 
the configuration in Figure 1, is loaded. In addition to that, 
nDPI keeps per-flow information that is independent from the 
application protocol that will be detected and that takes ~1 KB 
per flow. 

V. FINAL REMARKS 
This paper has presented nDPI, an open source toolkit 

released under GPLv3 license. It is currently able to detect 
more than 170 protocols including Skype, BitTorrent, and other 
messaging protocols. The validation test performed by third 
parties has demonstrated that nDPI outperforms some 
commercial and open-source toolkits in terms of protocol 
recognition accuracy. In terms of performance, using two CPU 
cores and commodity hardware, nDPI can handle a 10 Gbit 
link fully loaded with Internet traffic. This makes it suitable for 
scenarios where both detection accuracy and high performance 
are a requirement. 

CODE AVAILABILITY 
This work is distributed under the GNU GPLv3 license and 

is freely available in source format at the ntop home page 
https://svn.ntop.org/svn/ntop/trunk/nDPI/ for both Windows 
and Unix systems including Linux, MacOS X, and FreeBSD. 
The PF_RING framework used during the validation phase is 
available from https://svn.ntop.org/svn/ntop/trunk/PF_RING/. 
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