
Kex-Filtering: A Proactive Approach to Filtering

Fabrizio Baiardi1 a, Filippo Boni1 b,Giovanni Braccini 1 c, Emanuele Briganti 2, and Luca Deri 1,3

d

1Dip. di Informatica, Universita di Pisa, Largo Bruno Pontecorvo, Pisa, Italy
2ReeVo Cloud & Cyber Security, Italy

3Ntop, Italy
f.baiardi@unpi.it, f.boni7@studenti.unipi, g.braccini8@studenti.unipi, emanuele.briganti@reevomsp.it, deri@ntop.org

Keywords: IP blacklist, hash, botnet, hassh, SSH configuration, honeypot, network fingerprint

Abstract: Kex-Filtering is a method to identify malicious nodes by analyzing their configuration when they try to connect
as clients to an SSH server. The process adopts the hassh hashing network fingerprinting standard to discover
and record the distinct configurations of malicious SSH clients. The method computes an MD5 hash during
the SSH handshake when the client and server exchange their SSH configurations, including a specific range of
algorithms to establish a secure SSH channel. Kex-Filtering fully exploits that, to simplify botnet management,
a large number of nodes of a botnet share the same configuration of their SSH clients. Experimental data
collected through honeypots confirm that Kex-Filtering stops a large percentage of attacks and it results in a
very low number of false positives and negatives even when using few hashes.

1 Introduction

IP blacklists are the most popular method to iden-
tify and block SSH attacks. One of its weaknesses
is low effectiveness against rapidly expanding large-
scale botnets that continually evolve and add new
nodes. It is challenging to continuously update con-
ventional IP blacklists to keep pace with the rapid
evolution and extension of botnets.

This paper introduces Kex-Filtering, a new
method to identify attacks from a botnet. Its defini-
tion is based on data we have collected in 8 months
from 4 honeypots in the Azure and the AWS data cen-
tres. The honeypots have been the targets of more
than 20,000 attacks where 98.5 per cent of these at-
tacks were automated and most were produced by
botnets categorized as Mirai-like, the new generation
of botnets leverages derivative or enhanced Mirai-like
code that does not rely on compromised IoT devices
or other vulnerable systems only. According to our
data, libssh 4 was the most common client finger-
print in SSH attacks, accounting for over 65 per cent
of total incidents. This led us to define and evalu-

a https://orcid.org/0000-0001-9797-2380
b https://orcid.org/0009-0001-3433-4469
c https://orcid.org/0009-0006-2013-7233
d https://orcid.org/0000-0001-8084-1667

ate Kex-Filtering, an approach to identify malicious
nodes based on a fingerprint of the SSH client config-
urations in these nodes. This approach to discovering
connections from botnet nodes largely differs from
conventional IP-filtering methods because it does not
use a blacklist of IP addresses to filter incoming SSH
connections. Instead, Kex-Filtering analyzes the con-
figuration of the client connecting to the SSH server
and compares it against known malicious configura-
tions. A successful comparison implies that the client
belongs to a botnet. Experimental results confirm that
Kex-Filtering is much more effective than traditional
IP blacklists because even a small blacklist with less
than 15 patterns can block up to 98.5 per cent of at-
tackers with a very low number of false positives.
Furthermore, the proposed solution is proactive be-
cause it filters out an IP address autonomously, upon
discovering it is configured maliciously. Lastly, Kex-
Filtering detects an attack as soon as the TCP hand-
shake is completed, effectively preventing the attacker
from executing malicious commands. This can stop
and identify attacks at the root.

Kex-Filtering should be seen as an integration
rather than as a replacement for standard IP blacklists
as it adds to filtering the capability to dynamically up-
date an IP blacklist with the addresses of those hosts
that match known malicious client configurations. In
this way, Kex-Filtering not only blocks connections



from these IPs but, as confirmed by the data we have
collected, it strongly simplifies the identification and
blacklisting of SSH attackers, particularly those using
nodes belonging to botnets.

We review related work in Sect.2. The following
sections describe, respectively, the architecture of the
honeypots to collect data and how the analysis of the
data collected by our honeypots has suggested the def-
inition of Kex-Filtering. Sect. 5 describes the experi-
ments we have run to evaluate Kex-Filtering and then
Sect. 6 compares its performances against the one of
IP blacklists. The last section outlines future works.

2 Related Works

Previous work has suggested adopting a filtering
mechanism based on duplicate hashes. This includes
(Gasser et al., 2014) that has used the results of a mas-
sive internet scan implemented in 2013 and (Byth-
wood et al., 2023) but they do not evaluate the ef-
fectiveness of the adoption of duplicate hashes. (Du-
launoy et al., 2022) uses SSH hashes to classify SSH
servers rather than to identify botnets. Also (Heino
et al., 2022) outlines the feasibility of filtering based
on hashes but it is focused on web applications. The
number of hashes collected in (Shamsi et al., 2022) is
too low to result in effective filtering. Our work gener-
alizes the solutions previously proposed (Heino et al.,
2023) and it includes a performance evaluation of the
adoption of hassh filtering to discover malicious SSH
connections. The performance evaluation is built on
the large amount of data the honeypots have collected.

An alternative method for SSH fingerprinting is
JA4SSH (Foxio, 2024). While hassh aims to fin-
gerprint SSH applications, JA4SSH focuses on fin-
gerprinting SSH sessions by analyzing the encrypted
traffic exchanged during the connection. Even this
fingerprint may detect attack patterns and behaviours
but this paper will primarily focus on the adoption of
the hassh fingerprinting to discover malicious nodes
before they can implement an attack.

The deployment of honeypots in clouds has been
previously examined. Earlier research (Kelly et al.,
2021) has explored the correlation between the popu-
larity of cloud providers and the frequency of attacks.
Unlike studies focused on popularity, currently the
adoption of honeypots shifts its emphasis to a more
security-centered approach. A similar shift can be ob-
served in the recent work by Orca Security (Security,
2023). They deployed honeypots storing cloud access
keys across multiple providers and measured the in-
terval from deployment to the discovery and exploita-
tion of the keys.

3 Honeypots for Data Collection

The definition of Kex-Filtering has been suggested
by the analysis of data collected by a set of honey-
pots. We have used four honeypots, two of which
were hosted on AWS and the other two on Azure
cloud. The resulting dataset spans 8 months and in
these months more than 20000 distinct IPs of attack-
ers have produced more than 400000 attacks.

All these honeypots used Cowrie (Oosterhof,
2015) a medium-interaction honeypot and supported
the SSH protocol. Furthermore, for further investiga-
tions, in one honeypot on each cloud, we configured
the Dionaea low-interaction honeypot citesethia2019
for multi-protocol support.

Table 1: Deployment Details of the Honeypots

Honeypot Cloud Plt. Protocols
Azure A Azure SSH, FTP, SMB, HTTP
Azure B Azure SSH
AWS A AWS SSH, FTP, SMB, HTTP
AWS B AWS SSH

Each honeypot server exploits both virtual ma-
chines (VMs) and Docker containers (Inc., 2013) to
build a scalable and isolated environment where VMs
act as protective barriers between the network and
the hosted honeypots. We have used this solution to
effectively confine potential security breaches within
the containers themselves, thereby preserving the host
system’s integrity.

Figure 1: Architecture of the Honeypot Machine

To improve the robustness of our honeypots, each
one also includes a sophisticated alert system that ac-
tivates immediately when access is granted to either
the host or the virtual machine. In addition, we have
deployed a protective protocol to suspend the oper-
ations of either the Docker container or the VM as
soon as an unauthorized login is attempted. To se-
cure access to the VMs themselves, we have hardened
them with a two-factor authentication (2FA) system.



For real-time monitoring and time-series data analy-
sis, we have integrated the Prometheus 1 time-series
database with our VMs and honeypots using custom
scripts. In this way, we can measure not only log data
but the environment metrics of the VMs too. Lastly,
since Prometheus is primarily a metric collection tool,
we have paired it with Grafana 2 for data visualiza-
tion. (Labs, 2021).

Figure 2: Honeypot Server Architecture

Each honeypot securely transmits the data it col-
lects to a server (see Fig. 2) hosting both Prometheus
and MongoDB through the Tailscale network 3 for en-
hanced privacy and security.

The integration of Tailscale, for safe data transfer-
ring, Prometheus for time series generation, Grafana
for data visualization, and MongoDB for efficiently
storing the dataset for finer-grained analysis, results
in a robust and secure ecosystem for collecting, stor-
ing, and analyzing honeypot data.

4 Fingerprinting Botnets

This section describes Kex-Filtering in some detail,
starting from the fingerprinting of the configuration
of some botnet nodes.

4.1 Hash Fingerprinting

We have adopted the hassh hashing method to fin-
gerprint and record the configurations of SSH clients.
This method generates a unique MD5 hash for a spe-
cific combination of the encryption algorithms the
client supports. The hash is computed during the SSH
handshake and after the initial TCP three-way hand-
shake when the client and server exchange their SSH
configurations as shown in Fig. 3. One of the data

1https://prometheus.io
2https://www.grafana.com/
3https://tailscale.com

the client and the server exchange is the list of sup-
ported algorithms that play a crucial role in estab-
lishing a secure SSH channel. These configurations
are transmitted via SSH MSG KEXINIT packets in
clear text. We use the algorithms in the list and their
transmission order to produce a fingerprint to identify
particular client applications or their unique setups
(Salesforce, 2018). We refer to this aspect of the SSH
protocol as KEX (key exchange), and henceforth,
hassh hashes will be denoted as ”KEX hashes”. The

Figure 3: Some Information the SSH Handshake Exchanges

data our honeypots have collected confirms that at-
tacks from distinct nodes sharing the same hash apply
nearly identical strategies and execute the same com-
mands. This suggests that nodes within the same bot-
net are usually configured with the same SSH client
and hence they have the same KEX hashes. Conse-
quently, the KEX hash can detect attacks from all the
nodes from the same botnet.

This method has identified one of the most domi-
nant botnets. This botnet is linked to the Outlaw crim-
inal gang and it includes more than 8000 IP addresses
that have attacked our honeypots. It is responsible for
more than 48 per cent of the attacks against the bot-
nets we have deployed.



4.2 Kex Hashes Distribution

We show the effectiveness of Kex-Filtering through
the HASSH hashes produced by the four previously
described honeypots.

Figure 4: Top 3 KEX hashes in Azure & AWS

As shown in Fig. 4 the top three KEX hashes
cover 94 per cent of attacks in the AWS dataset and
approximately 90 per cent of those in the Azure one.
We also notice that 70 per cent of the attacks against
Azure share the same KEX hash (Hash 1).
This confirms the potential of Kex-Filtering, as it
succeeds in blocking about 92 per cent of attacks
when using just 3 KEX Hashes. Our dataset included
about 100 unique KEX hashes collected across both
cloud providers. This is a much smaller dataset than
one storing attacking IPs (over 20000). It is also
smaller than a standard IP blacklist.

Figure 5: Distribution of KEX hashes Across Providers

Fig. 5 shows the hashes distribution with a large
intersection between the KEX hashes collected by
the honeypots in the two clouds. The intersection
among attack vectors across the two clouds confirms
that Kex-Filtering identifies the same botnets in both
clouds.

After discovering the similarity in KEX hash dis-
tributions for both clouds, we have merged and ana-
lyzed the two datasets. The resulting bar chart shows
the top 15 KEX hashes for the overall data and their
prevalence as a percentage of total occurrences in
both environments.

The data in Fig. 6 shows the striking prevalence
of just one KEX hash that is identified by its initial se-
quence ”f555...”. This hash is remarkably widespread

Figure 6: Top 15 KEX hashes in Azure & AWS

for both cloud providers. According to our dataset,
about 63 per cent of the SSH attacks on our honeypots
in the two environments are associated with this hash.
The prominence of this single KEX hash offers a sig-
nificant opportunity for mitigating the largest fraction
of these attacks. The adoption of a filter that only tar-
gets this hash could potentially neutralize up to 63 per
cent of SSH attacks. This confirms the effectiveness
of Kex-Filtering. The outcomes of our analysis fur-
ther support this effectiveness because a concise set
of just 15 blacklisted hashes can discover and block
98.5 per cent of the SSH attacks in the dataset.

4.3 Effectiveness of KEX hashes

The collected data reveals the strikingly limited num-
ber of KEX hashes that are used. This observa-
tion suggested an investigation into the underlying
reasons, building upon our analysis of the OutLaw
Crypto-Botnet’s source code. As already mentioned,
several botnets, notably those based on the Mirai
source code, mostly use the same attack code and
therefore use the same SSH clients with the same con-
figuration. This shared configuration simplifies the at-
tacker tasks because the creation of a distinct configu-
ration for each botnet node is much more complex and
expensive. This implies that a large number of botnet
nodes share the same KEX hash and that botnets us-
ing similar, unchanged codes can be readily identified
through their KEX hashes.

Figure 7: Percentage of Attackers with OutLaw KEX hash

The widespread use of the KEX hash ’f555’ has
been directly linked to attacks attributed to the Out-
Law botnet. The correlation of IP addresses identified



as OutLaw nodes and those using the ’f555’ hash con-
firms that no node identified through Kex-Filtering is
a false positive and all the nodes are actual members
of an operating botnet. This confirms that the pro-
posed method can discover malicious nodes and iden-
tify the botnet they belong to. This information may
be essential to fully exploit information from threat
intelligence about possible attackers and their TTPs
(Xiong et al., 2022)

Figure 8: Distribution of Unique IP per Hash

Fig. 8 shows the distribution of unique IPs as-
sociated with each KEX hash. Notably, the hash
beginning with ’f552’ emerges as the predominant
choice among attackers, consistent across all cloud
providers. Remarkably, the five hashes in the graphs
jointly represent about 82 per cent of the attackers
when considering both Azure and AWS. This shows
that by filtering just these five KEX hashes, Kex-
Filtering can both detect and block in the initial stages
of the SSH handshake nearly all malicious actors tar-
geting the SSH protocol.

5 Experimental Evaluation

Building upon the preliminary results previously de-
scribed, this section investigates the practical applica-
tion of Kex-Filtering.

To achieve a robust evaluation, we have developed
a standalone system independent of the one to collect
hashes. This avoids any bias due to the evaluation set-
up.

The system we have developed is a custom rule-
based intrusion prevention system (IPS) that corre-
lates the KEX hashes of connecting clients with the
repository of hashes collected by our honeypots. As
soon as the IPS discovers a hash match within the
dataset, ie a potentially malicious connection, it im-
mediately stops the SSH handshake. Furthermore,
in response to a KEX hash match, the IPS dynami-
cally updates an IP blacklist to block traffic originat-
ing from the corresponding host not only on SSH but
across all the services.

5.1 Performance Analysis

We ran the IPS for two days using the most signifi-
cant 50 hashes from the honeypot data. The decision
to increase the number of hashes from the original 15
hashes is due to the distinct network environment un-
der test. This test, even if very short, has produced
some insights into the effectiveness of the proposed
method.

Figure 9: Timeline of Blocked Connections by Kex-
Filtering

In total, the IPS was targeted by 202 SSH connec-
tions. During the first 24 hours, the system effectively
blocked 99.5 per cent of attempted attacks, 52 con-
nections out of 53. Remarkably, just 2 of these hashes
have accounted for over 60 per cent of the blocked
attackers (as shown in Fig: 10)

Figure 10: Hits Distribution in Blacklisted Hashes (first
24h)

The bar chart in Fig: 10 shows that in the first 24
hours, our IPS works at the expected rate. It also con-
firms that KEX-Filtering is effective even when it uses
few hashes.
The effectiveness has a drastic drop in the next 24
hours, as it blocks just a mere 35 per cent of the mali-
cious traffic (14.8 per cent blocked in these 24 hours).
The reduced effectiveness is due to a data shift be-
cause our honeypots collected the data three months
before we deployed the IPS. In the elapsed months,
new botnets with fresh KEX hashes have emerged and
one of them has targeted our IPS (Quinonero-Candela
et al., 2009), (Storkey, 2009).

In particular, on the second day, the IPS was tar-
geted by a new swarm of attacks identified by a KEX
hash beginning with ”aca”. This source of attacks
uses distinct IP addresses for each connection.



Figure 11: The Hashes Observed by the IPS (second 24h)

The usage of distinct IP addresses with the same KEX
hash strongly suggests the attacker operates through a
botnet. This confirms that nodes with the same KEX
hash belong to the same botnet and it validates the
effectiveness of the proposed method. Moreover, it
also confirms the effectiveness of Key-Filtering even
when using a small set of hashes provided that this set
is dynamically updated to cover new botnets.

A possible solution uses honeypots to gather new
data that is used to continuously update the IPS sys-
tems about new botnets.
The next analysis shows how the blocking rate of
the proposed method correlates with the number of
used KEX hashes. It confirms that even when Key-
Filtering uses just a few entries, it can stop most of the
attackers blocked by the whole hash list. This high-
lights the effectiveness of Kex-filtering even with a
small list. Fig. 12 shows how the blocking rate of

Figure 12: Blocking Rate as a Function of KEX Hashes

the IPS we have developed changes depending on the
number of hashes present in the blacklist it uses. In
this chart, the KEX hashes are arranged by their ef-
fectiveness in the experiment. We observe that when
Kex-Filtering employs just a single hash (the first
point on the chart), the percentage of blocked con-
nections jumps to 65%. This points out that in the
48 hours of activity, a significant percentage of the at-
tackers that Key-Filtering blocks come from the same
botnet. If we move to the right on the x-axis of the
graph, we see that when Key-Filtering uses about 20

hashes its effectiveness is close to a horizontal line in
the two days. The next chart shows the same data as
in Fig. 12, but now the data are structured according
to the popularity of KEX hashes leveraging historic
honeypot data:

Figure 13: Blocking Rate vs the Number of Hashes.

Fig. 13 shows the performance of the first entries
of the blacklist, ordered by efficiency on the honeypot
data. Initially, the performance of these entries is not
satisfactory but the inclusion of less than 20 additional
entries results in a remarkable surge in performance,
reaching a block rate of 90%. This suggests that the
hash of the botnet targeting our honeypot was eventu-
ally added to the blacklist.

Figure 14: Percentage of False Positives

According to Fig 14, just 2% of the collected Kex
hashes belong to benign ssh clients (myceliumbroker,
2024). This shows that Kex-Filtering can effectively
identify malicious SSH clients, as it successfully dis-
tinguishes them from benign ones. In fact, none of
the hashes in the blacklist for this test belongs to well-
known benign SSH clients.

5.2 Auto-Learning Hashes

We investigate the usage of KEX hashes identified as
malicious in some days to create a dynamic list of
hashes to be used the next day. This could result in
a highly effective setup of Kex-Filtering. The only
problem to be considered in a production server envi-
ronment is due to false positives. We mitigate this
problem by defining a whitelist of IP addresses to



avoid blocking known good hashes.
This experiment considered the hashes collected

in the previous days as malicious because the node
running the IPS is never accessed by a non-malicious
actor.

The analysis presented here is based on a week-
long deployment of the IPS on the same machine used
for the analysis previously described.

Figure 15: Blocked Attackers as a Function of Training

Fig. 15 shows how the number of training days
affects the percentage of attacks blocked on the fol-
lowing day. According to these results, the data col-
lected in just one day results in an effectiveness rate
on the following day of about 95 per cent, The ef-
fectiveness steadily increased to full protection (100
per cent) when using the previous four days as train-
ing. However, on the fifth day, efficiency decreased
to 70 per cent. This may be due to a new botnet that
was idle in the previous days, as in previous analy-
ses. Despite this, the effectiveness of Key-Filtering
consistently remains very high.

6 Kex-Filtering vs IP Blacklists

This section compares the performance of our solu-
tion against the one of state-of-the-art IP blacklists.
This experiment has compared the performances of
the two solutions in the two days of deployment.

6.1 Configuring the Solutions

We have considered three types of IP blacklists: a
daily blacklist based on the IPs observed in the pre-
vious 24 hours, and two historical blacklists that also
consider previous malicious IPs. These two lists
are the ”Alpha” IP Blacklist and the more complete
”Alpha 7” blacklist that, on average, includes about
54,700 IPs. We used open-source blacklists produced
by the Stratosphere Lab. 4.

4https://www.stratosphereips.org

On each day, we extracted the attackers’ IPs and
cross-referenced them against the IP blacklist for the
same day.

Figure 16: Blocking rate of Daily IP Blacklist vs Kex-
Filtering

Fig. 16 shows that on the first day, the IP Black-
list blocks over 80 per cent of the attackers, while
Kex-Filtering blocks 99.5 per cent of the attackers.
These percentages take into account that the deploy-
ment started at 7 PM while the blacklist we have used
covers three consecutive days.

On the second day, the IP blacklist only blocks 3
per cent of attackers, just 2 out of 67 IPs, whereas
Kex-Filtering blocked 14.8 per cent of malicious
connections. Despite its large performance decline,
because of the reasons previously explained, Kex-
Filtering is still more effective than IP blacklist.

Figure 17: Blocking rate of AIP Alpha vs Kex-Filtering

Kex-Filtering results in a better performance
while the IP blacklist blocked very few attackers, even
when using it in the next 24 hours.

These IP blacklists include more than 54,700 en-
tries. In the first 24 hours, their performance and the
one of Kex-Filtering are similar as they both detected
almost any attackers. However, on the second day,
despite its size, the IP blacklist only blocks 7.3 per
cent of malicious traffic, while Kex-Filtering blocks
about 14.7 per cent of the same traffic. As already
discussed, the under-performance of the IP blacklist
may be due to a new botnet it did not include.



Figure 18: Blocking Rate of AIP Alpha7 vs Kex-Filtering

6.2 Overall Evaluation

Our experimental evaluation confirms the better per-
formance of Kex-Filtering provided that we adopt the
same update strategy of IP blacklists. As an exam-
ple, developments (Deri and Fusco, 2023) show that
a solution that merges the six most popular file-based
IP blacklists discovers less than 50 per cent of attack-
ers. Furthermore, current botnets such as the OutLaw
defeat conventional IP blacklists by launching attacks
from new hosts as they expand. Instead, evading Kex-
Filtering is more challenging because this requires up-
dating the SSH clients in the current botnet nodes with
a large overhead due to the sheer volume of botnet
nodes. Even the adoption of distinct SSH client con-
figurations for each victim node is highly complex as
it requires a large and diverse set of configurations
that should be properly managed. This results in a
large overhead for the botnet owner. Instead, Kex-
Filtering only requires a check against a small dataset
of hashes where each hash can block attacks from sev-
eral nodes. This enhances efficiency and it strength-
ens the defence against a broader range of attackers.
This is in stark contrast to IP blacklist which usually
involves tens of thousands of entries (i.e. the Alpha7
blacklist includes more than 54700 IPs), where each
one blocks attacks from a single host only. Further-
more, IP blacklists usually have a short life because
of the volatile nature of IP addresses. Instead, the life
of Kex hashes should be as long as one of the cur-
rent botnet nodes, offering reliable identification and
filtering with a low rate of false positives.

7 Conclusion and Future Work

Our experimental evaluation confirms the effec-
tiveness of Kex-Filtering a simpler technique than
IP filtering. However, given their relative merits,
we plan to integrate Kex and IP filtering to define
a more comprehensive solution for mitigating and
detecting attackers. A first example is the simple
IPS previously described that uses the output of
Kex-Filtering to update IP blacklists.

REFERENCES

Bythwood, W., Kien, A., and Vakilinia, I. (2023). Finger-
printing bots in a hybrid honeypot. pages 76–80.

Deri, L. and Fusco, F. (2023). Evaluating ip blacklists ef-
fectiveness.

Dulaunoy, A., Huynen, J.-L., and Thirion, A. (2022). Ac-
tive and passive collection of ssh key material for cy-
ber threat intelligence. Digital Threats: Research and
Practice, 3(3):1–5.

Foxio (2024). JA4+ Network Fingerprinting.
https://blog.foxio.io/ja4

Gasser, O., Holz, R., and Carle, G. (2014). A deeper un-
derstanding of ssh: Results from internet-wide scans.
In 2014 IEEE Network Operations and Management
Symposium (NOMS), pages 1–9.

Heino, J., Gupta, A., Hakkala, A., and Virtanen, S. (2022).
On usability of hash fingerprinting for endpoint appli-
cation identification. pages 38–43.

Heino, J., Hakkala, A., and Virtanen, S. (2023). Categoriz-
ing tls traffic based on ja3 pre-hash values. Procedia
Computer Science, 220:94–101. 14th Int. Conf. on
Ambient Systems, Networks and Technologies Net-
works (ANT).

Inc., D. (2013). Docker: Empowering app development for
developers. https://www.docker.com.

Kelly, C., Pitropakis, N., Mylonas, A., Mckeown, S., and
Buchanan, W. (2021). A comparative analysis of hon-
eypots on different cloud platforms. Sensors, 21.

Labs, G. (2021). Grafana: The open observability platform.
Accessed: 2023-07-29.

myceliumbroker (2024). Hassh clients dataset.
Oosterhof, M. (2015). Cowrie ssh/telnet honeypot.
Quinonero-Candela, J., Sugiyama, M., Lawrence, N., and

Schwaighofer, A. (2009). Dataset Shift in Machine
Learning. MIT Press.

Salesforce (2018). Hassh: A network fingerprinting stan-
dard for ssh. https://github.com/salesforce/hassh.

Security, O. (2023). Orca security ‘2023 honeypotting in
the cloud report’ reveals attackers weaponize exposed
cloud secrets in as little as two minutes.

Shamsi, Z., Zhang, D., Kyoung, D., and Liu, A. (2022).
Measuring and clustering network attackers using
medium-interaction honeypots. pages 294–306.

Storkey, A. (2009). When training and test sets are dif-
ferent: characterizing learning transfer, dataset shift.
Machine Learning, 30(1):3–28.

Xiong, W., Legrand, E., Åberg, O., and Lagerström, R.
(2022). Cyber security threat modeling based on the
mitre enterprise att&ck matrix. Software and Systems
Modeling, 21(1):157–177.


