
 

nCap: Wire-speed Packet Capture and 
Transmission 

L. Deri 
ntop.org 
Pisa 
Italy 
deri@ntop.org 

Abstract 
With the increasing network speed, it is no longer possible to capture and transmit 
network packets at wire-speed using general-purpose operating systems. Many 
companies tried to tackle this problem by manufacturing costly network adapters able 
to keep up at high network speeds.  
This paper describes a new approach to wire-speed packet capture and transmission 
named nCap based on commercial network adapters rather than on custom network 
adapters and software. 
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1. Introduction 
Over the past few years, many people tried to improve the performance of packet 
capture and transmission on host PC. On the software side, the elimination of kernel 
livelock while processing interrupts [10] as well the use of device polling [13] has 
significantly improved packet capture performance and eliminated the risk that the 
operating system becomes unusable when handling packets at high-rate. 
Solved the kernel livelock problem, the research community has put a lot of energy 
for improving the kernel performance while moving packets from the kernel-space to 
the user-space where monitoring application are living. The first step has been to 
completely remove the use of per-packet system calls (usually read() and poll()) in 
favour of memory-mapped approaches [12]. In this case, incoming packets are copied 
from the NIC to a kernel buffer that is shared between the kernel and the monitoring 
application by means of memory map. The author has further improved this technique 
by defining a new type of network socket named PF_RING [4] that in addition to 
memory mapping, significantly improves the packet capture performance by 
dramatically reducing the packet journey from the NIC to user-space. 
 
On the hardware side, most (if not all) gigabit adapters support a technique named 
interrupt mitigation [7] and prioritization that allows multiple interrupts to be 
combined in order to reduce the amount of interrupts that the kernel has to handle. In 



 

addition, the latest PCI specification defines a new type of interrupt named memory-
based interrupt that allows interrupts to be transparently dispatched without any 
kernel intervention to specific memory areas (e.g. a device driver), contrary to what 
happens today where the kernel receives all the interrupts and then dispatches them to 
the appropriate device driver. Furthermore, the new PCI Express [8] specification is 
further enhancing the performance and bandwidth provided by the PCI/PCI-X bus 
while preserving software compatibility so that existing network device drivers can 
run (mostly) unmodified on the new bus, while taking advantage of a new 
performance dimension.  
While the market is smoothly improving commercial network adapters, some 
companies [5] [9] and universities [2] designed custom network adapters able to 
efficiently capture packets at high speeds. They have been designed for maximum 
performance, so very they sport advanced features such as on-board packet filtering, a 
coprocessor card for computing network statistics directly on the adapter, and 
optimized (burst) packet transfer of packets on the PCI bus. The drawback of these 
solutions is mainly the adapter price that can very well be 10/100 times greater than a 
commercial network adapter of the same speed, making these solutions suitable only 
for vertical markets. 

2. Redesigning Network Packet Handling 
While working at PF_RING, the author realized that: 

• Many, if not all, passive packet capture solutions, including PF_RING, were 
designed only for network monitoring, although with a little effort they could 
have been targeted for a broader scope. 

• The ability to operate at wire-speed at least at 1 Gbit is a requirement in 
many situations. Although simple “filter packet & count it” is a rather easy 
problem, wire-speed complex traffic analysis (e.g. using NetFlow/IPFIX) 
may become an issue even on fast computers equipped with the state of the 
art network monitoring adapters. 

• User-space packet transmission at wire speed is often not considered as 
important as packet capture, that instead is often conceived as an activity for 
network applications that live into the kernel of the operating system. 

• Active network monitoring tools that need to compute precise measurements 
(e.g. one-way delay) are still sitting on top of standard kernels that introduce 
an unpredictable latency when transmitting packets that can lead to wrong 
measurements. This is also because the research has focused mostly on 
reducing latency on user-space packet capturing rather than transmission. 

 
Therefore the author decided to tackle the above issues by designing a new solution 
named nCap that satisfied the following goals: 

• Wire-speed packet capture and transmission, at least at 1 Gbit. 
• Based on commodity hardware and software (i.e. no costly software/adapters 

are required). 
• Ability to develop nCap-based solutions from user-space (i.e. no need to 



 

hack into the kernel). 
 
The idea was to give people the ability to: 

• Create both active and passive network monitoring tools with little effort. 
• Leverage the knowledge and expertise needed to implement application such 

as bridges, routers and traffic balancers as everyone able to code in C can 
implement them quite easily in user-space instead of kernel-space as it 
happens today. 

• Extreme efficiency, even greater of the same application implemented in 
kernel-space.  

 
The idea behind nCap is to use the kernel to instrument the network adapter that will 
then be accessed directly from user-space by means of a device that usually sits in 
/dev/ncap/<device name>. This means that the kernel holds and controls the adapter 
as long as the nCap device corresponding to the adapter is not in use, whereas as soon 
as an application opens the device, the application takes over the control of the 
adapter and the kernel cannot longer send/receive from it. 
 

 
Figure 1: nCap Architecture 

nCap is divided in two components: a device driver and a user-space library. The 
device driver1 is responsible for controlling the ethernet device and creating two 
                                                
1 Currently only the Intel 1 and 10 GE ethernet adapters [6] are supported. Future releases will likely add 



 

circular buffers where incoming and outgoing packets are placed. These buffers are 
created when the ethernet adapter is initialized. The adapter is instrumented such that 
the buffers are managed directly by the ethernet adapter itself, via the ethernet 
controller present on the adapter, without any kernel intervention. This means that as 
soon as the adapter receives a packet, it copies autonomously the packet into the 
receive buffer and then alerts the kernel by means of an interrupt (unless interrupts 
have been disabled). At this point the kernel consumes the packet and updates the 
receive index buffer. 
In the other direction, whenever the kernel wants to send out a packet, it copies it into 
a free buffer slot and then updates the transmit index buffer. As the buffer indexes are 
basically a couple of register that sit into the adapter, the adapter knows immediately 
whenever a packet has been consumed or if there is a packet to transmit without any 
other delay. This means that the two circular buffers are shared between the adapter 
and the kernel and that they operate independently in full duplex mode.  
 
The nCap library: 

• Enables applications to manipulate the two buffers and their indexes directly 
from user-space by means of memory mapping without any kernel 
intervention. This means that nCap creates a straight path from the adapter to 
the user-space and that the adapter works directly for the application as 
packets are copied from/to the circular buffers directly by the ethernet 
controller and not by the kernel. 

• Shields the application from knowing the inner details of the device driver or 
the adapter itself, as it offers a simple API. 

• Can sit under the industry-standard libpcap [11] library so that legacy 
applications can immediately take advantage of nCap without any change. 

 
nCap allows multiple adapters to be open simultaneously by either the same or 
different applications. The device driver prevents the kernel from manipulating all the 
open nCap devices. This is necessary for preventing the kernel and application 
manipulate the buffers of the same interface at the same time, resulting in an 
inconsistent buffer configuration. This means that when the nCap device is open, the 
application has full control over the network interface, whereas when the device is not 
open the kernel controls it as every non-nCap interface. 
As said before, when the nCap device is open, the application controls the network 
interface without any kernel intervention. The previous statement is mostly correct, as 
there is an exception. In fact when there are no incoming packets to receive, the only 
thing the adapter could do is to actively loop waiting until a packet arrives. This is 
obviously a sub-optimal solution as it can waste all the available CPU cycles. For this 
reason the nCap device implements the poll() system call as follows: 

• Interrupts for open nCap devices are disabled. 
• If an application calls poll() over an nCap device, the device driver enables 

the interrupts for the interface and waits for them. As soon as an interrupt 
                                                                                                                
support for additional network adapters. 



 

arrives, the poll() system call returns and the interrupts for the interface are 
disabled again. 

 
This solution allows applications to avoid wasting CPU cycles while waiting for 
incoming packets to arrive. 
 
From the nCap architecture just described, it is rather straightforward to understand 
why this solution is a major step ahead in terms of performance: 

• The kernel is completely bypassed during packet capture and transmission. 
• The ethernet controller, by means of the shared buffers, brings incoming 

packets to user-space for immediate consumption. 
• The buffers are pre-allocated at startup making un-necessary packet buffer 

allocation/deallocation whenever a packet is being received/transmitted, as 
happens with non-nCap aware device drivers. 

• Device polling (e.g. on Linux it is called NAPI) is implemented by the 
kernel, which often can use only the first available CPU. This means that 
even on a multiprocessor architecture only the first CPU performs device 
polling. With nCap instead, a multithreaded application can fetch incoming 
packets fully exploiting multiprocessing as the operating system spawns 
threads across all the available CPUs. 

• Packet transmission is very efficient as it is basically a copy of a packet to 
the first available buffer slot and buffer index increment. This enables the 
creation of efficient traffic generators that can sport mostly the same 
performance of costly ASIC-based traffic generators. 

• Since packet transmission starts as soon as the buffer index is incremented, 
there is very little latency from the time the application decides to transmit 
the packet and the time the packet is really sent out on the wire. This means 
that an nCap-based appliance (e.g. a router) is very efficient in terms of 
packet latency. 

3. Inside nCap 
The nCap core functions are: 
        int ncap_send_packet(struct ncap_device_info *dev, 
        uint16_t packet_len, 

      unsigned char *packet); 
        int ncap_recv_packet(struct ncap_device_info *dev, 
        unsigned short *recv_packet_len, 
        unsigned char* packet_buffer, 
        unsigned short packet_buffer_len, 
        int wait_for_packet); 
 

Figure 2: Core nCap API Calls 

These functions allow packets to be both sent and received though an nCap device 
handler previously open. The library completely shields the application from low-
level details that do not float at user-space. Just to make an example, the following 



 

code fragments implements a simple packet balancer based on nCap in a few lines of 
code. 
 
int main(int argc, char* argv[]) { 
  /* Open devices */ 
  while(1) { 
    char packet[2048]; 
    unsigned short packet_len = sizeof(packet); 
    int rc; 
    struct ncap_device_info *egress; 
 
    if(ncap_recv_packet(in_dev, &packet_len, 

                   packet, sizeof(packet), 1)) { 
ncap_send_packet(find_out_dev(packet, packet_len),  
                              packet_len, packet); 

    } else { 
      printf("recv_packet(): error %d returned\n", rc); 
      break; 
    } 
  } 
 
  /* Close devices */ 
  return(0); 
} 

 
Figure 3: Simple nCap-based Traffic Balancer 

From the performance point of view, nCap has been designed to be efficient and able 
to operate at wire speed at least on 1 Gbit networks. In order to evaluate its 
performance, nCap has been compared against PF_RING. The traffic generator used 
in the tests for generating packets is home-grown; two ports of a Linksys gigabit 
switch have been put in loop with a cable, while from a third port a packet of the 
specified size with broadcast address as destination was injected into the switch. Due 
to the port loop, the packet runs forever into the switch at maximum speed. The 
following table compares (see table 6 of [4]) the packet capture performance of nCap 
and PF_RING solutions in the same test environment. 
 

Packet 
Size 

(bytes) 

Linux 2.4.X/RTIRQ 
NAPI+PF_RING 

(Receiver Pentium 4 1.7 GHz, 
Intel GE 32-bit) 

Linux 2.4.X/nCap 
 

(Receiver Pentium III 550 MHz, 
Intel GE 32-bit) 

64 550’789 pps ~202 Mbit 561’078 pps ~205 Mbit 
Table 1: PF_RING vs. nCap 

 
The test outcome shown that nCap on a Pentium III machine performs roughly as 



 

PF_RING on a Pentium IV2. On the same testbed using a 64-bit PCI-X bus and a fast 
CPU (e.g. Pentium IV HT or Xeon) nCap captures at maximum Gbit Ethernet speed 
(1.48 Mpps) using a portion of the available CPU cycles, hence leaving spare cycles 
for packet analysis. It is worth to remark that the entire packet handling in nCap is 
managed by the ethernet controller and not by the kernel. This means that the nCap 
performance is not affected by the packet size as it usually happens in other solutions. 

4. nCap Evaluation 
The idea to implement network applications outside of the kernel is not novel as it 
already appeared in some operating systems such as the BeOS [1]. What’s novel with 
nCap is: 

• Ability to receive/send packets from user-space without any kernel 
intervention while the application controls the entire packet handling 
process. 

• Minimal packet latency during both capture and transmission. 
• Backward compatibility: nCap-enabled interfaces can operate as standard 

adapters when not accessed through the nCap device. 
• Ability to accelerate legacy pcap-based applications by means of the libpcap-

over-nCap library. 
• Extreme speed regardless of the packet size, as all the traditional software 

layers such as kernel, packet memory handling, and kernel-to-userspace 
copy have been completely bypassed. 

• Ability to operate at wire-speed using commercial adapters instead of custom 
interface adapters. 

 
Another advantage of nCap is the ability to develop applications completely in user-
space without any need to code into the kernel. This is particularly appealing for 
education and research as it allows people to prototype applications at user-space that 
will operate much faster of similar nCap-unaware applications living into the kernel. 

5. Work in Progress 
Although the current nCap implementation is based on the Intel 1/10 GE driver, due 
to limited budget it has been tested and evaluated only on 1 GE networks. As 10 GE 
ethernet is becoming increasingly cheap and spread, it is worth to evaluate nCap also 
at 10 Gbit speed and compare its performance against custom network adapter 
adapters. 
 
A limitation of nCap is that when the adapter is open by an application, another 
application cannot open it at the same time. The author is investigating whether using 
shared buffer techniques [3] it is possible to remove this limitation without impact on 
performance. 
                                                
2 It is worth to remark that PF_RING performs much better than the standard Linux kernel. 



 

6. Final Remarks 
nCap is a solution for wire-speed packet capture and transmission. It has been 
designed for maximum efficiency and ease of use. Its user-space API makes it easy to 
use for developing network monitoring applications as well as network appliances 
including routers and traffic balancers. At least at 1 Gbit, nCap proved to be able to 
operate at wire-speed on modern PCs while leaving spare CPU cycles for additional 
activities such as packet analysis. Finally its ability to send and receive packets with 
very little latency makes nCap suitable for both active and passive network 
monitoring, as well for students and researchers who want to build powerful traffic 
management tools without the need to know the secrets of the Linux kernel. 

7. Availability 
This work is distributed under a dual license: GNU GPL2 for the kernel portion of 
nCap and BSD for the user-space library and tools. Further information about this 
work and its availability can be found at the ntop site (http://www.ntop.org/) or 
contacting its author. 
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