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Abstract—Distributed networks are now a reality, and 
enforcing security on a single place is no longer possible. This 
requires multiple devices to apply security policies at the network 
edge in order to limit unwanted traffic to leave the designated 
area, as well as implementing fine-grained policies similar to 
what micro-segmentation is offering. In order to achieve this 
goal, it is required to distribute device-specified security policies 
across the network in a secure and resilient way. 
This paper describes the design and implementation of a novel 
architecture for both distributing and enforcing security policies 
designed to protect simple IoT devices as well servers and 
workstations. The validation step on a real network, confirmed 
that it could be successfully used to improve the overall security 
by moving protection from the center towards the network edge. 

Keywords— Network security, traffic monitoring, Internet of 
Things, Domain Name Server, Digital Object Architecture. 

I.  INTRODUCTION AND MOTIVATION 
As stated by the principle of least privilege [1], the idea is 

that every user, process or computer has to access only the 
information that is necessary in order to carry on its activity. 
For this reason, for years computer networks have been 
segmented in three zones: trusted, untrusted and semi-trusted 
also known as DMZ (demilitarized zone). The trusted network 
corresponds to the internal network (LAN) that is accessible 
only by the organisation staff and thus that it is supposed to be 
trusted. Here internal users often access the Internet by means 
of proxy services that can analyse data being exchanged, this 
to avoid direct Internet communications. Modern networks are 
much more complex to protect with respect to the past, as 
there is no sharp separation between roles. In particular, in the 
internal network not all devices can be fully trusted as it used 
to be in the past. With the advent of the IoT (Internet of 
Things) [2], BYOD (Bring Your Own Device), remote 
surveillance/assistance applications, and cloud-based 
connected devices such as fridges and thermometers, the 
above security model cannot be used anymore. In the past, in 
fact, the solution for securely accessing a private network was 
through a VPN (Virtual Private Network) that created a 
secure, authenticated, encrypted channel on which the internal 
network was accessible. Today, instead, users prefer to access 
network devices using mobile applications, so device 
manufacturers have started to create one specific application 
per device model that needs to be accessed remotely. The 
result is that for accessing your surveillance camera there is 

mobile app A, for the NAS (Network Access Storage) app B, 
and so on. These mobile applications communicate with 
network devices using cloud-based services operated by the 
device manufacturer and no longer under the control of the 
network administrator as it used to be in the old VPN days. 
While users are typically happy of accessing their devices 
using a mobile application without paying attention to 
cumbersome remote access procedures, the result is that 
secure access to a remote network is no longer enforced by the 
local network administrators. Security is now delegated to the 
device manufacturer that often outsources the service to 
specialised companies that are more inclined to reduce costs 
rather than to secure the communications. The result is that 
these devices have potentially opened a security breach that is 
hard to control, hence the only option for really securing the 
private network is to prevent these devices to connect to the 
Internet at all, making some of them (e.g. a surveillance 
camera) not so useful anymore, and thus also making this 
solution unfit. 

Another aspect to consider in this scenario, is that IPS/IDS 
(Intrusion Prevention/Detection Systems) and firewall devices 
are no longer enough to keep a network secure. This is 
because most traffic today is encrypted and thus impossible to 
inspect unless MITM-like (Man In The Middle) techniques are 
used, thing that is not always possible due to regulatory laws 
that in some countries prevent the use of these techniques. 
However, even if such MITM techniques could be used, they 
do not guarantee complete inspection as many popular 
applications (e.g. Skype or BitTorrent) do not use SSL but 
proprietary encryption techniques. This problem is even worse 
with low-cost cloud-connected devices, as many of them 
cannot be updated when a security flaw is detected, as 
manufactures do not issue periodic security fixes. This opens 
up the network to vulnerabilities and remote accessing from 
the Internet that can lead the use these devices to participate in 
distributed attacks as demonstrated by the attack to Dyn 
servers [4] when low cost devices create a major Internet 
service disruption.  

In essence in the past years the Internet evolved from a 
mutual trust environment, where everyone could read, create 
and exchange information, into an environment where even 
devices and services we use for carrying on daily activities 
might be insecure [6]. Nowadays devices operating on the 
internal network cannot be longer trusted although they are 
installed on a privileged network [7, 8] and also because 



cloud-services keep open a privileged channel with the outside 
world. In corporate networks, a typical countermeasure to this 
problem is to implement micro-segmentation [9, 11], that is 
the act of splitting a computer network into multiple networks 
segments where data exchanged across segments it is not 
simply routed/switched at packed header, but instead payload 
inspected by security devices. While micro-segmentation can 
contribute to reduce security risks as it prevents unwanted 
traffic to spread outside of a segment, it does not solve the 
problem unless the segment size is set to one. Moreover, it is 
no longer possible to provide a high degree of security using 
only centralised security devices or ACL-based devices for 
routing/switching traffic as they are too far from the edge and 
thus Lan activities can still happen mostly unsupervised. In 
essence, it is time to somehow rethink security a bit and 
specialise it for the plethora of devices that are now populating 
modern networks. It is not possible to leave home or small-
business networks unprotected simply because there is not a 
skilled system administrator able to design network growth 
and supervise the operations. Even the so-called “smart 
security devices” such as Cujo or FingBox, that are now 
popular on the consumer market, have been designed for 
supervising the Internet access from the local network but 
without implementing any fine grained security policy nor 
protecting the internal network from insider threats. We 
believe that it is not possible to reach our goal simply by 
adding a new security device, but rather by making sure that 
all the network devices collaborate together to enforce the 
overall security.  

The motivation behind this paper is to move from coarse-
grained security policies, implemented by a central firewall, 
towards edge-based fine-grained policy enforcement tailor-
made for each device type/category [14]. Focusing on the 
edge, has become compulsory as [34] a great portion of all 
computing will happen at the network edge in the next couple 
of year. We propose moving security towards the edge of the 
network so that traffic policies enforcement can be applied as 
close as possible to the network devices [19]. This practice 
would stop unwanted device traffic from freely sending traffic, 
as well as reducing the load on central security devices that 
instead would have to be configured with thousands of 
policies. By leveraging on recent extensions to the DNS 
(Domain Name Server) protocol [12], this paper describes 
how these mechanisms could be profitably used for our needs 
as well how we could also exploit proposed extensions to 
other Internet protocols such as the DHCP. This means that the 
DNS in addition to being used for address resolution, it will 
also be used to distribute security policies as described later in 
this paper.  

It is worth underlying that the scope of this work goes 
beyond network security. In fact, when an asset database is in 
place, this information could be used also for other purposes 
and be produced by multiple actors. For instance, passive 
network monitoring tools might access the database to 
complement packet-based traffic analysis with some extra 
information elements such as the operating system or the 
device type (e.g. printer, router, workstation or mobile device). 
This extra information not usually reported by probes, could 
be used by flow collectors for generating extra traffic metrics 
(e.g. what percentage of traffic is generated by mobile vs. 
static devices) and triggering new type of alerts not previously 
possible to generate (e.g. trigger an alert when a tablet 

receives an email via SMTP, or when a printer starts a SSH 
connection). 

The rest of the paper is structured as follows. Section II 
describes the architecture design, section III evaluates related 
work, section IV describes the validation process and 
experiments, section V highlights some future work activities, 
and finally section VI concludes the paper. 

II. ARCHITECTURE DESIGN 
Most networks use devices such as firewalls and IPSs to 

enforce network security policies when connecting to the 
Internet. As the network edge is growing, this architecture 
needs to be complemented with additional mechanisms for 
enforcing local edge traffic that will not flow through the 
firewall. Policies can be natively implemented on existing 
devices or by means of additional devices to be deployed on 
the network. For instance, a Linux server can exploit the 
native firewall to implement such policies, whereas single-
purpose devices such as printers or access points are not so 
versatile and thus need to be protected by deploying additional 
security devices. The proposed architecture is made of three 
main components: a Traffic Policer that is responsible for 
dropping/bridging network packets, an Asset Policy Database 
that contains information used by the policer in order to make 
decision and a Network Discovery the populates the database 
with information about the discovered network devices. Figure 
1 highlights the Traffic Security Policer (or Policer in short) 
that is in essence a bump-in-the-wire that bridges the portion 
of the LAN to protect with the rest of the network. 

!  
1. Security Architecture 

This device acts as a transparent bridge and drops selected 
packets not compliant with the specified security policies. On 
small/mid-size networks, the policer can run on a low-cost 
hardware device such as a RaspberryPI or a sub 50$ Linux 
OpenWRT-based device such as Ubiquity EdgeRouter X. The 
policer is deployed whenever we need to enforce edge traffic 
policies: it acts as a transparent traffic filtering device that can 
be placed on an existing network without changing the 
existing network configuration. Based on the network 
topology and security policies, one or more policiers can be 
deployed on a physical network: ideally, the more policers are 
deployed the better it is as it promotes micro-segmentation. 
All policers need to share the same security policies and make 
sure that whenever there is a change in policy, such 
modification is promptly distributed to all network edges. 

The main difference between the policer and an IDS/IPS or 
a traditional firewall, relies on the nature of the filtering we 
perform that is not based on signature as on IPS/IDS. As 
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described in section II.B, policer rules are fine-grained, feature 
per-device type configuration, and be layer-7 aware so we can 
filter both port-based (e.g. HTTP) and non-port-based 
protocols (e.g. BitTorrent or HTTP running on a non-standard 
port). 

!  
2. Security Policers Deployment 

This means that we implement different security policies 
based on the device type. For instance, we define a default 
policy for tablets, another one for printers, and another for 
security cameras. The policer will apply the specified default 
policy unless for a given device a more specialised policy has 
been defined. Moreover this design allows human network 
administrators to define fine-grained policies while allowing 
coarse-grained policies to be applied on unknown devices 
types. In order to avoid humans to manually classify network 
devices according to categories (e.g. tablets, workstations, 
printers etc.), the policer takes advantage of a Network Device 
Discovery component that periodically performs an active 
network device discovery as described in section II.A. This 
allows new discovered devices to be bound to a generic device 
type policy (e.g. tablets cannot print, IoT devices cannot 
connect to the Internet) that could be further refined by human 
administrators as described later in this section. In addition, as 
networks can have multiple active policers at various network 
sites and be topologically distributed as depicted in figure 2, it 
is necessary to have a central location where policies and 
device assets information is securely stored and used to 
distribute it across the network. In particular, the proposed 
architecture is able to: 

• dynamically define/remove security policies as devices are 
connected/disconnected from the network; 

• be resilient to attacks and network faults in a way that 
security could still be enforced even in case of partial 
network disconnection or fault; 

• prevent unauthorised changes to the asset policy database 
in order to disable security; 

• protect heterogeneous devices ranging from single-task 
devices such as a temperature thermometer or a printer, to 
more general-purpose devices including tablets, and 
personal computers. 

In order to satisfy the above requirements, our architecture 
has been based on the DNS (Domain Name System) [34], one 
of the core Internet protocols used to translate symbolic host 
names to numeric IP addresses and vice-versa. 

By design, the DNS implements native mechanisms for 
distributing information, enforcing secure information 

exchange, and be resilient to attacks and faults. In the past few 
years, the DNS has been extended in scope, and it is now used 
for additional purposes not related to just IP address resolution 
such as SPF (Sender Policy Framework) and DKIM (Domain 
Keys Identified Mail) used to limit email spoofing. Recently 
the DNS has been extended with DOA [21], later renamed OX 
[22], that essentially is a new record type that allows people to 
store digital object information in the DNS. 

!  
3. Using the DNS as Asset Policy Database  

As described in section II.B, being the OX record quite 
general, it allows us to store into the DNS security policies 
and use the DNS architecture to distribute them across the 
network. The advantages are manifold as we can exploit 
existing DNS servers for distributing our policies, as well use 
the native DNS security mechanisms named DNSSEC [24] to 
perform policy updates on a secure fashion. As depicted in 
figure 3, a central DNS server (authoritative server in the DNS 
parlance) stores the policies on a local DNS zone, that 
contains all DNS records delegated to a single manager. In our 
case, a single zone is usually enough to contain all OX 
records, even though the DNS provides mechanisms to further 
partition it. The zone(s) containing OX records is updated by 
the network discovery component by adding new discovered 
assets, and by human administrators whenever they want to 
update/refine existing policies. All DNS zone updates (i.e. 
add/remove/modify DNS records) are performed using native 
DNS mechanisms such as the nsupdate tool, part of the 
popular BIND DNS distribution. As the DNS is a distributed 
architecture, on large networks it is possible to replicate the 
central DNS server by deploying several secondary DNS 
servers at each network edge. Secondary servers are kept in 
sync with the primary server automatically by means of the 
native DNS mechanisms that automatically propagate changes 
from primary DNS server whenever the zone is updated. This 
way the asset policy database is in essence the DNS server, 
hence we do not need to use SQL databases such as MySQL 
or PostgreSQL to store policy information. 

The discovery process adds the OX records in the DNS 
zone using the following format: <MAC ADDRESS>.<device 
type> and a <MAC ADDRESS> CNAME record, an alias in 
the DNS terminology, for identifying the device regardless of 
its type. Example IoT device whose MAC address is 8D:
30:62:56:00:1C will be added in the DNS zone as 
8D306256001C.iot. When the discovery process is unable to 
identify the device type, the “unknown” suffix will be used. 
The default security policy specified for each device type is 
named <device type> without the MAC address. This naming 
schema allows devices to be grouped according to their type 
and it allows human administrators to further refine the device 
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policies by adding new OX records. For instance, suppose that 
we want to split printers devices in two categories: one that is 
Internet accessible, and another one that is not. Administrators 
could define a category printers_no_internet_access with a 
policy of no internet access, and then update the zone by 
moving discovered printers that are not supposed to access the 
internet under the new node on the same DNS zone (e.g. 
AABBCCDDEEFF.printers_no_internet_access). 
A. Network Device Discovery 

The network discovery process actively discovers network 
devices and adds new devices into the DNS-based database 
[16, 17]. This activity is implemented by both sending probe 
packets to discover active devices, and dissecting traffic that 
traverses the Policer. Active probing is used to identify 
devices even if silent (e.g. a printer does not always need to 
communicate with the Internet), while passive traffic 
dissection can complement discovered assets with additional 
metadata (e.g. by decoding HTTP traffic it is possible to use 
the User Agent field to learn more about the device operating 
system). We can envisage deploying in the network both a 
centralised security policer responsible for inspecting traffic 
to/from the Internet, and several host-based policers limited to 
enforce traffic from/to workstations. This to complement 
centralised with on-device traffic enforcement. Simple devices 
such as a surveillance camera or a smart TV do not usually 
access the device policy database to enforce traffic, whereas a 
more advanced device such as a server or a workstation can 
access the database to validate network connections they 
receive. A side effect of this practice is the implementation of 
a fine-grained, distributed, software-based micro-segmentation 
by relying on the policy database. 

B. DNS-Base Network Policy Database Specification 
As previously described, the asset policy database is 
implemented on top of the DNS, hence the stored information 
must be specified in a format that is compatible with the 
domain name server specification. This is not an architectural 
design limitation but rather a nice feature to have, because it is 
possible to rely on existing software libraries as well as to 
leverage on a protocol that operating systems can natively 
handle, and thus without having to define a new custom 
protocol. As this work should be used both in small (where a 
MAC address is meaningful) as well as large networks with 
routed traffic (where non-local MAC addresses are not visible 
as they have been replaced with the router’s MAC), all device 
DNS records are uniquely identified with a MAC address and 
an optional CNAME record (i.e. an alias in the DNS world) to 
be used to for gluing the device IP address to its MAC 
address. In this way both local and non-local devices can be 
identified into the DNS database: both MAC and IP 
information are stored with no information duplication. 
Moreover, inside the DNS protocol specification, it is also 
possible to define multiple different record types for the same 
key. This means, for example, that for MAC address 4A:
00:06:A1:7A:51 it is possible to define a CNAME to IP 
address 192.168.1.1 (i.e. the IP currently used by the above 
MAC address) as well as a TXT record where we can store 
textual information about the MAC. By leveraging on this 
property of DNS records, it is possible to specify several 
attributes for the same MAC such as the ingress and egress 
traffic security policies. The format of DNS records we have 
used to specify asset information is an extension of the OX 

record., implemented over DNS as specified in [22]. DNS 
records contain an object type that might be opaque and 
private to the producer and the consumer of the data. Each 
record is identified by the DNS OX Enterprise PEN (Private 
Enterprise Number) [23] already used in other Internet 
protocols to identify enterprise-specific datatypes and 
specified in the OX-ENTERPRISE field. With this mechanism 
it is possible to use both OX-specified types (in the value 
range 0..100 and currently limited to asset contact information 
such as email, website, telephone and public key) as well as 
define additional ones (in range 101…99999) that will be used 
for the Policy Database. The OX-LOCATION field specifics 
the information scope (e.g. local), as well as the media type is 
usually set to base-64 encoding used to encode the data field. 
The following table specifies the additional values of the OX-
TYPE field we have defined for the Asset Database. 

1. POLICY DATABASE: OX TYPES 

Table 1 contains the minimum information necessary for 
characterising a device in terms of name, provided/used 
services and capabilities. With the term service we identify 
what is often called layer seven (or application) protocol and 
thus we envisage the use of DPI (Deep Packet Inspection) 
techniques. In this way we can identify protocols also on non-
standard ports (e.g. HTTP traffic running on port 1234), as 
well as proprietary protocols such as Skype in a simple and 
concise format, thing that would not be possible using IP 
addresses and ports. The first column contains the OX type 
that we have defined, and that we will try to push into a new 
revision of [22] that is still mostly unspecified and open to 
extensions. The last table column contains a non-exhaustive 
list of data sources from which the OX fields could be 
populated, both during the device discovery phase as well at 
runtime listening to periodic multi/broad-cast messages that 

Id Name Data Source 
(D=Discovery, H=Human)

101 Device Operating System DHCP, HTTP User Agent D/H

102 Device Type SSDP, SNMP, MDNS D/H

103 Device Name DNS, MDNS, NetBIOS D

104 Device Description SSDP D

105 Services URL SSDP D

106 Hardware Manufacturer MAC Address (OUI) D

107 Last Known IPv4 Address DHCP, ARP D

108 Last Known IPv6 Address DHCPv6, Traffic Analysis D

109 Provided Services (Server) MUD D/H

110 Device User 802.1X, Radius D/H

111 Permitted Ports (Server) MDNS/DNS-SD, MUD D/H

112 Permitted Services (Client) H

113 Permitted Ports (Client) H

114 Permitted MAC (Client) H

115 Permitted MAC (Server) H



the devices emit. Fields marked with D are populated uniquely 
by the discovery process, while H means are set by human 
network administrators and D/H by both of them. In particular, 
active/passive network discovery relies on the following 
protocols: 

• DHCP/DHCPv6 (Dynamic Host Configuration Protocol)  
Used for retrieving the initial host configuration, these 
protocols can also be used to learn more about the device 
requesting the configuration. In particular DHCP field id 
55 contains the ordered parameters list requested via 
DHCP (e.g. DNS server, gateway, NetBIOS [30] name) by 
clients. DHCP fingerprinting [31] is a technique that 
exploits this id to identify the operating system (and in 
some cases even more about the device model) of the 
client that will be used to populate OX id 101. 

• SDP (Session Description Protocol)  
This protocol [29] was initially created for announcing 
multimedia capabilities on the network. It is currently used 
on a broader fashion by many network devices to 
announce theirs services. Most modern network devices 
including smart TV, Internet routers and mobile devices 
use this protocol to gather the list of available network 
services. 

• SNMP (Simple Network Management Protocol)  
It is a protocol used for managing network devices. It can 
be used to learn more about the device type by using the 
MIB-II system and interfaces groups. Furthermore, in 
authenticated networks, it could also be used to retrieve the 
device user by inspecting the 802.1X MIBs. 

• MAC (Media Access Control) Address  
The MAC address is important for many simple IoT 
devices usually communicate only with devices of the 
same manufacturer, or with other devices often identified 
with a MAC address rather than an IP. For this reason, OX 
fields 114 and 115, if present, contain the list of MAC 
addresses (note that they can be partially specified as they 
can contain just the initial MAC bytes) that these devices 
can connect, or be contacted. 

• ARP (Address Resolution Protocol)  
Designed for discovering Ethernet addresses associated to 
IPv4 addresses, it can be used to identify network devices 
and detect if they are connected to the network. 

• MUD (Manufacturer Usage Description)  
The MUD [33] is in essence a new DHCP field id that 
contains a URL to a MUD description file provided by the 
device manufacturer. Such file specifies the “intended 
device usage” that is basically what a device is about, 
including what are the protocols and ports used by the 
device for providing the expected services. The MUD 
extension is still being standardised and thus devices on 
the market are not supporting it yet, even though its 
adoption will be probably very quick because of 
cybersecurity issues caused by networked devices that 
could be limited by knowing the intended use of devices. 
We do not expect all devices to specify all the OX items 

listed in Table 1, as some information might be missing for 
specified devices (e.g. the device operating system might be 

unknown for many proprietary devices). However, the goal of 
this work is to define a comprehensive specification for 
networked devices that is accessible through the DNS, and 
that can be used as single source of information for various 
purposes including network security and monitoring. 

C. Network Policy Database: Security Guidelines 
In order to avoid disclosing information about network 

assets, DNS OX records queries should be disabled for clients 
sitting outside of the protected network. The DNS system 
allows a bulk record record transfer named zone transfer 
(AXFR): this operation should be enabled only for those hosts 
running the traffic policer and disabled for any other host. The 
aim is to avoid that a compromised internal host creates a 
DNS database mirror. In all cases, hosts allowed to perform 
queries need to be restricted only to selected OX IDs that 
could be used to enforce traffic such as OX ids' 111-114. DNS 
information should be modified in a secure way and only by 
authorised clients, feature that is a standard in all modern DNS 
implementations. Moreover, the use of DNSSEC is 
recommended (but not mandatory) in our architecture, as the 
DNS is used to drop unwanted communications, and thus it is 
compulsory to make sure that the information on which 
decisions are made is reliable and untampered. Finally, as 
DNS records are natively cached using a TTL (Time To Live) 
value specified in the DNS zone, it is important to use a 
relatively low TTL (i.e. no longer than 60 seconds) to make 
sure that record changes are immediately effective, while still 
using caching to avoid querying the DNS too often. This is 
usually not a problem in terms of decision latency, as 
explained later in this paper. Nevertheless, caching speeds up 
operations as it prevents the Policer to access the database too 
often by saving CPU cycles and thus reducing load. 

III. RELATED WORK 
The proposed work is a novelty with respect to what we 

can find in literature [10] when considering all aspects such as 
distributed security for both conventional and IoT devices, 
network discovery as seed of security information, and the use 
of the DNS as distributed and secure policy database. 
Platforms such as Microsoft Azure IoT and Amazon AWS IoT 
are tailored for business processes, as they allow IoT devices 
to communicate in a secure and distributed fashion. Other 
solutions such as Siemens MindSphere are designed for 
proprietary IoT devices and thus limited in scope. [35] Uses 
the DNS for IoT limited to device tracking with no security 
support. In [36] DOA/OX record is used to keep IoT devices 
firmware updated using a decentralised architecture. [37] 
Seems to be similar to this work in many aspects, but it seems 
to use discovery to locate assets to be later scanned for 
vulnerabilities. The concept of distributed security policer is 
well known in literature, however all works [37, 13, 3] are 
focusing only on configuration automation of firewall rules 
and DDoS (Distributed Denial of Service) mitigation systems. 

IV. IMPLEMENTATION AND VALIDATION 
We have validated the proposed architecture (see figure 4) 

leveraging on open source software so that we could both 
spread this work, and ease our task of integrating it on 
working Internet drafts such as those defining OX RR. The 
developed software has been deployed on various network 
families ranging from a home/small business network hosting 
IoT devices, to a regional ISP (Internet Service Provider). This 



has been important not just to better understand the 
architecture scalability and flexibility, but also for evaluating 
network discovery on heterogeneous network infrastructures. 
While the discovery component has been ported to various 
operating systems including MacOS, Linux and Windows, the 
policer is operating system dependent and thus we have 
developed it on Linux that allowed us to run it both on x86 
workstations but also on embedded MIPS/ARM devices as 
earlier discussed. The DNS server we have used in our 
experiments is the open source ISC BIND 9.12.1 that natively 
supports DOA/OX. The network discovery component is 
based on ntopng [15], a homegrown open source network 
monitoring application, whereas the policer has been 
implemented on top of the open source deep packet inspection 
library named nDPI [5], we have also developed, and the 
Linux firewall framework named netfilter. 

!  
4. Validation: Traffic Policer and Network Discovery 

The network discovery component is activated at startup 
and periodically (e.g. every 15 minutes) restarted to discover 
new network assets or poll existing one that have not made 
any network traffic yet (i.e. silent devices). This list includes 
for instance thermometers and smoke detectors that do not 
constantly transmit traffic, and thus that need to be probed in 
order to detect their presence. Network discovery works in a 
few consecutive steps: 

• From the local network interface, it is possible to read the 
configured network/mask. The first action performed is to 
send an ARP request to all local hosts with the except of the 
network and broadcast address, as well the local host 
address. Packets are forged and sent on the local interface 
using the libpcap library part of every Linux distribution. 

• A Multicast DNS service discovery “M-SEARCH * 
HTTP/1.1” is sent to 239.255.255.250:1900. Devices 
running a MDNS daemon will report the list of services they 
advertise. As not all hosts will reply to this service 
discovery, unresponsive hosts are also queried individually 
in unicast. Note that this step is not redundant as it allows us 
to discover even those devices connected to the network and 
running a MDNS daemon that does not have a local IP 
address. 

• To all hosts that have sent back an ARP reply, and thus that 
are alive, the discovery component sends further probe 
packets: 

• A Multicast DNS DNS-SD PTR record query hat 
will return a list of service types being advertised 
on the local network. Note that modern operating 
system versions reply to these queries whereas old 
versions do not. For those hosts that reply back, we 
gather the list of services they advertise (e.g. file 
sharing or remote access) that is useful to 
characterise the hosts. 

• A SNMP query for the MIB-II system group and 
based on the response, if any, further requests to 
further characterise the device model. 

• A Multicast DNS request to query the symbolic 
host name for the IPv4 address that sent back the 
ARP reply. The name to characterise the device sub 
model: “Galaxy S7” or “Luca’s iPad” are just some 
examples. 

• Once all the responses have been collected, it is possible to 
associate a device type and a name to all local hosts that 
provided enough information. In order to do that, the MAC 
OUI is also used to enhance the discovery whenever there is 
too little information to make a decision about an asset. For 
instance, some manufacturers produce only a few similar 
products so once we identify a device manufactured by a 
printer manufacturer, such device is marked as a printer. 

 At the end of each discovery session, results are stored in 
the local DNS zone in OX format according to the device 
type. The zone is updated with all the discovery results using 
the DNS maintenance utility nsupdate that allows a DNS 
zone to be updated. Once the zone is updated, the primary 
DNS server informs the secondary DNS servers that will then 
perform a zone transfer to update their records. As the 
discovery component is not responsible for setting specific 
device policies, newly discovered devices will use the default 
device type policy unless human network administrators will 
define a specific policy by updating the corresponding OX 
record. The policer accesses network traffic through the 
NFQUEUE mechanism that is essentially a packet queue 
between the kernel and user space. Using the iptables 
Linux configuration tool, it is possible to instruct the system to 
forward to a specified NFQUEUE queue those packets 
traversing the device that have no marker specified. In fact, 
netfilter allows packets to be marked with a numeric identifier 
that can be used by the networking stack to drop, route or 
shape traffic. Using the Linux CONNTRACK netfilter 
mechanism, it is possible to specify a marker for a connection 
so that once a packet has been marked with a non-zero 
identifier, the kernel will honour the marker also for all the 
future packets belonging to the same connection. This means 
that the traffic policer does not have to process all connection 
packets, but only the first few packets (i.e. UDP can be limited 
to one packet and for TCP is no more than 8 packets) in order 
to make a verdict on the connection. For instance, allowed 
connections are marked with marker 1, those to be dropped 
with 2, and allowed ones with reduced bandwidth are marked 
with 3. Once a connection has been marked, via iptables it is 
possible to tell the Linux kernel not to send the Policer future 
packets belonging to the same connection as they have already 
a marker that the kernel will honour accordingly. In a nutshell 
the traffic policer: 
• Uses nDPI to detect the connection application protocol. 

Note that in netfilter a connection is not limited to TCP but 
also to other protocols such as UDP. 

• Utilises a hash table to keep the state of connections for 
which nDPI has not made a verdict yet (e.g. too few 
packets have been received for the connection). 

• Once nDPI has detected the application protocol, it 
decides what marker associate to the processed packet, this 
using the security policy specified in OX. As the policer 
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has full payload visibility, it can passively extract from 
traffic further information that can be used to improve 
device characterisation such as the HTTP user agent that 
can disclose the device operating system and model. In 
case nDPI is unable to detect the application protocol, a 
default protocol named Unknown is used to this 
connection. At this point, the policer can free the memory 
for the hash bucket associated to the connection, as it will 
not receive further packets for the same connection via 
NFQUEUE. 
By configuring netfilter to send the traffic policer only the 

initial connection packets using the CONNTRACK 
mechanism, it is possible to process most packets inside the 
kernel and thus avoid costly kernel-to-userspace 
communications. The advantage of this implementation design 
is that the policer makes decisions in user space while traffic is 
processed inside the kernel using the standard netfilter 
mechanisms without hacks or custom modules. This clean 
design allowed us to port this tool across computer 
architectures, and to both embed it on low-cost devices as well 
run the same code on powerful x86 servers. In order to avoid 
the traffic policer to talk with the DNS server too often, we 
have decided to read the whole DNS configuration at startup 
and periodically refresh it in case of changes detected using 
the zone serial number. This has the advantage not to add any 
latency in packet processing due to DNS access. 

The discovery process has been tested in business 
networks where most devices are Windows/Linux/MacOS 
systems and other devices are pretty standard such as printers, 
routers, and access points. In addition to that, we have tested it 
on a few home networks featuring smart devices such as 
networked audio and video, IoT devices (i.e. personal health 
devices, smart lights, thermometers, alarm system) and device 
hubs (i.e. Logitech Harmony and Amazon Alexa). These 
environments are the most challenging for discovery: these 
devices are using proprietary protocols, do not answer to 
probe queries, and operate through cloud services for remote 
connecting to the controller application. In order to test the 
discovery accuracy, we have compared our results with state 
of the art discovery applications such as [18] and found our 
results pretty accurate. Testing it on about several networks 
ranging from 10 to 300 heterogeneous devices, about 12-15% 
of the discovered devices are not categorised. When devices 
are divided in sub-categories (e.g. classify a server according 
to its operating system), active discovery is able to identify 
correctly only hosts that support one advertising protocol such 
as MDNS or SDP. This means that over 80% of devices such 
as printers and NASs, as well Apple OSX/iOS computers are 
properly identified, whereas most Windows and Unix 
workstations cannot be further identified unless they run a 
service such as HTTP or SSH. The nDPI protocol detection 
accuracy is already covered in [20], as well, the performance 
on small embedded devices is satisfactory for networks with 
up to 300 Mbit uplinks, whereas for 1 Gbit line rate processing 
a dual-core x86 server is necessary. We have tested how the 
developed solution compares in terms of latency with respect 
to stock Linux kernel bridging on a low-end PC Engines 
APU2 computer. As reported in the Table 2, in average, the 
latency added by the policer is about 150 µsec, but in some 
conditions the latency is increased of an order of magnitude. 
This is an expected behaviour at the beginning of a connection 

when nDPI needs to be involved, even though limited only to 
the first few connection packets. 

2. LATENCY MEASUREMENTS 

The ability to use a central policer combined with a per-
host policer on selected hosts (e.g. on Linux workstations), 
contributed to block unwanted traffic at the edge, and shown 
to be much more effective than the standard Linux firewall 
that has not layer 7 visibility. In our tests, we have not been 
able to fully evaluate the effectiveness of our implementation 
with proprietary devices. This is due to the nature of these 
devices that do not speak open protocols nor answer queries 
coming from devices whose network manufacturer is different 
from them. Handling mobile devices such as tablets and 
smartphones is working pretty well mostly because there are 
only two predominant mobile operating systems that makes 
our life easy. 

V. FUTURE WORK ITEMS 
The current policer implementation filters traffic based on 

layer 7 protocols, but it does not yet honours some OX records 
such as the list of permitted MAC addresses or provided 
services. Future policer implementations should support the 
whole set of OX records. 

The general perception within the Internet community, is that 
today's users expect security and privacy even when deploying 
cheap and simple devices. Since many IoT devices are 
deployed in unprotected environments such as corridors and 
walls, these devices should have a way to protect both the 
device itself and the data they store. Following the principle 
that devices should be capable of protecting themselves, MUD 
[33] has been proposed with the goal to provide devices to 
inform the network what sort of access and network 
functionality they require/provide. As already mentioned, we 
plan to propose the adoption of MUD inside the DOA record 
specification, in order to glue these two draft specifications 
with the aim of enhancing the overall network and Internet 
security. While the discovery process we proposed is 
responsible for locating assets and generating default security 
policies validated and enhanced by human administrators, we 
have not taken into account intra-device communications. We 
plan to implement security policies based on the principles of 
opportunistic networking [32] that exploits the human social 
characteristics in order to perform the message routing and 
data sharing. For instance, if two hosts A and B communicate 
often over protocol X, and host C also communicates with B 
over X, then communications between A and C might be 
acceptable, while a communication pattern not previously 
observed might be suspicious. Currently we are trying to 
refine this idea, and afterwards to see how it could fit within 
the scope of this work. 

Policer Bridging Linux Bridging

Max 1945 usec 193 usec

Min 202 usec 60 usec

Avg 283 usec 131 usec



Finally, we also plan to promote this work in the OX IETF 
community in order to extend the current specification draft as 
described in this paper. The IETF has recently proposed the 
use of the domain name ’home.arpa.’ [25, 38] for naming 
wi th in r e s iden t i a l ne tworks . Accord ing to th i s 
recommendation, names ending with this extension reference 
a locally served zone, whose contents are unique only to a 
particular home network. Such names refer to nodes and/or 
services such as printers, toaster, etc. Our work could be used 
as foundation for keeping home networks safe and secure.  

VI. FINAL REMARKS 
As predicted by many analysts, the network edge will 

become increasingly important, with the IoT just being one of 
the major driving force for this change. For this reason, it is 
necessary to enforce traffic policies as close as possible to 
network devices, unlike most security architectures do today. 
In order to democratise security, we need all devices to be able 
to protect themselves and thus it is compulsory to design a 
distributed and open architecture for enforcing security at the 
edge. This paper has presented a DNS-based architecture that 
addresses these challenges using standard and open protocols 
with no proprietary or custom solutions. This combined with, 
the use of open source software we used to implement and 
validate it, can help to widespread the idea and promote it 
within standard bodies. Finally, this has been the first attempt 
to extend OX outside of its original scope, and use the DNS 
not just for name resolution but as a proven, distributed, and 
scalable solution for network security. 
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