
An Architecture for Distributing and  
Enforcing IoT Security at the Network Edge

Luca Deri
IIT/CNR, ntop
Via Moruzzi 1

56124 Pisa
luca.deri@iit.cnr.it, deri@ntop.org

Arianna Del Soldato
IIT/CNR

Via Moruzzi 1
56124 Pisa

arianna.delsoldato@iit.cnr.it

Abstract—Distributed networks are now a reality, and
enforcing security on a single place is no longer possible. This
requires multiple devices to apply security policies at the network
edge in order to limit unwanted traffic to leave the designated
area, as well as implementing fine-grained policies similar to
what micro-segmentation is offering. In order to achieve this
goal, it is required to distribute device-specified security policies
across the network in a secure and resilient way. 
This paper describes the design and implementation of a novel
architecture for both distributing and enforcing security policies
designed to protect simple IoT devices as well servers and
workstations. The validation step on a real network, confirmed
that it could be successfully used to improve the overall security
by moving protection from the center towards the network edge.

Keywords— Network security, traffic monitoring, Internet of
Things, Domain Name Server, Digital Object Architecture.

I. INTRODUCTION AND MOTIVATION
As stated by the principle of least privilege [1], the idea is

that every user, process or computer has to access only the
information that is necessary in order to carry on its activity.
For this reason, for years computer networks have been
segmented in three zones: trusted, untrusted and semi-trusted
also known as DMZ (demilitarized zone). The trusted network
corresponds to the internal network (LAN) that is accessible
only by the organisation staff and thus that it is supposed to be
trusted. Here internal users often access the Internet by means
of proxy services that can analyse data being exchanged, this
to avoid direct Internet communications. Modern networks are
much more complex to protect with respect to the past, as
there is no sharp separation between roles. In particular, in the
internal network not all devices can be fully trusted as it used
to be in the past. With the advent of the IoT (Internet of
Things) [2], BYOD (Bring Your Own Device), remote
surveillance/assistance applications, and cloud-based
connected devices such as fridges and thermometers, the
above security model cannot be used anymore. In the past, in
fact, the solution for securely accessing a private network was
through a VPN (Virtual Private Network) that created a
secure, authenticated, encrypted channel on which the internal
network was accessible. Today, instead, users prefer to access
network devices using mobile applications, so device
manufacturers have started to create one specific application
per device model that needs to be accessed remotely. The
result is that for accessing your surveillance camera there is

mobile app A, for the NAS (Network Access Storage) app B,
and so on. These mobile applications communicate with
network devices using cloud-based services operated by the
device manufacturer and no longer under the control of the
network administrator as it used to be in the old VPN days.
While users are typically happy of accessing their devices
using a mobile application without paying attention to
cumbersome remote access procedures, the result is that
secure access to a remote network is no longer enforced by the
local network administrators. Security is now delegated to the
device manufacturer that often outsources the service to
specialised companies that are more inclined to reduce costs
rather than to secure the communications. The result is that
these devices have potentially opened a security breach that is
hard to control, hence the only option for really securing the
private network is to prevent these devices to connect to the
Internet at all, making some of them (e.g. a surveillance
camera) not so useful anymore, and thus also making this
solution unfit.

Another aspect to consider in this scenario, is that IPS/IDS
(Intrusion Prevention/Detection Systems) and firewall devices
are no longer enough to keep a network secure. This is
because most traffic today is encrypted and thus impossible to
inspect unless MITM-like (Man In The Middle) techniques are
used, thing that is not always possible due to regulatory laws
that in some countries prevent the use of these techniques.
However, even if such MITM techniques could be used, they
do not guarantee complete inspection as many popular
applications (e.g. Skype or BitTorrent) do not use SSL but
proprietary encryption techniques. This problem is even worse
with low-cost cloud-connected devices, as many of them
cannot be updated when a security flaw is detected, as
manufactures do not issue periodic security fixes. This opens
up the network to vulnerabilities and remote accessing from
the Internet that can lead the use these devices to participate in
distributed attacks as demonstrated by the attack to Dyn
servers [4] when low cost devices create a major Internet
service disruption.

In essence in the past years the Internet evolved from a
mutual trust environment, where everyone could read, create
and exchange information, into an environment where even
devices and services we use for carrying on daily activities
might be insecure [6]. Nowadays devices operating on the
internal network cannot be longer trusted although they are
installed on a privileged network [7, 8] and also because

cloud-services keep open a privileged channel with the outside
world. In corporate networks, a typical countermeasure to this
problem is to implement micro-segmentation [9, 11], that is
the act of splitting a computer network into multiple networks
segments where data exchanged across segments it is not
simply routed/switched at packed header, but instead payload
inspected by security devices. While micro-segmentation can
contribute to reduce security risks as it prevents unwanted
traffic to spread outside of a segment, it does not solve the
problem unless the segment size is set to one. Moreover, it is
no longer possible to provide a high degree of security using
only centralised security devices or ACL-based devices for
routing/switching traffic as they are too far from the edge and
thus Lan activities can still happen mostly unsupervised. In
essence, it is time to somehow rethink security a bit and
specialise it for the plethora of devices that are now populating
modern networks. It is not possible to leave home or small-
business networks unprotected simply because there is not a
skilled system administrator able to design network growth
and supervise the operations. Even the so-called “smart
security devices” such as Cujo or FingBox, that are now
popular on the consumer market, have been designed for
supervising the Internet access from the local network but
without implementing any fine grained security policy nor
protecting the internal network from insider threats. We
believe that it is not possible to reach our goal simply by
adding a new security device, but rather by making sure that
all the network devices collaborate together to enforce the
overall security.

The motivation behind this paper is to move from coarse-
grained security policies, implemented by a central firewall,
towards edge-based fine-grained policy enforcement tailor-
made for each device type/category [14]. Focusing on the
edge, has become compulsory as [34] a great portion of all
computing will happen at the network edge in the next couple
of year. We propose moving security towards the edge of the
network so that traffic policies enforcement can be applied as
close as possible to the network devices [19]. This practice
would stop unwanted device traffic from freely sending traffic,
as well as reducing the load on central security devices that
instead would have to be configured with thousands of
policies. By leveraging on recent extensions to the DNS
(Domain Name Server) protocol [12], this paper describes
how these mechanisms could be profitably used for our needs
as well how we could also exploit proposed extensions to
other Internet protocols such as the DHCP. This means that the
DNS in addition to being used for address resolution, it will
also be used to distribute security policies as described later in
this paper.

It is worth underlying that the scope of this work goes
beyond network security. In fact, when an asset database is in
place, this information could be used also for other purposes
and be produced by multiple actors. For instance, passive
network monitoring tools might access the database to
complement packet-based traffic analysis with some extra
information elements such as the operating system or the
device type (e.g. printer, router, workstation or mobile device).
This extra information not usually reported by probes, could
be used by flow collectors for generating extra traffic metrics
(e.g. what percentage of traffic is generated by mobile vs.
static devices) and triggering new type of alerts not previously
possible to generate (e.g. trigger an alert when a tablet

receives an email via SMTP, or when a printer starts a SSH
connection).

The rest of the paper is structured as follows. Section II
describes the architecture design, section III evaluates related
work, section IV describes the validation process and
experiments, section V highlights some future work activities,
and finally section VI concludes the paper.

II. ARCHITECTURE DESIGN
Most networks use devices such as firewalls and IPSs to

enforce network security policies when connecting to the
Internet. As the network edge is growing, this architecture
needs to be complemented with additional mechanisms for
enforcing local edge traffic that will not flow through the
firewall. Policies can be natively implemented on existing
devices or by means of additional devices to be deployed on
the network. For instance, a Linux server can exploit the
native firewall to implement such policies, whereas single-
purpose devices such as printers or access points are not so
versatile and thus need to be protected by deploying additional
security devices. The proposed architecture is made of three
main components: a Traffic Policer that is responsible for
dropping/bridging network packets, an Asset Policy Database
that contains information used by the policer in order to make
decision and a Network Discovery the populates the database
with information about the discovered network devices. Figure
1 highlights the Traffic Security Policer (or Policer in short)
that is in essence a bump-in-the-wire that bridges the portion
of the LAN to protect with the rest of the network.

!
1. Security Architecture

This device acts as a transparent bridge and drops selected
packets not compliant with the specified security policies. On
small/mid-size networks, the policer can run on a low-cost
hardware device such as a RaspberryPI or a sub 50$ Linux
OpenWRT-based device such as Ubiquity EdgeRouter X. The
policer is deployed whenever we need to enforce edge traffic
policies: it acts as a transparent traffic filtering device that can
be placed on an existing network without changing the
existing network configuration. Based on the network
topology and security policies, one or more policiers can be
deployed on a physical network: ideally, the more policers are
deployed the better it is as it promotes micro-segmentation.
All policers need to share the same security policies and make
sure that whenever there is a change in policy, such
modification is promptly distributed to all network edges.

The main difference between the policer and an IDS/IPS or
a traditional firewall, relies on the nature of the filtering we
perform that is not based on signature as on IPS/IDS. As

Ethernet Switch

Security Policer
IoT/Mobile Devices

Wireless Network

Wired Network

LAN

described in section II.B, policer rules are fine-grained, feature
per-device type configuration, and be layer-7 aware so we can
filter both port-based (e.g. HTTP) and non-port-based
protocols (e.g. BitTorrent or HTTP running on a non-standard
port).

!
2. Security Policers Deployment

This means that we implement different security policies
based on the device type. For instance, we define a default
policy for tablets, another one for printers, and another for
security cameras. The policer will apply the specified default
policy unless for a given device a more specialised policy has
been defined. Moreover this design allows human network
administrators to define fine-grained policies while allowing
coarse-grained policies to be applied on unknown devices
types. In order to avoid humans to manually classify network
devices according to categories (e.g. tablets, workstations,
printers etc.), the policer takes advantage of a Network Device
Discovery component that periodically performs an active
network device discovery as described in section II.A. This
allows new discovered devices to be bound to a generic device
type policy (e.g. tablets cannot print, IoT devices cannot
connect to the Internet) that could be further refined by human
administrators as described later in this section. In addition, as
networks can have multiple active policers at various network
sites and be topologically distributed as depicted in figure 2, it
is necessary to have a central location where policies and
device assets information is securely stored and used to
distribute it across the network. In particular, the proposed
architecture is able to:

• dynamically define/remove security policies as devices are
connected/disconnected from the network;

• be resilient to attacks and network faults in a way that
security could still be enforced even in case of partial
network disconnection or fault;

• prevent unauthorised changes to the asset policy database
in order to disable security;

• protect heterogeneous devices ranging from single-task
devices such as a temperature thermometer or a printer, to
more general-purpose devices including tablets, and
personal computers.

In order to satisfy the above requirements, our architecture
has been based on the DNS (Domain Name System) [34], one
of the core Internet protocols used to translate symbolic host
names to numeric IP addresses and vice-versa.

By design, the DNS implements native mechanisms for
distributing information, enforcing secure information

exchange, and be resilient to attacks and faults. In the past few
years, the DNS has been extended in scope, and it is now used
for additional purposes not related to just IP address resolution
such as SPF (Sender Policy Framework) and DKIM (Domain
Keys Identified Mail) used to limit email spoofing. Recently
the DNS has been extended with DOA [21], later renamed OX
[22], that essentially is a new record type that allows people to
store digital object information in the DNS.

!
3. Using the DNS as Asset Policy Database

As described in section II.B, being the OX record quite
general, it allows us to store into the DNS security policies
and use the DNS architecture to distribute them across the
network. The advantages are manifold as we can exploit
existing DNS servers for distributing our policies, as well use
the native DNS security mechanisms named DNSSEC [24] to
perform policy updates on a secure fashion. As depicted in
figure 3, a central DNS server (authoritative server in the DNS
parlance) stores the policies on a local DNS zone, that
contains all DNS records delegated to a single manager. In our
case, a single zone is usually enough to contain all OX
records, even though the DNS provides mechanisms to further
partition it. The zone(s) containing OX records is updated by
the network discovery component by adding new discovered
assets, and by human administrators whenever they want to
update/refine existing policies. All DNS zone updates (i.e.
add/remove/modify DNS records) are performed using native
DNS mechanisms such as the nsupdate tool, part of the
popular BIND DNS distribution. As the DNS is a distributed
architecture, on large networks it is possible to replicate the
central DNS server by deploying several secondary DNS
servers at each network edge. Secondary servers are kept in
sync with the primary server automatically by means of the
native DNS mechanisms that automatically propagate changes
from primary DNS server whenever the zone is updated. This
way the asset policy database is in essence the DNS server,
hence we do not need to use SQL databases such as MySQL
or PostgreSQL to store policy information.

The discovery process adds the OX records in the DNS
zone using the following format: <MAC ADDRESS>.<device
type> and a <MAC ADDRESS> CNAME record, an alias in
the DNS terminology, for identifying the device regardless of
its type. Example IoT device whose MAC address is 8D:
30:62:56:00:1C will be added in the DNS zone as
8D306256001C.iot. When the discovery process is unable to
identify the device type, the “unknown” suffix will be used.
The default security policy specified for each device type is
named <device type> without the MAC address. This naming
schema allows devices to be grouped according to their type
and it allows human administrators to further refine the device

Internet
Gateway

LAN

Network Edge C

Network Edge B

Network Edge A

Network Edge C

Network Edge B

Network Edge A

Network
Discovery

Network
Discovery

Network
Discovery

DNS

Network
Administrator

Read
Write

policies by adding new OX records. For instance, suppose that
we want to split printers devices in two categories: one that is
Internet accessible, and another one that is not. Administrators
could define a category printers_no_internet_access with a
policy of no internet access, and then update the zone by
moving discovered printers that are not supposed to access the
internet under the new node on the same DNS zone (e.g.
AABBCCDDEEFF.printers_no_internet_access).
A. Network Device Discovery

The network discovery process actively discovers network
devices and adds new devices into the DNS-based database
[16, 17]. This activity is implemented by both sending probe
packets to discover active devices, and dissecting traffic that
traverses the Policer. Active probing is used to identify
devices even if silent (e.g. a printer does not always need to
communicate with the Internet), while passive traffic
dissection can complement discovered assets with additional
metadata (e.g. by decoding HTTP traffic it is possible to use
the User Agent field to learn more about the device operating
system). We can envisage deploying in the network both a
centralised security policer responsible for inspecting traffic
to/from the Internet, and several host-based policers limited to
enforce traffic from/to workstations. This to complement
centralised with on-device traffic enforcement. Simple devices
such as a surveillance camera or a smart TV do not usually
access the device policy database to enforce traffic, whereas a
more advanced device such as a server or a workstation can
access the database to validate network connections they
receive. A side effect of this practice is the implementation of
a fine-grained, distributed, software-based micro-segmentation
by relying on the policy database.

B. DNS-Base Network Policy Database Specification
As previously described, the asset policy database is
implemented on top of the DNS, hence the stored information
must be specified in a format that is compatible with the
domain name server specification. This is not an architectural
design limitation but rather a nice feature to have, because it is
possible to rely on existing software libraries as well as to
leverage on a protocol that operating systems can natively
handle, and thus without having to define a new custom
protocol. As this work should be used both in small (where a
MAC address is meaningful) as well as large networks with
routed traffic (where non-local MAC addresses are not visible
as they have been replaced with the router’s MAC), all device
DNS records are uniquely identified with a MAC address and
an optional CNAME record (i.e. an alias in the DNS world) to
be used to for gluing the device IP address to its MAC
address. In this way both local and non-local devices can be
identified into the DNS database: both MAC and IP
information are stored with no information duplication.
Moreover, inside the DNS protocol specification, it is also
possible to define multiple different record types for the same
key. This means, for example, that for MAC address 4A:
00:06:A1:7A:51 it is possible to define a CNAME to IP
address 192.168.1.1 (i.e. the IP currently used by the above
MAC address) as well as a TXT record where we can store
textual information about the MAC. By leveraging on this
property of DNS records, it is possible to specify several
attributes for the same MAC such as the ingress and egress
traffic security policies. The format of DNS records we have
used to specify asset information is an extension of the OX

record., implemented over DNS as specified in [22]. DNS
records contain an object type that might be opaque and
private to the producer and the consumer of the data. Each
record is identified by the DNS OX Enterprise PEN (Private
Enterprise Number) [23] already used in other Internet
protocols to identify enterprise-specific datatypes and
specified in the OX-ENTERPRISE field. With this mechanism
it is possible to use both OX-specified types (in the value
range 0..100 and currently limited to asset contact information
such as email, website, telephone and public key) as well as
define additional ones (in range 101…99999) that will be used
for the Policy Database. The OX-LOCATION field specifics
the information scope (e.g. local), as well as the media type is
usually set to base-64 encoding used to encode the data field.
The following table specifies the additional values of the OX-
TYPE field we have defined for the Asset Database.

1. POLICY DATABASE: OX TYPES

Table 1 contains the minimum information necessary for
characterising a device in terms of name, provided/used
services and capabilities. With the term service we identify
what is often called layer seven (or application) protocol and
thus we envisage the use of DPI (Deep Packet Inspection)
techniques. In this way we can identify protocols also on non-
standard ports (e.g. HTTP traffic running on port 1234), as
well as proprietary protocols such as Skype in a simple and
concise format, thing that would not be possible using IP
addresses and ports. The first column contains the OX type
that we have defined, and that we will try to push into a new
revision of [22] that is still mostly unspecified and open to
extensions. The last table column contains a non-exhaustive
list of data sources from which the OX fields could be
populated, both during the device discovery phase as well at
runtime listening to periodic multi/broad-cast messages that

Id Name Data Source 
(D=Discovery, H=Human)

101 Device Operating System DHCP, HTTP User Agent D/H

102 Device Type SSDP, SNMP, MDNS D/H

103 Device Name DNS, MDNS, NetBIOS D

104 Device Description SSDP D

105 Services URL SSDP D

106 Hardware Manufacturer MAC Address (OUI) D

107 Last Known IPv4 Address DHCP, ARP D

108 Last Known IPv6 Address DHCPv6, Traffic Analysis D

109 Provided Services (Server) MUD D/H

110 Device User 802.1X, Radius D/H

111 Permitted Ports (Server) MDNS/DNS-SD, MUD D/H

112 Permitted Services (Client) H

113 Permitted Ports (Client) H

114 Permitted MAC (Client) H

115 Permitted MAC (Server) H

the devices emit. Fields marked with D are populated uniquely
by the discovery process, while H means are set by human
network administrators and D/H by both of them. In particular,
active/passive network discovery relies on the following
protocols:

• DHCP/DHCPv6 (Dynamic Host Configuration Protocol)  
Used for retrieving the initial host configuration, these
protocols can also be used to learn more about the device
requesting the configuration. In particular DHCP field id
55 contains the ordered parameters list requested via
DHCP (e.g. DNS server, gateway, NetBIOS [30] name) by
clients. DHCP fingerprinting [31] is a technique that
exploits this id to identify the operating system (and in
some cases even more about the device model) of the
client that will be used to populate OX id 101.

• SDP (Session Description Protocol)  
This protocol [29] was initially created for announcing
multimedia capabilities on the network. It is currently used
on a broader fashion by many network devices to
announce theirs services. Most modern network devices
including smart TV, Internet routers and mobile devices
use this protocol to gather the list of available network
services.

• SNMP (Simple Network Management Protocol)  
It is a protocol used for managing network devices. It can
be used to learn more about the device type by using the
MIB-II system and interfaces groups. Furthermore, in
authenticated networks, it could also be used to retrieve the
device user by inspecting the 802.1X MIBs.

• MAC (Media Access Control) Address  
The MAC address is important for many simple IoT
devices usually communicate only with devices of the
same manufacturer, or with other devices often identified
with a MAC address rather than an IP. For this reason, OX
fields 114 and 115, if present, contain the list of MAC
addresses (note that they can be partially specified as they
can contain just the initial MAC bytes) that these devices
can connect, or be contacted.

• ARP (Address Resolution Protocol)  
Designed for discovering Ethernet addresses associated to
IPv4 addresses, it can be used to identify network devices
and detect if they are connected to the network.

• MUD (Manufacturer Usage Description)  
The MUD [33] is in essence a new DHCP field id that
contains a URL to a MUD description file provided by the
device manufacturer. Such file specifies the “intended
device usage” that is basically what a device is about,
including what are the protocols and ports used by the
device for providing the expected services. The MUD
extension is still being standardised and thus devices on
the market are not supporting it yet, even though its
adoption will be probably very quick because of
cybersecurity issues caused by networked devices that
could be limited by knowing the intended use of devices.
We do not expect all devices to specify all the OX items

listed in Table 1, as some information might be missing for
specified devices (e.g. the device operating system might be

unknown for many proprietary devices). However, the goal of
this work is to define a comprehensive specification for
networked devices that is accessible through the DNS, and
that can be used as single source of information for various
purposes including network security and monitoring.

C. Network Policy Database: Security Guidelines
In order to avoid disclosing information about network

assets, DNS OX records queries should be disabled for clients
sitting outside of the protected network. The DNS system
allows a bulk record record transfer named zone transfer
(AXFR): this operation should be enabled only for those hosts
running the traffic policer and disabled for any other host. The
aim is to avoid that a compromised internal host creates a
DNS database mirror. In all cases, hosts allowed to perform
queries need to be restricted only to selected OX IDs that
could be used to enforce traffic such as OX ids' 111-114. DNS
information should be modified in a secure way and only by
authorised clients, feature that is a standard in all modern DNS
implementations. Moreover, the use of DNSSEC is
recommended (but not mandatory) in our architecture, as the
DNS is used to drop unwanted communications, and thus it is
compulsory to make sure that the information on which
decisions are made is reliable and untampered. Finally, as
DNS records are natively cached using a TTL (Time To Live)
value specified in the DNS zone, it is important to use a
relatively low TTL (i.e. no longer than 60 seconds) to make
sure that record changes are immediately effective, while still
using caching to avoid querying the DNS too often. This is
usually not a problem in terms of decision latency, as
explained later in this paper. Nevertheless, caching speeds up
operations as it prevents the Policer to access the database too
often by saving CPU cycles and thus reducing load.

III. RELATED WORK
The proposed work is a novelty with respect to what we

can find in literature [10] when considering all aspects such as
distributed security for both conventional and IoT devices,
network discovery as seed of security information, and the use
of the DNS as distributed and secure policy database.
Platforms such as Microsoft Azure IoT and Amazon AWS IoT
are tailored for business processes, as they allow IoT devices
to communicate in a secure and distributed fashion. Other
solutions such as Siemens MindSphere are designed for
proprietary IoT devices and thus limited in scope. [35] Uses
the DNS for IoT limited to device tracking with no security
support. In [36] DOA/OX record is used to keep IoT devices
firmware updated using a decentralised architecture. [37]
Seems to be similar to this work in many aspects, but it seems
to use discovery to locate assets to be later scanned for
vulnerabilities. The concept of distributed security policer is
well known in literature, however all works [37, 13, 3] are
focusing only on configuration automation of firewall rules
and DDoS (Distributed Denial of Service) mitigation systems.

IV. IMPLEMENTATION AND VALIDATION
We have validated the proposed architecture (see figure 4)

leveraging on open source software so that we could both
spread this work, and ease our task of integrating it on
working Internet drafts such as those defining OX RR. The
developed software has been deployed on various network
families ranging from a home/small business network hosting
IoT devices, to a regional ISP (Internet Service Provider). This

has been important not just to better understand the
architecture scalability and flexibility, but also for evaluating
network discovery on heterogeneous network infrastructures.
While the discovery component has been ported to various
operating systems including MacOS, Linux and Windows, the
policer is operating system dependent and thus we have
developed it on Linux that allowed us to run it both on x86
workstations but also on embedded MIPS/ARM devices as
earlier discussed. The DNS server we have used in our
experiments is the open source ISC BIND 9.12.1 that natively
supports DOA/OX. The network discovery component is
based on ntopng [15], a homegrown open source network
monitoring application, whereas the policer has been
implemented on top of the open source deep packet inspection
library named nDPI [5], we have also developed, and the
Linux firewall framework named netfilter.

!
4. Validation: Traffic Policer and Network Discovery

The network discovery component is activated at startup
and periodically (e.g. every 15 minutes) restarted to discover
new network assets or poll existing one that have not made
any network traffic yet (i.e. silent devices). This list includes
for instance thermometers and smoke detectors that do not
constantly transmit traffic, and thus that need to be probed in
order to detect their presence. Network discovery works in a
few consecutive steps:

• From the local network interface, it is possible to read the
configured network/mask. The first action performed is to
send an ARP request to all local hosts with the except of the
network and broadcast address, as well the local host
address. Packets are forged and sent on the local interface
using the libpcap library part of every Linux distribution.

• A Multicast DNS service discovery “M-SEARCH *
HTTP/1.1” is sent to 239.255.255.250:1900. Devices
running a MDNS daemon will report the list of services they
advertise. As not all hosts will reply to this service
discovery, unresponsive hosts are also queried individually
in unicast. Note that this step is not redundant as it allows us
to discover even those devices connected to the network and
running a MDNS daemon that does not have a local IP
address.

• To all hosts that have sent back an ARP reply, and thus that
are alive, the discovery component sends further probe
packets:

• A Multicast DNS DNS-SD PTR record query hat
will return a list of service types being advertised
on the local network. Note that modern operating
system versions reply to these queries whereas old
versions do not. For those hosts that reply back, we
gather the list of services they advertise (e.g. file
sharing or remote access) that is useful to
characterise the hosts.

• A SNMP query for the MIB-II system group and
based on the response, if any, further requests to
further characterise the device model.

• A Multicast DNS request to query the symbolic
host name for the IPv4 address that sent back the
ARP reply. The name to characterise the device sub
model: “Galaxy S7” or “Luca’s iPad” are just some
examples.

• Once all the responses have been collected, it is possible to
associate a device type and a name to all local hosts that
provided enough information. In order to do that, the MAC
OUI is also used to enhance the discovery whenever there is
too little information to make a decision about an asset. For
instance, some manufacturers produce only a few similar
products so once we identify a device manufactured by a
printer manufacturer, such device is marked as a printer.

 At the end of each discovery session, results are stored in
the local DNS zone in OX format according to the device
type. The zone is updated with all the discovery results using
the DNS maintenance utility nsupdate that allows a DNS
zone to be updated. Once the zone is updated, the primary
DNS server informs the secondary DNS servers that will then
perform a zone transfer to update their records. As the
discovery component is not responsible for setting specific
device policies, newly discovered devices will use the default
device type policy unless human network administrators will
define a specific policy by updating the corresponding OX
record. The policer accesses network traffic through the
NFQUEUE mechanism that is essentially a packet queue
between the kernel and user space. Using the iptables
Linux configuration tool, it is possible to instruct the system to
forward to a specified NFQUEUE queue those packets
traversing the device that have no marker specified. In fact,
netfilter allows packets to be marked with a numeric identifier
that can be used by the networking stack to drop, route or
shape traffic. Using the Linux CONNTRACK netfilter
mechanism, it is possible to specify a marker for a connection
so that once a packet has been marked with a non-zero
identifier, the kernel will honour the marker also for all the
future packets belonging to the same connection. This means
that the traffic policer does not have to process all connection
packets, but only the first few packets (i.e. UDP can be limited
to one packet and for TCP is no more than 8 packets) in order
to make a verdict on the connection. For instance, allowed
connections are marked with marker 1, those to be dropped
with 2, and allowed ones with reduced bandwidth are marked
with 3. Once a connection has been marked, via iptables it is
possible to tell the Linux kernel not to send the Policer future
packets belonging to the same connection as they have already
a marker that the kernel will honour accordingly. In a nutshell
the traffic policer:
• Uses nDPI to detect the connection application protocol.

Note that in netfilter a connection is not limited to TCP but
also to other protocols such as UDP.

• Utilises a hash table to keep the state of connections for
which nDPI has not made a verdict yet (e.g. too few
packets have been received for the connection).

• Once nDPI has detected the application protocol, it
decides what marker associate to the processed packet, this
using the security policy specified in OX. As the policer

Flow State + nDPI

NFQUEUE
(Packets)

Verdict
(Marker)

WriteRead/Write

Periodic
Network

Discovery

DNS Server

Linux KernelNFQUEUE

has full payload visibility, it can passively extract from
traffic further information that can be used to improve
device characterisation such as the HTTP user agent that
can disclose the device operating system and model. In
case nDPI is unable to detect the application protocol, a
default protocol named Unknown is used to this
connection. At this point, the policer can free the memory
for the hash bucket associated to the connection, as it will
not receive further packets for the same connection via
NFQUEUE.
By configuring netfilter to send the traffic policer only the

initial connection packets using the CONNTRACK
mechanism, it is possible to process most packets inside the
kernel and thus avoid costly kernel-to-userspace
communications. The advantage of this implementation design
is that the policer makes decisions in user space while traffic is
processed inside the kernel using the standard netfilter
mechanisms without hacks or custom modules. This clean
design allowed us to port this tool across computer
architectures, and to both embed it on low-cost devices as well
run the same code on powerful x86 servers. In order to avoid
the traffic policer to talk with the DNS server too often, we
have decided to read the whole DNS configuration at startup
and periodically refresh it in case of changes detected using
the zone serial number. This has the advantage not to add any
latency in packet processing due to DNS access.

The discovery process has been tested in business
networks where most devices are Windows/Linux/MacOS
systems and other devices are pretty standard such as printers,
routers, and access points. In addition to that, we have tested it
on a few home networks featuring smart devices such as
networked audio and video, IoT devices (i.e. personal health
devices, smart lights, thermometers, alarm system) and device
hubs (i.e. Logitech Harmony and Amazon Alexa). These
environments are the most challenging for discovery: these
devices are using proprietary protocols, do not answer to
probe queries, and operate through cloud services for remote
connecting to the controller application. In order to test the
discovery accuracy, we have compared our results with state
of the art discovery applications such as [18] and found our
results pretty accurate. Testing it on about several networks
ranging from 10 to 300 heterogeneous devices, about 12-15%
of the discovered devices are not categorised. When devices
are divided in sub-categories (e.g. classify a server according
to its operating system), active discovery is able to identify
correctly only hosts that support one advertising protocol such
as MDNS or SDP. This means that over 80% of devices such
as printers and NASs, as well Apple OSX/iOS computers are
properly identified, whereas most Windows and Unix
workstations cannot be further identified unless they run a
service such as HTTP or SSH. The nDPI protocol detection
accuracy is already covered in [20], as well, the performance
on small embedded devices is satisfactory for networks with
up to 300 Mbit uplinks, whereas for 1 Gbit line rate processing
a dual-core x86 server is necessary. We have tested how the
developed solution compares in terms of latency with respect
to stock Linux kernel bridging on a low-end PC Engines
APU2 computer. As reported in the Table 2, in average, the
latency added by the policer is about 150 µsec, but in some
conditions the latency is increased of an order of magnitude.
This is an expected behaviour at the beginning of a connection

when nDPI needs to be involved, even though limited only to
the first few connection packets.

2. LATENCY MEASUREMENTS

The ability to use a central policer combined with a per-
host policer on selected hosts (e.g. on Linux workstations),
contributed to block unwanted traffic at the edge, and shown
to be much more effective than the standard Linux firewall
that has not layer 7 visibility. In our tests, we have not been
able to fully evaluate the effectiveness of our implementation
with proprietary devices. This is due to the nature of these
devices that do not speak open protocols nor answer queries
coming from devices whose network manufacturer is different
from them. Handling mobile devices such as tablets and
smartphones is working pretty well mostly because there are
only two predominant mobile operating systems that makes
our life easy.

V. FUTURE WORK ITEMS
The current policer implementation filters traffic based on

layer 7 protocols, but it does not yet honours some OX records
such as the list of permitted MAC addresses or provided
services. Future policer implementations should support the
whole set of OX records.

The general perception within the Internet community, is that
today's users expect security and privacy even when deploying
cheap and simple devices. Since many IoT devices are
deployed in unprotected environments such as corridors and
walls, these devices should have a way to protect both the
device itself and the data they store. Following the principle
that devices should be capable of protecting themselves, MUD
[33] has been proposed with the goal to provide devices to
inform the network what sort of access and network
functionality they require/provide. As already mentioned, we
plan to propose the adoption of MUD inside the DOA record
specification, in order to glue these two draft specifications
with the aim of enhancing the overall network and Internet
security. While the discovery process we proposed is
responsible for locating assets and generating default security
policies validated and enhanced by human administrators, we
have not taken into account intra-device communications. We
plan to implement security policies based on the principles of
opportunistic networking [32] that exploits the human social
characteristics in order to perform the message routing and
data sharing. For instance, if two hosts A and B communicate
often over protocol X, and host C also communicates with B
over X, then communications between A and C might be
acceptable, while a communication pattern not previously
observed might be suspicious. Currently we are trying to
refine this idea, and afterwards to see how it could fit within
the scope of this work.

Policer Bridging Linux Bridging

Max 1945 usec 193 usec

Min 202 usec 60 usec

Avg 283 usec 131 usec

Finally, we also plan to promote this work in the OX IETF
community in order to extend the current specification draft as
described in this paper. The IETF has recently proposed the
use of the domain name ’home.arpa.’ [25, 38] for naming
wi th in r e s iden t i a l ne tworks . Accord ing to th i s
recommendation, names ending with this extension reference
a locally served zone, whose contents are unique only to a
particular home network. Such names refer to nodes and/or
services such as printers, toaster, etc. Our work could be used
as foundation for keeping home networks safe and secure.

VI. FINAL REMARKS
As predicted by many analysts, the network edge will

become increasingly important, with the IoT just being one of
the major driving force for this change. For this reason, it is
necessary to enforce traffic policies as close as possible to
network devices, unlike most security architectures do today.
In order to democratise security, we need all devices to be able
to protect themselves and thus it is compulsory to design a
distributed and open architecture for enforcing security at the
edge. This paper has presented a DNS-based architecture that
addresses these challenges using standard and open protocols
with no proprietary or custom solutions. This combined with,
the use of open source software we used to implement and
validate it, can help to widespread the idea and promote it
within standard bodies. Finally, this has been the first attempt
to extend OX outside of its original scope, and use the DNS
not just for name resolution but as a proven, distributed, and
scalable solution for network security.

ACKNOWLEDGMENT
The authors would like to thank Andrea Passarella for

countless discussions about opportunistic networking within
the scope of this work, Daniele Corciulo for helping us to
improve network discovery with IoT devices, Elia Porciani
and Maurizio Martinelli for evaluating early ideas of this
work, Antonio Palumbo and Simone Mainardi for having
helped us to improve network discovery and enhanced OX
integration in ntopng.

REFERENCES
1. J. H. Saltzer, “Protection and the control of information sharing in

multics”. Communications of the ACM. 17 (7): 389, 1974.
ISSN 0001-0782.

2. E. Borgia, “The Internet of Things vision: Key features, applications and
open issues”, Computer Communications, Vol. 54, December 2014.

3. Y. Chen, K. Hwang and W. S. Ku., "Collaborative Detection of DDoS
Attacks over Multiple Network Domains”, in IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 12, Dec. 2007.

4. K. York, “Dyn Statement on 10/21/2016 DDoS Attack”, https://dyn.com/
blog/dyn-statement-on-10212016-ddos-attack/, October 2016.

5. L. Deri, M. Martinelli, T. Bujlow and A. Cardigliano, "nDPI: Open-
source high-speed deep packet inspection," Proceedings of 2014
IWCMC Conference, 2014.

6. Ericsson, “IoT security - protecting the networked society", White Paper,
2017.

7. J. Kindervag, “Building Security into Your Networks DNA: The Zero
Trust Network Architecture,” Forrester Research, Tech. Rep., 2010.

8. R. Sandhu, “Good-enough security,” IEEE Internet Computing, vol. 7,
no. 1, pp. 66–68, Jan 2003.

9. B. Peterson, “Secure Network Design: Micro Segmentation”, Sans
Institute, February 2016.

10. I. Bouij-Pasquier, A.A. El Kalam, A.A. Ouahman, M. De Montfort, “A
Security Framework for Internet of Things”, In Lecture Notes in

Computer Science, vol 9476, Springer, 2015.
11. VMware, “Data Center Micro-Segmentation: A Software Defined Data  

Center Approach for a Zero Trust Security Strategy,” Tech. Rep., 2014.
12. P. Mockapetris, “Domain Names - Implementation and Specification”,

RFC 1035, November 1987.
13. T. Markham and C. Payne, "Security at the network edge: a distributed

firewall architecture”, Proceedings of DISCEX '01, 2001.
14. L. Deri, A. Del Soldato, “Enforcing Security in IoT and Home

Networks”, Proceedings of ITASEC 18 Conference, February 2018.
15. L. Deri, M. Martinelli, and A. Cardigliano, “Realtime high-speed

network traffic monitoring using ntopng”, In Proceedings of LISA ’14,
USENIX Association, 2014.

16. G. G. Richard, "Service advertisement and discovery: enabling universal
device cooperation," in IEEE Internet Computing, vol. 4, no. 5, 2000.

17. Hwa-Chun Lin, Shou-Chuan Lai and Ping-Wen Chen, "An algorithm for
automatic topology discovery of IP networks," Proc. of ICC 98, 1998.

18. ComputerWorld, “Fing is a great app to see who is on your network”,
https://www.computerworld.com/article/2472460/networking/fing-is-a-
great-app-to-see-who-is-on-your-network.html, 2017.

19. J E. Al-Shaer, "Managing firewall and network-edge security policies”,
Proceedings of 2004 IEEE/IFIP Network Operations and Management
Symposium, 2004.

20. L. Deri, M. Martinelli, T. Bujlow and A. Cardigliano, "nDPI: Open-
source high-speed deep packet inspection," Proceedings of 2014
IWCMC Conference, 2014.

21. Internet Society, “Overview of the Digital Object Architecture (DOA)”,
https://www.internetsociety.org/resources/doc/2016/overview-of-the-
digital-object-architecture-doa/, October 2016.

22. A. Durand, R. Bellis, DNS Object Exchange, Internet Draft, https://
tools.ietf.org/id/draft-durand-object-exchange-00.html, December 2017.

23. IANA, "SMI Network Management Private Enterprise Codes Registry",
https://www.iana.org/assignments/enterprise-numbers/enterprise-
numbers.

24. R. Arends and others, “Protocol Modifications for the DNS Security
Extensions”, RFC 4035, March 2005..

25. P. Pfister, T. Lemon, “Special Use Domain ’home.arpa.”, draft-ietf-
homenet-dot-14, September 2017.

26. IETF WG, “Zero Configuration Networking”, http://www.zeroconf.org.
27. S. Cheshire and M. Krochmal, “Multicast DNS”. RFC 6762, Feb. 2013.
28. S. Cheshire, M. Krochmal, “DNS-Based Service Discovery”. RFC 6763,

Feb. 2013.
29. B. Peterson, “Secure Network Design: Micro Segmentation”, Sans

Institute, February 2016.
30. IETF, “Protocol standard for a NetBios Service on a TCT/UDP

Transport: Concepts and Methods/Detailed Specifications”, RFC
1001/1002, March 1987.

31. T. Matsunaka, A. Yamada and A. Kubota, "Passive OS Fingerprinting by
DNS Traffic Analysis," Proceedings for 2013 IEEE 27th AINA
Conference, Barcelona, 2013.

32. M. Conti, S. Giordano, M. May, A. Passarella, “From opportunistic
networks to opportunistic computing”, IEEE Communications
Magazine, Vol. 48, Issue 9, 2010.

33. E. Lear, R. Drops, D. Romascanu, Manufacturer Usage Description
Specification, draft-ietf-opsawg-mud-20, April 2018.

34. D. Newman, “Top 10 Trends For Digital Transformation In 2018”,
Forbes Magazine, September 2017.

35. B. Karakostas, “A DNS Architecture for the Internet of Things: A Case
Study in Transport Logistics", In Procedia Computer Science, Volume
19, Pages 594-601, 2013.

36. P. Brisson, D. Vilches, F. López, F. Torre, E. Crudele, M. Banchoff, M.
Ferrigno, A. Barbieri, “DOA over DNS Prototype”, ICANN 60,
November 2017.

37. Pwnie Express, “Welcome to the IoT Security Gap”, https://
www.pwnieexpress.com/resources/iot-security-gap-download, 2017.

38. J. Latour, ”Home Network Registry Idea”, Tech Day, ICANN 60,
October 30, 2017.

