
Network Monitoring 
in Practice

Luca Deri <deri@ntop.org>

© 2022 - Luca Deri <deri@ntop.org>

Ethernet Switching

!2© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Ethernet [1/3]

!3© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Bob Metcalfe, mid 1970s

Ethernet [2/3]

!4© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Star topology 
(10/100BaseT - 802.3i-1990)

Bus Topology
(10Base2- 802.3a-1988)

Ethernet [3/3]

• Ethernet can operate in half-duplex (historical)
and full duplex as specified in 802.3x (modern
ethernet).

• In full duplex mode, 
stations can 
simultaneously both 
transmit AND receive  
since there is no 
contention for using the shared media.

!5© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

PoE (Power over Ethernet)

• Elegant solution for merging data and power
used mostly for low power devices such as
antennas and WiFi access points.

• PoE Type 2: 25.5 W, 600 mA.

!6© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Ethernet Pinout [1/2]

!7© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Ethernet Pinout [2/2]

!8© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Ethernet Aggregation

!9© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

40 Gbit Ethernet 100 Gbit Ethernet

Ethernet Flow Control

Flow control is a mechanism used by the
receiver (receiver is the king!) to request the
sender a short pause in frame transmission
sending a PAUSE command the destination
multicast address 01:80:C2:00:00:01.

!10© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Ethernet Framing [1/3]

!11© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Minimum pause (time) between packets permitting the receiver
to prepare for the next frame (96 nsec on Gbit Ethernet)

Sequence of 56 alternating 0 / 1 bits followed 8 1 bits, allowing
the sender to sync with the receiver.

Frame check sequence based on CRC
(Cyclic Redundancy Check) use to detect

(but not to fix) transmission errors.

Ethernet Framing [2/3]

Minimum ethernet packet size is 60 bytes:
shorter frames are padded.

!12© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

IFG 12

Preamble 8

Min Ethernet Frame 60

CRC 4

Total (bytes) 84

Ethernet Framing [3/3]

!13© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Speed bits/sec bytes/sec PPS (bps/84) Packet Rate  
(1/PPS) nsec

1 Gbps 1.000.000.000 125.000.000 1.488.095 672,00

10 Gbps 10.000.000.000 1.250.000.000 14.880.952 67,20

100 Gbps 100.000.000.000 12.500.000.000 148.809.524 6,72

Operation of Ethernet Switches [1/6]

• Ethernet switches are “invisible” devices to the
network as they do not modify Ethernet frames
bridged across ports.

• Switches do not require any configuration as
they learn the network topology and
configuration by analysing network traffic as
described in the IEEE 802.1D bridging
standard.

!14© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Operation of Ethernet Switches [2/6]

!15© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Port Station
1 10

2 20

3 30

4 No station

5 No station

6 15

7 25

8 35

Forwarding Table

Operation of Ethernet Switches [3/6]

• Stations advertise their presence by sending
ethernet frames.

• The forwarding table is filled up dynamically
and automatically (no configuration) as
incoming packets are received.

• As switches can be nested in a tree/mesh
architecture, multiple stations can be attached
to the same port.

!16© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Operation of Ethernet Switches [4/6]

• Traffic is forwarded based on the destination
ethernet address:
— When a frame is received the destination MAC is

searched in the forwarding table.

— If found, the frames is sent to the destination
station (layer 2 anycast).

— If not found the traffic is sent to all ports but the
one from which the frame has been received
(layer 3 broadcast).

!17© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Operation of Ethernet Switches [5/6]

!18© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

Caveat:

VLANs affect 
traffic forwarding

by creating multiple

broadcast domains

Operation of Ethernet Switches [6/6]

!19© 2021 - Luca Deri <deri@ntop.org> (v 1.8)

• Ethernet requires that only one path exists between
any two stations.

2

Introduction

© 2022 - Luca Deri <deri@ntop.org>

3

Monitoring Requirements [1/4]

• Guarantee the availability of the function on the net.

— Service maintenance (availability, response time) need to face with
technological changes and big quota increase.

• Security of the services through the control of security components.
• (Human) Mistake prevention and bottleneck identification/recovery.

— Automatic or semiautomatic reaction on operation anomalies:
• Real-time configuration modification in case of error.
• Activation of redundant components in case of error.

© 2022 - Luca Deri <deri@ntop.org>

4

Monitoring Requirements [2/4]

• Dynamic reactions to changes on the network and
environment:

— Changes regarding applications, users, components,
services or fees.

— Dynamic adaptation of the available transmission
bandwidth according to requests originated by the
management system.

© 2022 - Luca Deri <deri@ntop.org>

5

Monitoring Requirements [3/4]

• Network Control:
— Collection and (compressed) representation of relevant

network information.
— Definition and maintenance of a database of network

configurations.
— When applicable, centralisation of the control over

peripherals and implemented functions (central
management console).

— Integration of management procedures on heterogeneous
environments

© 2022 - Luca Deri <deri@ntop.org>

6

Monitoring Requirements [4/4]

• Improvement of system/network administrators work
conditions :

— Improvement and standardisation of the available tools.
— Identify and implement gradual automation of

management functions.
— Good integration of tools into the existing operational

sequences.

• Progress through standardisation :
— Transition of existing, often proprietary, solutions in a

standardised environment.

© 2022 - Luca Deri <deri@ntop.org>

7

Various Actors, Various Metrics

• End-Users vs. (Internet) Service Provider
— Remote user (Dial-up or xDSL) vs. Facebook

• Internet User (no services provided)

• Mostly P2P, Email, WWW traffic

— ntop.org vs. TIM
• Provided Services (e.g. DNS, Mail, WWW)

• Connected to a Regional ISP (no worldwide branches)

— Interroute/Level3 vs. TIM
• Need to buy bandwidth for national customers

• Need to sign SLA with customers influenced by the SLA signed with
the global carrier.

© 2022 - Luca Deri <deri@ntop.org>

8

End-Users Requirements
• Monitoring of Application performance:

— Why this web page takes so long to load?

— Why does the multicast video isn’t smooth?  

• Check that the expected SLA can be provided by the available
network infrastructure
— Do I have enough bandwidth and network resources for my needs and

expectations?  

• Is poor performance “normal” or there’s an ongoing attack or
suspicious activity?
— Is there a virus that takes over most of the available resources?
— Is anybody downloading large files at high priority (i.e. bandwidth

monopolisation)?
© 2022 - Luca Deri <deri@ntop.org>

9

Service Provider Requirements

• Monitor SLA (Service Level Agreements) and current network
activities.

• Enforce committed SLA and monitor their violation (if any).

• Detection of network problems and faults.

• Redesign the network and its services based on the user
feedback and monitoring outcome.

• Produce forecasts for planning future network usage hence
implement extensions before it’s too late (digging out ground
for laying cables/fibres takes a lot of time).

© 2022 - Luca Deri <deri@ntop.org>

10

Problem Statement

• End-users and ISPs speak a different language
— End-users understand network services

• Outlook can’t open my mailbox.

• Firefox isn’t able to connect to Google.

— ISPs talk about networks
• BGP announces contain wrong data.

• The main Internet connection is 90% full.

• We need to sign a peering contract with AS XYZ for
cheaper bandwidth.

© 2022 - Luca Deri <deri@ntop.org>

Measurements

!29© 2022 - Luca Deri <deri@ntop.org>

11

Traffic Analysis Applications:
Some Requirements [1/2]

• What: Volume and rate measurements by application host
and conversation.  
Why: Identify growth and abnormal occurrences in the
network.

• What: Customisable grouping of traffic by logic groups (e.g.
company, class of users), geography (e.g. region), subnet. 
Why: Associate traffic with business entities and trend growth
per grouping (aggregate data isn’t very meaningful here: we
need to drill-down the analysis at user level).

© 2022 - Luca Deri <deri@ntop.org>

12

Traffic Analysis Applications:
Some Requirements [2/2]

• What: Customisable filters and exceptions based on network
traffic. 
Why: Filters can be associated with alarm notifications in the
event of abnormal occurrences on the network.

• What: Customisable time-periods to support workday
reporting. 
Why: Analyzing data based on the calendar helps identifying
problems (e.g. the DHCP is running out of addresses every
Monday morning between 9-10 AM, but the problem
disappears for the rest of the week.)

© 2022 - Luca Deri <deri@ntop.org>

13

Further Measurement Issues [1/2]

• Network appliances have very limited measurement
capabilities (a router must switch packets first!).
— Limited to few selected protocols

— Aggregated measurements (e.g. per interface)

— Only a few selected boxes can be used for network
measurements (e.g. a router is too loaded for new tasks,
this L2 switch isn’t SNMP manageable)

— High-speed networks introduce new problems:
measurement tools can’t cope with high speeds.

© 2022 - Luca Deri <deri@ntop.org>

14

Further Measurement Issues [2/2]

• Need to constantly develop new services and
applications (e.g. mobile video on 4/5G phones).

• Most of the services have not been designed to be
monitored.

• Most of the internet traffic is consumed by
applications (P2P) that are designed to make them
difficult to detect and account.

• Modern internet services are:
— Mobile hence not tight to a location and IP address
— Encrypted and based on dynamic TCP/UDP ports (no

fingerprinting, i.e. 1:1 port to service mapping)

© 2022 - Luca Deri <deri@ntop.org>

15

Monitoring Capabilities 
in Network Equipment

• End-systems (e.g. Windows PC)
— Completely under user control.

— Simple instrumentation (just install new apps) 

• Standard Network boxes (e.g. ADSL Router)
— Access limited to network operators

— Poor set of measurement capabilities
— Only aggregated data (e.g. per interface) 

• Custom Boxes (Measurement Gears)
— Instrument-able for collecting specific data.
— Issues in physical deployment so that they can analyse the traffic where

it really flows
© 2022 - Luca Deri <deri@ntop.org>

16

Problem Statement

• Users demand services measurements.
• Network boxes provide simple, aggregated

network measurements.
• You cannot always install the measurement

box wherever you want (cabling problems,
privacy issues).

• New protocols appear every month,
measurement protocols are very static and
slow to evolve.

© 2022 - Luca Deri <deri@ntop.org>

17

Benchmarking Terminology

• Traffic metrics are often not standardised
contrary to everyday life metrics (kg, litre etc.).

• Vendors measurements are often performed
in slightly different ways making the results not
easy to compare.

• RFC 1242 “Benchmarking Terminology for
Network Interconnection Devices” defines
some common metrics used in traffic
measurement.

© 2022 - Luca Deri <deri@ntop.org>

18

RFC 1242: Some Definitions

• Throughput
• Latency
• Frame Loss Rate
• Datalink Frame Size
• Back-to-back
• Etc.

Very general RFC, not very “precise/formal”.

© 2022 - Luca Deri <deri@ntop.org>

19

RFC 2285: Further Definitions

• “Benchmarking Terminology for LAN Switching
Devices”

• It extends the 1242 RFC by adding new definitions that
will be used in other RFCs, including:
— Traffic burst
— Network load/overload
— Forwarding rate
— Errored frames
— Broadcasts

© 2022 - Luca Deri <deri@ntop.org>

20

RFC 2432: Multicast Terminology

• “Terminology for IP Multicast Benchmarking”

• Very peculiar RFC targeting multicast traffic
measurement.

• Some metrics:
— Forwarding and Throughput (e.g. Aggregated

Multicast Throughput)

— Overhead (e.g. Group Join/Leave Delay)

— Capacity (e.g. Multicast Group Capacity)

© 2022 - Luca Deri <deri@ntop.org>

21

RFC 1944: Benchmarking Methodology for
Network Interconnect Devices

• It defines how to perform network traffic
measurements:
— Testbed architecture (where to place the system under test)
— Packet sizes used for measurements
— IP address to assigned to SUT (System Under Test)
— IP protocols used for testing (e.g. UDP vs TCP)
— Use of traffic bursts during measurements (burst vs.

constant traffic)

• In a nutshell it defines the test environment to be
used for network traffic testing.

© 2022 - Luca Deri <deri@ntop.org>

22

Other Benchmarking 
Methodology (BM) RFCs

• 2285: BM for LAN Switching Devices
• 2544: BM for for Network Interconnect Devices
• 2647/3511: BM for Firewall Performance
• 2761/3116: BM for ATM Benchmarking
• 2889: BM for LAN Switching Devices
• 3918: BM for IP Multicast

© 2022 - Luca Deri <deri@ntop.org>

Other Benchmarking 
Methodology (BM) ETSI

• Speech and multimedia Transmission Quality (STQ); QoS and network
performance metrics and measurement methods; Part 3: Network
performance metrics and measurement methods in IP networks  
ETSI EG 202 765-3

https://www.etsi.org/deliver/etsi_eg/202700_202799/20276503/01.01.01_60/eg_20276503v010101p.pdf

• Speech and multimedia Transmission Quality (STQ); QoS Parameter
Measurements based on fixed Data Transfer Times  
ETSI TR 102 678

https://www.etsi.org/deliver/etsi_tr/102600_102699/102678/01.02.01_60/tr_102678v010201p.pdf

!42© 2022 - Luca Deri <deri@ntop.org>

https://www.etsi.org/deliver/etsi_eg/202700_202799/20276503/01.01.01_60/eg_20276503v010101p.pdf

23

RFC 2544: Benchmarking Methodology for
Network Interconnect Devices

It defines and specifies how to:
— Verify and evaluate the test results

— Measure common metrics defined in RFC 1242 such as:
• Throughput

• Latency

• Frame Loss

— Handle “test modifiers” such as
• Broadcast traffic (how can this traffic affect results)

• Trial duration (how long the test should last)

© 2022 - Luca Deri <deri@ntop.org>

Common Measurement Metrics [1/2]

!44© 2022 - Luca Deri <deri@ntop.org>

24

Common Measurement Metrics [2/2]

• Performance measurement
— Availability

— Response time

— Accuracy

— Throughput
— Utilisation

— Latency and Jitter

© 2022 - Luca Deri <deri@ntop.org>

25

Measurement Metrics: Availability [1/2]

• Availability can be expressed as the
percentage of time that a network system,
component or application is available for a
user.

• It is based on the reliability of the individual
component of a network.

© 2022 - Luca Deri <deri@ntop.org>

26

Measurement Metrics: Availability [2/2]

% Availability =

MTBF = mean time between failures

MTTR = mean time to repair following a  
 failure.

© 2022 - Luca Deri <deri@ntop.org>

MTBF

MTBF + MTTR

27

Measurement Metrics: Response Time

• Response time is the time it takes a system to react to
a given input.
— Example: In an interactive transaction, it may be defined as

the time between the last keystroke by user and the
beginning of the resulting display by the computer.

• Short response time is desirable.
• Necessary for interactive applications (e.g. telnet/ssh)

not very important for batch applications (e.g. file
transfer).

© 2022 - Luca Deri <deri@ntop.org>

!49

Server and Client Network Delay (Latency)
Client Server

SYN

SYN | ACK

ACK

Time

nProbe

Client Network Delay

Server Network Delay

© 2022 - Luca Deri <deri@ntop.org>

!50© 2022 - Luca Deri <deri@ntop.org>

HTTP Client HTTP Server

GET /index.html

Time

nProbe

HTTP/1.0 200 OK

Application Delay HTTP Server Latency

Application Delay Server Network DelayHTTP Server Latency = -

Application Latency (Response Time)

28

Measurement Metrics: Throughput

• Metric for measuring the quantity of data that can be sent over
a link in a specified amount of time.

• Often it is used for giving an estimation of an available link
bandwidth.

• Note that bandwidth and throughput are very different metrics.
• Throughput is an application-oriented measurement.
• Examples:

— The number of transactions of a given type for a certain
period of time

— The number of customer sessions for a given application
during a certain period of time

© 2022 - Luca Deri <deri@ntop.org>

Measurement Metrics: Goodput

• Same as throughput but considering only the
packet payload (layer 7 only).

• It identifies the “real data” that is carried on the
network not considering packet headers.

• It is useful to detect “stealth connections” (e.g.
TCP connection that is up with no data
exchanged beside dummy packets).

!52© 2022 - Luca Deri <deri@ntop.org>

29

Measurement Metrics: Utilisation

• Utilisation is a more fine-grained measure
than throughput. It refers to determining the
percentage of time that a resource is in use
over a given period of time.

• Often very little utilisation means that
something isn’t working as expected (e.g. little
traffic because the file server crashed).

© 2022 - Luca Deri <deri@ntop.org>

30

Measurement Metrics: Latency and Jitter

• Latency (msec): amount of time it takes a packet from
source to destination. It is very important for interactive
applications (e.g. online games).

• [RTT (Round Trip Time) / 2] is NOT the network latency,
but the sum of c2s and s2c network latency is the RTT
value.

• Jitter (msec): variance of intra-packet delay on a mono-
directional link. It is very important for multimedia
applications (e.g. Internet telephony or video broadcast).

• Jitter is a way to measure how a signal is irregular.

© 2022 - Luca Deri <deri@ntop.org>

Jitter Explained

!55© 2022 - Luca Deri <deri@ntop.org>

Jitter Calculation [1/2]

!56© 2022 - Luca Deri <deri@ntop.org>

 jitter = sum(|x(i) - x(i-1)|) / (n-1))

Note: Jitter takes into account the order of the events
whereas standard deviation, average… do not.

Jitter Calculation [2/2]

!57© 2022 - Luca Deri <deri@ntop.org>

Measurement Value Difference
1 1
2 58 57
3 1 57
4 1 0
5 1 0
6 1 0
7 37 36
8 18 19

Jitter 24,143 msec
Average 14,750 msec
StdDev 21,783 msec

NOTE: 
Jitter is a generic metric that can be used in many other use cases

Jitter Evaluation

!58© 2022 - Luca Deri <deri@ntop.org>

31

Measurement Metrics: Bandwidth

• Measurement Interval (Tc) - The time interval or “bandwidth interval” used
to control traffic bursts.

• Burst Committed (Bc) - The maximum number of bits that the network
agrees to transfer during any Tc.

• CIR (Committed Information Rate) - The rate at which a network agrees to
transfer information under normal conditions, averaged over a minimum
increment of time. CIR, measured in bits per second, is one of the key
negotiated tariff metrics. CIR = Bc / Tc.

• Burst Excess (Be) - The number of bits to attempt to transmit after reaching
the Bc value.

• Maximum Data Rate (MaxR) - Calculated value measured in bits per
second. MaxR = ((Bc + Be)/Bc) * CIR = (Bc + Be)/Tc

© 2022 - Luca Deri <deri@ntop.org>

32

Per-Link Measurements

• Metrics available on a link
— # packets, # bytes, # packets discarded on a specific

interface over the last minute
— # flows, # of packets per flow

• It does not provide global network statistics.
• Useful to ISPs for traffic measurements.
• Examples:

— SNMP MIBs
— RTFM (Real-Time Flow Measurement)
— Cisco NetFlow

© 2022 - Luca Deri <deri@ntop.org>

33

End-to-End Measurements

• Network performance != Application performance
— Wire-time vs. web-server performance

• Most of network measurements are by nature end-
to-end.

• Per path statistics
• Are paths symmetric? Usually they are not. (Routing issue?)
• How does the network behave with long/short probe packets?

• It is necessary for deducting per-link performance
measurements.

© 2022 - Luca Deri <deri@ntop.org>

34

Monitoring Approaches [1/2]

• Active Measurement
— To inject network traffic and study how the network

reacts to the traffic (e.g. ping). 

• Passive Measurement
— To monitor network traffic for the purpose of

measurement (e.g. use the TCP three way
handshake to measure network round-trip time).

© 2022 - Luca Deri <deri@ntop.org>

35

Monitoring Approaches [2/2]

• Active measurements are often end-to-end, whereas
passive measurements are limited to the link where
the traffic is captured.

• There is no good and bad. Both approaches are
good, depending on the case:
— Passive monitoring on a switched network can be an issue.
— Injecting traffic on a satellite link is often doable only by the

satellite provider.

• Usually the best is to combine both approaches and
compare results.

© 2022 - Luca Deri <deri@ntop.org>

36

Inline vs. Offline Measurement

• Inline Measurements  
Measurement methods based on a protocol that
flows over the same network where measurements
are taken (e.g. SNMP). 

• Offline Measurements  
Measurement methods that use different networks
for reading network measurements (e.g. to read
traffic counters from CLI using a serial port or a
management network/VLAN).

© 2022 - Luca Deri <deri@ntop.org>

58

Remote Monitoring

© 2022 - Luca Deri <deri@ntop.org>

59

Networks are Changing… [1/2]

© 2022 - Luca Deri <deri@ntop.org>

 Force 1: the Internet Force 2: Mobility Force 3: Dynamic
 Communications

• network security will
become even more
critical in the future.

• the enterprise network
will become a public
network.

• supporting a broad
range of applications will
be a key element in the
future: convergence.

• the data network will
become the only
network.

• supporting mobility
across wired and wireless
will be a key element of
the network future.

• the network will become
an anytime, anywhere
resource.

60

Networks are Changing… [2/2]

© 2022 - Luca Deri <deri@ntop.org>

Central 
Mgmt

Core Wired 
Edge

Internet

Intranet

Distribution

Wireless
Edge

Without edge control
there’s no real
network control

61

Towards Remote Monitoring [1/4]

• Modern networks are distributed across various
buildings, managed by different people with different
skills (security, traffic engineer, DB administrator).

• It is necessary to collect traffic statistics on each
network trunk, send them to a (limited number of)
collector, in order to produce an aggregate network
view.

• Some distributed analysis capabilities are necessary
because a centralised network is not fault tolerant
and scalable.

© 2022 - Luca Deri <deri@ntop.org>

62

Towards Remote Monitoring [2/4]

• Deploying remote traffic analysers (e.g. pcap-based
probes) are not always feasible because:
— Server manufacturers do not always permit generic,

untested software (e.g. the licence enforces that on a
Oracle server you install only Oracle-certified apps) to be
installed.

— Modern servers often have several network interfaces (1Gb
main+failover for data and 100 Mbit for server access), so a
multi-interface probe is required.

— Monitoring a 1 GE using a network tap requires 2 x GE (one
RX for each direction of the original GE).

© 2022 - Luca Deri <deri@ntop.org>

63

Towards Remote Monitoring [3/4]

• Solution: use traffic analysis capabilities provided by
network appliances.

• Drawbacks:
— Not all the appliances provide traffic analysis capabilities

(e.g. most ADSL routers do not)

— Even if supported, not always such capabilities can be
enabled (strong impact on CPU and memory).

— Basic monitoring capabilities provided by the default OS
are rather limited so a custom card is necessary.

— Custom cards for traffic analysis are not so cheap.

© 2022 - Luca Deri <deri@ntop.org>

64

Towards Remote Monitoring [4/4]

• Price of some commercial monitoring cards
(monitoring software sold separately):

© 2022 - Luca Deri <deri@ntop.org>

Product
Price

(Card Only)

Cisco MSFC-2 46’000 $

Juniper PM-PIC 30’000 $

65

RMON: Remote Monitoring
using SNMP

• Present in most mid-high end network appliances: often these
are poor/limited implementations.

• Some vendors sell stand-alone probes: preferred case as
— they are full implementations of the protocol.

— They do not add additional load on the router.

• Not all the implementations (in particular those embedded in
router/switches) support the whole standard but only selected
SNMP groups.

• Together with Cisco NetFlow is the industrial, “trusted”
monitoring standard.

• Two versions: RMON-1 (L2) and RMON-2 (L2/L3).
© 2022 - Luca Deri <deri@ntop.org>

66

What can RMON do?

• Collect data and periodically report it to a more central management
station, which potentially reduces traffic on WAN links and polling overhead
on the management station.

• Report on what hosts are attached to the LAN, how much they talk, and to
whom.

• "See" all LAN traffic, full LAN Utilisation, and not just the traffic to or through
the router.

• Filter and capture packets (so you don't have to visit a remote LAN and
attach a LAN Analyser) : it is basically a remote sniffer that can capture
real-time traffic (until the integrated memory buffer is full).

• Automatically collect data, compare to thresholds, and send traps to your
management station -- which offloads much of the work that might bog
down the management station.

© 2022 - Luca Deri <deri@ntop.org>

67

RMON vs. SNMP [1/2]

• The SNMP protocol is used to control and
configure a probe. Usually GUI managers
mask the complexity of SNMP-based
configuration.

• Statistics and saved traffic are retrieved using
SNMP by management applications to record
statistics on a network and, possibly selected
portions of the network traffic.

© 2022 - Luca Deri <deri@ntop.org>

68

RMON vs. SNMP [2/2]

 SNMP and RMON differ in the way they gather
traffic statistics:
— SNMP is a periodic poll-request process: it requires

a query of the SNMP device to get network
statistics (the network status is kept by the
manager).

— RMON, on the other hand, reduces the stress of
the manager by gathering and storing some
statistics in counters or buckets for retrieval by a
management station.

© 2022 - Luca Deri <deri@ntop.org>

RMON Groups [1/3]

!76© 2022 - Luca Deri <deri@ntop.org> 69

Groups Function Elements

Statistics Contains statistics measured by the probe for
each monitored interface on this device.

Packets dropped, packets sent,
bytes sent (octets), broadcast
packets, multicast packets.

History Records periodic statistical samples from a
network and stores them for later retrieval.

Sample period, number of
samples, items sampled.

Alarm Periodically takes statistical samples from
variables in the probe and compares them
with previously configured thresholds. If the
monitored variable crosses a threshold, an
event is generated.

Alarm type, interval, starting
threshold, stop threshold.

70

Groups Function Elements

Host Contains statistics associated with each host
discovered on the network.

Host address, packets, and bytes received and
transmitted, as well as broadcast, multicast,
and error packets.

HostTopN Prepares tables that describe the hosts that
top a list ordered by one of their base
statistics over an interval specified by the
management station. Thus, these statistics
are rate-based.

Statistics, host(s), sample start and stop periods,
rate base, duration.

Matrix Stores statistics for conversations between
sets of two addresses. As the device detects
a new conversation, it creates a new entry
in its table.

Bit-filter type (mask or not mask), filter
expression (bit level), conditional expression
(and, or not) to other filters.

RMON Groups [2/3]

!77© 2022 - Luca Deri <deri@ntop.org>

71

Groups Function Elements

Filters Enables packets to be matched by a filter
equation. These matched packets form a data
stream that might be captured or that might
generate events. Bit-filter type (mask or not
mask), filter expression (bit level), conditional
expression (and, or not) to other filters

Bit-filter type (mask or not mask),
filter expression (bit level),
conditional expression (and, or
not) to other filters

Packet Capture Enables packets to be captured after they flow
through a channel.

Size of buffer for captured
packets, full status (alarm),
number of captured packets.

Events Controls the generation and notification of
events from this device.

Event type, description, last time
event sent

RMON Groups [3/3]

!78© 2022 - Luca Deri <deri@ntop.org>

72

RMON Ethernet Statistics
• Packets: A unit of data formatted for transmission on a network.

• Multicast Packet: communication between a single sender and multiple receivers on a
network.

• Broadcast Packet: a packet that is transmitted to all hosts on an Ethernet.

• Drop Events: An overrun at a port. The port logic could not receive the traffic at full line rate
and had to drop some packets.

• Fragments: A piece of a packet. Sometimes a communications packet being sent over a
network has to be temporarily broken into fragments; the packet should be reassembled
when it reaches its destination.

• Jabbers: Packets received that were longer than 1518 octets and also contained alignment
errors.

• Oversize Packets: Packets received that were longer than 1518 octets and were otherwise well
formed.

© 2022 - Luca Deri <deri@ntop.org>

75

Network Utilisation with RMON

• Most RMON managers use RMON counters to compute
network Utilisation.

• Network Utilisation can be calculated for all the ports of a
given switch at regular intervals. This information can be
gathered over the course of a day and be used to generate a
network Utilisation profile of a switch or hub.

© 2022 - Luca Deri <deri@ntop.org>

% Network = 100 x ((# packets x 160) +(# octets x 8))
 Utilisation port speed x time (secs)

Note: 160 = 96 (# bit times (minimum) for the inter-frame gap) + 64 (# bits in the preamble + SFD (start frame
delimiter). 8 is the number of bits in an octet.

76

• In case of exceeding a upper limit value, an event is produced each time
the threshold is exceeded or when a value that used to be above a
threshold returns inside the specified range. Similar considerations can be
applied to lower threshold value.

• Thresholds can either be on to the measured value (absolute) or on the
difference of the current value to the last measured value (delta value).

RMON Alarm Group

Time

Counter
Value

Rising Treshold

Falling Treshold

Alarm (SNMP Trap)

© 2022 - Luca Deri <deri@ntop.org>

77

Case Study: Counter 
 Sampling Interval [1/2]

Example 1: (10 seconds sampling interval, threshold value 20, 10 seconds test interval)

Time: 0 10 20

Value: 0 19 32

Delta: 19 13

Actual Threshold To Check: 19 13

Example 2: (5 seconds sampling interval, threshold value 20, 10 seconds test interval)

Time: 0 5 10 15 20

Value: 0 10 19 30 32

Delta: 10 9 11 2

Actual Threshold To Check : 19 20 13
© 2022 - Luca Deri <deri@ntop.org>

78

Case Study: Counter 
 Sampling Interval [2/2]

• MIB instance value sampling must be done twice per
sampling interval, otherwise exceeded thresholds may be
undetected for overlapping intervals.

• Fast polling has some drawbacks:

— Much more data is collected.

— Increased load on SNMP agents.

— More data changes are detected (this can lead to false
positives).

• Slow polling has some drawbacks too:

— Some alarms can be missed (inaccuracy)

© 2022 - Luca Deri <deri@ntop.org>

79

RMON-Like Home-grown  
Network Probes [1/4]

• Every router/switch (ranging from Cisco boxes to Linux-based
router) has the ability to define ACL (Access Control Lists) for
preventing selected traffic to flow.

• ACLs with an ‘accept’ policy can very well be used to account
traffic.

• Drawbacks:
— ACLs are limited to IP whereas RMON is not (e.g. IPX, NetBEUI)

— On many systems ACLs have impact on CPU.

— The number or total/per-port ACLs is limited.

— Often ACLs are limited to packet header (no payload).

© 2022 - Luca Deri <deri@ntop.org>

80

RMON-Like Home-grown  
Network Probes [2/4]

ACL definition examples:

— Cisco
access-list 102 permit icmp any any

— Juniper

filter HTTPcounter {
 from {
 destination-address {
 10.10.20/24;
 10.40.30/25;
 11.11/8;
 }
 destination-port [http https];
 }
 then {
 count Count-Http;
 accept
 }
}

© 2022 - Luca Deri <deri@ntop.org>

81

RMON-Like Home-grown  
Network Probes [3/4]

- Linux (iptables)

[root@mail deri]# /sbin/iptables -xnvL

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

 236675 169960206 RH-Firewall-1-INPUT all -- * * 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

 0 0 RH-Firewall-1-INPUT all -- * * 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy ACCEPT 262868 packets, 233122676 bytes)

 pkts bytes target prot opt in out source destination

Chain RH-Firewall-1-INPUT (2 references)

 pkts bytes target prot opt in out source destination

 68169 81214627 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

 677 53751 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0

 0 0 ACCEPT esp -- * * 0.0.0.0/0 0.0.0.0/0

 0 0 ACCEPT ah -- * * 0.0.0.0/0 0.0.0.0/0

 155984 87891801 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0

© 2022 - Luca Deri <deri@ntop.org>

82

RMON-Like Home-grown 
Network Probes [4/4]

• Counters are usually accessed from SNMP in addition
to CLI (Command Line Interface).

• Proprietary MIBs allow values to be read from
remote.

• Cisco has recently introduced a new technology
named “Static NetFlow” that allows routers to emit
flows for each defined ACL.

• Extreme Network’s “ClearFlow” is also a similar
technology. In addition it also has the ability to send
alarms by setting thresholds on counter values.

© 2022 - Luca Deri <deri@ntop.org>

90

Flow Monitoring

© 2022 - Luca Deri <deri@ntop.org>

89

Real-Time Flow Measurement
(RTFM)

• Very flexible and powerful meter
— programmable rule sets
— can serve several readers
— programmable overload behaviour

• Reader polls meter
• Implemented by SNMP Meter MIB
• Free software implementation NeTraMet
• No acceptance at manufacturers
• Complicated to use (too powerful)
• Specified by RFCs 2720 - 2724

© 2022 - Luca Deri <deri@ntop.org>

Meter

Manager
Reader

Application

91

SNMP vs. Network Flows [1/2]

• SNMP is based on the manager agent paradigm
— The agent monitors the network and informs the manager

(via traps) when something important happened (i.e. and
interface changed state).

— The manager keeps the whole system status by
periodically reading (polling) variables (e.g. via SNMP Get)
form the agent.

— SNMP variables can be used for both element/device/
system management (e.g. info about disk space and
partitions) and traffic monitoring.

© 2022 - Luca Deri <deri@ntop.org>

92

SNMP vs. Network Flows [2/2]

• Network flows are emitted by a probe towards one or more
collectors according to traffic conditions.
— Flows contain information about the analysed traffic (i.e. they do not

contain device/probe information such as the MIB II variables).

— Emitted flows have a well defined format (e.g. Cisco NetFlow v5) and
often use UDP as transport (no specialised protocol like SNMP).

— No concept of ‘alarm’ flows nor ability for the probe to perform actions
based on flows: all the intelligence is in the collector.

— Probe instrumentation is performed offline.

— Probes are activated where the network traffic flows (e.g. inside routers
and switches).

© 2022 - Luca Deri <deri@ntop.org>

93

So What Do You Expect To 
Measure with Flows? [1/2]

• Where your campus exchanges traffic with by
IP address, IP Prefix, or ASN.

• What type and how much traffic (SMTP, WEB,
File Sharing, etc).

• What services running on campus.
• Department level traffic summaries.
• Track network based viruses back to hosts.

© 2022 - Luca Deri <deri@ntop.org>

94

So What Do You Expect To 
Measure with Flows? [2/2]

• Track DoS attacks to the source(s), i.e. the 100
servers flooding XXX.com domain.

• Find busy hosts on campus (top host).
• How many destinations each campus host

exchanges traffic with.
• Campus host counts by service, i.e. how many

active web servers.

© 2022 - Luca Deri <deri@ntop.org>

95

What You Can’t 
Measure with Flows?

• Non-IP traffic (e.g. NetBIOS, AppleTalk).
• L2 information (e.g. interface up/down state

changes).
• Filtered traffic (e.g. firewall policy counters).
• Per-link statistics (e.g. link usage, congestion, delay,

packet loss).
• Application statistics (e.g. transaction latency, #

positive/negative replies, protocol errors).

© 2022 - Luca Deri <deri@ntop.org>

96

Network Flows: 
What Are They?

• “A flow is a set of packets with a set of common
packet properties” (e.g. common IP address/port).

• A flow is (queued to be) emitted only when expired.

• Creation and expiration policy
— What conditions start and stop a flow?

— Maximum flow duration timeout regardless of the
connection status (e.g. a TCP connection ends when both
peers agreed on FIN/RST).

— Emit a flow when there’s no flow traffic for a specified
amount of time.

© 2022 - Luca Deri <deri@ntop.org>

97

Network Flows Content

• Flow contain:
— Peers: flow source and destination.
— Counters: packets, bytes, time.
— Routing information: AS, network mask, interfaces.

• Flows can be unidirectional (default) or bidirectional
(v9/IPFIX only).

• Two, opposite, unidirectional flows are equivalent to
one bidirectional flow.

• Bidirectional flows can contain other information such
as round trip time, TCP behaviour.

© 2022 - Luca Deri <deri@ntop.org>

98

Network Flows Issues

© 2022 - Luca Deri <deri@ntop.org>

! Overhead vs. Accuracy
• More measurement results in more collected data.
• More flow aggregation, less granularity.
• Overhead (e.g. CPU load) on routers, switches, end-hosts.

! Security vs. Data Sharing
• Emitted flows must reach collectors on protected paths  
 (e.g. using a different network/VLAN).
• User privacy must be respected.
• Traffic measurements must be kept protected in order not 
 to disclosure important network information to third parties.

99

Unidirectional Flow with Source/
Destination IP Key

© 2022 - Luca Deri <deri@ntop.org>

10.0.0.1 10.0.0.2

% ssh 10.0.0.2

login:

 Active Flows
Flow Source IP Destination IP

1. 10.0.0.1 10.0.0.2
2. 10.0.0.2 10.0.0.1

% ping 10.0.0.2

ICMP echo reply

100

Unidirectional Flow with IP, Port,
Protocol Key

© 2022 - Luca Deri <deri@ntop.org>

10.0.0.1 10.0.0.2

% ssh 10.0.0.2

login:

 Active Flows
Flow Source IP Destination IP Proto srcPort dstPort

1. 10.0.0.1 10.0.0.2 TCP 32000 22
2. 10.0.0.2 10.0.0.1 TCP 22 32000
3. 10.0.0.1 10.0.0.2 ICMP 0 0
4. 10.0.0.2 10.0.0.1 ICMP 0 0

% ping 10.0.0.2

ICMP echo reply

• Flows are exported (push) by the probe 
when expired, contrary to 
SNMP where the manager polls  
the agent periodically.

• The flow transport protocol is 
NetFlow (no SNMP).

• Probe/collector configuration 
protocol is not specified by 
the NetFlow protocol.

• The NetFlow collector has the job of  
assembling and understanding the exported flows and
combining or aggregating them to produce the valuable
reports used for traffic and security analysis.

101

NetFlow Architecture

Router

Probe

Flow  
Collector

Application

© 2022 - Luca Deri <deri@ntop.org>

102

A Collection Architecture [1/2]

© 2022 - Luca Deri <deri@ntop.org>

Backbone

flow collector

Flow Archive

NetFlow export

flow-rsync transfer

flow-capture

flow enabled router

Live feed

103

A Collection Architecture [2/2]

© 2022 - Luca Deri <deri@ntop.org>

104

Collection Space Constraints

• Space required depends on traffic
• Some average figures:

— 67.320 octets/flow, 92 packets/flow
— Busy router: 397 GB of traffic/day,

548,000,000 packets/day == 5.900.000
flows/day

— At 60 bytes/flow, this is 350 MB of logs/day
— With level 6 compression we get 4.3:1
— Which works out to 82 MB/day for this router

© 2022 - Luca Deri <deri@ntop.org>

105

Cisco NetFlow Basics

• Unidirectional flows (up to v8), bidirectional on v9.
• Several versions v 1,5,6,7,8,9. The most common is

v5, the latest version is v9.
• Traffic analysis only on inbound (i.e. the traffic that

enters the router) IP-only traffic (not on all platforms).
• IPv4 unicast and multicast: all NetFlow versions. IPv6

is supported only by v9.
• Open protocol defined by Cisco and supported on

IOS and CatIOS platforms (no NetFlow support on PIX
firewalls) as well as on on-Cisco platforms (e.g.
Juniper, Extreme).

© 2022 - Luca Deri <deri@ntop.org>

106

Cisco NetFlow Versions

• Each version has its own packet format
— v1,5,6,7,8 have a fixed/closed, specified format.

— v9 format is dynamic and open to extensions.

• Sequence Numbers:
— v1 does not have sequence numbers (no way to detect lost flows).
— v5,6,7,8 have flow sequence numbers (i.e. keep track of the number of

emitted flows).
— v9 has packet (not flow) sequence number (I.e. easy to know the

number of lost packets but not of lost flows).

• The “version” defines what type of data is in the flow.
• Some versions (e.g. v7) specific to Catalyst platform.

© 2022 - Luca Deri <deri@ntop.org>

Using Flows

!106© 2022 - Luca Deri <deri@ntop.org>

107

NetFlow: Flow Birth and Death [1/5]

• Each packet that is forwarded within a router
or L3 switch is examined for a set of IP packet
attributes.

• All packets with the same source/destination
IP address, source/destination ports, protocol
interface are grouped into a flow and then
packets and bytes tallied.

• Active flows are stored in memory in the so-
called NetFlow cache.

© 2022 - Luca Deri <deri@ntop.org>

108

NetFlow: Flow Birth and Death [2/5]

© 2022 - Luca Deri <deri@ntop.org>

109

NetFlow: Flow Birth and Death [3/5]

Flows are terminated when one of these conditions are met:
• The network communication has ended (e.g. a packet

contains the TCP FIN flag).
• The flow lasted too long (default 30 min).
• The flow has been not active (i.e. no new packets have been

received) for too long (default 15 sec).
• The flow cache was full and the cache manager had to purge

data.

 Note that the flow cache has a limited size, hence it’s often not
possible to accommodate all flows.

© 2022 - Luca Deri <deri@ntop.org>

110

NetFlow: Flow Birth and Death [4/5]

© 2022 - Luca Deri <deri@ntop.org>

111

NetFlow: Flow Birth and Death [5/5]

• The NetFlow cache is constantly filling with flows
and software in the router or switch is searching
the cache for flows that have terminated or
expired and these flows are exported to the
NetFlow collector server.

• The consequence is that network flows can be
split in several netflow flows that, if necessary,
are reassembled by the flow collector.

 For more info see Cisco White Paper:
“Introduction to Cisco IOS NetFlow - A Technical
Overview”.

© 2022 - Luca Deri <deri@ntop.org>

112

NetFlow Packet Format

• Common header among export versions.
• Version specific data field where N records of

data type are exported.

• N is determined by the size of the flow
definition (e.g. N=30 for v5). Packet size is kept
under ~1480 bytes. No fragmentation on
Ethernet.

© 2022 - Luca Deri <deri@ntop.org>

113

Cisco NetFlow v5 [1/3]

© 2022 - Luca Deri <deri@ntop.org>

 NetFlow
 v5 header

v5 record

 IP/UDP packet

v5 record

…

…

114

Cisco NetFlow v5 [2/3]
struct netflow5_record {

 struct flow_ver5_hdr flowHeader;

 struct flow_ver5_rec flowRecord[30];

} NetFlow5Record;

struct flow_ver5_hdr {

 u_int16_t version; /* Current version=5*/

 u_int16_t count; /* The number of records in PDU. */

 u_int32_t sysUptime; /* Current time in msecs since router booted */

 u_int32_t unix_secs; /* Current seconds since 0000 UTC 1970 */

 u_int32_t unix_nsecs; /* Residual nanoseconds since 0000 UTC 1970 */

 u_int32_t flow_sequence; /* Sequence number of total flows seen */

 u_int8_t engine_type; /* Type of flow switching engine (RP,VIP,etc.)*/

 u_int8_t engine_id; /* Slot number of the flow switching engine */

};

© 2022 - Luca Deri <deri@ntop.org>

115

Cisco NetFlow v5 [3/3]
struct flow_ver5_rec {

 u_int32_t srcaddr; /* Source IP Address */

 u_int32_t dstaddr; /* Destination IP Address */

 u_int32_t nexthop; /* Next hop router's IP Address */

 u_int16_t input; /* Input interface index (SNMP) */

 u_int16_t output; /* Output interface index (SNMP) */

 u_int32_t dPkts; /* Packets sent */

 u_int32_t dOctets; /* Octets sent */

 u_int32_t First; /* (SNMP) SysUptime at start of flow */

 u_int32_t Last; /* and of last packet of the flow */

 u_int16_t srcport; /* TCP/UDP source port number (.e.g, FTP, Telnet, etc.,or equivalent) */

 u_int16_t dstport; /* TCP/UDP destination port number (.e.g, FTP, Telnet, etc.,or equivalent) */

 u_int8_t pad1; /* pad to word boundary */

 u_int8_t tcp_flags; /* Cumulative OR of tcp flags */

 u_int8_t prot; /* IP protocol, e.g., 6=TCP, 17=UDP, etc... */

 u_int8_t tos; /* IP Type-of-Service */

 u_int16_t src_as; /* source peer/origin Autonomous System */

 u_int16_t dst_as; /* dst peer/origin Autonomous System */

 u_int8_t src_mask; /* source route's mask bits */

 u_int8_t dst_mask; /* destination route's mask bits */

 u_int16_t pad2; /* pad to word boundary */

};

© 2022 - Luca Deri <deri@ntop.org>

116

NetFlow v5 Flow Example [1/2]

Cisco NetFlow

 Version: 5

 Count: 30

 SysUptime: 1518422100

 Timestamp: May 7, 1993 08:49:48.995294598

 CurrentSecs: 736757388

 CurrentNSecs: 995294598

 FlowSequence: 9751

 EngineType: 0

 EngineId: 0

 SampleRate: 0

pdu 1/30

 [……]

© 2022 - Luca Deri <deri@ntop.org>

117

NetFlow v5 Flow Example [2/2]
pdu 1/30

 SrcAddr: 10.16.237.114 (10.16.237.114)

 DstAddr: 213.92.16.87 (213.92.16.87)

 NextHop: 10.158.100.1 (10.158.100.1)

 InputInt: 4

 OutputInt: 1

 Packets: 5

 Octets: 627

 StartTime: 1518415.920000000 seconds

 EndTime: 1518416.352000000 seconds

 SrcPort: 3919

 DstPort: 80

 padding

 TCP Flags: 0x1b

 Protocol: 6

 IP ToS: 0x00

 SrcAS: 0

 DstAS: 0

 SrcMask: 16 (prefix: 10.16.0.0/16)

 DstMask: 0 (prefix: 0.0.0.0/32)

 padding
© 2022 - Luca Deri <deri@ntop.org>

118

Why Do We Need NetFlow v9?

• Fixed formats (v1-v8) for export are:
— Easy to implement.
— Consume little bandwidth.
— Easy to decipher at the collector.
— Not flexible (many proprietary hacks such as using

TCP/UDP ports for transporting ICMP type/code).
— Not extensible (no way to extend the flow unless a

new version is defined).
— Some features are missing: L2, VLAN, IPv6, MPLS

© 2022 - Luca Deri <deri@ntop.org>

119

NetFlow v9 Principles [1/2]

• Open protocol defined by Cisco (i.e. it’s not
proprietary) defined in RFC 3954.

• Flow Template + flow record
— Template composed of type and length.
— Flow record composed of template ID and value.
— Templates are sent periodically and they are a prerequisite

for decoding flow records.
— Flow records contain the ‘flow meat’.

• Options templates + option records contain probe
configuration (e.g. packet/flow sampling rate,
interface packet counters).

© 2022 - Luca Deri <deri@ntop.org>

120

NetFlow v9 Principles [2/2]

• Push model probe -> collector (as with past versions).
• Send the templates regularly: each X flows, each X

seconds.
• Independent of the underlying protocol, ready for any

reliable protocol.
• Can send both template and flow record in one

export.
• Can interleave different flow records in one export

packet.

© 2022 - Luca Deri <deri@ntop.org>

121

Some v9 Tags [1/4]
[1] %IN_BYTES Incoming flow bytes

[2] %IN_PKTS Incoming flow packets

[3] %FLOWS Number of flows

[4] %PROTOCOL IP protocol byte

[5] %SRC_TOS Type of service byte

[6] %TCP_FLAGS Cumulative of all flow TCP flags

[7] %L4_SRC_PORT IPv4 source port

[8] %IPV4_SRC_ADDR IPv4 source address

[9] %SRC_MASK Source subnet mask (/<bits>)

[10] %INPUT_SNMP Input interface SNMP idx

[11] %L4_DST_PORT IPv4 destination port

[12] %IPV4_DST_ADDR IPv4 destination address

[13] %DST_MASK Dest subnet mask (/<bits>)

[14] %OUTPUT_SNMP Output interface SNMP idx

[15] %IPV4_NEXT_HOP IPv4 next hop address
© 2022 - Luca Deri <deri@ntop.org>

122

Some v9 Tags [2/4]
[16] %SRC_AS Source BGP AS

[17] %DST_AS Destination BGP AS

[21] %LAST_SWITCHED SysUptime (msec) of the last flow pkt

[22] %FIRST_SWITCHED SysUptime (msec) of the first flow pkt

[23] %OUT_BYTES Outgoing flow bytes

[24] %OUT_PKTS Outgoing flow packets

[27] %IPV6_SRC_ADDR IPv6 source address

[28] %IPV6_DST_ADDR IPv6 destination address

[29] %IPV6_SRC_MASK IPv6 source mask

[30] %IPV6_DST_MASK IPv6 destination mask

[32] %ICMP_TYPE ICMP Type * 256 + ICMP code

[34] %SAMPLING_INTERVAL Sampling rate

[35] %SAMPLING_ALGORITHM Sampling type (deterministic/random)

[36] %FLOW_ACTIVE_TIMEOUT Activity timeout of flow cache entries

© 2022 - Luca Deri <deri@ntop.org>

123

Some v9 Tags [3/4]
[37] %FLOW_INACTIVE_TIMEOUT Inactivity timeout of flow cache entries

[38] %ENGINE_TYPE Flow switching engine

[39] %ENGINE_ID Id of the flow switching engine

[40] %TOTAL_BYTES_EXP Total bytes exported

[41] %TOTAL_PKTS_EXP Total flow packets exported

[42] %TOTAL_FLOWS_EXP Total number of exported flows

[56] %IN_SRC_MAC Source MAC Address

[57] %OUT_DST_MAC Destination MAC Address

[58] %SRC_VLAN Source VLAN

[59] %DST_VLAN Destination VLAN

[60] %IP_PROTOCOL_VERSION [4=IPv4][6=IPv6]

[61] %DIRECTION [0=ingress][1=egress] flow

© 2022 - Luca Deri <deri@ntop.org>

124

Some v9 Tags [4/4]

[70] %MPLS_LABEL_1 MPLS label at position 1

[71] %MPLS_LABEL_2 MPLS label at position 2

[72] %MPLS_LABEL_3 MPLS label at position 3

[73] %MPLS_LABEL_4 MPLS label at position 4

[74] %MPLS_LABEL_5 MPLS label at position 5

[75] %MPLS_LABEL_6 MPLS label at position 6

[76] %MPLS_LABEL_7 MPLS label at position 7

[77] %MPLS_LABEL_8 MPLS label at position 8

[78] %MPLS_LABEL_9 MPLS label at position 9

[79] %MPLS_LABEL_10 MPLS label at position 10

[80] %IN_DST_MAC Source MAC Address

[81] %OUT_SRC_MAC Destination MAC Address

[98] %ICMP_FLAGS Cumulative of all flow ICMP types

© 2022 - Luca Deri <deri@ntop.org>

125

v9 Flow Format

© 2022 - Luca Deri <deri@ntop.org>

126

NetFlow v9 Flow Example [1/2]
Cisco NetFlow

 Version: 9

 Count: 4

 SysUptime: 1132427188

 Timestamp: Aug 18, 2000 23:49:25.000012271

 CurrentSecs: 966635365

 FlowSequence: 12271

 SourceId: 0

 FlowSet 1/4

 FlowSet 1/4

 Template FlowSet: 0

 FlowSet Length: 164

 Template Id: 257

 Field Count: 18

 Field (1/18)

 Type: LAST_SWITCHED (21)

 Length: 4

 Field (2/18)

 Type: FIRST_SWITCHED (22)

 Length: 4

 Field (3/18)

 [……]
© 2022 - Luca Deri <deri@ntop.org>

127

NetFlow v9 Flow Example [2/2]
Cisco NetFlow

 Version: 9

 Count: 1

 SysUptime: 1133350352

 Timestamp: Aug 19, 2000 00:04:48.000012307

 CurrentSecs: 966636288

 FlowSequence: 12307

 SourceId: 0

 FlowSet 1/1

 Data FlowSet (Template Id): 257

 FlowSet Length: 52

 pdu 1

 EndTime: 1133334.000000000 seconds

 StartTime: 1133334.000000000 seconds

 Octets: 84

 Packets: 1

 InputInt: 15

 OutputInt: 0

 SrcAddr: 172.18.86.77 (172.18.86.77)

 DstAddr: 11.10.65.130 (11.10.65.130)

 Protocol: 1

 IP ToS: 0x00

 […]

© 2022 - Luca Deri <deri@ntop.org>

128

V9 Options Template

© 2022 - Luca Deri <deri@ntop.org>

129

NetFlow v5 vs. v9

© 2022 - Luca Deri <deri@ntop.org>

v5 v9

Flow Format Fixed User Defined

Extensible No Yes (Define new
FlowSet Fields)

Flow Type Unidirectional Bidirectional

Flow Size 48 Bytes

(fixed)

It depends on

the format

IPv6 Aware No IP v4/v6

MPLS/VLAN No Yes

130

Cisco IOS Configuration [1/2]

• Configured on each input interface.
• Define the version.
• Define the IP address of the collector (where to send

the flows).
• Optionally enable aggregation tables.
• Optionally configure flow timeout and main (v5) flow

table size.
• Optionally configure sample rate.

© 2022 - Luca Deri <deri@ntop.org>

131

Cisco IOS Configuration [2/2]

© 2022 - Luca Deri <deri@ntop.org>

interface FastEthernet0/0/0
 ip address 10.0.0.1 255.255.255.0
 no ip directed-broadcast
 ip route-cache flow

interface ATM1/0/0
 no ip address
 no ip directed-broadcast
 ip route-cache flow

interface Loopback0
 ip address 10.10.10.10 255.255.255.255
 no ip directed-broadcast

ip flow-export version 5 origin-as
ip flow-export destination 10.0.0.10 5004
ip flow-export source loopback 0

ip flow-aggregation cache prefix
 export destination 10.0.0.10 5555
 enabled

132

Cisco IOS Reporting [1/5]

© 2022 - Luca Deri <deri@ntop.org>

krc4#sh ip flow export
Flow export is enabled
 Exporting flows to 10.0.0.10 (5004)
 Exporting using source IP address 10.10.10.10
 Version 5 flow records, origin-as
 Cache for prefix aggregation:
 Exporting flows to 10.0.0.10 (5555)
 Exporting using source IP address 10.10.10.10
 3176848179 flows exported in 105898459 udp datagrams
 0 flows failed due to lack of export packet
 45 export packets were sent up to process level
 0 export packets were punted to the RP
 5 export packets were dropped due to no fib
 31 export packets were dropped due to adjacency issues
 0 export packets were dropped due to fragmentation failures
 0 export packets were dropped due to encapsulation fixup failures
 0 export packets were dropped enqueuing for the RP
 0 export packets were dropped due to IPC rate limiting
 0 export packets were dropped due to output drops

133

Cisco IOS Reporting [2/5]

© 2022 - Luca Deri <deri@ntop.org>

krc4#sho ip ca fl
IP packet size distribution (106519M total packets):
 1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
 .002 .405 .076 .017 .011 .010 .007 .005 .004 .005 .004 .004 .003 .002 .002

 512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
 .002 .006 .024 .032 .368 .000 .000 .000 .000 .000 .000

IP Flow Switching Cache, 4456704 bytes
 36418 active, 29118 inactive, 3141073565 added
 3132256745 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
 last clearing of statistics never
Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)
-------- Flows /Sec /Flow /Pkt /Sec /Flow /Flow
TCP-Telnet 2951815 0.6 61 216 42.2 26.6 21.4
TCP-FTP 24128311 5.6 71 748 402.3 15.0 26.3
TCP-FTPD 2865416 0.6 916 843 611.6 34.7 19.8
TCP-WWW 467748914 108.9 15 566 1675.8 4.9 21.6
TCP-SMTP 46697428 10.8 14 370 159.6 4.0 20.1
TCP-X 521071 0.1 203 608 24.7 24.5 24.2
TCP-BGP 2835505 0.6 5 94 3.3 16.2 20.7

134

Cisco IOS Reporting [3/5]

© 2022 - Luca Deri <deri@ntop.org>

krc4#sho ip ca fl

TCP-other 1620253066 377.2 47 631 18001.6 27.3 23.4
UDP-DNS 125622144 29.2 2 78 82.5 4.6 24.7
UDP-NTP 67332976 15.6 1 76 22.0 2.7 23.4
UDP-TFTP 37173 0.0 2 76 0.0 4.1 24.6
UDP-Frag 68421 0.0 474 900 7.5 111.7 21.6
UDP-other 493337764 114.8 17 479 1990.3 3.8 20.2
ICMP 243659509 56.7 3 166 179.7 3.3 23.3
IGMP 18601 0.0 96 35 0.4 941.4 8.1
IPINIP 12246 0.0 69 52 0.1 548.4 15.2
GRE 125763 0.0 235 156 6.9 50.3 21.1
IP-other 75976755 17.6 2 78 45.4 3.9 22.8
Total: 3176854246 739.6 33 619 24797.4 16.2 22.6

SrcIf SrcIPaddress DstIf DstIPaddress Pr SrcP DstP Pkts
AT5/0/0.4 206.21.162.150 AT1/0/0.1 141.219.73.45 06 0E4B A029 507
AT4/0/0.10 132.235.174.9 AT1/0/0.1 137.99.166.126 06 04BE 074C 3
AT4/0/0.12 131.123.59.33 AT1/0/0.1 137.229.58.168 06 04BE 09BB 646
AT1/0/0.1 137.99.166.126 AT4/0/0.10 132.235.174.9 06 074C 04BE 3

135

Cisco IOS Reporting [4/5]

© 2022 - Luca Deri <deri@ntop.org>

Router(config)#ip flow-top-talkers
Router(config-flow-top-talkers)#top 10

R3#show ip flow top-talkers
SrcIf SrcIPaddress DstIf DstIPaddress Pr SrcP DstP Pkts
Et1/0 172.16.10.2 Et0/0 172.16.1.84 06 0087 0087 2100
Et1/0 172.16.10.2 Et0/0 172.16.1.85 06 0089 0089 1892
Et1/0 172.16.10.2 Et0/0 172.16.1.86 06 0185 0185 1762
Et1/0 172.16.10.2 Et0/0 172.16.1.86 06 00B3 00B3 2
Et1/0 172.16.10.2 Et0/0 172.16.1.84 06 0050 0050 1
Et1/0 172.16.10.2 Et0/0 172.16.1.85 06 0050 0050

17 of 10 top talkers shown. 7 flows processed.

136

Cisco IOS Reporting [5/5]

© 2022 - Luca Deri <deri@ntop.org>

R3#show ip flow top 10 aggregate destination-address
There are 3 top talkers:
IPV4 DST-ADDR bytes pkts flows
=============== ========== ========== ==========
172.16.1.86 160 4 2
172.16.1.85 160 4 2
172.16.1.84 160 4 2

R3#show ip flow top 10 aggregate destination-address sorted-by bytes match
source-port min 0 max 1000
There are 3 top talkers:
IPV4 DST-ADDR bytes pkts flows
=============== ========== ========== ==========
172.16.1.84 80 2 2
172.16.1.85 80 2 2
172.16.1.86 80 2 26 of 6 flows matched.

137

JunOS Configuration [1/3]

• Sample packets with firewall filter and forward
to routing engine.

• Sampling rate is limited to 7000 pps (sampling
is compulsory).

• Fine for traffic engineering, but restrictive for
DoS and intrusion detection.

• Juniper calls NetFlow cflowd (popular collector
provided by CAIDA).

© 2022 - Luca Deri <deri@ntop.org>

138

JunOS Configuration [2/3]

© 2022 - Luca Deri <deri@ntop.org>

firewall {
 filter all {
 term all {
 then {
 sample;
 accept;
 }
 }
 }
}

forwarding-options {
 sampling {
 input {
 family inet {
 rate 100;
 }
 }
 output {
 cflowd 10.0.0.16{
 port 2055;
 version 5;
 }
 }
 }
}

Firewall filter Enable sampling / flows

139

JunOS Configuration [3/3]

© 2022 - Luca Deri <deri@ntop.org>

interfaces {
 ge-0/3/0 {
 unit 0 {
 family inet {
 filter {
 input all;
 output all;
 }
 address 192.148.244.1/24;
 }
 }
 }

Apply firewall filter to each interface.

140

PC-Based NetFlow Probes

• There are some PC-based probes.
• Most of them are based on the pcap library.
• Examples

— nProbe
— Softflowd

© 2022 - Luca Deri <deri@ntop.org>

141

IPFIX Scope and General
Requirements

• Goal: Find or develop a basic common IP Traffic Flow
measurement technology to be available on (almost) all future
routers.

• Fulfilling requirements of many applications.

• Low hardware/software costs.

• Simple and scalable.

• Metering to be integrated in general purpose IP routers and
other devices (probes, middle boxes).

• Data processing to be integrated into various applications.

• Interoperability by openness or standardisation.

© 2022 - Luca Deri <deri@ntop.org>

142

IPFIX in a Nutshell

• Strongly based on NetFlow v9.
• Ability to define new flow fields using a

standard format based on PEN.
• Transport based on SCTP (Stream Control

Transport Protocol), optional UDP/TCP support.
• Current status: international standard.
• Bottom Line: IPFIX = NetFlow v9 over SCTP with

some extra little differences.

© 2022 - Luca Deri <deri@ntop.org>

143

IPFIX Architecture

© 2022 - Luca Deri <deri@ntop.org>

Application

Collector

Flow
RecordProbe

(meter)

Observation Point

Flow Information
Export

 PAYLOAD HEAD
 PAYLOAD HEAD

 PAYLOAD HEAD
 PAYLOAD HEAD

 PAYLOAD HEAD
 PAYLOAD HEAD

 PAYLOAD HEAD
 PAYLOAD HEAD

Exporter

144

Flow Aggregation [1/5]

© 2022 - Luca Deri <deri@ntop.org>

 Raw flows are useful but sometimes it’s
necessary to answer to various questions:

• How much of our traffic is web, news, email,
quake?

• How much traffic to/from departments?

• How much traffic to other departments,
provider X, Google, etc.?

• Amount of traffic through interface X?

145

Flow Aggregation [2/5]

© 2022 - Luca Deri <deri@ntop.org>

 Source/Destination IP Aggregation
Flow Source IP Destination IP

1. 10.0.0.1 10.0.0.2
2. 10.0.0.2 10.0.0.1

 Main Active Flow Table
Flow Source IP Destination IP Proto srcPort dstPort

1. 10.0.0.1 10.0.0.2 TCP 32000 23
2. 10.0.0.2 10.0.0.1 TCP 23 32000
3. 10.0.0.1 10.0.0.2 ICMP 0 0
4. 10.0.0.2 10.0.0.1 ICMP 0 0

146

Flow Aggregation [3/5]

© 2022 - Luca Deri <deri@ntop.org>

The same flow can be aggregated several times using different
criteria. For instance from raw flows it’s possible to generate:

! List of protocols

! Conversation matrix (who’s talking to who)
! Top TCP/UDP ports

Aggregation flow early can save time/memory with respect to late
aggregation (e.g. the conversation matrix is much easier to
implement aggregating data on the probe instead of using raw/
unaggregated flows).

147

Flow Aggregation [4/5]

© 2022 - Luca Deri <deri@ntop.org>

• Flows can be aggregated using “external” criteria and not just
based on raw flow fields.

• Usually these external criteria are applied on “key” (not “value”)
fields such as port, IP address, protocol etc. and are used to
group values together.

• Criteria are added (don’t replace) to existing fields.
• Example: port-map, protocol-map, ip-address

 IP src IP dst Proto Src port Dst port
 Before 10.0.0.1 10.0.0.2 UDP 32000 53
 10.0.0.2 10.0.0.1 TCP 34354 80

 IP src IP dst Proto Src port Dst port Src port map Dst port map
 After 10.0.0.1 10.0.0.2 UDP 32000 53 udp_other domain
 10.0.0.2 10.0.0.1 TCP 34354 80 tcp_other http

148

Flow Aggregation [5/5]

• Flows can be aggregated according to:
— TCP/UDP Port, ToS (Type of Service), Protocol (e.g. ICMP, UDP), AS

(Autonomous System)
— Source/Destination IP Address

— Subnet, time of the day.

• Aggregation can be performed by the probe, the collector or
both.

• Probe aggregation is very effective in terms of resource usage
and network flow traffic.

• Collector aggregation is more powerful (e.g. aggregate flows
produced by different probes) but rather costly (receive all the
aggregate).

© 2022 - Luca Deri <deri@ntop.org>

149

Flow Filtering

© 2022 - Luca Deri <deri@ntop.org>

Filtering flows means: discard flows based on some criteria such as
• Flow duration (discard flows that lasted less than X seconds)

• Flow src/dest (ignore flows containing broadcast addresses)
• Flow ports (ignore flows originated by port X)

Note that:
• Filtering != aggregation: they do two different jobs

• Filtering and aggregation can coexist
• Filtering is usually applied before aggregating flows and not after.

150

NetFlow Traffic Report Example

© 2022 - Luca Deri <deri@ntop.org>

151

Flows and Security

NetFlow/IPFIX can be used for security and not
just for traffic accounting:

• Portscan/portmap detection

• Detect activities on suspicious ports
• Identify sources of spam, unauthorised  
 servers (e.g. file servers)

© 2022 - Luca Deri <deri@ntop.org>

152

Flows and Security: Portmap Scan

Start SrcIPaddress SrcP DstIPaddress DstP P Pkts

10:53:42.50 165.132.86.201 9781 128.146.0.76 111 6 1

10:53:42.54 165.132.86.201 9874 128.146.0.7 111 6 1

10:53:42.54 165.132.86.201 9982 128.146.0.80 111 6 1

10:53:42.54 165.132.86.201 9652 128.146.0.74 111 6 1

10:53:42.54 165.132.86.201 9726 128.146.0.75 111 6 1

10:53:42.54 165.132.86.201 9855 128.146.0.77 111 6 1

10:53:42.58 165.132.86.201 10107 128.146.0.82 111 6 1

Short timeframe, same IP source, different IP targets same
port (111=RPC port).

© 2022 - Luca Deri <deri@ntop.org>

153

Flows and Security: Backdoor Search

Start SrcIPaddress SrcP DstIPaddress DstP P Pkts

19:08:40 165.132.86.201 8401 128.146.172.232 1524 6 19

19:08:40 165.132.86.201 8422 128.146.172.230 1524 6 16

19:08:40 165.132.86.201 8486 128.146.172.234 1524 6 19

19:08:40 165.132.86.201 8529 128.146.172.236 1524 6 10

19:08:41 165.132.86.201 8614 128.146.172.237 1524 6 16

19:08:41 165.132.86.201 8657 128.146.172.238 1524 6 22

Same as portmap scan, targeting port 1524 (trinoo backdoor
port [http://www.auditmypc.com/port/tcp-port-1524.asp]).

© 2022 - Luca Deri <deri@ntop.org>

154

Flows and Security: Intrusion Detection

© 2022 - Luca Deri <deri@ntop.org>

Simple flow-based IDS system:
• Flows with excessive octet or packet count

(floods).
• IP sources contacting more than N

destinations — host scanning.
• IP sources contacting more than M

destination ports on a single host (for ports
0-1023) — port scanning.

155

Incident Report and NetFlow

© 2022 - Luca Deri <deri@ntop.org>

156

sFlow

© 2022 - Luca Deri <deri@ntop.org>

157

Driving Forces Towards sFlow

• Cost

— Monitoring switched networks required multiple expensive probes.

— Embedded monitoring solutions required extra hardware &/or software.

— Traffic analysis solutions were costly.

— Administrative costs of managing additional equipment.

• Impact to network performance

— Switching performance impacted by measuring traffic flows.

— Excessive network bandwidth used to export flow data.

• Poor scalability of monitoring system

— Cannot keep up with Gigabit speeds.

— Cannot build a network-wide traffic view for large, heavily used networks.

© 2022 - Luca Deri <deri@ntop.org>

158

sFlow Principles

• Don’t pretend to be as fast as the monitored
network: you will loose data anyway.

• Even if you can monitor everything you’ll run
into trouble handling all the generated flows.

• Analyse 1 packet each X packets (sampling).
• The more packets you analyse the more

precise are your traffic reports.

• If the network is too fast for you, sample more!

© 2022 - Luca Deri <deri@ntop.org>

159

sFlow Architecture

• The probe samples traffic.
• Sampled packets are sent (in 

sFlow format) to the collector.
• Periodically the probe sends  

the collector interface 
statistics (SNMP MIB-II 
counters) inside sFlow packets.  
The packets are used to “scale” traffic.

© 2022 - Luca Deri <deri@ntop.org>

Data  
Collector

sFlow Probe

Application

160

sFlow Specification [1/4]

• Specified in RFC 3176 (Informational RFC)
proposed by InMon Inc.

• It defines:
— sFlow packets format (UDP, no SNMP).
— A SNMP MIB per accessing sFlow collected data

(http://support.ipmonitor.com/mibs/SFLOW-MIB/
tree.aspx).

• The sFlow architecture is similar to NetFlow: the
probe sends sFlow packets to the collector.

© 2022 - Luca Deri <deri@ntop.org>

161

sFlow Specification [2/4]

• The sFlow probe is basically a sniffer that
captures 1 out of X packets (default ratio is
1:400).

• Such packets is sent to the collector coded in
sFlow format.

• Periodically the probes sends other sFlow
packets that contain network interface statistics
(e.g. SNMP MIB-II interface traffic counters)
used to scale collected data.

© 2022 - Luca Deri <deri@ntop.org>

161

sFlow Specification [3/4]

• sFlow Packet Sample
— Packet captured to the snaplen and

complemented with metadata (e.g. port on which
the packet has been captured).

• sFlow Counter Sample
— SNMP MIB-II interface counters
— Ethernet Counters

© 2022 - Luca Deri <deri@ntop.org>

162

sFlow Specification [4/4]

• Using statistical formula it is possible to produce very
precise traffic reports.

• % Sampling Error <= 196 * sqrt(1 / number of
samples) [http://www.sflow.org/packetSamplingBasics/]

• sFlow is scalable (you just need to increase the
sampling ration) even on 10 Gb networks or more.

• ntop.org is part of the sFlow.org consortium.

© 2022 - Luca Deri <deri@ntop.org>

Caveat

• NetFlow != sFlow

• NetFlow flows have nothing in common with
sFlow flows
— In sFlow a packet sample is a flow

— In NetFlow/IPFIX a flow is a 5-tuple with counters

!164© 2022 - Luca Deri <deri@ntop.org>

163

sFlow Packet [1/2]
struct sample_datagram_v5 {

 address agent_address /* IP address of sampling agent,

 sFlowAgentAddress. */

 unsigned int sub_agent_id; /* Used to distinguishing between datagram

 streams from separate agent sub entities

 within an device. */

 unsigned int sequence_number; /* Incremented with each sample datagram

 generated by a sub-agent within an

 agent. */

 unsigned int uptime; /* Current time (in milliseconds since device

 last booted). Should be set as close to

 datagram transmission time as possible.

 Note: While a sub-agents should try and

 track the global sysUptime value

 a receiver of sFlow packets must

 not assume that values are

 synchronised between sub-agents. */

 sample_record samples<>; /* An array of sample records */

}

© 2022 - Luca Deri <deri@ntop.org>

164

sFlow Packet [2/2]
struct flow_sample {

 unsigned int sequence_number; /* Incremented with each flow sample

 generated by this source_id.

 Note: If the agent resets the

 sample_pool then it must

 also reset the sequence_number.*/

 sflow_data_source source_id; /* sFlowDataSource */

 unsigned int sampling_rate; /* sFlowPacketSamplingRate */

 unsigned int sample_pool; /* Total number of packets that could have

 been sampled (i.e. packets skipped by

 sampling process + total number of

 samples) */

 unsigned int drops; /* Number of times that the sFlow agent

 detected that a packet marked to be

 sampled was dropped due to

 lack of resources. The drops counter

 reports the total number of drops

 detected since the agent was last reset. */

 interface input; /* Interface packet was received on. */

 interface output; /* Interface packet was sent on. */

 flow_record flow_records<>; /* Information about a sampled packet */

}

© 2022 - Luca Deri <deri@ntop.org>

165

sFlow Summary

© 2022 - Luca Deri <deri@ntop.org>

sFlow
agent

Switch/Router

ASIC

Network
Traffic

sFlow Datagram

• Packet header (eg MAC,IPv4,IPv6,IPX,AppleTalk,TCP,UDP, ICMP)
• Sample process parameters (rate, pool etc.)
• Input/output ports
• Priority (802.1p and TOS)
• VLAN (802.1Q)
• Source/destination prefix
• Next hop address
• Source AS, Source Peer AS
• Destination AS Path
• Communities, local preference
• User IDs (TACACS/RADIUS) for source/destination

• URL associated with source/destination
• Interface statistics (RFC 1573, RFC 2233, and RFC 2358)

• Low cost

• No impact to performance

• Minimal network impact

• Scalable

• Quantitative measurements

HW Packet Sampling

166

Integrated Network Monitoring

© 2022 - Luca Deri <deri@ntop.org>

Traffic Analysis & Accounting Solutions

sFlow

• Network-wide, continuous surveillance

• 20K+ ports from a single point
• Timely data and alerts

• Real-time top talkers
• Site-wide thresholds and alarms

• Consolidated network-wide historical usage data

Core network switches

RMON enabled switches

L2/L3 Switches

RMON

NetFlowNetFlow enabled routers

sFlow enabled switches

167

sFlow vs. SNMP

© 2022 - Luca Deri <deri@ntop.org>

sFlow SNMP

Model Push Poll

Interface Group
MIB-II Counters

Yes  
(Counter Sample)

Yes

Packet Visibility Yes

(Packet Sample)

No

In essence sFlow is an evolution of SNMP that implements  
port traffic visibility.

167

sFlow vs. NetFlow

© 2022 - Luca Deri <deri@ntop.org>

sFlow NetFlow

Native
Environment

Switched Routed

Operational

Speed

MultiGigabit 1-10 Gbit

Sampling Always Sometimes

Monitoring Statistical Accurate 
(without packet loss)

168

Radius [RFC 2139, 1997]

Radius is acronym for Remote Authentication Dial In User Service (RADIUS)
specified in the following RFC:

— Authentication Protocol 
 Rigney, C., Rubens, A., Simpson, W, and Willens, S.; Remote
Authentication Dial In User Service (RADIUS), RFC 2138, January 1997. 

— Data Accounting 
Rigney, C.; RADIUS Accounting, RFC 2139, January 1997.

© 2022 - Luca Deri <deri@ntop.org>

169

Radius

Radius is important because:

• It is the most used protocol for implementing authentication on
network devices.

• Used for billing activities on wired lines (e.g. ADSL, Modem).

• Allows accounting for connection duration or data volumes.

• Supported by all the network devices (Low-end excluded).

© 2022 - Luca Deri <deri@ntop.org>

170

The Radius Protocol

© 2022 - Luca Deri <deri@ntop.org>

Network Access

Server

(Radius Client)

Accounting
Server

(Radius Server)

Access Request

Access Accept

Accounting Request (Start)

Accounting Response

Accounting Request (Stop)

Accounting Response

Login Session

Logout Session

171

Radius Protocol: Messages

© 2022 - Luca Deri <deri@ntop.org>

•Code: Byte containing command/reply RADIUS.
•Identifier: Byte identifies command/reply RADIUS.
•Length: Packet length.
•Authenticator: Value used for authenticating RADIUS server reply.
•Attributes: Attributes of command/reply.

172

Radius Protocol: Primitives
access-request, (client->server):

 - Request to access to network services (e.g. user authentication).

 - Possible reply:

— access-accept, (server->client).

— access-reject, (server->client).

— access-challenge, (server->client): used for CHAP authentication.

accounting request, (client->server)

 - Request to write accounting data on the accounting server.

 - Replies:

— Accounting response, (server->client)

Interim update (client->server)

- Send partial accounting updates

© 2022 - Luca Deri <deri@ntop.org>

Packet Capture

!176© 2022 - Luca Deri <deri@ntop.org>

173

Packet Capture: libpcap

© 2022 - Luca Deri <deri@ntop.org>

TCP,UDP

IP,ICMP

Ethernet
Device driverBPF driver

filter filter

sniffer sniffer

Packet copy

kernel

174

Libpcap: Usage Example [1/2]

© 2022 - Luca Deri <deri@ntop.org>

pcapPtr = pcap_open_live(deviceName,  
 maxCaptureLen, setPromiscousMode,  
 pktDelay, errorBuffer);

while(pcap_dispatch(pcapPtr, 1,  
 processPacket, NULL) != -1);

void processPacket(u_char *_deviceId,  
 const struct pcap_pkthdr *h,  
 const u_char *p) {
 …  
}

See also: http://jnetpcap.sourceforge.net/

http://jnetpcap.sourceforge.net

Libpcap: Usage Example [2/2]

© 2022 - Luca Deri <deri@ntop.org> 175

int main(int argc, char* argv[]) {
 /* open a network interface */
descr = pcap_open_live(dev,BUFSIZ,0, 1,errbuf);

/* install a filter */
pcap_compile(descr,&fp,”dst port 80”,0,netp);
pcap_setfilter(descr,&fp);

while (1) {
 /* Grab packets forever */
 packet = pcap_next(descr,&hdr);
 /* print its length */
 printf("Grabbed packet of length %d\n", hdr.len);
 }
}

Scapy [1/2]

• Scapy is a python library (https://github.com/
secdev/scapy) able to create, send/receive,
manipulate network packets.

• It can be used as traffic generation tool to:
— Test applications you develop

— Forge packets for prototyping new protocols

• It can easily handle most classical tasks like
scanning, tracerouting, probing, unit tests, attacks
or network discovery …

!180© 2022 - Luca Deri <deri@ntop.org>

https://github.com/secdev/scapy
https://github.com/secdev/scapy

Scapy [2/2]

!181© 2022 - Luca Deri <deri@ntop.org>

>>> send(IP(dst="10.1.99.2")/ICMP()/"HelloWorld") .
Sent 1 packets.
>>> h.show()  
###[IP]###  
version= 4L  
ihl= 5L  
tos= 0x0  
len= 38  
..
ttl= 64  
proto= icmp  
chksum= 0x83d7  
src= 10.1.99.2  
dst= 10.1.99.25  
\options\  
###[ICMP]###  
type= echo-reply  
code= 0  
chksum= 0x0  
id= 0x0  
seq= 0x0  
###[Raw]###  
load= 'HelloWorld'  
###[Padding]###  
load= '\x00\x00\x00\x00\xe7\x03N\x99' >>>

176

Common Problems with 
Packet Capture

• Security issues
— All the network traffic is captured and not just the one sent to the sniffing

host
— If there is a switched network it is captured only a part of traffic (ARP

poisoning)
— Usability limited to who have root capabilities 

NOTE: this append also with ICMP command (e.g. ping) and therefore
they are set with the setuid. 

• Performance
— Sniffer implies also the cpu load because all the captured packets must

be analysed by the program and not just those directed to the host

© 2022 - Luca Deri <deri@ntop.org>

177

Traffic Mirror: Possible Solutions

Hardware:
• Hub (Copper Ethernet, Token Ring)
• Optical Splitter (Optical Fibers)
• Tap (Copper/Fibre) 

Software:
• Switch Port Mirror (1:1, 1:N)
• Switch VLAN Mirror (N:1)
• Switch Traffic Filter/Mirroring (Juniper)

© 2022 - Luca Deri <deri@ntop.org>

Traffic Mirror: SPAN, RSPAN, ERSPAN [1/4]

• Sometimes port mirror is named Switched Port
Analyzer (SPAN) in the Cisco parlance.

• SPAN happens locally inside one switch (no
cross switch mirroring)

!184© 2022 - Luca Deri <deri@ntop.org>

Traffic Mirror: SPAN, RSPAN, ERSPAN [2/4]

• Remote SPAN (RSPAN) allows  
source and destination ports  
to be on different switches  
transporting traffic on 
VLANs.

!185© 2022 - Luca Deri <deri@ntop.org>

Traffic Mirror: SPAN, RSPAN, ERSPAN [3/4]

• Encapsulated remote SPAN (ERSPAN) allows
mirrored traffic to be transport across the
Internet via Generic Route Encapsulation (GRE)
tunnels.

!186© 2022 - Luca Deri <deri@ntop.org>

Traffic Mirror: SPAN, RSPAN, ERSPAN [4/4]

• You can achieve the same result with SSH.

!187© 2022 - Luca Deri <deri@ntop.org>

ssh user@host "sudo /usr/sbin/
tcpdump -i ethX -U -s0 -w - " |
wireshark -k -i -

https://blog.packet-foo.com/2016/11/the-network-capture-
playbook-part-4-span-port-in-depth/

Port Mirror Shortcomings

• It is not guaranteed that the switch won’t drop
frames when mirroring traffic.

• RX and TX are copied on a single TX signal
resulting in drops when link utilisation goes
about 50%.

!188© 2022 - Luca Deri <deri@ntop.org>

178

Network Taps

© 2022 - Luca Deri <deri@ntop.org>

Tap Families

!190© 2022 - Luca Deri <deri@ntop.org>

Portable

Modular

High-Density

Tap: Breakout Mode

!191© 2022 - Luca Deri <deri@ntop.org>

Sends each side of traffic to separate monitoring ports. Ensuring that
no packet is lost to high-priority monitoring tools.

Tap: Aggregation Mode

!192© 2022 - Luca Deri <deri@ntop.org>

Merge traffic streams into one monitoring port to reduce appliance
costs, often used in combination with filtering taps, ie: filter,
aggregate data streams.

Tap: Bypass Mode

!193© 2022 - Luca Deri <deri@ntop.org>

Prevent inline devices from causing network downtime by
“bypassing” that device, in the event it fails or needs to be updated.

Regeneration/Span Mode

!194© 2022 - Luca Deri <deri@ntop.org>

Create multiple copies of network data to support multiple devices
from a single connectivity point.

Filtering

!195© 2022 - Luca Deri <deri@ntop.org>

Allow you to set rules on what data is filtered and sent to monitoring
or security tools. Filtering prevents ports from becoming
oversubscribed.

Tap: Pros and Cons

• Pros

• Eliminates the risk of dropped packets.
• Monitoring device receives all packets, including

physical errors.

• Provides full visibility into full-duplex networks.

• Cons

• Analysis device need dual-receive capture interface
• Additional cost with purchase of TAP hardware

• Cannot monitor intra-switch traffic

!196© 2022 - Luca Deri <deri@ntop.org>

179

Packet Capture: Solutions

1. Use of NICs that feature an NPU (Network Process Unit).
Every modern NIC has a limited NPU (multicast and
ethernet).

2. Use a programmable card (e.g. Napatech)

3. Execution of traffic accounting/management code directly
on the NIC.

4. High-speed access (via mmap()) to packets directly on the
NIC via the PCI bus.

© 2022 - Luca Deri <deri@ntop.org>

181

FPGA-based Packet Capture Cards

© 2022 - Luca Deri <deri@ntop.org>

Packet Capture: PF_RING

© 2022 - Luca Deri <deri@ntop.org> 182

User Space

Kernel

NIC Ring Buffer

mmap()
(no kernel

intervention)

Capturing Traffic on WiFi

• Some WiFi features might prevent you from
observing all traffic.

• Wireless Isolation: it confines and restricts
clients connected to the Wi-Fi network. They
can’t interact with devices connected to the
wired network, nor can they communicate with
each other. They can only access the Internet.  
 
https://www.howtogeek.com/179089/lock-down-your-wi-fi-network-with-your-routers-
wireless-isolation-option/

!200© 2022 - Luca Deri <deri@ntop.org>

183

Data Collection: RRD

• RRD [http://www.rrdtool.org/]

— Round Robin Database: Tool used to store and
display data on which is based MRTG on.

— Data are stored in “compress” format and they
don’t grow with time (automatic data aggregation)
and always equal file size.

— Perl/C interface to access to data and produce
graphs.

© 2022 - Luca Deri <deri@ntop.org>

185

Data Collection: RRD Graphs

© 2022 - Luca Deri <deri@ntop.org>

Additional Tools

• InfluxDB (www.influxdb.org)

• Prometheus (https://prometheus.io)

!203© 2022 - Luca Deri <deri@ntop.org>

http://www.influxdb.org
https://prometheus.io

!204© 2022 - Luca Deri <deri@ntop.org>

Timeseries, Forecast, 
Anomaly Detection

Mean and Standard Deviation

!205© 2022 - Luca Deri <deri@ntop.org>

https://www.mathsisfun.com/data/standard-deviation.html

In the above example: Mean=394, StdDev=147

Using the Standard Deviation we have a "standard" way of knowing what is normal,
and what is extra large (> mean+stddev)) or extra small (< mean-stddev)).

Variance The average of the sum of squared differences from the mean

StdDev The square root of the variance

Confidence Interval

• A Confidence Interval is a range of values we
are fairly sure our true value lies in.

• CI = Mean ± Margin of Error where:
— N = number of observations

— Margin of error = Z* (STDDEV / SQRT(N))

— Z is computed as follows:

!206© 2022 - Luca Deri <deri@ntop.org>

Conf. Interval Z

80% 1.282

85% 1.440

90% 1.645

95% 1.960

99% 2.576

99.5% 2.807

99.9% 3.291
https://www.mathsisfun.com/data/confidence-interval.html 
https://en.wikipedia.org/wiki/Statistical_significance

https://www.mathsisfun.com/data/confidence-interval.html
https://en.wikipedia.org/wiki/Statistical_significance

Percentile [1/2]

• Percentile: the value below which a given
percentage of observations in a group of
observations falls.

• Example: 70th is the age under which 80% of
the population falls (so not 80% of the max
age).

• In networking a popular percentile is 95th
!207© 2022 - Luca Deri <deri@ntop.org>

https://en.wikipedia.org/wiki/Percentage

Percentile [2/2]

!208© 2022 - Luca Deri <deri@ntop.org>

series = [13,43,54,34,40,56,34,61,34,23]

Percentile we want to compute
percentile = 80

Sort the data
sorted_series = sorted(series)

Find the index in the sorted data that corresponds to the searched percentile
index = len(sorted_series)*(percentile/100)

Round it to the nearest upper integer
rounded_index = int(index + 0.5)

Find the element that identifies the percentile
pcentile = sorted_series[rounded_index-1]

print(sorted_series)
print("%uth percentile: %u" % (percentile, pcentile))

$./percentile.py
[13, 23, 34, 34, 34, 40, 43, 54, 56, 61]
80th percentile: 54

Quartiles

• A quartile is a split of series into quarters.

• Q1 is defined as the 25th percentile
• Q2 is defined as the 50th percentile

• Q3 is defined as the 75th percentile

!209© 2022 - Luca Deri <deri@ntop.org>

Outlier [1/2]

• Outliers are values that "lie outside" the other
values.

• Interquartile Range (IQR): Q3-Q1

• In statistics a value is an outlier when it falls outside
of the

— lower fence: Q1 - 1.5 * IQR

— upper fence: Q3 + 1.5 * IQR

!210© 2022 - Luca Deri <deri@ntop.org>

• Outliers are used to spot anomalous values
often named as ‘aberrant’, i.e.departing from
an accepted standard including:
— Experimental/measurement errors

— Heavy tailed distributions (i.e. 
that goes to zero very slowly) 
where one or more very  
large values will affect the 
statistics.

Outlier [2/2]

!211© 2022 - Luca Deri <deri@ntop.org>

Finding Outliers [1/2]

• In networking, outliers can identify “special”
entities for a given measurement.

!212© 2022 - Luca Deri <deri@ntop.org>

Outlier

Measurement

Finding Outliers [2/2]

!213© 2022 - Luca Deri <deri@ntop.org>

series = [0, 0, 0, 0, 6, 2, 0, 0, 0, 0, 0, 12, 0, 0, 33182, 51945]
sorted_series = sorted(series)

q1 = calc_percentile(sorted_series, 25)
q2 = calc_percentile(sorted_series, 50)
q3 = calc_percentile(sorted_series, 75)
iqr = q3-q1
k = 1.5
lower_outlier_limit = q1-k*iqr
upper_outlier_limit = q3+k*iqr

Compute the mean
m = mean(series)

Compute the standard deviation
std = stddev(series, m)

print("Original series:")
print(sorted_series)
print("Percentiles: q1=%.1f, q2=%.1f, q3=%.1f" % (q1, q2, q3))
print("IQR: %.1f" % iqr)
print("Mean +/- Stddev [%.1f ... %.1f]" % ((m-std), (m+std)))
print("Outlier Formula: [%.1f ... %.1f]" % (lower_outlier_limit, upper_outlier_limit))

$ outlier.py
Original series:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 12, 33182, 51945]
Percentiles: q1=0.0, q2=0.0, q3=4.0
IQR: 4.0
Mean +/- Stddev [-9140.6 ... 19782.6] <==== Best
Outlier Formula: [-6.0 ... 10.0] <==== Good

Finding Outliers Using Z-Score [1/2]

• Another method for find outliers is using the Z-
Score defined as:
— Z-Score = (Value -Mean) / StdDev

• A z-score tells you how many standard
deviations a given value is from the mean:
positive (above the mean), negative (below the
mean).

• A typical outlier Z-Score threshold is 2.5:
— Values < -2.5 or > 2.5 are considered outliers.

!214© 2022 - Luca Deri <deri@ntop.org>

https://www.statology.org/z-score-excel/

Finding Outliers Using Z-Score [2/2]

!215© 2022 - Luca Deri <deri@ntop.org>

Value Z-Score Is Outlier ?

1 -1,03

3 -0,77

3 -0,77

4 -0,64

5 -0,51

2 -0,90

Z-Score = (X — μ) / σ 6 -0,38

7 -0,25

30 2,74 Yes

16 0,92

Average (μ) 7,70

Standard Deviation (σ) 8,90

Z-Score Threshold 2,50

Anomaly Detection: Goal

!216© 2022 - Luca Deri <deri@ntop.org>

Anomaly: an observation which deviates so much from other
observations as to arouse suspicions that it was generated by a
different mechanism.

Anomaly Detection: Process

!217© 2022 - Luca Deri <deri@ntop.org>

Definitions [1/2]

• Series: an ordered sequence of numbers.

• Order: the index of a number in the series.

• Timeseries: a series of data points in time
order.

• Observation: the numeric value observed (in
reality) at a specified time.

• Forecast: estimation of an expected value (that
we don’t know yet) at a specific time.

!218© 2022 - Luca Deri <deri@ntop.org>

https://grisha.org/blog/2016/01/29/triple-exponential-smoothing-forecasting/

Definitions [2/2]

• Forecast Error: positive/negative difference of
the observation with respect to the forecast.
Usually the error is reported as square to
obtain an always positive number.

• SSE: the sum of squared errors of a series
SUM((observationi - forecasti) ^2)

!219© 2022 - Luca Deri <deri@ntop.org>

Univariate vs Multivariate

!220© 2022 - Luca Deri <deri@ntop.org>

The term "univariate time series" refers to a time series that consists of single (scalar) observations
recorded sequentially over equal time increments. Example: daily temperature.

A multivariate time series has more than one time-dependent variable. Each variable depends
not only on its past values but also has some dependency on other variables. This dependency is
used for forecasting future values. Example: weather forecast that depends on temperature, wind,
humidity, cloud cover.

Stationary Time Series [1/2]

• A time series is stationary when its statistical
properties (e.g. mean and variance) do not
change overtime, i.e. if they have no trend or
seasonality.

!221© 2022 - Luca Deri <deri@ntop.org>

Stationary Non Stationary

Stationary Time Series [2/2]

• A counter is non-stationary. It can be made stationary
writing the time series as observation(t) - observation(t-1)
[gauge].

• Stationarity is important as for forecasting we need some
sort of invariance.

• Intuitively a time series variable is stationary about some
equilibrium path if after a shock it tends to return to that
path. A series is non-stationary if it moves to a new path
after a shock. It is very hard to model the path of a
variable that changes path if it is subject to some shock.

!222© 2022 - Luca Deri <deri@ntop.org>

Averages and Forecasts [1/3]

Given a series, there are several ways to
predict (^) the value (y) of point x+1 (y^x+1)
— Simple Average: the next point is the average of

apps points of the series

— Moving Average: same as simple average but
computed only on the last n points that are more
relevant than old ones

!223© 2022 - Luca Deri <deri@ntop.org>

def average(series):

 return float(sum(series))/len(series)

def moving_average(series, n):

 return average(series[-n:])

Averages and Forecasts [2/3]

— Weighted Moving Average: same as moving
average with a weight assigned to the each point
according to their age

!224© 2022 - Luca Deri <deri@ntop.org>

weighted average, weights is a list of weights

def weighted_average(series, weights):

 result = 0.0

 weights.reverse()

 for n in range(len(weights)):

 result += series[-n-1] * weights[n]

 return result

>>> weights = [0.1, 0.2, 0.3, 0.4]

>>> 10%, 20%, 30% and 40% to the last 4 points

>>> weighted_average(series, weights)

11.5

Averages and Forecasts [3/3]

!225© 2022 - Luca Deri <deri@ntop.org>

series = [3,10,12,13,12,10,12] (order is 7)

Last Observation

Single Exponential Smoothing [1/3]
• The formula below (Poisson, Holts or Roberts) states

that the expected/smoothed value for y (y^x) is the
sum of two products (recursive formula):

 y^x=α * yx + (1-α) * y^x-1

• α multiplied to the value of yx

• and (1-α) multiplied by the expected value y^x-1

• α: smoothing factor or “memory decay rate”: the
higher α, the faster the method forgets.

• This formula in essence “predicts” the next value (1
number).

!226© 2022 - Luca Deri <deri@ntop.org>

NOTE: this is in essence a
smoothing function rather
than a prediction.

Single Exponential Smoothing [2/3]

!227© 2022 - Luca Deri <deri@ntop.org>

given a series and alpha, return series of smoothed points

def exponential_smoothing(series, alpha):

 prediction = [series[0]] # first value is same as series

 for n in range(1, len(series)):

 prediction.append(alpha * series[n] + (1 - alpha) * prediction[n-1])

 # Now append the “prediction”

 prediction.append(alpha * series[n] + (1 - alpha) * prediction[n])

 return prediction

>>> exponential_smoothing(series, 0.1)

[3, 3.7, 4.53, 5.377, 6.0393, 6.43537, 6.991833]

>>> exponential_smoothing(series, 0.9)

[3, 9.3, 11.73, 12.873000000000001, 12.0873, 10.20873, 11.820873, 11.9820873]

Single Exponential Smoothing [3/3]

• The process of finding the best value for α is
named fitting (e.g. Nelder-Mead algorithm).

!228© 2022 - Luca Deri <deri@ntop.org>

More Terminology

• Level: y^x is also called level ℓx

• Trend (or slope) ’b’ for two consecutive points  
b = yx - yx-1

• Level: ℓx = α * yx + (1 - α) * (ℓx-1 + bx-1)

• Trend: bx = β * (ℓx - ℓx-1) + (1 - β) * bx-1

• Forecast: y^x+1 = ℓx +bx

!229© 2022 - Luca Deri <deri@ntop.org>

Smoothing Factor

Trend Factor

Two number prediction

Double Exponential Smoothing [1/2]

!230© 2022 - Luca Deri <deri@ntop.org>

given a series and alpha, return series of smoothed points

def double_exponential_smoothing(series, alpha, beta):

 result = [series[0]]

 for n in range(1, len(series)+2):

 if n == 1:

 level, trend = series[0], series[1] - series[0]

 if n >= len(series): # we are forecasting

 value = result[-1]

 else:

 value = series[n]

 last_level, level = level, alpha*value + (1-alpha)*(level+trend)

 trend = beta*(level-last_level) + (1-beta)*trend

 result.append(level+trend)

 return result

>>> double_exponential_smoothing(series, alpha=0.9, beta=0.9)

[3, 17.0, 15.45, 14.210500000000001, 11.396044999999999, 8.183803049999998, 12.753698384500002,
13.889016464000003, 15.0243345435]

Double Exponential Smoothing [2/2]

!231© 2022 - Luca Deri <deri@ntop.org>

Single Exponential Smoothing (1 point forecast)

Double Exponential Smoothing (2 points forecast)

Triple Exponential Smoothing
(a.k.a Holt-Winters Method) [1/2]

• Season: when a series is repetitive at regular
intervals, it is defined seasonal.

• Season Length: the number of data points in a
season.

• Seasonal Component: a deviation from level+trend
(of the double exponential smoothing) that repeats
itself into the season. For every season datapoint
there is a seasonal component s defined. Example if
you have a weekly season (length 7) every day has a
seasonal component.

!232© 2022 - Luca Deri <deri@ntop.org>

Triple Exponential Smoothing
(a.k.a Holt-Winters Method) [2/2]

!233© 2022 - Luca Deri <deri@ntop.org>

• Level: ℓx = α * yx + (1 - α) * (ℓx-1 + bx-1)

• Trend: bx = β * (ℓx - ℓx-1) + (1 - β) * bx-1

• Seasonal: sx = γ * (yx -ℓx) + (1 - γ) * sx-L

• Forecast: y^x+m = ℓx +m*bx+sx-L+1+(m-1) % L

Seasonal Smoothing Factor

Arbitrary number of forecasted points

The seasonal factor has to be repeated in a loop for every season length

Triple Exponential Smoothing
(a.k.a Holt-Winters Method) [3/2]

• As the timeseries has a season, the number of
prediction is arbitrary, allowing to predict an
arbitrary number of points (with increasing
error)

!234© 2022 - Luca Deri <deri@ntop.org>

Observations Predictions

Triple Exponential Smoothing
(a.k.a Holt-Winters Method) [4/4]

• α, β, and γ are the adaptation parameters of the
algorithm and 0 < α, β, γ < 1. Larger values mean
the algorithm adapts faster and predictions reflect
recent observations in the time series; smaller values
means the algorithm adapts slower, placing more
weight on the past history of the time series.

• The value for α, β and γ can be determined trying to
determine the smallest SSE (sum of squared errors)
with an iterative process called fitting.

!235© 2022 - Luca Deri <deri@ntop.org>

Measuring Deviation [1/4]

• If Holt-Winters can predict a point, we can
detect anomalies when the observation
deviates too much from the prediction.

!236© 2022 - Luca Deri <deri@ntop.org>

Measuring Deviation [2/4]

• Deviation can be detected when the
observation falls outside of the min and max
confidence bands for a given point.

• dt = γ * abs(yt −y^
t) + (1−γ) * dt−m  

• Confidence Bands:
— Upper Band: y^

t− δ * dt−m

— Lower Band: y^
t+ δ * dt−m

!237© 2022 - Luca Deri <deri@ntop.org>

Seasonal Smoothing Factor
Confidence Scaling Factor

(value in 2..3 range)

Measuring Deviation [3/4]

!238© 2022 - Luca Deri <deri@ntop.org>

def triple_exponential_smoothing(series, slen, alpha, beta, gamma, n_preds):
 result = []
 deviation = []

 seasonals = initial_seasonal_components(series, slen)
 deviations = seasonals
 for i in range(len(series)+n_preds):
 if i == 0: # initial values
 smooth = series[0]
 trend = initial_trend(series, slen)
 result.append(series[0])
 deviation.append(0)
 continue

 if i >= len(series): # we are forecasting
 m = i - len(series) + 1
 result.append((smooth + m*trend) + seasonals[i%slen])
 deviation.append(0) # Unknown as we've not predicted yet
 else:
 val = series[i]
 last_smooth, smooth = smooth, alpha*(val-seasonals[i%slen]) + (1-alpha)*(smooth+trend)
 trend = beta * (smooth-last_smooth) + (1-beta)*trend
 seasonals[i%slen] = gamma*(val-smooth) + (1-gamma)*seasonals[i%slen]
 prediction = smooth+trend+seasonals[i%slen]
 result.append(prediction)

 deviations[i%slen] = gamma*abs(val-prediction) + (1-gamma)*deviations[i%slen]
 deviation.append(abs(deviations[i%slen]))

 return result,deviation

Measuring Deviation [4/4]

!239© 2022 - Luca Deri <deri@ntop.org>

-80

-40

0

40

80

120

160

Series Prediction Low Band High Band

Observations

Predictions

O
bs

er
va

tio
ns

 E
nd

https://www.real-statistics.com/wp-content/uploads/2020/07/Real-Statistics-Time-Series-Examples.xlsx

References
• https://github.com/lucaderi/HoltWinters
• https://en.wikipedia.org/wiki/

Exponential_smoothing

• Jake D. Brutlag, Aberrant Behavior Detection in
Time Series for Network Monitoring ,
Proceedings of LISA 2000 Conference.

• Amy Ward, Peter Glynn, and Kathy Richardson,
Internet service performance failure detection,
Performance Evaluation Review, 1998.

!240© 2022 - Luca Deri <deri@ntop.org>

https://github.com/lucaderi/HoltWinters
https://en.wikipedia.org/wiki/Exponential_smoothing
https://en.wikipedia.org/wiki/Exponential_smoothing

Data structures

!241© 2022 - Luca Deri <deri@ntop.org>

Bitmap [1/2]

• Array of bits (a.k.a. bit vector).

• Bitmaps can have arbitrary lengths.

• Elements can added/removed in O(1) with
simple bit operations.

!242© 2022 - Luca Deri <deri@ntop.org>

Bitmap [2/2]

!243© 2022 - Luca Deri <deri@ntop.org>

#define bitmap64_t(name, n) u_int64_t name[n / 64]
#define bitmap64_ptr_t u_int64_t *
#define bitmap64_reset(b) memset(b, 0, sizeof(b))
#define bitmap64_set_all(b) memset(b, 0xFF, sizeof(b))
#define bitmap64_clone(b1, b2) memcpy(b1, b2, sizeof(b1))
#define bitmap64_set_bit(b, i) b[i >> 6] |= ((u_int64_t) 1 << (i & 0x3F))
#define bitmap64_clear_bit(b, i) b[i >> 6] &= ~((u_int64_t) 1 << (i & 0x3F))
#define bitmap64_isset_bit(b, i) !!(b[i >> 6] & ((u_int64_t) 1 << (i & 0x3F)))
#define bitmap64_or(b1, b2) for (size_t __i = 0; __i < (sizeof(b1)/8); __i++) b1[__i] |= b2[__i];

Example:
bitmap64_t(tot_tcp_flags_combinations, 256); /* Define the variable (256 bit) */
bitmap64_reset(tot_tcp_flags_combinations); /* Reset the variable */
bitmap64_set(tot_tcp_flags_combinations, 67); /* Set a bit */

Compressed Bitmap [1/3]

• A bitmap is an array of bit (usually) with a
predefined length.

• For specific domains, bitmaps can be sparse
with a few bit sets.

• Example : [0,12,23,500,510,522,10000] requires
at least 10k bits even though most bit are 0, with
7 bits at 1.

• As most bits are 0, this data structure is
inefficient.

!244© 2022 - Luca Deri <deri@ntop.org>

Compressed Bitmap [2/3]

• The simplest way to compress this bitmap is by
means of counting repetitions:
— [0,12,23,500,510,522,10000]

— 1(1), 11(0), 1(1), 10(0), 1(1), 476(0)….

• There are many algorithms to compress the
bitmap such as WAH, EWAH, COMPAX…

• Anyway: if you can “increasingly” set bits, you
can build the bitmap at runtime without static
memory costs.

!245© 2022 - Luca Deri <deri@ntop.org>

Compressed Bitmap [3/3]

• The nice thing about compressed bitmap is
that you can perform operations such as AND,
OR, NOT… on the compressed bitmap without
decompressing it at all.

• One of the most popular is  
http://roaringbitmap.org

!246© 2022 - Luca Deri <deri@ntop.org>

Compressed Bitmap Indexes

!247© 2022 - Luca Deri <deri@ntop.org>

Row Id Value Col. bit0 Col. bit1 Col. bit2 Col. bit3

0 1 1 0 0 0

1 4 0 0 1 0

2 6 0 1 1 0

3 15 1 1 1 1

4 28 0 1 1 1

5 1 1 0 0 0

6 3 1 1 0 0

• In order to know the rowId’s of records with
value 1: C0=1 AND C1=0 AND C2=0 AND C3=0.

• When bitmaps are compressed the above
operation is very fast fast

Bloom Filters [1/5]

• Bloom filters are probabilistic data structure
that answers a simple question: is an element
part of a set ?

!248© 2022 - Luca Deri <deri@ntop.org>

Bloom Filters [2/5]

• The idea is to do a quick comparison so see if a given
input can match our needs. In case of match we can
do an exact, yet costly, exact match with a different
algorithm.

• You can check the set presence with many other
datastructures (e.g. a hash or a very-long bitmap) at
a higher cost:
— How much memory do you need to keep a bitmap 232 bits

long, to know what IP contacted your PC?

— What if you want to move to IPv6 (2128 bits)?

!249© 2022 - Luca Deri <deri@ntop.org>

Bloom Filters [3/5]

• A bloom filter is a bit vector of length m.

• Select two or more independent and uniformly
distributed hash h1() and h2() functions.

• Add an element α: set the bits corresponding
to h1(α) and h2(α).

• Check for presence of β: if h1(β) and h2(β) are
set, then β will likely (now you understand why
is a probabilistic datastructure) be part of set.

!250© 2022 - Luca Deri <deri@ntop.org>

Bloom Filters [4/5]

!251© 2022 - Luca Deri <deri@ntop.org>

Wikipedia

• Counting bloom filter: replace the bit vector with an
integer to know how many bits have been set

• Advantage: you can remove elements (bloom can’t)

• Disadvantage: more memory used.

• Note: being probabilistic, it cannot be used to know
for sure if an element belongs to the set.

Bloom Filters [5/5]

• Good hashes include murmur, nfv, and md5.

• Test membership error rate is (1-e-kn/m)k where:

— m: number of vector bits
— k: number of hash functions used

— n: the number of elements inserted

• Typical usage example: use the bloom filter to a
“quick” check for presence and if so, do the “slow”
check.

!252© 2022 - Luca Deri <deri@ntop.org>

https://sites.google.com/site/murmurhash/
http://isthe.com/chongo/tech/comp/fnv/
https://en.wikipedia.org/wiki/MD5

Tries [1/3]

• A trie (pronounce as try, “pun on retrieval and
tree”) is tree not based on comparisons (<,>)
— Each node has a letter.

— In case of multiple options per letter a list is used
for each possible tree branch.

— Nodes with letters in the set are “marked”.

!253© 2022 - Luca Deri <deri@ntop.org>

Tries [2/3]

!254© 2022 - Luca Deri <deri@ntop.org>

C

O

W

A

T

S

P

I

G N

{ Cats, Cat, Cow, Pig, Pin }

Root

No Match

Match

Tries [3/3]

• In tries nodes can be added/removed/
searched.

• Features
— Ability to search strings starting with a given prefix.

— Ability to generate string in dictionary order (if links in
nodes are alphabetically sorted).

• Performance
— insert O(w), where w is the length of the string to be

inserted, regardless of the number of stored strings

!255© 2022 - Luca Deri <deri@ntop.org>

Sounds familiar?

Radix Tree

• Same as trie where nodes have a set of strings

!256© 2022 - Luca Deri <deri@ntop.org>

C

R

A

T

S

CA

RT

S

Trie
Radix

Patricia Tree

• Patricia: Practical Algorithm to Retrieve Information
Coded in Alphanumeric, D.R. Morrison (1968).

• Radix tree where numbers are used instead of strings.

• Efficient for subnet matching, IPv4/IPv6.

• You can search partial matches (e.g. /24) and if you
keep searching and found a match for finding a
narrower match (e.g. /32)

• Code: https://github.com/ntop/nDPI/blob/dev/src/lib/
third_party/src/ndpi_patricia.c

!257© 2022 - Luca Deri <deri@ntop.org>

Probabilistic Counting [1/4]

• How can I get an estimate (i.e. approximate) of a
number of unique set elements ? For instance: how
many IP addresses has my host contacted in the
past 5 minutes? Of course you can do this in many
ways (e.g. a hash table) but at a higher memory
cost.

• Assume that you have a string of length m which
consists of {0, 1} with equal probability. What is the
probability that it will start with 0, with 2 zeros, with
k zeros? It is 1/2, 1/4 and 1/2k.

!258© 2022 - Luca Deri <deri@ntop.org>

Probabilistic Counting [2/4]

• Therefore, having a list of elements that are evenly
distributed between 0 and 2k - 1 you can count the
max number of the biggest prefix of zeros in binary
representation and this will give you a reasonable
estimate.

• Even distribution can be achieved with a good
hashing function in the range 0 and 2k_max - 1.

• Example: SHA1 has k_max = 160 that is pretty large.

!259© 2022 - Luca Deri <deri@ntop.org>

Probabilistic Counting [3/4]

!260© 2022 - Luca Deri <deri@ntop.org>

To ensure that the entries are evenly distributed, we can use a hash function and
estimate the cardinality from the hashed values instead of from the entries
themselves. The picture above illustrates a simple example in which the hashed
values are normalised and uniformly distributed between 0 and 1.

Probabilistic Counting [4/4]

• Unfortunately one random occurrence of high
frequency 0-prefix element can spoil everything.

• A possible solution is to use multiple hashing
functions and report as estimation the average of all
the estimations, but this is not an optimal solution.

!261© 2022 - Luca Deri <deri@ntop.org>

HyperLogLog [1/4]

• HyperLogLog is a probabilistic data structure
used to estimate the cardinality of a set.

• It improves probabilistic counting by hashing
every element, and counting the amount of 0s
to the left of such hash.

• The HLL algorithm divides the hash result in 2,
using the first section to address a bucket, and
the second one to count the 0s to the left and
store the largest amount so far.

!262© 2022 - Luca Deri <deri@ntop.org>

HLL Paper: http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

HyperLogLog [2/4]

!263© 2022 - Luca Deri <deri@ntop.org>

Simplified HLL Algorithm

HyperLogLog [3/4]

!264© 2022 - Luca Deri <deri@ntop.org>

int hll_init(struct ndpi_hll *hll, u_int8_t bits) {
 if(bits < 4 || bits > 20) {
 errno = ERANGE;
 return -1;
 }

 hll->bits = bits; /* Number of bits of buckets number */
 hll->size = (size_t)1 << bits; /* Number of buckets 2^bits */
 hll->registers = ndpi_calloc(hll->size, 1); /* Create the bucket register counters */

 return 0;
}

/* Add a new hash value to the HLL */
static __inline void _hll_add_hash(struct ndpi_hll *hll, u_int32_t hash) {
 if(hll->registers) {
 u_int32_t index = hash >> (32 - hll->bits); /* Use the first 'hll->bits' bits as bucket index */
 u_int8_t rank = _hll_rank(hash, hll->bits); /* Count the number of leading 0 */

 if(rank > hll->registers[index])
 hll->registers[index] = rank; /* Store the largest number of lesding zeros for the bucket */
 }
}

double hll_count(const struct ndpi_hll *hll) {
 if(hll->registers) {
 …
 return estimate;
 } else
 return(0.);
}

HyperLogLog [4/4]

!265© 2022 - Luca Deri <deri@ntop.org>

 HyperLogLog Memory and StandardError Notes

 StdError = 1.04/sqrt(2^i)

 [i: 4] 16 bytes [StdError: 26%]
 [i: 5] 32 bytes [StdError: 18.4%]
 [i: 6] 64 bytes [StdError: 13%]
 [i: 7] 128 bytes [StdError: 9.2%]
 [i: 8] 256 bytes [StdError: 6.5%]
 [i: 9] 512 bytes [StdError: 4.6%]
 [i: 10] 1024 bytes [StdError: 3.25%]
 [i: 11] 2048 bytes [StdError: 2.3%]
 [i: 12] 4096 bytes [StdError: 1.6%]
 [i: 13] 8192 bytes [StdError: 1.15%]
 [i: 14] 16384 bytes [StdError: 0.81%]
 [i: 15] 32768 bytes [StdError: 0.57%]
 [i: 16] 65536 bytes [StdError: 0.41%]
 [i: 17] 131072 bytes [StdError: 0.29%]
 [i: 18] 262144 bytes [StdError: 0.2%]
 [i: 19] 524288 bytes [StdError: 0.14%]

https://github.com/ntop/nDPI/blob/dev/src/lib/third_party/src/hll/hll.c

Entropy [1/2]

• Metric used to measure how bytes are
distributed: the larger the entropy, the greater
the uncertainty in predicting the value of an
observation.

• Formula: 
https://csrc.nist.gov/csrc/media/publications/
sp/800-90b/draft/documents/draft-
sp800-90b.pdf

!266© 2022 - Luca Deri <deri@ntop.org>

Entropy [2/2]

!267© 2022 - Luca Deri <deri@ntop.org>

Using Entropy: Bytes Entropy

Entropy of raw data
before and after
encryption (TLS) changes
but is it within limited
boundaries for
homogeneous data.

!268© 2022 - Luca Deri <deri@ntop.org>

0 1 255

Number of bytes with byte X in the payload

X

Server Entropy (SCP)

PDF PNG TEXT

6,418 7,014 7,008

6,431 7,019 7,007

6,428 6,994 7,011

6,426 7,009 7,009 Average

0,007 0,013 0,002 StdDev

Data Binning [1/4]

• Data binning is a technique that allows data to
be classified in a small number of “bins”, that
in essence is a vector of positive numbers
where each bin value contains the number of
observations.

• Example: packets lengths can be grouped in 6
bins of size <= 64 bytes, 65-128, 129-256,
257-512, 513-1024, 1025+.

!269© 2022 - Luca Deri <deri@ntop.org>

Data Binning [2/4]

• Bins allow data to be classified using a small
set of intervals instead of individual values that
can lead to observation errors.

• Data is classified by
— defining the bin number

— adding data to the individual bins
— normalising the data so that bins with different

number of elements can still be compared.

!270© 2022 - Luca Deri <deri@ntop.org>

Data Binning [3/4]

• Bins do not store the data order (i.e. how the
individual events happened) but just the data.

• Example: if you want to compare two hosts if
they use similar protocols you can create a set
of bins (e.g. 256 bins as the number of
protocols recognised by nDPI) and for each
new flow increase the bin-id that corresponds
to the protocol. Then you can compare bins for
equality to see what hosts are similar.

!271© 2022 - Luca Deri <deri@ntop.org>

Data Binning [4/4]

!272© 2022 - Luca Deri <deri@ntop.org>

void ndpi_inc_bin(struct ndpi_bin *b,  
 u_int8_t slot_id,  
 u_int32_t val) {
 b->is_empty = 0;

 if(slot_id >= b->num_bins) slot_id = 0;

 switch(b->family) {
 case ndpi_bin_family8:
 b->u.bins8[slot_id] += (u_int8_t)val;
 break;
 case ndpi_bin_family16:
 b->u.bins16[slot_id] += (u_int16_t)val;
 break;
 case ndpi_bin_family32:
 b->u.bins32[slot_id] += (u_int32_t)val;
 break;
 }
}

/*
 Each bin slot is transformed in a % with respect to the value total
 */
void ndpi_normalize_bin(struct ndpi_bin *b) {
 u_int8_t i;
 u_int32_t tot = 0;

 if(b->is_empty) return;

 switch(b->family) {
 case ndpi_bin_family8:
 for(i=0; i<b->num_bins; i++) tot += b->u.bins8[i];

 if(tot > 0) {
 for(i=0; i<b->num_bins; i++)
 b->u.bins8[i] = (b->u.bins8[i]*100) / tot;
 }
 break;
 case ndpi_bin_family16:
 for(i=0; i<b->num_bins; i++) tot += b->u.bins16[i];

 if(tot > 0) {
 for(i=0; i<b->num_bins; i++)
 b->u.bins16[i] = (b->u.bins16[i]*100) / tot;
 }
 break;
 case ndpi_bin_family32:
 for(i=0; i<b->num_bins; i++) tot += b->u.bins32[i];

 if(tot > 0) {
 for(i=0; i<b->num_bins; i++)
 b->u.bins32[i] = (b->u.bins32[i]*100) / tot;
 }
 break;
 }
}

How To Compare Data [1/4]

• Bins are an efficient way of storing
observations but we need to find a way to
compare them to find similarities (e.g. two
hosts with the same behaviour).

• Two values can be compared with <,>,=
operators, but how do we compare a vector of
data such as a bin?

• Example: 23,45,13,72,32 and 1,45,18,29,43 ?

!273© 2022 - Luca Deri <deri@ntop.org>

How To Compare Data [2/4]

• Supposing that bins have the same number of
elements (otherwise comparison is not really
possible), we need to
— normalize data to make sure that the number of

bin observations do not affect comparisons

— compare the individual bin elements with a
comparison operator.

• Popular similarity algorithms (see https://
en.wikipedia.org/wiki/Similarity_measure)

!274© 2022 - Luca Deri <deri@ntop.org>

https://en.wikipedia.org/wiki/Similarity_measure
https://en.wikipedia.org/wiki/Similarity_measure

How To Compare Data [3/4]

• Cosine Similarity

!275© 2022 - Luca Deri <deri@ntop.org>

/*
 Determines how similar are two bins

 Cosine Similiarity
 0 = Very different
 ... (gray zone)
 1 = Alike
*/

u_int32_t sumxx = 0, sumxy = 0, sumyy = 0;

 for(i=0; i<b1->num_bins; i++) {
 u_int32_t a = ndpi_get_bin_value(b1, i);
 u_int32_t b = ndpi_get_bin_value(b2, i);

 sumxx += a*a, sumyy += b*b, sumxy += a*b;
 }

 if((sumxx == 0) || (sumyy == 0))
 return(0);
 else
 return((float)sumxy / sqrt((float)(sumxx * sumyy)));

https://en.wikipedia.org/wiki/Cosine_similarity

How To Compare Data [4/4]

• Euclidean Distance

• In essence you can compare individual bins by
finding which one is more “similar” to another
one using a distance algorithm

!276© 2022 - Luca Deri <deri@ntop.org>

 u_int32_t sum = 0;

 for(i=0; i<b1->num_bins; i++) {
 u_int32_t a = ndpi_get_bin_value(b1, i);
 u_int32_t b = ndpi_get_bin_value(b2, i);
 u_int32_t diff = (a > b) ? (a - b) : (b - a);

 if(a != b) sum += pow(diff, 2);
 }

 /* The lower the more similar */
 return(sqrt(sum));

Jaccard (Similarity) Coefficient [1/3]

Simplest index used to measures the similarity
between two sets of data. The higher the
number, the more similar the two sets of data.

Jaccard Similarity = (number of observations in both sets) / (number
in either set)

J(A, B) = |A∩B| / |A∪B|

!277© 2022 - Luca Deri <deri@ntop.org>

Jaccard (Similarity) Coefficient [2/3]

!278© 2022 - Luca Deri <deri@ntop.org>

#!/usr/bin/env python3

def jaccard_index(l1, l2):
 size_intersect = 0
 size_union = 0

 for i in range(1, len(l1)):
 if(l1[i] == l2[i]):
 size_intersect = size_intersect+1
 else:
 size_union = size_union+1

 # Calculate the Jaccard index
 return size_intersect / (size_union);

Main

l1 = [1, 2, 3, 4, 5] # List 1
l2 = [4, 5, 6, 7, 8] # List 2

jaccardIndex = jaccard_index(l1, l2);

Print the Jaccard index and Jaccard distance
print("Jaccard index = ", jaccardIndex);
print("Jaccard distance = ", 1-jaccardIndex);

$./jaccard.py
Jaccard index = 0.0
Jaccard distance = 1.0

Jaccard can be computed on unsorted data (list)
as we do with bins where position matters…

Jaccard (Similarity) Coefficient [3/3]

!279© 2022 - Luca Deri <deri@ntop.org>

#!/usr/bin/env python3

def jaccard_index(s1, s2):
 intersect = s1 & s2; # Compute the intersection {4, 5}
 union = s1 | s2; # Compute the union {1, 2, 3, 4, 5, 6, 7, 8}

 # Calculate the Jaccard index
 return len(intersect) / len(union);

Main
s1 = {1, 2, 3, 4, 5} # Set 1
s2 = {4, 5, 6, 7, 8} # Set 2

jaccardIndex = jaccard_index(s1, s2);

print("Jaccard index = ", jaccardIndex);
print("Jaccard distance = ", 1-jaccardIndex);

$./jaccard.py
Jaccard index = 0.25
Jaccard distance = 0.75

…or sorted (set) data (position doesn’t matter,
sort data).

• Clustering means group together 
values that are similar.

• There are various clustering algorithm families
(https://en.wikipedia.org/wiki/Cluster_analysis).

• One of the simplest ones is K-means that has
the drawback to take as input ‘K’ that is the
number of clusters (other algorithm such as
DBSCAN do it automatically but are much more
complex).

Data Clustering [1/2]

!280© 2022 - Luca Deri <deri@ntop.org>

https://en.wikipedia.org/wiki/Cluster_analysis

Data Clustering [2/2]

• K-means (https://en.wikipedia.org/wiki/K-
means_clustering)

!281© 2022 - Luca Deri <deri@ntop.org>

int ndpi_cluster_bins(struct ndpi_bin *bins, u_int16_t num_bins,
 u_int8_t num_clusters, u_int16_t *cluster_ids,
 struct ndpi_bin *centroids);

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering

Traffic Measurement:
Some Case Studies

© 2022 - Luca Deri <deri@ntop.org> !282

Case Study: Bandwidth
Management [1/3]

• Lack of bandwidth issues are not tackled purchasing
additional bandwidth but managing the existing
bandwidth.
— Lesson learnt: the more bandwidth you have, the more you

will use.

© 2022 - Luca Deri <deri@ntop.org>

Upgrade: 34 -> 45 Mbit

Introduced CoS on P2P Traffic

!283

Case Study: Bandwidth
Management [2/3]

• Solution: Monitor and Find the Answer Yourself
for Your Network (there’s no general solution).
— Analyse how the available bandwidth is used (e.g.

why protocol X is used ?).

— Traffic and Flow matrix: who’s talking to who and
what data are they exchanging ?

© 2022 - Luca Deri <deri@ntop.org> !284

Case Study: Bandwidth
Management [3/3]

Lessons Learnt from Practice:

• Poor performance can be due to use of backup-links because
primary ones are unavailable (do you monitor failovers -via
SNMP traps- such as STP, port status ?)

• Is your routing suboptimal or very dynamic? (SNMP provides
you several MIBS for this purpose).

• Are you shaping too much? CoS (Class of Services) are good
but don’t misuse them! (Why don’t you monitor the amount of
traffic that is cut by your policers ?)

© 2022 - Luca Deri <deri@ntop.org> !285

Case Study: Where is a Host?
• Association between IP address and name

deri@tar:~$ nslookup 131.114.21.22 
Server: localhost  
Address: 127.0.0.1 
 
Name: jake.unipi.it 
Address: 131.114.21.22

• Association between host and owner
— namenslookup -type=SOA
— WAIS [Wide Area Information System] http://

www.ai.mit.edu/extra/the-net/wais.html
— WHOIS [RFC-812]

© 2022 - Luca Deri <deri@ntop.org> !286

Whois Example
Domain: unipi.it

Status: ACTIVE

Created: 1996-01-29 00:00:00

Last Update: 2008-02-14 00:02:47

Expire Date: 2009-01-29

Registrant

 Name: Universita' degli Studi di Pisa

 ContactID: UNIV302-ITNIC

 Address: Centro SERRA

 Pisa

 56100

 PI

 IT

 Created: 2007-03-01 10:42:01

 Last Update: 2008-01-19 09:46:08

Registrar

 Organization: Consortium GARR

 Name: GARR-MNT

Nameservers

 serra.unipi.it

 nameserver.unipi.it

© 2022 - Luca Deri <deri@ntop.org> !287

IP Geolocation

• Why IP geolocation is important ?
— Location-based services and advertising/

marketing

— Fraud detection of Internet transactions

— Long-distance Internet traffic analysis (traceroute,
AS latency study)

— Web page language selection based on remote
user location

!288© 2022 - Luca Deri <deri@ntop.org>

Where in the World is host X ?
• RFC 1876: A Means for Expressing Location

Information in the Domain Name System  

• http://www.caida.org/tools/utilities/netgeo

• http://www.maxmind.com/
• http://www.geobytes.com/

© 2022 - Luca Deri <deri@ntop.org> !289

http://www.caida.org/tools/utilities/netgeo
http://www.maxmind.com/

Wi-Fi Positioning System (WPS)

Geolocating with Wi-Fi can exploit extra techniques
for geolocations including:
• Wi-Fi Signal strength
• SSID (Service Set Identifier) and Mac Address

Fingerprinting

Operating Systems (e.g. iOS/Android WPS) and Web
browsers (e.g. Mozilla Location Services) natively
offer APIs for geolocating hosts through Wi-Fi.

!290© 2022 - Luca Deri <deri@ntop.org>

TCP/IP Stack Fingerprinting [1/3]
• Active  

Send probe packets in order to guess the host
OS (http://nmap.org/)

• Passive  
Look at 3-way handshake and compare it with
a database of known signatures in order to
guess the host OS (http://ettercap.sf.net/,
https://github.com/p0f/p0f).

© 2022 - Luca Deri <deri@ntop.org> !291

http://ettercap.sf.net/

TCP/IP Fingerprinting: Ettercap [2/3]
WWWW:MSS:TTL:WS:S:N:D:T:F:LEN:OS

WWWW: 4 digit hex field indicating the TCP Window Size

MSS : 4 digit hex field indicating the TCP Option Maximum Segment Size

 if omitted in the packet or unknown it is "_MSS"

TTL : 2 digit hex field indicating the IP Time To Live

WS : 2 digit hex field indicating the TCP Option Window Scale

 if omitted in the packet or unknown it is "WS"

S : 1 digit field indicating if the TCP Option SACK permitted is true

N : 1 digit field indicating if the TCP Options contain a NOP

D : 1 digit field indicating if the IP Don't Fragment flag is set

T : 1 digit field indicating if the TCP Timestamp is present

F : 1 digit ascii field indicating the flag of the packet

 S = SYN

 A = SYN + ACK

LEN : 2 digit hex field indicating the length of the packet

© 2022 - Luca Deri <deri@ntop.org> !292

TCP/IP Fingerprinting: 
Limitations [3/3]

These techniques are less popular than some years
ago because

• Operating systems randomize TCP/IP information
making them less reliable than they used to be.

• There are several papers that describe how to
defeat OS fingerprinting tools.

• OS signatures are often outdated making the tool
usable only for detecting old OS versions.

!293© 2022 - Luca Deri <deri@ntop.org>

DHCP Fingerprinting [1/2]
• DHCP fingerprinting is a technique that exploits

DHCP field 55 to guess the operating system

!294© 2022 - Luca Deri <deri@ntop.org>

DHCP Fingerprinting [2/2]

• Many security vendors have created fingerprint
databases embedded in devices, to prevent
specific/outdated operating systems from
connecting to a LAN and thus potentially
creating security issues.

!295© 2022 - Luca Deri <deri@ntop.org>

Use Case: Malicious Hosts Detection

• Monitoring tools need to know what IPs belong to
compromised hosts in order to trigger alerts whenever
such IPs are observed.

• Even though list of malicious IPs are not always a great
solution as they can become quickly outdated, there
are several companies that provide daily updates/
digests.

• One of the (free) most popular ones is  
https://rules.emergingthreats.net/fwrules/emerging-
Block-IPs.txt

!296© 2022 - Luca Deri <deri@ntop.org>

DGA Domains [1/3]

• DGAs (Domain Generation Algorithm) are used i
various families of malware to generate rendezvous
points for command & control (see previous slide).

• Crypto-locker apps often use DGAs for this purpose.
• Usually DGAs take as input a seed that is used to

generate many pseudo-random domain names.
• Tor HTTPS certificates use DGA-generated host names

that can be used to detect this protocol by analysing
the HTTPS certificate.

!297© 2022 - Luca Deri <deri@ntop.org>

DGA Domains [2/3]

• The malware keep generating domain
names up until there is one registered
that is used to connect to the “malware
network”.

!298© 2022 - Luca Deri <deri@ntop.org>

def generate_domain(year, month, day):
 """Generates a domain name for the given date."""
 domain = ""

 for i in range(16):
 year = ((year ^ 8 * year) >> 11) ^ ((year & 0xFFFFFFF0) << 17)
 month = ((month ^ 4 * month) >> 25) ^ 16 * (month & 0xFFFFFFF8)
 day = ((day ^ (day << 13)) >> 19) ^ ((day & 0xFFFFFFFE) << 12)
 domain += chr(((year ^ month ^ day) % 25) + 97)

 return domain

DGA Domains [3/3]

• DGA domains can be detected using
impossible/good bi-grams (i.e. two letter
combinations that do not exist in languages)
for dissecting the domain name.

• Example:
— www.fgd2iwya7vinfutj5wq5we.com

— www.qbtxzhetq4s2f.com
— www.fgd2iwya7vinfutj5wq5we.net

!299© 2022 - Luca Deri <deri@ntop.org>

Case Study: Security Scanner
• Nessus [http://www.tenable.com/]

• OpenVAS [http://www.openvas.org/]

© 2022 - Luca Deri <deri@ntop.org> !300

Case Study: Network Security

Security is a process not a product (BS7799).

• Are you able to detect network anomalies ?

• Are you sure you know what to monitor ? Most of issues are
produced by traffic we never expect to see in your network:
monitor everything, filter things you expect to see, look at the
rest and explain this happened.

• Do you have an automatic fault recovery ? Supposing you
detect the problem (e.g. SNMP trap) is your system reacting
automatically or waiting for you to come back from holidays ?

© 2022 - Luca Deri <deri@ntop.org> !301

Case Study: P2P Detection
• P2P is hard to detect with standard methods:

— It cannot be detected using fingerprints (e.g. port-2-protocol
association).

• However it can be detected…
— It can be detected in terms of deviation for a standard behaviour (e.g. a

workstation cannot open more than X connections/minute nor keep
more than Y connections open).

— Analysis of initial payload bytes in order to detect the protocol.

— High percentage of unsuccessful TCP connection establishment.
— Packets/Bytes ratio above the average (P2P sources send many

packets, mostly for talking with peers).
— Identification of client-to-client (> 1024) communications with no FTP

command channel open.

© 2022 - Luca Deri <deri@ntop.org> !302

Case Study: SPAM Detection
• Large, open networks (e.g. universities, ISPs) are the

best places for sending spam (unsolicited email).

• How to identify SPAM sources:
– Problem similar to P2P but simpler (SMTP-only, 1 connection = 1

email) .

– Select the set of top N SMTP senders.

– Remove from the set all the known SMTP servers.

– Studies shown that in average an host does not send more that
8-10 emails/minute.

– Very simple problem to tackle using flow-based protocols such
as NetFlow.

© 2022 - Luca Deri <deri@ntop.org> !303

Case Study: Virus/Trojan Detection

• Problem similar to SPAM detection but more complex
as the protocol/ports used are not fixed.

• Attacks do not have a precise target: they somehow
behave as network scanners.

• Detection:
— If the problem is known (e.g. traffic on UDP port 135) focus

only on these selected traffic patterns.

— Keep an eye on ICMP messages (e.g. port/destination
unreachable) as they are the best way to detect network
scanners.

© 2022 - Luca Deri <deri@ntop.org> !304

Final Remarks

© 2022 - Luca Deri <deri@ntop.org> !305

So What Can we Basically Expect from
Network Monitoring ?

• Ability to automatically detect those issues that are
permanently monitored (e.g. no traffic on the backbone link:
network down ?).

• Receive alarms about potential (e.g. CPU Utilisation is too high)
and real (e.g. disk is full) problems.

• Automatic notification and restore for known problems with
known solutions (e.g. main link down, the backup link is used).

• Report to humans for all those problems that need attention
and that cannot be restored (e.g. host X is unreachable).

© 2022 - Luca Deri <deri@ntop.org> !306

Monitoring Caveats
• If a monitoring application needs human assistance for a

problem that could be solved automatically, then the

monitoring applications is not completely useful.

• Alarm (100% sure that there is something wrong) != Warning

(maybe this is an issue): don’t pretend to be precise/

catastrophic if this is not the case.

• Alarms are useless if there’s nobody who looks at them.

• Too many (false) alarms = no alarm: humans tend to ignore
facts if some of them are proven to be false.

© 2022 - Luca Deri <deri@ntop.org> !307

