
1

Beyond the Web: Mobile WAP-based Management

Luca Deri
1

Centro Serra, University of Pisa

Mobility, tightening competition and changes in system administrator behaviour present new challenges
in the management world. In particular, the need to constantly monitor services and rapidly identify and
fix problems is becoming increasingly important. The Internet has made possible to offer a comprehensive
range of management services and applications accessible over the web. Nevertheless, in the near future
a new and improved way to manage systems will be done by means of mobile phones.
This paper shows how existing web-based solutions can be enhanced to support the new generation of me-
dia phones based on WAP (Wireless Application Protocol) technology. Although the specific focus of this
work is on management solutions, the results are general and applicable to many other types of existing
web-based applications. Finally, some implementation details and experiences drawn from adding a WAP
interface to an existing web-based management application are described.

Keywords: Network Management, Internet Technologies, WAP.

1. Introduction
In mid 90s, some people [1, 2, 4] pioneered the integration of Internet technologies into the man-
agement world. Their vision was clear: give people the ability to manage networks and systems in-
expensively over the web without having to use complex tools difficult to install, configure and use.
The web demonstrated that using proxy applications [6] it was possible to abstract complex tech-
nologies such as those used in the management field and map them on simple languages and proto-
cols such as those used by the web. The use of proxies enabled developers to enrich existing
applications giving them a web appearance without having to rewrite or deeply modify the design
of such applications. Today we can state that their vision was correct as almost every management
system offers a web console from which operators have access to advanced management facilities
in a user friendly way using a standard web browser.
Once the web-based management was born, it was clear that this was not the end but just the begin-
ning of a transition towards a new management paradigm. The Internet has made it possible to offer
a comprehensive range of management applications and services inexpensively over the web. How-
ever, one channel for improved, ubiquitous, dynamic services will be the mobile phone. This state-
ment is motivated by several reasons:

• There are already more mobile subscribers than web clients and their number is rapidly
increasing.

• Users tend to be mobile and the mobile phone allows people to be located wherever they are.
This is especially true in the management field where administrators may be moving between
physically separate locations in order to perform their duties.

• Administrators need to be promptly informed about problems and service interruptions. This
can be easily done notifying the problem to the administrator’s mobile phone rather than
using email that requires users to be connected to a network and have the mail client open.

• User experiences drawn from PDA (Personal Digital Assistant) usage, have shown that users
are willing to accept a simplified user interface in favour of mobility. Being able to check
network status and perform actions as problem arise is much more convenient using a mobile
phone than a desktop computer or even a laptop. Mobile phones are easier to use, smaller and
lighter and they are instant, ubiquitous, and truly portable.

A few years ago, the author decided to simplify an existing web-based network management plat-
form [5] he developed in order to make it usable from mobile devices. The outcome of the project

1.Centro Serra, University of Pisa, Lungarno Pacinotti 43, Pisa, Italy, deri@ntop.org, http://www.ntop.org/.



2

[11, 12] has been web-based management console running on a PDA interconnected to the Internet
via the embedded GSM phone. It was clear that this solution was rather primitive because this PDA
was a sort of mini sub-notebook not able to truly exploit any GSM features such as SMS (Short Mes-
saging System) that could have been used to asynchronously notify the user when specific condition
happened.
With the advent of the new generation of media phones based on WAP technology, it is now possi-
ble to take fully advantage of mobility with no compromises contrary to what happened with the
previous project. This paper introduces WAP-based management, a novel approach to network and
system management tailored for mobile users. The goal is to show how existing management appli-
cations can profitably take advantage of WAP technology for creating a new generation of manage-
ment applications suitable for mobile network and system administrators. Therefore, this work
should be viewed as a supplement and not substitute for existing network management systems and
applications, which addresses the needs of certain types of mobile end-users. 
The following sections describe some experiments that the author did in the pre-WAP age using
conventional GSM phones, then introduce the WAP, highlights how existing web-based applica-
tions can take advantage of it, and show how an existing web-based traffic monitor has been extend-
ed in order to provide a WAP interface.

2. Towards Mobile Network Management: from SMS to WAP
In mid-1998 the Centro Serra, responsible for providing network services to the whole University
of Pisa, needed an application for monitoring Internet services provided by Serra. The author devel-
oped a simple monitoring application named Sniffy mostly written using the Perl language [14]. This
application was responsible to control services such as DNS, Internet news/mail, FTP/WWW, and
dialup access. Sniffy was basically a very big infinite loop containing several checks for detecting
the status of each monitored service. Some CGI scripts were used to present on the web the status
of the services monitored by Sniffy. The management console was notified by Sniffy via SNMP
traps whenever one of the checks failed. System administrators could define an action to be per-
formed for each alarm received by the management console. Typical actions were email notifica-
tion, and execution of short shell scripts for fixing simple problems (e.g. a service was not available
because the corresponding daemon died unexpectedly). Although Sniffy was working reliably,
some of its users requested the author to extend it in order to notify them about the most severe prob-
lems. As during the weekend Serra computer systems were mostly unattended, the only way to no-
tify the system administrators was via SMS using a GSM phone. Early experiments using some
HTML to SMS gateways freely available on the Internet demonstrated that the SMS solution was
very promising. The only drawback of this approach was the monodirectional communication from
Sniffy to the administrators via SMS. In some situations it would have been useful for administra-
tors to perform some actions via SMS. For this reason the author decided to connect a GSM cellular
modem [13] to the serial port of the workstation where Sniffy was running. A GSM modem is like
a conventional modem: it just lacks of the phone socket that has been replaced by an antenna and a
GSM SIM (Subscriber Interface Module) card reader. The modem can be controlled via a terminal
emulator using AT commands. Each command is made up of three elements: the prefix (AT), the
command body, and a termination character (usually the carriage return is used). For instance the
command AT+CPIN=”<pin number>” is used to enter the SIM PIN number. As the modem could be
shared among several process both local and remote, the author decide to write a gsmd responsible
to control the access to it. The gsmd opens the serial port to which the modem is attached and listens
for requests on a specified UDP port. Gsmd clients register with the gsmd for receiving incoming
SMSs, and use the gsmd for sending SMS. For this purpose the gsmd was able to understand a sim-
ple language made of three simple commands:

• REGISTER <SMS prefix>

This command instructs the gsmd to deliver to the client all the received SMS that start with
the specified prefix. For instance if a client sends the gsmd “REGISTER CMD”, the gsmd
delivers it all the received SMS messages whose text starts with CMD. Please note that multiple



3

clients can register the same prefix, so in this case the gsmd delivers the received message to
multiple clients.

• SEND SMS <destination phone number> <message>

The client requests the gsmd to send the specified message to the destination number.

• DEREGISTER

The client cancels all the previous REGISTER requests.

As SMS messages were rather short (up to 160 characters), a UDP packet was large enough to fit
every message. In this architecture the gsmd was always active, whereas clients could be started as
needed. Sniffy was then extended by adding a new Perl script named Sniffy-GSM. This script was
both a parser for a simple language and a gsmd client. Each command started with CMD prefix, so
that the gsmd could route to Sniffy-GSM all incoming SMS starting with such prefix. In this way,
the network administrators could interact with Sniffy using this simple language and not only the
other way round. For instance, suppose that Sniffy detected that on host mailserver.unipi.it the
partition /var/spool/mqueue was 95% full. This problem might indicate that either sendmail was
not working properly or that for some reason the mail queue needed to be flushed. In case Sniffy
would have send to the network administrator a SMS message containing the following text
“mailserver:/var/spool/mqueue 95% full: 1=restart 2=flush”. The network administrator
could either decide not to perform any action, or ask Sniffy-GSM to perform either action 1 (restart
sendmail) or 2 (flush queued messages). If the administrator decided to restart sendmail on host
mailserver, it should have replied to the previous message with the following text “CMD mailserver
EXEC 1”. As far as security was concerned, Sniffy-GSM did not process any incoming SMS mes-
sage originated by a phone number not included in a list of numbers allowed to talk with it.

The use of a GSM modem made Sniffy more powerful that the previous version. Unfortunately this
approach had still some rough edges:

• Error Prone
The administrator should have replied to Sniffy-GSM with a message in the specified format.

• Limited Interaction
This solution was perfect for reporting problems and performing simple predefined actions,
but unsuitable for more complex tasks due to the limited SMS message length.

• User Friendliness
Management information was presented in a simple textual fashion not as rich as the one
presented by a web browser.

Seen all these limitations, the author decided to explore WAP, a very promising and standard tech-
nology that started to become available at the end of the Sniffy project. The following sections de-
scribe what is WAP and how it has been profitably used for monitoring the campus network of the
University of Pisa.

3. Introduction to WAP
WAP is an open protocol for wireless applications developed by the WAP forum, a non-profit in-
dustry association to which all industry participants can belong. WAP [15] specifies an application
framework and network protocols for wireless devices such as mobile telephones, pagers, and
PDAs. While most of the technology developed for the Internet has been designed for desktop and
large computers with medium to high bandwidth, wireless data networks present a more constrained
communication environment compared to wired networks. The WAP specifications extend and lev-
erage mobile networking technologies (such as digital data networking standards) and Internet tech-
nologies (such as XML, URLs, scripting, and various content formats). 



4

Being the WAP programming model similar to the WWW programming model, it allows develop-
ers to leverage existing tools (e.g., web servers, XML tools, etc.) and take advantage of a familiar
programming model, and proven architecture. In addition, the WAP forum has introduced optimi-
sation and extensions in order to exploit peculiar characteristics of the wireless environment taking
advantage of the lessons learned using the web.

Figure 1. WAE (Wireless Application Environment) Logical Model

All content is specified in formats that are similar to the standard Internet formats. Content is trans-
ported using standard protocols in the WWW domain and an optimised HTTP-like protocol in the
wireless domain. The WAE architecture allows all contents and services to be hosted on standard
Web origin servers that can incorporate proven technologies (e.g. CGI). All content is located using
standard URLs. WAE enhances some of the WWW standards in ways that reflect the device and
network characteristics adding support for mobile network services and paying attention to memory
and CPU processing constraints that are found in mobile terminals. This means that WAE provides
support for low bandwidth and high latency networks.

WAE key elements include:

• WAE User Agents
Each WAP device includes built-in browsers that display content to the end-user. Browsers
interpret network content referenced by a standard URL. WAE includes user agents for the
two primary standard contents: encoded WML (Wireless Markup Language) [16] similar to
HTML and compiled WMLScript (Wireless Markup Language Script) [17] similar to JavaS-
cript. Contrary to what happens in the Internet where HTTP transports unencoded, plain text
HTML, WML is transmitted in encoded form whereas WMLScript is compiled in bytecode
format. 

• Content Generators
Applications (or services) on origin servers (e.g., CGI scripts) produce standard content
formats in response to requests from user agents in the mobile terminal. Typical content
generators are servers used in the WWW today that have been enhanced to serve WML infor-
mation. In this case, the conversion from HTML to WML can be either done by the server or
by means of a gateway.

• Standard Content Encoding
Standard content encoding includes compressed encoding for WML, bytecode encoding for
WMLScript, standard image formats, and multi-part container format.

• Wireless Telephony Applications (WTA)
A collection of telephony specific extensions for call and feature control mechanisms that
provide authors and end-users advanced mobile network services.

Client Gateway Origin Server

Encoder
DecoderWAP HTTP

Web
ServerWAE

User
Agent

WML
WMLscript Protocol

Adapters

Encoders CGI, ASP
Perl, PHP



5

As it happens with the web, a user agent on the terminal typically initiates a request for content that
is served by the origin server. In order to return content that can be handled by the terminal, WTA
includes mechanisms that allow origin servers to deliver generated content without a terminal’s re-
quest. The user agent characteristics are communicated to the server via standard capability negoti-
ation mechanisms that allows applications on the origin server to determine characteristics of the
mobile terminal device including global device characteristics as WML version supported, WMLS-
cript version supported, floating-point support, and supported image formats. Whenever appropri-
ate, an end-to-end secure connection can be established using WTLS (Wireless Transport Layer
Security Specification) [18] that stands to WTP (Wireless Transaction Protocol) [19] as HTTPS
stands to HTTP.

4. Why WAP?
Author’s interest for WAP comes from the fact that it is the first open effort towards bringing Inter-
net-like services to mobile devices. Several PDA manufacturers have tried over the past few years
to incorporate lightweight browsers into their handheld devices in order to give access to Internet
services. Although they tried hard, the result are devices that sport several limitations compared to
desktop computers and laptops but that do not take great advantage of the mobile environment.
Talking about HTML for instance, many PDA manufacturers decided to support a subset of HTML
because the full standard was far too complex for handheld devices. The WAP consortium instead
acknowledged this and defined WML that is specifically tailored for mobile devices.
Another point to take into account is that web services are accessed using client applications that
pull data out of a server. Due to this design solution, the server has no means to push data to the
client when specific condition arise and the client has not other way other than doing a periodic ac-
tive poll or to implement tricks [8] to partially overcome this limitation. Fortunately WAE defines
a standard mechanism for the server to push data to the client hence enable development of mobile
applications such as online stock trading, news broadcast or system and network management
where it is very important to notify the administrator as soon as specific situations occur.
For the above reasons WAP looks to the author as a good technology for implementing mobile re-
mote services that will help administrators to meet their targets by creating better management serv-
ices that can be put side by side to the ones based on the web. The idea is not to replace existing
web-based management applications with WAP solutions, but rather to provide a simple path for
accessing management services using mobile devices.
The following section covers the design and implementation of a WAP-based traffic monitoring ap-
plication based on an existing web-based application. This is to demonstrate that WAP-based man-
agement is feasible and adds great value with limited development effort.

5. Ntop: a Web/WAP-based Traffic Monitoring Application
Ntop [3] is an open-source [13] web-based traffic monitoring and network intrusion detection
(NIDS) application, available under the GNU public licence. This statement does not just mean that
ntop's source code is freely available on the Internet, but also that many requirements came directly
from people who deployed ntop. The author designed the first version of ntop and then accommo-
dated new requirements and extensions to the original architecture, strongly influenced by the Web-
bin [4] architecture. As depicted in the following figure, the ntop architecture is divided in two parts:
network traffic analysis and data representation.



6

Figure 2. ntop Architecture

The ntop engine captures packets from the network and builds an internal data representation of the
actual network traffic status. In addition, the engine verifies whether each captured packet, matches
one or more NIDS rules and keeps track of the security violations identified. Ntop contains an in-
ternal HTTP/HTTPS engine that allows web browsers to see ntop as a web server. Network traffic
reports are generated on the fly by the embedded web report engine. Application extensibility is
guaranteed via plugins that are loaded at application startup. A ntop plugin is a software component
with a well-defined interface that is not statically linked to the application but it is loaded at runtime.

As shown in figure 1, a simple way to give an existing web application a WAP appearance is by
means of a WAP gateway. The gateway takes care of the conversion of HTML into WML, and maps
on the fly WAP requests into HTTP requests. Using this approach it is rather easy to move from the
web to WAP. Unfortunately, the ntop project experience has shown that this transition is not com-
pletely smooth. In fact, the conversion from HTML to WML can present several challenges due to
the different nature of the devices involved:

• Hyperlinks
HTML pages usually contain links to other pages. As HTTP can retrieve only one page,
everytime the user selects a link pointing to an external page, the web browser has to contact
the web server and retrieve the requested page. Contrary to HTML, WML pages are grouped
in decks. This means that a link to card in the same deck does not require the mobile device
to contact the server. For this reason, it is necessary to efficiently group in the same deck
several pages related to similar information in order to decrease the number of communica-
tions with the server. In general, HTML to WML gateways split the HTML page into several
cards of the same deck without making any optimisation that could place in the same deck
different related pages.

• Tables
Like HTML, WML supports tables. Unfortunately mobile devices have a rather small screen
usually with vertical scrolling only. This means that tables with three or more columns are
not rendered nicely on a WAP device. For this reason, it is necessary to either avoid tables or
to use small ones because otherwise the gateway would split them in several smaller tables.
These tables are difficult to read as the HTTP server has no way to send the gateway hints
about how to divide them unless using non standard HTML tags or exploiting comments.

• Images
WML supports images. Common image formats such as GIF and JPEG have been dropped
in favour of WBMP (Wireless BitMaP) that are much smaller and more suitable for low-
resolution devices. Supposing that the gateway supports on the fly image conversion and
scaling, for better results HTML pages should include, if any, tiny icons able to fit on a small
screen.

• Forms

Packet Capture

Packet Analyser
and Correlator SQL Database

ntop
UDPHTTP

HTTPS

Web Browser

Web Report
Engine

SQL Event
Emitter



7

Due to the way HTML forms work, each time the user submits a form, the web browser sends
the request to the web server that process it and sends back a response page. Although this
mechanism works in WAE, WML is much more powerful of HTML in this respect. For
instance, WML allows people to specify the form field format and compute locally simple
forms using WMLScript without the need to contact the server every time a form is
submitted. As these features are not present in HTML, the gateway cannot take advantage of
them.

Seen all the limitations of automatic HTML to WML conversion, the author decided to write a new
plugin to give ntop a native WAP interface. This plugin implements a WML report facility similar
to the existing ntop web interface. The WML view is much simpler than the one offered by HTML
and contains only the essential information. As ntop is a self-founded project, for the purpose of re-
ducing development costs and because in Italy WAP is not yet fully supported by the mobile carri-
ers, the author decided to use a WAP simulator part of the Nokia WAP Toolkit [9]. 

Figure 3. Ntop for WAP: Architecture

The simulator is a Java application that reproduces a real WAP phone that connects to ntop via HT-
TP. For connecting ntop to a real mobile WAP device, it is necessary to download the Nokia WAP
gateway able to push WML pages to the wireless network. In this case the architecture shown in the
previous figure will be modified as follows: a real WAP-enabled phone will be used instead of the
simulator, and the gateway will communicate with ntop over HTTP as the simulator does. The sim-
ulator connects via HTTP to the URL http://<ntop host>:<ntop port>/plugins/WAPPlugin
that is the navigation entry point for navigating through network traffic information. All the hyper-
links generated by the WAP plugin are contained under the /plugins/WAPPlugin subtree so that
simulator requests are always handled by the plugin and do not interfere with other ntop compo-
nents. As the plugin is loaded dynamically at ntop startup, it has full access to ntop internal data so
it allows WAP users to navigate through traffic information with no restrictions with respect to ntop
web users. The use of plugins has several advantages over monolithic applications:

• Cleaner code design: the boundaries defined by the plugin interface help the developer
specify the information and the services (WAP-specific code is not mixed with ntop).

• Simple tailoring: users can selectively activate functionality at runtime only when needed.

• Low cost and resource usage: memory and disk space are saved because there is no need to
load/use all the components but just the ones really needed. General performance is improved
because only the necessary resources are used.

• Easy extensibility: developers can easily add new functionality to ntop by creating new
plugins without having to the hack the ntop kernel code.

The following figure shows how ntop for WAP looks from the simulator.

WAP
Simulator

ntop

HTTP/WML HTTP

HTTPS
Web Browser

WAP
Plugin



8

Figure 4. Ntop for WAP: Simulator Screenshots

Users can scroll vertically using the arrow keys, whereas hyperlinks are selected by using the middle
key. The two menus on the bottom of the screen are accessed by using the keys below the menu
name. The WAP interface allows seeing relevant network activities such as top senders/receivers,
view traffic statistics and see alarms produced by the ntop IDS. In addition, it is possible to see basic
information about each relevant host as shown in the last picture of the previous figure. The use of
WML decks allowed to greatly reduce the number of communications between ntop and the simu-
lator, and allowed large pages to be divided in subpages accessible using the bottom screen menus.
As WML is rather similar to HTML, the WAP plugin has been mostly developed reusing the web
report code. It is worth to note that although the WAP plugin uses HTTP such as the web interface,
the HTTP header is slightly different as WML uses an encoding schema different than the one used
by HTML.

In the ntop WAP architecture, the WAP gateway is needed just for pushing ntop WML pages from
the LAN to the mobile network and vice-versa but not for HTML to WML conversion. Beside ob-
vious speed enhancements due to the lack of HTML to WML conversion, this solution allowed the
author to greatly optimise the decks and produce pages that render nicely on small displays. How-
ever, even supposing to have an almost perfect and performant HTML to WML gateway, the ntop
experience drawn from user feedback has taught the author that the goal of a WAP application is
usually different from the equivalent web-based application, at least in the management field. The
difference is due to the different nature of users. A mobile user does not pretend to have a full net-
work view, but uses its mobile WAP device for receiving unsolicited notifications about network
problems and performing some basic operations when specific situations occur. The same user at-
tached to a web terminal wants to have a richer view of the network and be able to perform complex
operations unlikely to do with a GSM phone while in the street. This means that the network traffic
view offered by ntop to a WAP user has to be simple, should contain only the necessary information,
must be fast to load, and should render nicely on a small screen.

6. Final Remarks
Network managers are becoming increasingly mobile and this trend will require extending existing
applications in order to make them accessible to mobile users. This paper has shown how existing
web-based applications can be extended in order to take advantage of emerging standard technolo-
gies such as SMS and WAP. Two main directions different approaches for adding a WAP interface
to existing web-based applications have been analysed and compared. The paper also presented the
design and implementation of ntop for WAP, the first WAP/Web-based traffic monitoring applica-
tion freely available on the Internet. The results and experiences drawn from the ntop project are
general and applicable to generic web-based applications and not only to the field of network and
system management.

7. Availability
Ntop for both Unix and Win32 is distributed under the GPL2 licence and can be downloaded free
of charge from both the ntop home page (http://www.ntop.org/) and other mirrors on the Internet.



9

Some Unix distributions including but not limited to FreeBSD and Linux, come with ntop prein-
stalled.

8. Acknowledgements
The authors would like to thank all the ntop users and early adopters who deeply influenced the de-
sign of the overall architecture with all their comments and suggestions.

9. References
1. G. Bogler, Internet - New inspiration for Telecommunications Management Network, Pro-

ceedings of IS&N'97, Como, Italy, May 1997.
2. B. Bruins, Some Experiences with Emerging Management Technologies, Simple Times 4(3),

1996.
3. L. Deri and S.Suin, Effective Traffic Measurement using ntop, IEEE Communications Maga-

zine, May 2000.
4. L. Deri and A. Weder, Webbin’ CMIP, Poster proceeding of the 4th International WWW Con-

ference, Darmstadt, Germany, April 1995.
5. L. Deri, Surfin' Network Management Applications Across the Web, Proceedings of 2nd Int.

IEEE Workshop on System and Network Management, 1996.
6. E. Gamma, and other, Design Patterns: Elements of Reusable Object-Oriented Software, Ad-

dison-Wesley, 1994.
7. M. Jander, Web-based Management: Welcome to the Revolution, Data Communications,

1996.
8. J.P. Martin-Flatin, Push vs. Pull in Web-Based Network Management, EPLF Technical Re-

port SSC/1998/022, July 1998.
9. Nokia, Nokia WAP Toolkit version 1.2, http://www.forum.nokia.com/, September 1999.
10. E. Raymond, The Cathedral & the Bazaar, O’Reilly & Associates, ISBN 1-56592-724-9,

1999.
11. J. Reilly, The World Wide Web and Programming Future Broadband Network and Service

Management Applications, Seventh bi-annual Nordic Workshop on Programming Environ-
ment Research (NWPER'96), Aalborg Denmark, May 1996.

12. J. Reilly, P. Niska, L. Deri and D. Gantenbein, Enabling Mobile Network Managers, Proceed-
ings of the 6th Int. WWW Conference, Santa Clara, CA, April 1997.

13. Siemens, Cellular Engine M20/M20 Terminal: Technical Description, Version 5, March
1999.

14. L. Wall and others, Programming Perl, O’Reilly & Associates, 2nd Edition, ISBN 1-56592-
149-6, September 1996.

15. WAP Forum, Wireless Application Environment Overview, http://www.wapforum.org/, April
1998.

16. WAP Forum, Wireless Markup Language, http://www.wapforum.org/, April 1998.
17. WAP Forum, Wireless Markup Language Script, http://www.wapforum.org/, April 1998.
18. WAP Forum,Wireless Transport Layer Security Specification, http://www.wapforum.org/,

April 1998.
19. WAP Forum, Wireless Transaction Protocol, http://www.wapforum.org/, April 1998.

10.Biography
Luca Deri is currently sharing his time between Finsiel S.p.A. and the Centro Serra at the University
of Pisa. He received his Ph.D. in Computer Science with a thesis on Software Components from the
University of Berne in 1997. He previously worked as research scientist at the IBM Zurich Research
Laboratory, and as research fellow at the University College of London. His professional interests
include network management, software components and object-oriented technology. His home
page is http://jake.unipi.it/~deri/.


