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Abstract. We describe a pilot project (GAP - GPU Application Project) for the use of
GPUs (Graphics processing units) in online triggering applications for High Energy Physics
experiments. Two major trends can be identified in the development of trigger and DAQ
systems for particle physics experiments: the massive use of general-purpose commodity systems
such as commercial multicore PC farms for data acquisition, and the reduction of trigger levels
implemented in hardware, moving towards a fully software data selection system (“trigger-
less”). The innovative approach presented here aims at exploiting the parallel computing power
of commercial GPUs to perform fast computations in software not only in high level trigger
levels but also in early trigger stages. General-purpose computing on GPUs is emerging as a
new paradigm in several fields of science, although so far applications have been tailored to
the specific strengths of such devices as accelerators in offline computation. With the steady
reduction of GPU latencies, and the increase in link and memory throughputs, the use of such
devices for real-time applications in high-energy physics data acquisition and trigger systems
is becoming ripe. We discuss in detail the use of online parallel computing on GPUs for
synchronous low-level triggers with fixed latency. In particular we show the preliminary results
on a first field test in the CERN NA62 experiment. The use of GPUs in high level triggers is also
considered, the CERN ATLAS experiment being taken as a case study of possible applications.

1. Introduction
The scientific project described in this paper is based on the use of Graphic Processing Units
(GPUs) for scientific computation. In recent years, the use of massively parallel computation is
gaining ground in several fields of scientific research, in order to overcome some shortcomings
of the present microprocessor technology. Modern super-computers are structured as arrays of
several distributed computing units sharing data through dedicated high-bandwidth connections.
Even processors in commodity personal computers (PCs) contain several computing cores.



Table 1. Characteristics of computing dedicated GPUs.

Video Card n. of cores Processing Power Memory Bandwidth
(GFLOPS) (GB/s)

NVIDIA TESLA C1060 (2009) 240 933 102.4
NVIDIA TESLA C2050 (2011) 448 1288 144
NVIDIA TESLA K20 (2013) 2496 3520 208
NVIDIA GFORCE GTX680 (2012) 1536 3090 192
AMD RADEON 5870 (2010) 1600 2720 153.6
AMD RADEON 7970 (2012) 2048 4096 288

GPUs, developed to speed up graphics-related computing tasks, are naturally organized around
a parallel architecture. Because of such architecture, and the fact that most of the chip resources
are devoted to computation - differently from a normal processor (CPU) in which a large
fraction of those is required for other functions such as caching and handling of peripherals -
allow to achieve a large computing power using a limited amount of space and power. Such
computing power is recently used also in applications very different from those for which
graphic processors were originally conceived. So-called GPGPU (General Purpose computing
on GPU) is nowadays common in several fields of scientific research requiring large computing
power, such as hydrodinamical modeling, complex system simulation, image reconstruction for
medical diagnostics. Major GPU vendors strongly favoured this trend by exposing the raw
computing power of graphic processors to users within a general-purpose paradigm. The two
most widespread development frameworks and languages to program GPUs are CUDA R© by
NVIDIA R© and OpenCL by the Kronos consortium. While the first one is devoted to the use of
NVIDIA R© devices, the latter was developed with the support of several vendors who want to
allow a common approach to the programming of multi-core devices (both GPUs and CPUs).

Mainly due to the technological advances required by the massive computer game and video
editing markets, current video processors provide computing power, in terms of operations per
second (FLOPs) which are vastly larger than those offered by CPUs.

Table 1 shows the characteristics of some of the most recent GPUs on the market which are
particularly suited to scientific computation. Besides the large number of cores, these processors
have a large bandwidth to dedicated on-board memory, which is a key factor to allow a large
computing throughput. On the other hand, one of the limitations for the use of GPUs in scientific
computation is due to the need to access such devices through a PC bus which - despite the
significant bandwidth provided today by the new PCI-express gen 3, up to ∼ 16GB/s - is often
the most important bottleneck for real-time applications.

2. Real-time triggering in HEP
In High-Energy Physics (HEP) experiments, the trigger system has a central role, which often
determines the significance and the discovery potential. The trigger system must decide, usually
based on limited and partial informations, whether the physics event observed in a detector is
interesting. The use of such real-time selection allows to optimize the usage of the finite data
acquisition bandwidth, and to limit the amount of disk space required to store the data for the
subsequent offline analysis stage. Online selection is performed by arranging the trigger system
in a cascaded set of computation levels. The first, or lowest, trigger level is usually implemented
in hardware, often based on custom electronics tailored to the experiment and normally distinct
from the data acquisition system. Nowadays these systems are often implemented using
programmable logic (FPGA), which offer quite some flexibility and reconfiguration capability.



In some cases, however, these kind of computations are performed on dedicated VLSI chips
developed for the specific project [2], sacrificing flexibility and scalability for speed.

The following, “higher”, trigger levels are today commonly implemented in software, using
dedicated farms of commodity PCs. The use of commercial technology, computers and networks,
allows to have very flexible and scalable trigger systems. The event rate which these trigger
levels must handle has been already largely reduced by the upstream hardware trigger levels, so
that more complex decisions can be taken, based on more complete event informations, just by
increasing the computing resources.

The time required to complete an event selection is not a big issue in higher trigger levels,
because the large amount of inexpensive memory (RAM) in today’s PCs allow to store events
for times of the order of seconds, thus relaxing the latency requirements for the algorithms. This
is usually not the case for the lowest hardware trigger levels, since the memory buffers in the
readout electronic boards, which have to temporarily store the high-rate incoming events while
trigger selections are performed, often limit the maximum latency to tens of microseconds.

A better approach would be therefore one in which all the data is brought directly to PCs,
eliminating the hardware trigger levels. However, present HEP experiments must handle data
rates so large to make such “triggerless” architecture unrealistic from a resource point of view:
the bandwidth of general-purpose network systems is often insufficient to bring all data on PCs,
and the raw computing power of individual PCs does not match, for complex computations, the
required elaboration rates, to keep the number of PCs to affordable and manageable levels.

3. The use of GPUs in low-level triggers
Even if a fully “triggerless” approach is at the moment unrealistic, graphic processors represent
a viable alternative to fill the gap between a multi-level trigger system with a hardware lowest
level and a system which does not require any real-time hardware processing on reduced event
information. Indeed GPUs do provide a large raw computing power on a single device, thus
allowing to take complex decisions with a speed which can match significant event rates.

In a standard multi-level trigger architecture GPUs can be easily exploited in the higher
software levels: being powerful computing devices, they can boost the capabilities of the
processing system, thus allowing more complex computations to be performed without increasing
the scale of the system itself. This is the case of the use of GPUs in the software trigger level
(Level 2) of the CERN ATLAS experiment, as discussed later on.

The use of GPUs in lowest trigger levels, on the other hand, requires a careful assessment of
their real-time performances. A low total processing latency and its stability in time (on the
scales of “hard” real-time) are indeed requirements which are not of paramount importance in
the applications for which GPUs have been originally developed. As mentioned above, the issue
is related to the fact that in common usage of GPUs as graphics co-processors in computers,
data is transferred to the GPU - and results are transferred back - through the PCI-express
computer bus. Moreover, in order to better exploit the parallel GPU architecture, computing
cores must be saturated, thus requiring the computation on a significant number of events after
a buffering stage.

Considering a system in which data transfer occurs through a standard ethernet network,
figure 1 shows the steps required for GPU computing, in a standard approach. Data from the
detector reaches the Network Interface Card (NIC) which copies them periodically on a dedicated
area in the PC RAM, from which they are copied to the user space memory where applications
can process them. Here events are possibly buffered in order to prepare a sufficient data load for
the following stages, and they are copied to GPU memory through the PCI express bus. The
host (the PC on which the GPU card is plugged) has the task of launching the GPU kernel,
which operates on the data. Computation results can be sent back to the host for further
processing or distribution to the detectors, to ultimately trigger the reading of the complete



Figure 1. Schematic view of data
transport from NIC to GPU

Figure 2. Time budget of data processing
on GPU.

data. Figure 2 shows, for a data packet of 1404 bytes, the budget for the processing time for
a use case in which the kernel fits the data to a circle, as discussed later, which is a typical
example of a computation required to extract significant information from raw detector data.
In this example the most important contribution to the total latency is actually due to the data
transfer latency from the NIC to the GPU memory. In order to reduce this contribution, in the
project described here we studied two approaches: the use of a dedicated NIC device driver with
very low latency (PFRING, by NTOP[1]) and the use of a direct data transfer protocol from a
custom FPGA-based NIC to the GPU (Nanet); these two approaches will be described in detail
in the following.

The use of a custom NIC driver allows to perform the low-level trigger processing directly
on a standard PC, but the results - in terms of total latency - might be affected by the PC
characteristics (mother-board, CPU, etc.) because the data transfer time and its fluctuations
are controlled by the host computer. In the second approach, instead, the data transfer is fully
controlled by the custom NIC without any participation from the PC, at the price of using a
non-standard hardware device.

3.1. Driver DNA-PFRING
Socket transmission on standard drivers does not guarantee the highest packet capture speed,
especially if transmission is realized with small-size packets and high rate. As described above,
the copy of packets from the NIC to the system buffers and then to the userland, is done by the
CPU in two steps. PFRING is a new kind of socket that works in connection with the DNA
(Direct NIC Access) driver, both developed by NTOP [1], in order to allow direct copy of packets
from the NICs buffers to the memory through DMA (Direct Memory Access). A schematic
drawing of PFRING working principle can be found in Fig.3: using the DNA driver, data
transfer is managed by the NICs NPU (Network Processing Unit) processor, through circular
buffers that are directly accessible for the applications, and therefore for the copy to the GPUs
memory. The scheduler that manages data transfer from the NIC to the GPUs memory has been
implemented in a partially preemptive way in parallel streams, in order to hide data transfer
latency by exploiting concurrent copy-execution allows by last generation GPUs. Preliminary
tests (Fig. 4) show that this scheme improves by a factor higher than 2 the data transfer time
and, most important, reduces fluctuations to a negligible level.



Figure 3. Scheme data processing using
DNA driver (courtesy of NTOP).

Figure 4. Comparison between standard
data transmission and by using PFRING
socket.

3.2. Nanet
The NaNet board [4] is a customized version of the APEnet+ [3] NIC designed to be integrated
in the GPU-based low level trigger system of the NA62 RICH detector. Adding to the APEnet+
design the logic to manage a standard GbE interface, NaNet is able to exploit the GPUDirect
P2P capabilities of NVIDIA Fermi/Kepler GPUs equipping a hosting PC to directly inject into
their memory an UDP input data stream from the detector front-end, with rates compatible
with the low latency real-time requirements of the trigger system.

In order to render harmless the unavoidable OS jitter effects that usually hinder system
response time stability, the main design rule is to partition the system so that the hosting PC
CPU can be offloaded from any data communication or computing task, leaving to it only system
configuration and GPU kernel launch tasks. Within NaNet, this meant that data communication
tasks were entirely offloaded to a dedicated UDP protocol-handling block directly communicating
with the P2P logic: this allows a direct (no data coalescing or staging is performed) data transfer
with low and predictable latency on the GbE link → GPU data path.

The UDP OFFLOAD block comes from an open core module 1 built for a Stratix II 2SGX90
development board. Focus of that design is the unburdening of the Nios II soft-core
microprocessor onboard the Stratix II from UDP packet management duties by a module
that collects data coming from the Avalon Streaming Interface (Avalon-ST) of the Altera
Triple-Speed Ethernet Megacore (TSE MAC) and redirects UDP packets along a hardware
processing data path. The Nios II subsystem executes the InterNiche TCP/IP stack to setup
and tear down UDP packet streams which are processed in hardware at the maximum data rate
achievable over the GbE network.

Bringing the open core into the NaNet design required some modifications, first of all the
hardware code was upgraded to work on the Stratix IV FPGA family; this upgrade made
available the improved performances of an FPGA which is two technology steps ahead in respect
to the Stratix II.

The synthesis performed on a Stratix IV achieves the target frequency of 200 MHz (in the
current APEnet+ implementation, the Nios II subsystem operates at the same frequency).

Current NaNet implementation provides a single 32-bits wide channel; it achieves 6.4 Gbps
at the present operating frequency, 6 times greater than what is required for a GbE channel.

Data coming from the single channel of the modified UDP OFFLOAD are collected by the NaNet
CTRL. NaNet CTRL is a hardware module in charge of managing the GbE flow by encapsulating

1 NIOS II UDP Offload Example, http://www.alterawiki.com/wiki/Nios_II_UDP_Offload_Example

http://www.alterawiki.com/wiki/Nios_II_UDP_Offload_Example


Figure 5. Distribution plot over 60000
samples of a NaNet packet traversal time.

Figure 6. Average and 99-percentile
NaNet latency vs. buffer size.

packets in the typical APEnet+ protocol (Header, Payload, Footer).
Benchmarks for latency and bandwidth were carried out. In order to measure system latency

and its fluctuations a “system loopback” configuration was used: connecting one GbE interface
of the hosting PC to the NaNet, we were able to generate and receive a UDP stream in a single
host process, measuring latency as the difference of host processor Time Stamp Counter register
at send and receive time of the same UDP packet (see fig. 6).

Latency inside the NIC was measured adding 4 cycles counters at different stages of packet
processing; their values are stored in a profiling packet footer with a resolution of 4 ns; for a
standard 1472 bytes UDP packet, traversal time ranges between 7.3 us and 8.6 us from input of
NaNet CTRL to the completion signal of the DMA transaction on the PCIe bus (see fig. 5).

For the same packet size, saturation of the GbE channel is achieved, with 119.7 MB of
sustained bandwidth.

We foresee several improvements on the NaNet design:

• Implementing a custom logic dedicated to destination address calculation for the data
receiving circular buffer in GPU memory, currently implemented by the Nios II, in order
to lower latency and its fluctuations, especially at lower receiving buffer sizes.

• Adding a buffering stage to the NaNet CTRL, enabling the coalescing of consecutive UDP
payload data into a single APEnet+ packet payload, improving bandwidth figure also with
small-sized UDP packets.

• Increasing the number of supported GbE channels, in order to sustain eventually the higher
bandwidth demands from the experimental requirements.

• Implementing a 10-GbE data link interface.

3.3. A physics case: NA62
The NA62 particle physics experiment at CERN [6] is considered as a use case for the study of
the use of GPUs at the lowest trigger level, as discussed above. The NA62 trigger is organized in
three levels: the first level is implemented on the very same FPGA-based boards which perform
detector data readout [5], while the next two levels are implemented on PCs. The first hardware
level (Level 0, L0) must handle an input event rate of order 10 MHz and, with a rather long
maximum latency of 1 ms, applies a rejection factor around 10, to allow a maximum input rate
of 1 MHz to the second trigger level (Level 1, L1) implemented in software. This level, together
with the following and last one (Level 2, L2), must reduce the rate to about 10 kHz in order to
allow permanent data storage for later offline analysis.



Figure 7. Throughput as a function of
number of events for last generation GPUs.

Figure 8. Total latency (including data
transfer and computing).

In the standard implementation of L0, the trigger primitives contributing to the building
of the final trigger decision are computed on the readout board FPGAs, and are very simple
conditions, mostly based on the event hit pattern or multiplicity. The use of processors, such
as GPUs as discussed in this paper, would rather allow building more complex physics-related
trigger primitives, such as energy or direction of the final state particles in the detectors.

As a first use case, we studied the possibility of reconstructing, in GPUs, the ring-shaped
hit patterns in a RICH Cerenkov detector. Such detector, described in [7], can provide a
measurement of the velocity and direction of charged particles (such as muons and pions) which
traverse it, thus contributing to the computation of other physical quantities of the such as the
decay vertex of the K+ and the missing mass. The use of such informations allows to implement
highly selective trigger algorithms also for other interesting decay modes.

We studied different ring reconstruction algorithms in order to assess which ones are most
suited to a GPU parallel implementation.

As described in [8] the “math” algorithm, based on a simple coordinate transformation of
the hits which reduces the problem to a least square procedure, was found to be the best one in
terms of computing throughput (for single rings). This algorithm was implemented and tested
on different GPUs, such as the NVIDIA Tesla C1060, Tesla C2050 and GeForce GTX680 (in
increasing order of processing core generation). The computing performance of the C2050 and
GTX680 proved to be a factor 4 and 8 higher than that of the C1060. In figure 7 we show
the computing throughput for these devices as a function of the number of events processed in
one batch. The effective computing power is seen to increase with the number of events to be
processed in one go; the horizontal line shows the requirement related for an online trigger based
on the RICH detector in NA62.

Figure 8 shows instead (for NVIDIA Tesla C2050 and GeForce GTX680 devices) the total
latency, which includes data transfer times to and from the GPU and the kernel execution time.
The significant reduction of the latency for the newer GTX680 GPU is due to the faster data
transfer due to the presence of the gen.3 PCI express bus. Also in this case the maximum latency
allowed by the NA62 application is seen to be attainable when a reasonable number of events is
processed in one batch.

4. Application of GPUs in High Level Triggers
The ATLAS trigger [9] has performed remarkably well so far. The constant increase of the
LHC luminosity up 3× 1034Hz/cm2 and the successive upgrade at 1× 1035Hz/cm2 requires a



constant renovation of the trigger strategy. Currently, a first upgrade is foreseen in 2018 [10],
when realtime tacking capabilities will also be available, followed by a complete renovation of
the trigger and detector systems in 2022. The ATLAS trigger system is organized in 3 levels.
The first-level trigger (LVL1) is built on custom electronics, while the second-level (LVL2) and
the event-filter (EF) are implemented in software algorithms ran on commodity PC farms. The
LVL2, based on the concept of the Region-of-iterest (RoIs), offers a natural study case for the
deployment of GPUs in the realtime environment of a LHC experiment. The LVL2 algorithms
are now implemented as approximated solutions of complex primitives such to stay within the
time budget. The deployment of GPUs will allow to better exploit the potentiality of the
detectors, implementing refined algorithms with higher selection efficiency. Such a result will
improve the sensitivity to interesting physics signals and the ability to cope with an higher
rate of multiple pp interactions (pileup). A fundamental aspect to exploit the computational
performances of the GPUs is the possibility of parallelizing the execution of the algorithms.

5. Conclusions
The use of graphics processing units in scientific computing has become very common in the last
years. The GAP Project ([11]) ha been recently funded to apply GPUs in real-time HEP trigger
systems and for medical imaging. In particular, for the lowest trigger levels, work has to be done
in order to reduce the contributions to the total latency due to data transfer from the detectors
to the GPU. Two strategies are being pursued at the moment: the first makes use of a special
driver that allows direct copy of the data from the NICs buffers avoiding redundant copies; the
second one foresees to use a FPGA-based board for establishing a peer-to-peer connection with
the GPU. Possible applications of this technique are the low level trigger of the NA62 Experiment
at CERN, in particular for the reconstruction of photon rings in the RICH detector. Preliminary
results show that current GPUs are suitable for sustaining the rate and minimizing the latency
to an acceptable level for the experiment. Possible applications to high trigger levels are under
study, in particular for a possible extension of the muon trigger of the ATLAS Experiment at
CERN.
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