

nCap User’s Guide

High Speed Packet Capture and Transmission Library

Version 1.0
December 2004

© 2004 nmon.net

nmon.net

nCap User’s Guide v.1.0

2

1. Introduction
nCap is a high speed packet capture and transmission library that turns a commodity PC into an efficient
and cheap network measurement box suitable for both packet and active traffic analysis and
manipulation. Moreover, nCap opens totally new markets as it enables the creation of efficient
application such as traffic balancers or packet filters in a matter of lines of codes. This is because
contrary to conventional operating systems where the development of this kind of applications happens
into the kernel, nCap is a pure userland library that is based on a special kernel driver. This means that
every programmer able to code in C can write such applications without the need to learn the kernel
insights.

This manual is divided in two parts:

• nCap installation and configuration.
• nCap SDK.

1.1 What’s New with nCap?
Release 1.0 (December 2004)

• Initial nCap Release

nCap User’s Guide v.1.0

3

2. nCap Installation
nCap’s architecture is depicted in the figure below.

The main building blocks are:

• The accelerated kernel driver that provides low-level support and ethernet device
programming.

• The user space nCap SDK that can be used directly or through an enhanced libpcap that
provides transparent nCap-support to legacy pcap-based applications.

IMPORTANT

Currently the accelerated nCap driver is provided only for Intel 1 Gbit (copper, SX and LX) and 10 Gbit
Ethernet cards. Therefore you need to have one of these cards in order to take advantage of nCap.

When you download nCap you fetch the following components:
A precompiled Linux kernel with all the available kernel modules.

• The nCap SDK
• The enhanced libpcap based on nCap

nCap User’s Guide v.1.0

4

2.1 Linux Kernel Installation
The Linux kernel is composed of two parts:

• The vmlinuz-2.X.Y kernel that you need to copy into your /boot directory
• The 2.X.Y/ directory that contains the kernel modules and that needs to be copied into

/lib/modules.

Once the kernel is installed you need to modify your boot loader (usually lilo or grub) in order to let your
system access the new kernel. Done this, you need to reboot the box and make sure you select the
kernel you just installed as default kernel.

Note that:

• the kernel installation requires super user (root) capabilities.
• For some Linux distributions and installation package is provided.

nCap User’s Guide v.1.0

5

2.2 nCap Device Configuration

When nCap is activated, the available nCap—aware cards are initialized and are ready to use.
Applications that want to open the adapters, interact with the cards using a device that should be
located under /dev/ncap/ and named ethX where X is the interface index. In order to build the
/dev/ncap tree with the correct files a utility named mkncapdev is provided. When run with superuser
capabilities (no command line options are required), this utility creates the device tree.

NOTE FOR LINUX 2.6 KERNEL SERIES

On the latest 2.6 and above kernels, on many Linux distributions the /dev tree is created automatically at
every boot by an utility named udev. This means that you either need to configure udev or run the
mkncapdev at every boot.

nCap User’s Guide v.1.0

6

2.3 nCap and Libpcap Installation
Both nCap and libpcap are distributed in binary format for immediate usage. They come with some
include (.h) files and the object libraries: libncap.a and libpcap.a.

The installer copies the above files in the following locations:

• Include files are installed on /usr/local/include
• Library files are installed on /usr/local/lib

IMPORTANT

Legacy pcap-based applications need to be recompiled against the new libpcap and linked with both
libncap.a and libpcap.a in order to take advantage of nCap. Do not expect to use nCap without
recompiling your existing application.

nCap User’s Guide v.1.0

7

2.4 nCap License Installation
nCap requires a license for each ethernet card you use. The license code is computed on the MAC
address on the card on which nCap is activated. You need to copy the activation code you received for
your ethernet card on the /etc/ncap.license file. You can watch into the syslog for nCap license issues.

This is a simple license file that contains the activation code for adapters eth1 and eth2:

> cat /etc/ncap.license

eth2 checksum
D235B2930CF18C3A8A03784E693C1674

eth1 checksum
B1255C1D95275E16252FE6DB145E0DBF

At this point nCap is installed and ready to use. If you plan to use it through the enhanced libpcap or
installing some nCap aware applications such as those provide by nmon, you don’t have to perform any
other installation steps and you can use your applications right away. Instead if you use third party
nCap-based applications, please refer to the installation guide of these products for further details.

nCap User’s Guide v.1.0

8

3. nCap for Application Developers
Conceptually nCap is a simple yet powerful technology that enables developers to create high-speed
traffic monitor and manipulation applications in a small amount of time. This is because nCap shields
the developer from inner kernel details that are handled by a library and kernel driver. This way
developers can dramatically save development time focusing on they application they are developing
without paying attention to the way packets are sent and received.

This chapter covers:

• The nCap API.
• Extensions to the libpcap library for supporting legacy applications.
• How to patch the Linux kernel for enabling nCap

3.1 The nCap API
The nCap internal data structures should be hidden to the user who can manipulate packets and
devices only by means of the available API defined in the include file ncap-int.h that comes with nCap

3.1.1 Return Codes
By convention, the library returns negative values for errors and exceptions. Non-negative codes indicate
success. Please always use the code specified by nCap and not a numeric value as the mapping
between code and value is not guaranteed in future library versions.

On success nCap can return the following codes:

Code Description

NCAP_NO_ERROR Success

nCap can return the following error codes:

Code Description

NCAP_ERR_NO_SUCH_DEVICE The specified device cannot be found on the system. Make sure
that the name is not misspelled and that the device is both
present (e.g. using ifconfig) and nCap-aware. Valid names are
‘eth0`’`

NCAP_ERR_MAPPING_FAILED The kernel driver cannot map to nCap some kernel structures.
Look at the syslog for further explanations.

NCAP_ERR_DEVICE_UNAVAILABLE The device is unavailable (i.e. present but down or in use).

NCAP_ERR_INVALID_LICENSE The nCap license (see /etc/ncap.license) for the specified
device is either not available or wrong.

NCAP_INTERNAL_ERROR Internal nCap error. This error code should not happen. Please
report to nmon about this problem including how to reproduce
it.

NCAP_TX_SLOT_NOT_YET_AVAILABLE The packet cannot be sent as the adapter has no slot available
for accommodating the packet.. This error code is returned only
for packet transmission.

3.1.2 nCap: Device Initialization

nCap User’s Guide v.1.0

9

struct ncap_device_info *init_ncap_device(char *dev_name, int *error);

This call is used to initialize an nCap device hence obtain a handle of type struct ncap_device_info that
can be used in subsequent calls.

Input parameters:

• dev_name
Symbolic name of the ncap-aware device we’re attempting to open (e.g. eth0).

Output parameters:

• error
A numeric error code if the call fails.

Return value:

• On success a handle is returned, NULL otherwise.

3.1.3 nCap: Device Termination

void term_ncap_device(struct ncap_device_info *dev);

This call is used to terminate an ncap device previously open. Note that you must always close a device
before leaving an application. If unsure, you can close a device from a signal handler.

Input parameters:

• dev
The nCap handle that we are attempting to close.

Return value:

• None regardless of the status.

3.1.3 nCap: Send a Packet

int ncap_send_packet(struct ncap_device_info *dev, uint16_t packet_len, unsigned char *packet);

This call is responsible for sending packets out of the specified device. Note that as the adapter may be
busy with other operations, it is not guaranteed the packet delivery, hence it is necessary to look at the
return code without assuming (wrongly) that the specified packet has been transmitted successfully.
Note that the packet is sent immediately and not delayed (as it needs to be passed to the kernel, then to
the target adapter) as it happens in most operating systems

Input parameters:

• dev
The nCap handle where we are attempting to send the packet.

• packet_len
The length (in bytes) of the packet we’re attempting to send.

• packet
A pointer to the raw packet. Note that this must be a complete packet (i.e. from the ethernet
address up) and not just the packet payload.

Return value:

nCap User’s Guide v.1.0

10

• Either NCAP_NO_ERROR on success or NCAP_TX_SLOT_NOT_YET_AVAILABLE if the adapter
cannot send the packet as the transmit queue has not empty slot to accommodate the packet.
This is a common situation if a fast sender tries to transmit packets on a slow media (e.g. 10
Mbit ethernet). Make sure you always check the return code before assuming the packet has
been transmitted successfully. In case there are no slots available you can sleep and retry, but
do not expect that nCap retries on your behalf as this is not the specified behavior.

3.1.4 nCap: Check Whether There is an Incoming Packet Available

int ncap_recv_packet_available(struct ncap_device_info *dev, int wait_for_packet);

This call is designed to either check whether there is an incoming packet available, or check and wait (no
active wait) if not available.

Input parameters:

• dev
The nCap handle where we perform the check.

• wait_for_packet
If 0 we simply check the packet availability, otherwise the call is blocked until a packet is
available.

Return value:

• 1 if there’s a packet available, 0 otherwise.

3.1.5 nCap: Read is an Incoming Packet

int ncap_recv_packet(struct ncap_device_info *dev, unsigned short *recv_packet_len,

unsigned char* packet_buffer, unsigned short packet_buffer_len,
int wait_for_packet);

This call returns an incoming packet when available.

Input parameters:

• dev
The nCap handle where we perform the check.

• packet_buffer
A memory area allocated by the caller where the incoming packet will be stored.

• packet_buffer_len
The length of the memory area above. Note that the incoming packet is cut if the incoming
packet is too long for the allocated area.

• wait_for_packet
If 0 we simply check the packet availability, otherwise the call is blocked until a packet is
available.

Output parameters:

• recv_packet_len
The actual size of the incoming packet, from ethernet onwards.

Return value:
• 1 if a packet has been received, 0 otherwise.

nCap User’s Guide v.1.0

11

3.1.5 nCap: Enable/Disable Interface Promiscuous Mode

int ncap_set_if_promisc(const char *device, int set_promisc);

By default nCap does not set the promiscuous mode when and interface is open. If required this call
does the job.

Input parameters:

• device
The device name where we want to set the promiscuous mode.

• set_promisc
If 1 the promiscuous mode is set; if 0 it is unset.

Return value:

• NCAP_NO_ERROR if succeeded, an error code otherwise.

nCap User’s Guide v.1.0

12

3.2 The Extended libpcap API
The libpcap that comes with nCap has been transparently extended with nCap support. This means that
existing applications can be relinked with this library to take advantage of nCap without changing a
single line of code. Moreover, as nCap allows packets to be transmitted, the extended libpcap allows it
too.

int pcap_send_packet(pcap_t* handle, u_char *packet, u_int plen)

Input parameters:

• handle
The pcap handle where we are attempting to send the packet.

• packet
A pointer to the raw packet. Note that this must be a complete packet (i.e. from the ethernet
address up) and not just the packet payload.

• plen
The length (in bytes) of the packet we’re attempting to send.

Return value:

• 1 if the packet has been transmitted, an error code otherwise. Note that contrary to
ncap_send_packet, this function does not return until the packet has been sent or an error
occurs.

nCap User’s Guide v.1.0

13

3.3 Patching the Linux Kernel: How to Add nCap to a Vanilla Kernel
If you want to patch a vanilla kernel to make it nCap aware you can do it this way:

• Copy ncap.h into include/linux
• Copy e1000_ncap.[ch] into drivers/net/e1000
• Patch drivers/net/e1000/e1000.h and drivers/net/e1000/e1000_main.c as specified into the

patch file.
• Configure the kernel so that you include the driver for the Intel Gigabit card (e1000) with the NAPI

option enabled.
• You can now build your kernel (make bzImage modules).

