
Realtime MicroCloud-based Flow Aggregation for
Fixed and Mobile Networks

!
Luca Deri

IIT/CNR, ntop
Pisa, Italy

luca.deri@iit.cnr.it, deri@ntop.org

Francesco Fusco
 ETH

 Zürich, Switzerland
 fusco@tik.ee.ethz.ch !

Abstract— Monitoring of large distributed networks requires
the deployment of several probes at different network locations
where traffic to be analyzed is flowing. Each probe analyzes the
traffic and sends the monitoring data toward a centralized
management station often using protocols such as NetFlow and
IPFIX. As each probe monitors a part of the traffic, the data
collector has the responsibility of merging data coming from all
the probes and correlate information. This task adds extra load
on collectors and prevents traffic information to be available
until it has been correlated, thus preventing (near) realtime
traffic monitoring.

This paper describes how the microcloud architecture can be
used to provide real-time traffic monitoring and correlation on
large distributed environments where monitoring traffic is
analyzed by several probes that collectively concur to the
monitoring task. This work has been successfully validated on
using this architecture for monitoring the .it DNS ccTLD and a
large 3G mobile network with million of users.

Index Terms—Real-time Distributed traffic monitoring,
NetFlow/IPFIX, DNS, Mobile Networks.

I. INTRODUCTION
In NetFlow [1] and IPFIX, a flow [2] is defined as a set of

IP packets passing through an observation point during a
certain time interval, sharing common properties including, but
not limited to, ingress/egress interface, protocol, source/
destination IP addresses and ports. Flows have a specified
lifetime that begins when the first flow packet is received at the
observation point, and ends due to timeout or maximum
duration. A flow-enabled network probe is deployed in a
vantage point to aggregate packets into flows and to produce
flow records, which carry statistics about each analyzed
network flow. Flow records corresponding to expired network
flows are exported by the probe toward a flow collector using a
standardized flow export protocol such as NetFlow or IPFIX.
The flow export protocol defines the flow-record encoding
format as well as the transport protocol (e.g., UDP or SCTP).
The flow collector is an application that runs on a centralized
management station and is responsible to filter, aggregate and
eventually dump flows in a persistent database.

Flow-enabled network probes are commonly available in
existing network infrastructures. In fact, major vendors include
some form of flow-based network monitoring capabilities in
devices such as routers and switches, although quite often such
embedded implementations have several limitations both in
terms of performance and analysis capabilities. If traffic
analysis functionalities are not provided by the existing
network infrastructure, it is possible to augment it with

additional software-based probes [3, 4]. These probes are
deployed on standard PCs that receive a copy of the network
traffic to be analyzed by means of a span port or a network
taps. Software-based probes have drastically changed the way
of monitoring network using a passive approach. In practice,
their flexibility has allowed moving the network monitoring
from a network-centric to a service- and user-centric task.
Software-based probes have extended the concept of flow
record, which is usually limited to packet header fields onto
embedded implementations, to the application domain making
possible to analyze networking services, such as DNS, VoIP
and the web from the application layer point of view.

Service-oriented probes have also promoted the push
paradigm, which is the model behind the flow-record
monitoring, to its limits, especially in the context of large
networks. In fact, we believe that by broadening the scope of
flow monitoring to applications and services, software-probes
have only made the limitations of current flow-based network
monitoring architectures more visible. In a strict push model, it
is the probe to decide when to export a specific flow record
depending on the traffic condition and on the flow status. The
collector(s) passively listens for flow records coming from one
or multiple probes and process them without any interaction
with the sources, whereas the analysis performed by each
network probe is totally independent from the rest of the
network monitoring infrastructures. The main problem is that
the centralized management station can only have a deferred
view of the network: the observed delay is proportional to the
lifetime of each flow and not acceptable to perform real-time
network monitoring. The delay prevents timely correlations
between network flows originated from distinct network probes
and belonging to a single application-layer session to be
performed (e.g., correlate signaling and audio traffic in a VoIP
session). Similar limitations are also encountered when dealing
with encapsulations. The lifetime of each flow can be
arbitrarily reduced to decrease the delay, but this comes at a
cost of higher flow rates observed at the collector side.

In this paper, we propose a network monitoring architecture
that combines the push-model and a publish-subscribe
mechanism to overcome these limitations. The architecture
introduces a distributed knowledge database that i) is
accessible by every network probe and network collector, ii)
keeps timely sensitive information, or events, for a
configurable amount of time. This knowledge database is
implemented as a cache that can be eventually distributed
across network nodes to make the system both scalable and
resilient. We main paper contributions include:

• We show that the push model presents serious

978-1-4673-2480-9/13/$31.00 ©2013 IEEE

limitations when used in the context of service oriented
network monitoring in large and complex networks.

• We identify use cases where the current flow-based
monitoring infrastructures are unsuitable to implement
real-time monitoring tasks.

• We highlight that similar problems are also
encountered when the divide-and-conquer processing
paradigm is used to exploit modern multi-core
architectures.

• We propose a novel architecture based on modern key-
value stores to solve the aforementioned issues.

The rest of the paper is structured as follow. Section 2
describes the background and the motivation of our work.
Section 3 describes the proposed architecture, which is
evaluated in Section 4 against two real network monitoring
scenarios. Section 5 highlights some open issues, future work
items and extensions for the measurement architecture
described on this paper. Finally, Section 6 concludes the paper. !

II. BACKGROUND AND MOTIVATION
Software-based probes have been originally preferred to

embedded probes to avoid stressing the existing network
infrastructure with additional load and to have a clean
separation between production networks and the network
monitoring infrastructures responsible to analyze their traffic.
However, software probes are becoming more and more
attractive than probes embedded in switches and routers for at
least three reasons:

• Most embedded probes are only capable to analyze
the network traffic up to the packet header.
Although some years ago this was a common practice,
today most of the emerging companies offer products
that through DPI (Deep Packet Inspection) [6] are able
to characterize the application protocol, trigger
immediate flow export rather to wait the flow to expire
when conditions are met (e.g. a used connected to the
network), and thus report it on exported flows. This is
a mandatory feature for accounting network traffic, as
relying on TCP/UDP ports for detecting the application
protocol is not dependable anymore. Throughout this
paper we use the term DPI to characterize the analysis
of packet payload for the purpose of detecting the
application protocol and decoding specific protocol
messages.

• Most embedded probes are not able to analyze 10
Gbit traffic carried on network backbones without
relying on sampling techniques. Sampling can
happen both at packet and flow level [5]. When using
packet sampling, the probe receives fewer packets and
thus the load on the probe is reduced but not the
number of computed flows with little relief on the
collector. When using flow sampling, the probe
analyzes all incoming packets but exports only a subset
of the flows thus reducing the load on the collector. In
both cases, sampling leads to inaccurate traffic analysis
and accounting and thus it is used very seldom by
network operators. Furthermore the use of sampling
makes DPI and protocol analysis hard to implement, as

not all protocols can be detected when sampling is
used.

• Most embedded probes only support limited
encapsulations. Encapsulated traffic is becoming
pervasive due to the use of protocols such as GRE
(Generic Route Encapsulation), Mobile IP, PPP (Point-
to-Point) and GTP (GPRS Tunneling Protocol) [9].
Most probes limit their scope to VLAN and MPLS
tagging, which is not sufficient to enable the analysis
of user traffic in modern backbones. It is worth noting
that supporting encapsulations does not just mean that
the probe is able to recognize additional packet
headers, but also that the probe is able to merge up/
down-stream tunnels as in the case of GTP.

Flow correlation is usually performed at the collector side,
where all the flows are received and typically stored in a
database. The correlation process is both time and resource
consuming: for each flow to be added into the flow database a
correlation query needs to be performed. The result is that the
load on the database is increased as well the collection latency
and throughput. Flow based technologies, such as NetFlow/
IPFIX are not suitable for near real-time traffic monitoring
because flow records have a lifetime that can range from tenth
of seconds to a few minutes. This criticism is the reason why in
the past couple of years products such as Riverbed Cascade
Pilot have tried to overcome the lack of real-time monitoring
by creating custom probes not based on the flow paradigm. In
our opinion this criticism is correct, but at the same time we
believe that there is a value in supporting the NetFlow/IPFIX. !

In summary modern flow-based traffic monitoring requires:
• Ability to monitor traffic at 10 Gbit speed while

supporting the most popular traffic encapsulations,
including mobile network traffic.

• Ability to partition traffic monitoring both across
systems and available processor cores, while being
able to correlate data produced by the various probes.

• Support of distributed traffic monitoring where
multiple network probes, each analyzing a portion of
the overall traffic, cooperate to the same global
monitoring goal.

• Inspection of packet payload for identifying the
application protocol and characterizing the traffic with
metadata (e.g. compute the HTTP return code)
information that enables monitoring of real user
experience and detailed reporting of errors.

• Real-time correlation of traffic seen by distinct probes
for associating users with flows (e.g. user X has issued
a,b,c HTTP requests), and cross-flows correlation (e.g.
a RTP flow with its corresponding SIP signaling
session).

• Creation of a near-realtime knowledge base containing
the main metrics of monitored hosts and protocols,(e.g.
bytes and packets), so that it is possible to see what is
happening on the network on near-realtime without
having to wait flow expiry. !

These requirements have been the motivation for this work,
as we have not found in the open-source community or in

commercial products, a traffic probe able to support all these
features while being:

• Moderate in usage of computing resources so that it
can run on both small embedded devices and high-end
servers.

• Open source, which we believe is a value, in particular
when monitoring telecommunication networks that are
still mostly based on proprietary software.

• Extensible by end-users by means of plugins for
creating dissectors for new protocols.

• Able to monitor 10 Gbit networks on commodity
hardware without using any custom network adapter. !

The core idea behind this work is the need to create a
distributed and constantly updated knowledge database for
network monitoring, made of a small (in size and number of
nodes) cloud, that we call microCloud. Each probe accessing
the cloud has an active role in enriching it with the monitoring
data it analyzes, and at the same time fetches from the cloud
the information necessary for correlating flows together, and
associating users their traffic often known as subscriber
awareness. This architecture overcomes a limitation of many
monitoring tools that are IP/MAC address-centric instead of
user-centric: users think in terms of services and identities,
whereas IP and MAC addresses are intermediate low-level
information used by computer to communicate.

The microCloud however is not just a information
correlation technology but rather a short-term database where
data is stored and used on a collaborative fashion. Every
component is responsible for enriching it by adding the
information it sees, and it can exploit the cloud for accessing in
real-time to data that would simplify its task. For instance by
extending this principle at security devices such as IPS/IDS it
would be possible to propagate security-related information in
real-time across all cloud members and thus execute specific
actions. For instance when an IPS detects that IP a.b.c.d is
sending suspicious traffic, it might mitigate it and report this
information to the cloud where a packet-to-disk application
might be listening and dumping to disk packets of such
suspicious IP. In a way the microCloud is a collaborative real-
time mechanism that promotes collaboration and information
sharing across its members. Within the scope of this paper, we
limit our analysis to traffic monitoring but the concept we
present is very general and applicable to networking in general.

III. MICROCLOUD MONITORING ARCHITECTURE
The microCloud is made of one or more nodes, where each

node is based on a key-value database named Redis [10] we
selected because:

• The Redis database engine is very fast. A single
database can serve about 100k requests/sec from
multiple clients. A single client can perform over 50k
key/value set/sec.

• Unlike memcached, Redis is persistent, so that data is
preserved across restarts as on standard databases.

• Redis supports (limited) clustering, data replication
and migration. Unlike other databases where multi-
node deployments are compulsory, in Redis this is an
optional feature that can be considered only for large
systems. This makes Redis an ideal solution for both

small embedded monitoring probes and large, multi-
CPU systems.

• The communication protocol between a Redis client
and the server is very simple so that we can implement
it also on network probes as explained later in this
section.

• Redis supports publish/subscribe, so that we can
propagate relevant monitoring data (e.g. a user dis/
connected to the network) to all cloud participants that
want to be informed about specific events by
leveraging on this information distribution mechanism.

• Redis is open-source, its code is small in size, well
written and documented, and supported by a large
community. Unlike similar solutions such as Hadoop
that is Java-only, Redis supports clients written in most
programming languages significantly easing its usage
also on existing monitoring environments.  !

 !
1. MicroCloud Architecture

Each monitoring probe is based on nProbe [7], an open-
source NetFlow/IPFIX probe written by the authors. The
nProbe core is responsible for analyzing traffic, classifying it
into flows, and emitting them according to the user-specified
template, i.e. nProbe supports “flexible netflow” in the Cisco
parlance. The core of nProbe implements packet header parsing
(it supports all the popular encapsulations), and a flow cache
that stores traffic information. nProbe implements DPI natively
as it leverages the nDPI framework (http://www.ntop.org/
products/ndpi/), an open-source DPI framework based on a
fork of a open-source framework named OpenDPI which is no
longer available. nDPI recognizes more than 160 protocols
including Skype, BitTorrent, WebEx, Twitter and Facebook.
Thanks to nDPI, nProbe can detect the application protocol
(i.e., protocol detection is not based on ports) and thus export
this information on flows. nProbe is also extensible by means
of plugins and provide users with dissection plugins for several
popular protocols including HTTP(S), GTP-C v0/v1/v2,
Database (MySQL, Oracle), Email (SMTP, IMAP, and POP3),
VoIP (SIP and RTP), DNS. Plugins extract from network flows
domain-specific metadata (e.g. URL, and return code in HTTP,
SQL query on databases plugins) with the purpose of providing
a rich monitoring experience and report errors along with its
context. For instance nProbe can report the request service time

Cloud Node
(redis)

Cloud Node
(redis)

Cloud Node
(redis)

Cloud Get/Put
Cloud Get/Put

n
nProbe

n
nProbe

n
nProbe

n
nProbe

n
nProbe

n
nProbe

Cloud Get/Put

Cloud Get/Put

MicroCloud

Monitoring Application

Cloud Subscribe

Cloud Get

(application delay) and network latency (network delay) for
each URL so that network administrators do not have
aggregate performance values, but fine-grained information
that can be used to pinpoint specific performance issues.
Tracking protocols such as radius and DNS cannot be done by
analyzing the 5-tuples only. To address these cases, nProbe
supports something we called sub-flow identifier that uniquely
identifies a communication inside a flow (e.g. the transactionId
on DNS, or packetIdentifier on Radius). Tracking GTP-U (i.e.
the traffic of mobile users on a 3G/LTE network) traffic is even
more complicated as the signaling traffic GTP-C (i.e. , GTP-C)
specifies the tunnels identifiers (at least four) used to determine
where the GTP-U traffic for a specific mobile user will be
flowing. As explained below, this tunnel information needs to
be persistently stored into the cloud as:

• Depending on the network topology and user roaming
inside the mobile network the traffic of a specific user
can be observed in distinct vantage points, and
therefore, probes need to have access to tunnel
information corresponding to each observed user.
Therefore, this information has to be stored on the
cloud.

• This information can last very long time and thus it has
to be persistent across probes restart. !

Each probe enriches the cloud by:
• Adding/removing user mappings whenever a user

(dis)connects to the network (e.g., using Radius or
GTP).

• Depending on the probe configuration, when a flow
expires the probe can rely on the cloud to discover the
user associated with such a flow.

• When a flow expires, the probe updates the database
entries including (but not limited to) flow peers, ports
and protocols with the flow information. !

The data types. The cloud contains two type of
information: persistent (e.g. user to IP mapping) and volatile
(e.g. host X traffic). The persistent information is never flushed
from the cloud unless a probe explicitly requests that. There are
however cases where the information should stay in the cloud
for long time frames (e.g. a 3G modem controlling river water
level is powered when installed and turned down when
replaced, so its registration stays on the cloud for the unit
lifetime that can even be years) so it is important that the cloud
information is maintained for long time and not automatically
flushed by timeout. In contrast, volatile data such as host traffic
can have a retention period after which if the data is not
updated, it is automatically removed from the cache. This
harvesting mechanism, implemented through the Redis TTL
(time-to-live) command, is necessary to purge from the cache
stale information that is no longer required.

The data model. Data stored in the cloud is uniquely
identified via a key. Users familiar with the SQL language, will
probably be disappointed by the lack of the WHERE clause
(e.g. SELECT X where Y). However, Redis allows keys
matching given pattern to be listed (e.g. KEYS ip.192.168.*).
This is not a real limitation, as probes do not need to glance
through the cache data but they rather update information
uniquely identified with a unique key (e.g. IP and VLAN).

Inside the cache, the information is organized hierarchically in
several groups:

• MAC, IP, VLAN and application protocols group. On
these groups the keys are unique by definition (e.g. an
IP is unique). In case the same IP is seen multiple times
(e.g. the same IP on two different VLANs) the value
associated to that key holds the information (e.g. <vlan
A>.bytesSent, <vlan B>.bytesRcvd and so on). This is
because for each key we do not associate a single value
but rather a hash (or list/set) containing several unique
fields.

• nProbe plugin-related groups. Each plugin that saves
data into the cache can do it both enriching the above
group (e.g. and host X sends a DNS request, the DNS
plugins increments the value of dns.queries attribute
belonging to host X), and creating specific hashes. For
instance the GTP plugin creates a specific dictionary
that contains the GTP tunnel information for a specific
user, whereas the radius plugin adds the dictionary
field “username”=<user id> to the IP address present
on the IP group. Please note that all plugins contribute
to enrich the cache by setting the information they
learn from traffic such as the operating system type
and version (e.g., the HTTP plugin can extract the
information by parsing the user-agent field). !

Promptly updates are mandatory on real-time monitoring.
Therefore, as soon as a probe has to report important
information (e.g., a user authenticated with radius), this data is
immediately placed on the cloud without waiting for the
corresponding flow to be expired. As each probe can set
multiple keys per each flow, nProbe opens two communication
channels with a Redis instance. The first channel is
synchronous and used to get information from the cloud (e.g.
read the user name associated to a given IP), whereas the
second one is asynchronous and used to set or delete data from
the cloud. We decide to use two distinct channels to
accommodate for distinct requirements: low latency and high
throughput. The synchronous channel is used by the probe to
get replies with low latency as the requested information is
necessary immediately. In contrast, the asynchronous channel
carries requests that do not need to be performed in real-time
so that they can be grouped together and executed in batches to
reduce the network communications.

Although communications with a Redis node are very
efficient, nProbe cannot update the cache for each received
packet, as this would be too costly. Therefore, the microCloud
can only offer an alternative view of the traffic, which is near-
realtime. However, we have implemented in nProbe a subset of
the Redis protocol. In this way, in addition of being a cloud
client, nProbe can also act as a Redis node that can be queried
by client applications for reading in real-time global traffic
counters (e.g. number of bytes/packets) and for accessing the
flow cache. In the future, we plan to implement a REST
interface that provides the same information to web-based
applications (e.g. an ajax-based realtime graph) so that they can
access nProbe data natively without having to use the Redis
protocol. The separation between network probes and
knowledge base implemented by the proposed cloud-based
architecture offers new interesting possibilities. Our

architecture is in fact an open architecture that allows third-
party network monitoring applications to be easily developed.
Such applications can be coded using one of the Redis client
bindings, including scripting languages such as Perl and
Python. In this way, monitoring applications can be highly
modular and implemented by software engineers without a
deep background networking background. It is in fact possible
to code simple scripts solving very specific requirements such
as emit alerts whenever a user has accessed specific URLs, and
periodic dump of selected traffic metrics onto time series (e.g.
RRD files). It is worth to remark once more that the
microCloud should not be perceived as a persistent database
but rather as a data cache where all the network knowledge is
stored and to which multiple agents can have access for
enriching it or reading data from. The Redis security and
authentication mechanisms prevent that unprivileged clients
can delete or corrupt the cache, and restrict data access
according to the specified policies.

IV. MICROCLOUD VALIDATION
The microCloud has been validated in two different

production environments where it is running since a few
months. The goal is to verify the usage of the microCloud in
real life, and check if its usage has negative dependencies on
the probes in terms of increased load or packet drops.

A. DNS Traffic Monitoring
nProbe is used since a couple of years as the cornerstone of

the DNS traffic monitoring system used to monitor the .it DNS
registration service.

!

2. MicroCloud DNS Monitoring System for .it: Node Architecture

The .it ccTLD relies on seven DNS nodes some of which
using anycast addressing. The following figure depicts the
architecture of a typical DNS monitoring node. The existing
monitoring system [11] was relying on DNS flow traces
generated by nProbe in realtime. As aggregation is a
computationally expensive activity, it was performed once a
hour leveraging on traces produced on the past hour. The
drawback of this solution is that it is not possible to see what is
happening in realtime, and also that during the analysis, which
lasts for more than 15 minutes, the system load was high
enough to lead to packet drops on the probe and reduced
response time to the web monitoring console. The new
microCloud architecture has overcome all these limitations by
allowing us to have a realtime view of the DNS system, while
enabling the creation of simple realtime applications. For

instance we can now monitor DNS queries made by suspicious
IP addresses that have been reported by CENTR, the council of
TLD domain registries in real-time A typical monitoring node
handles more than 60 million queries/day with peaks of a few
thousand queries/sec.

Inside the .it DNS network, the microCloud is currently
deployed on three national DNS nodes, and soon it will be
extended to the remaining nodes. Each monitoring node is
physically located inside the core network of IXPs (Internet
eXchange Points). Due to colocation contracts, the Internet
connection cost of such nodes is flat for traffic from/to the
Internet but it’s on volume for traffic from/to each node to
the .it DNS network. For this reason we have decided not to
have a single microCloud with nodes speaking each other, and
thus each node has its own local cloud; this would preserve the
Internet bill with the disadvantage of not having a single
distributed cloud. Whenever we produce live reports or dump
aggregate statistics across all nodes, we query all the
monitoring clouds from a central point in order to produce an
aggregated view of the .it DNS traffic.

In terms of performance, the batch Redis update system
implemented in nProbe guarantees that Redis updates do not
slow down DNS processing. Considering all data caching,
update performed in batches and DNS protocol handling, the
latency between a DNS response received by the probe and the
Redis database updated is around one second. We believe that
this is a great result as it enables us to have a near real-time
view of the networks with a simple architecture. For real-time
traffic view, it is possible to query directly each nProbe via the
redis protocol whose a subset has been implemented into the
probe as previously explained.

B. 3G/LTE Traffic Monitoring
The microCloud is successfully used to monitor 2G/3G

traffic of the Bulgarian Telecom (VIVACOM) mobile network.
Each monitoring node receives a copy of the traffic as seen on
the Gn interface, which is where GTP-encapsulated mobile
subscriber traffic is flowing [9].

 !
3. MicroCloud-based 2G/3G Monitoring System: Node Architecture

As traffic can be received on multiple ingress interfaces due
to network topology or due to the adoption of network taps, it
is first necessary to merge traffic together. This task is carried

Internet Users

.it

Log DNS Log Processor

DNS Traffic

DNS Traffic StatsTSDB

nProbe

Realtime 1 Hour Aggregation

n

PF_RING Traffic Balancer

Cloud Node
(redis)

Cloud Node
(redis)

Cloud Node
(redis)

In
co

m
in

g
Tr

af
fic

Incoming Traffic

Incom
ing Traffic

Cloud Get/Put

n n n n

n n

on by the PF_RING [8], an open-source Linux kernel module
that has been originally designed to accelerate packet capture
and that nowadays provides several packet-balancing facilities
including packet clustering. Thanks to packet clustering,
incoming packets belonging to GTP tunnels of the same mobile
users are merged and sent to the same nProbe instance. In this
way, up- and down-stream directions of the same flow are
monitored by the same probe. Similarly, GTP-C traffic is
shared across all probes in order not to overload a single probe
with signaling and to avoid that in the unlucky case of probe
crash, all the signaling traffic analysis is stopped. The GTP
encapsulation is handled by the nProbe core, whereas we have
developed a new plugin for handling GTP-C that is responsible
to propagate subscriber information into the cloud. Such
microCloud maintains information about GTP tunnels, and
subscriber awareness by mapping users to traffic. nProbe has
been enhanced to export this information via NetFlow/IPFIX
u s i n g a n e w i n f o r m a t i o n e l e m e n t n a m e d
FLOW_USER_NAME. A similar feature is supported by
nProbe for radius traffic. This means that for all flows, nProbe
searches the traffic-to-user mapping onto the microCloud.

The node architecture deployed on Figure 3 is currently
monitoring VIVACOM’s 2G and 3G networks (in additional to
a 4G/LTE testbed) and thanks to PF_RING balancing it has
been possible to balance the traffic across cores and thus
handle the input traffic rate without dropping packets. Due to
the distributed network topology, multiple servers are used to
handle traffic that is monitored on different locations. However
the cloud is unique as all nodes refer to the same cloud, and it
is not partitioned across locations. This is important as on
mobile networks, users move inside the network and thus a
give user can be seen at different monitoring points depending
on its current physical position onto the network and type of
handheld used (e.g. 2G vs. 3G). The microCloud is an ideal
solution for taking into account these cases as regardless of the
monitoring point, it is always possible to locate the correlation
information if known to the cloud. Another advantage of this
architecture is that at any time it is possible to know the active
users on the network, their GTP tunnels (this information is
necessary for intercepting user traffic for instance for
troubleshooting issues) and traffic type/protocols in realtime.
Using a conventional database-based architecture, all this
information would have been available only after aggregation
and thus not in real-time as it happens with the microCloud. !

V. OPEN ISSUE AND FUTURE WORK
Although operational and used in production networks, the

microCloud concept is still an on-going work under active
development. We acknowledge that Redis is the most suitable
open-source infrastructure available, but we are aware that
there is still significant work to be done to extend the cloud
infrastructure with additional functionalities. For instance, we
would like to introduce into the cloud a long-term storage
system that allows us to maintain a historical view of key
metrics and counters. We are also trying to address some
limitations of the current Redis design. One feature that we
would like to introduce in Redis is the support for hooks to
notify applications when specific events happen (e.g. a key is
purged from memory due to its TTL).

On the networking side, we are introducing the support for
microCloud to all network components we are developing (i.e.,
traffic load balancers, application firewalls, and new
specialized nProbe plugins). The idea is that each network
component should contribute to the microCloud by exporting
into it traffic counters, configuration information and any
metadata information that can be useful for the purpose of
network traffic monitoring and network awareness.

VI. FINAL REMARKS
This paper has presented a novel architecture that

implements real-time traffic correlation and monitoring, as well
distributed alerting. Each monitoring node communicates with
a small-sized cloud that acts as a distributed consistent memory
cache where monitoring information is maintained. Traffic
probes enrich the cloud by storing into it information about
hosts, protocols, and user-to-IP mapping. Overcoming the
limitation of database-based monitoring systems, this
architecture guarantees traffic counters consistency even if
multiple probes monitor a portion of the same traffic.
Furthermore it enables the creation of simple real-time
monitoring applications that can use the data stored on the
microCloud to accomplishing management functions that until
now would have been implemented as monolithic and hard to
maintain traffic monitoring applications. Although this paper
focuses on traffic monitoring, the concept of the microCloud
has a broader scope as it can be applied also to other areas of
networking including management and security.

ACKNOWLEDGMENT
Our thanks to Italian Internet domain Registry that has

greatly supported this research work, and VIVACOM Bulgaria
Telecom that has provided us country-wide infrastructure for
deploying the software described on this paper.

REFERENCES
1. B. Claise, Cisco Systems NetFlow Services Export Version 9,

RFC 3954, October 2004.
2. B. Claise, Specification of the IP Flow Information Export

(IPFIX) Protocol for the Exchange of IP Traffic Flow
Information, RFC 5101, January 2008.

3. L. Deri, nProbe: an Open Source NetFlow Probe for Gigabit
Networks, Proc. of Terena Network Conference, 2003.

4. L.Deri at al., A Distributed DNS Traffic Monitoring System,
Proceedings of TRAC 2012 workshop, August 2012.

5. T. Zseby and others, Sampling and Filtering Techniques for IP
Packet Selection, RFC 5475, March 2009.

6. M. Becchi, M. Franklin, and P. Crowley, A workload for
evaluating deep packet inspection architectures, Proceedings of
IISWC 2008, September 2008.

7. B. Newport, Evolving the Key/Value Programming Model to a
Higher Level, Proceeding of Qcon Conference, 2009.

8. F. Fusco and L. Deri, High Speed Network Traffic Analysis with
Commodity Multi-core Systems, Proceedings of IMC 2010,
2010.

9. 3GPP, General Packet Radio Service (GPRS); Service
Description, Stage 2, Technical Specification 3GPP SP-56,
V11.2.0, 2012.

