
Universita degli studi di Pisa

Facolta di Scienze Matematiche Fisiche e Naturali

Corso di Laurea Specialistica in Tecnologie Informatiche

Tesi di Laurea

Enterprise Voice-over-IP Traffic Monitoring

Relatori: Controrelatore:

Luca Deri Augusto Ciuffoletti

Marco Danelutto

Candidato:

Fusco Francesco

Anno Accademico 2007/2008

Dedicated in loving memory to my grandfather, Giovanni Fusco and to my

parents Antonella Rossi and Pier Luigi Fusco.

Contents

List of Tables v

List of Figures vi

Chapter 1 Introduction 1

1.1 VoIP overview . 2

1.2 Merging network monitoring with service monitoring 3

1.3 Thesis Motivation . 4

1.4 Thesis Scope . 4

1.5 Thesis Requirements . 5

1.6 Thesis Outline . 7

Chapter 2 Related work 9

2.1 VoIP monitoring . 9

2.2 Packet capture . 15

2.3 Packet filtering . 20

2.4 Monitoring hardware . 24

2.5 Monitoring frameworks and libraries 27

2.6 Why a new passive monitoring framework? 30

ii

Chapter 3 VoIP service monitoring 33

3.1 Service oriented monitoring 33

3.2 VoIP service oriented monitoring 35

3.3 VoIP monitoring requirements 45

3.4 Why passive monitoring? . 50

3.5 Challenges . 52

Chapter 4 RTC-Mon framework 54

4.1 Design goals . 54

4.2 Rationale . 56

4.3 Framework overview and design choices 57

4.4 Kernel enhancements . 60

4.5 LibVoIP . 75

Chapter 5 RTC-Mon validation 84

5.1 VoIPMon: RTC-Mon at work 84

5.2 Further RTC-Mon use cases 88

5.3 Performance evaluation . 91

5.4 Thesis validation . 102

Chapter 6 Final remarks 105

6.1 Open issues and future work 106

Appendix A Session Initiation Protocol 108

A.1 Purpose of SIP . 108

A.2 Transport protocols . 109

A.3 SIP entities . 110

A.4 SIP messages . 111

iii

A.5 SIP requests . 114

A.6 Authentication . 116

A.7 Message routing . 116

A.8 SIP and VoIP . 117

Appendix B Real-time Transfer Protocol 121

B.1 RTP sessions . 122

B.2 RTP header . 123

B.3 RTCP . 125

Acknowledgments 132

Bibliography 133

iv

List of Tables

1.1 Thesis requirements . 5

2.1 Monitoring technologies comparison 32

3.1 sample key quality indicators 35

3.2 SIP End-to-End Key Quality Indicators (KQI) and Key Perfor-

mance Indicators (KPI) . 42

3.3 Service anomalies and possible attacks 50

4.1 Typical VoIP traffic pattern 58

5.1 Rate information for various common VoIP codecs. 92

5.2 Maximum theoretical rates for Gigabit Ethernet. 93

5.3 Compile time and number of instructions for a complex BPF

filter. 101

5.4 Time needed to change a rule (a monitored stream) in RTC-Mon.101

A.1 SIP requests . 112

A.2 SIP status codes . 112

A.3 SIP header fields . 113

v

List of Figures

2.1 Linux 2.6 network stack overview 17

2.2 benefits of a polling mechanism (taken from [13]) 18

2.3 A sample BPF program . 21

3.1 service oriented network monitoring overview 36

3.2 VoIP service monitoring overview 37

3.3 Signalling indicators . 43

4.1 RTC-Mon overview . 60

4.2 Extended PF RING overview with plugin architecture. 64

4.3 Packet paths for all possible rule action types. 66

4.4 The parse memory buffer . 67

4.5 PF RING slot layout with plugin parsing information. 68

4.6 LibVoIP overview . 76

4.7 Trackers and dispatcher relationship 77

4.8 Trackers . 78

4.9 Callback . 79

4.10 Interactions between Dispatcher, RTP analyzer and CallTracker 82

5.1 VoIP-Mon: an RTC-Mon based VoIP monitoring application . 85

vi

5.2 VoIPConsole calls page . 87

5.3 VoIPConsole call details page 88

5.4 VoIPConsole peer details page 89

5.5 Further RTC-Mon use cases 90

5.6 Experiment network topology 93

5.7 Performance when filtering trash UDP traffic from VoIP traffic. 97

5.8 RTC-Mon performance when tracking large numbers of RTP

flows. 98

5.9 RTP analyzer versus pfcount. 99

5.10 Idle CPU percentage measured at the maximum loss free rate. 100

A.1 UAC registration . 116

A.2 SIP trapezoid . 118

A.3 A sample SDP offer . 120

B.1 RTP header . 123

B.2 RTCP sender report header 127

B.3 RTCP receiver report . 130

B.4 Round trip time computation 131

vii

Chapter 1

Introduction

Current IP-based real-time communication services have put into trouble tra-

ditional network monitoring paradigms and have imposed some additional

requirements to network monitoring applications. The aim of this thesis is

to demonstrate that the increased complexity of network monitoring can be

managed with relatively little effort if the appropriate software instruments

are used. In particular, by using a proper software framework it is possible to

produce complex and efficient monitoring applications that are not affected by

common problems such as having a monolithic architecture or being difficult

to extend.

This chapter introduces the issues addressed in this thesis and explains

why the VoIP service has been chosen as the reference monitoring field. Ad-

ditionally the requirements and the scope of this thesis are identified.

1

1.1 VoIP overview

The evolution of computer networks leaded to the deployment of broadband

IP-based networks. The cheapness and the increasing performance of data

transmissions through the Internet favoured the development of real-time com-

munication services over this infrastructure. These services are often in sub-

stitution and enrichment of traditional ones, which are usually provided over

dedicated circuits.

An example is Television-over-IP (or IpTV): the use of the Internet

as transmission channel instead of the common broadcast channels(air, cable,

satellite) added interactivity to the television. This means letting the user

choose what to watch and when (video on demand), but also let the user

influence the program (e.g voting).

Another example is Voice-over-IP (or VoIP). As its simplest, Voice over

IP is the transport of voice using the Internet Protocol (IP). VoIP networks

are attractive to telecom providers and enterprises as the same network can

be used for both voice and data services, reducing equipment, operation and

maintenance costs. Moreover the use of IP enables the creation of converging

voice and video services not available on traditional Public Switched Telephony

Network (PSTN) networks.

The usage of IP networks allows greater mobility of users: VoIP tele-

phone number is not geographically bound, permitting a user to be reachable

even in different countries under the same number. Moreover Internet connec-

tion can be obtained with wireless access networks, so VoIP users can even use

WiFi devices like PDAs, or VoIP phones to have access to enriched telephony

services.

2

1.2 Merging network monitoring with service

monitoring

Offering real-time services able to meet users expectations on top of a best-

effort IP network is a challenge for a variety of reasons. Moreover the ever

increasing complexity of services whose quality is tightly coupled with the

network performance parameters, makes standard monitoring paradigms un-

suitable to understand how users perceive the service quality. As a conse-

quence, service providers are moving from a network centric monitoring ap-

proach toward a service centric monitoring approach that helps them to meet

customer’s high expectation from service quality levels, while controlling their

costs efficiently.

Network monitoring and service monitoring should be tightly related.

In that sense we can reasonably say that network monitoring and service mon-

itoring are going to become an unique and integrated task, that can be called

service oriented network monitoring.

VoIP service is the perfect candidate to understand in a better way the

needs of service oriented network monitoring for a variety of reasons. First,

VoIP is a real-time communication service whose quality is highly dependant

on the performance of the underlying network. Second, VoIP users have high

expectations regarding VoIP service quality since they used to have reliable

and high quality telephony services provided by the consolidated PSTN in-

frastructure. Third, VoIP service degradation can be caused by lot of factors

including network congestion, VoIP servers overloading, security attacks, mis-

configuration and by their combination.

3

1.3 Thesis Motivation

My interests in network monitoring has been gradually instilled in me by my

supervisor Dr. Luca Deri. During the last few years we had several discussions

on network monitoring and we have been involved together in several network

monitoring research projects.

These precious experiences made me conscious that network monitoring

is a niche sector, property of highly skilled network specialists. This because

the implementation of network monitoring software requires the knowledge of

many protocols and highly optimised code. In order to achieve high perfor-

mance usually ad-hoc and highly optimised solutions are preferred to solve

specific problems. As a consequence efficient monitoring software usually of-

fers little flexibility, it is very difficult to extend and does not easily allow the

code to be reused.

My thoughts were confirmed by some NEC Network Laboratories re-

searchers during the last summer. At the time they were designing advanced

VoIP monitoring architectures. During one of the earliest discussions, I dis-

covered that they were surprised by the fact that, even if VoIP was popular

and widespread, very few instruments were available at the time to reduce the

development time of complex VoIP monitoring applications. For me, it was

not a surprise. That was the beginning of my thesis work.

1.4 Thesis Scope

The objective of this thesis is to define RTC-Mon, a new framework for real-

time communications monitoring systems which can be used to implement

4

complex and efficient service oriented monitoring applications with relatively

little effort. RTC-Mon is a framework for extensible monitoring applications

which need to introduce the computation of several service oriented metrics.

RTC-Mon defines a new software architecture taking profit by previous

research experiences and it adopts a mixed kernel space user space approach

to grant ease of usage while it keeps high the performance.

1.5 Thesis Requirements

In the course of problem analysis, many requirements have been identified and

grouped by their relevance. In Chapter 5 the requirements listed below will

be used to validate this thesis work.

Requirements
1 Extensibility
2 Ease of use and development
3 Flexibility
4 Scalable and high-performance applications
5 Promotion of reuse
6 Efficient resource utilization and ability to run on environments

with limited resources
7 Commodity hardware

Table 1.1: Thesis requirements

1. Extensibility

The framework must support application extensibility. This is necessary

in dynamic fields, such as service oriented network monitoring where new

protocols or metrics have to be introduced frequently. For this reason it

is mandatory to provide extensibility mechanisms.

5

2. Ease of use and development

Writing complex and efficient monitoring applications is a niche field,

property of highly skilled network specialists. The framework must pro-

vide a valuable environment for both software developers with little net-

working experience and for network specialists.

3. Scalable and high-performance applications

The framework must grant both ease of usage and high performance.

The framework must allow the development of complex and yet efficient

applications with limited effort. Moreover, the framework must be scal-

able in terms of number of concurrent calls.

4. Flexibility

The framework must be flexible enough to accommodate disparate mon-

itoring tasks.

5. Promotion of reuse

Reuse of code are becoming increasingly important in the software in-

dustry. The framework should promote the software reuse and should

automate many monitoring tasks such as packet dissection and protocol

parsing.

6. Efficient resource utilization and ability to run on environments of lim-

ited resources

It is a common belief that network monitoring applications performing

complex tasks need a significant amount of resources in order to run.

6

A modern framework should be able to run on high-end server class

machines, but also on small embedded boxes with limited extensibility.

7. Commodity hardware

The proposed solution must not rely on expensive/exotic hardware, such

as specialised network monitoring hardware to improve the performance.

This increases the flexibility and makes easier the deployment task.

1.6 Thesis Outline

This chapter has covered the basic concepts necessary to understand and eval-

uate this thesis, and defined the scope and the goal of this work in addition

to having established requirements.

Chapter 2 covers relevant research effort undertaken in the areas covered

by this thesis: passive monitoring technologies and previous VoIP monitoring

efforts.

Chapter 3 analyses the VoIP monitoring task under a service oriented

network monitoring perspective. Firstly a better description of the service

oriented monitoring task is given. Then the most important VoIP metrics to

be measured and computed by a VoIP monitoring application are identified.

Chapter 4 covers RTC-Mon in details. The first part describes the

design of a modular kernel space infrastructure suited for application layer

protocol analysis. In the second part instead, it is presented an user space

library called LibVoIP.

Chapter 5 evaluates RTC-Mon and validates it. A RTC-Mon based

VoIP monitoring application is covered. After that, the performance of the

7

solution are evaluated and the experiments results presented.

In Chapter 6 conclusions about this work will be drawn, and possible

future development in this field will be considered.

8

Chapter 2

Related work

This chapter will cover the most relevant VoIP monitoring efforts. Moreover

passive monitoring technologies will be described.

2.1 VoIP monitoring

2.1.1 Issues of VoIP

The adoption of IP for carrying both voice and data introduces some issues

in terms of quality and service reliability that did not affect traditional tele-

phony networks. This because IP networks work in best-effort mode and was

not designed to transport voice which imposes some constraints in terms of

network quality such as network latency and packet loss. Furthermore VoIP

has a very different architecture than traditional circuit-based telephony and

these differences have also some impacts in terms of security. Users expect

reliable and high-quality telephony services, thus, service providers or network

managers should constantly monitor their infrastructures in order to detect

9

service quality degradation and take corrective actions in real-time to ensure

that the degradation perceived by users is minimal.

In a nutshell, VoIP is an evolution of PSTN based services carried over

IP networks. The outcome is that VoIP users expect the same quality and

reliability as in PSTN networks. Providing a VoIP solution that offers PSTN

quality and availability is a significant challenge in many aspects:

• Security : PSTN networks have been resilient to security attacks for many

reasons. First, they have have been maintained as closed networks, where

access is limited to carriers and service providers. Second, entry to the

PSTN has traditionally been protected by a price which can be more

than 100.000 dollars per year. As VoIP often uses public networks, it is

necessary to provide stronger security mechanisms in order to prevent

and detect attacks such as denial of service and identity theft.

• Quality of service: The quality of a telephone call depends on both sig-

nalling performance and voice quality. With signalling performance we

mean the time needed to establish a call and release it. Voice quality de-

pends on the codecs being used and network infrastructure performance.

While PSTN networks ensure fixed delay minimum-distortion services,

this cannot be applied to IP-based networks.

• Reliability : Customers expect high service reliability regardless of the

nature of the communication, either PSTN or VoIP. PSTN networks

were designed to achieve 99.999% availability or carrier class reliability.

• Billing : PSTN world have based their entire infrastructures on switched

networks, thus call prices are a function on the resources exclusively used

10

(i.e. the circuits). Call detail records (CDR) are produced in real time

by telephony switches and are used by both call accounting systems and

fraud detection systems. In the early days of telephony, CDR only in-

cluded fields like caller/called party numbers, date and time, and call

duration. Recently CDRs include new fields such as call route. Even if

CDR became more complex call duration and parties identities are often

the only metrics used for billing. Instead, on packet switched networks,

such as IP, the concept of resource usage has a different meaning as var-

ious services can be provided simultaneously sharing the same physical

resource. Internet Protocol Detail Record (IPDR) has been introduced

to describe (and bill) next generation digital services including IpTV,

VoIP, TV on demand. Billable attributes such as latency, bandwidth

and quality of service are supported by IPDR documents.

2.1.2 VoIP protocols

VoIP has a general meaning, grouping all the technologies made to allow bidi-

rectional audio communications over IP based networks. The earliest VoIP

services were deployed by using proprietary protocols and even today many

vendors use proprietary protocols.

Skype, introduced in 2002, is one of the most interesting proprietary

protocols in the VoIP area and maybe it is the protocol that made VoIP used

by the masses. Despite its popularity, Skype internals are mostly unknown.

The details of the protocols used and protocol messages as well are not public

and the encryption makes even harder to reverse engineering the protocol.

SCCP, is Cisco’s proprietary VoIP protocol, used to connect Cisco VoIP

11

phones to the Cisco Call Manager server. SSCP has been introduced to reduce

the processing load on hard phones.

IAX is the Inter-Asterisk Exchange protocol that establishes connec-

tions between clients and Asterisk servers.

There are some advantages to proprietary protocols. Vendors can build

features to address specific problems, as IAX has done to make it easier for

VoIP to work through firewall. Manufacturer can improve the performance, as

Cisco has done with Skinny or use different communications models, as Skype

has done with the peer to peer concept. However the adoption of proprietary

protocols results in a confusing array of products that do not interoperate and

a maze of protocols to choose from when planning a VoIP deployment.

To enable the cooperation between different vendors both ITU-T and

IETF have been working on the standardisation of protocols to be used in

IP telephony services. The first widely adopted standard is the H.323 (by

ITU-T), an umbrella recommendations that defines the protocols to provide

audio-visual communication sessions on any packet network. The first version

of H.323 specifications was published in November 1996. During the years

the initial version has been revised with enhancements to better enable both

voice and video communications over packet switched networks. The cur-

rent version of H.323, referred as H.323v6 was published in 2006. H.323 is a

very complex specification that covers different facets of communications over

packet switched networks such as call signalling, security management, media

transmission and the provisioning of supplementary services needed to address

business communications expectations.

On the other side, IETF worked on the specification of the Session Initi-

ation Protocol (SIP), an HTTP like signalling protocol designed with flexibility

12

and simplicity in mind. A signalling protocol, in the context of packet switched

networks, is a protocol which allows the management of sessions between differ-

ent entities. Once the session has been established a media transport protocol

is used to carry multimedia content. Even if SIP was published later (1999)

than H.323 it now reached a wider diffusion, mainly because it is simpler than

H.323. This work focuses on SIP and the Appendix A is dedicated to it.

Both H.323 and SIP employ the Real-time Transport Protocol (RTP) for

media stream transport. RTP provides end-to-end network transport functions

suitable for applications transmitting real-time data, such as audio and video,

over multicast or unicast network services. The Appendix B provides some

additional information on RTP.

2.1.3 VoIP monitoring efforts

Much research has been carried in order to analyze the QoS network param-

eters for investigating the feasibility of VoIP services over current generation

networks [59, 57, 8].

The passive analysis approach has been suggested in order to perform

speech quality measurements.[25] performed several measurements to mea-

sure the voice service quality that current WiFi networks can offers. They

performed the off-line analysis of media traffic in order to measure the voice

quality.

Manosus et al [35] proposed a solution for the real-time measurement

of voice quality. These measures are employed by their advanced PBX1. Spe-

1a PBX, or Private Branch Exchange is a business telephone system designed to deliver
voice over a data network and interoperate with the normal Public Switched Telephone
Network (PSTN)

13

cial agents were designed to perform the media analysis of VoIP calls. Some

performance parameters, such as packet loss and jitter are measured in real-

time so that the voice quality can be measured while a call is active. However

the goal of the work is to provide monitoring facilities to their PBXs, which

supports very few concurrent calls.

In [12] De Lima et al. propose a framework for voice quality monitoring.

The main limitation of the framework is that it requires customized user agents

in order to provide voice quality measurements. In their framework user agents

are responsible to record and then analyze the media traffic. This means that

the framework is practically useless, as in many of the existing VoIP networks

hardphones (such as WiFi phones) are used.

All of the previously described efforts only take into account the mea-

surement of voice quality. However voice quality is not the only one parameter

that have to be considered in order to measure the quality of a telephony ser-

vice. The aim of the work presented in [25] is to measure the call setup time,

which is signalling performance indicator. However this work is limited to the

call setup time and does not cover the measurement of network impairments.

The work in [3] present the design of passive and active probes capable

to measure network impairments in order to compute the VoIP quality. One of

the biggest advantage of this solution is that is allows signalling performance

indicators to be computed. This work is targeted to enterprises and service

providers who have to monitor in real-time their infrastructures in order to

keep high the quality of VoIP services. However this work presents some lim-

itations as very few signalling performance indicators are taken into account.

Unfortunately all of these efforts are in some sense limited, since only

few indicators are taken into account. None of them offer extensibility mech-

14

anisms in order to accommodate the measurement of new indicators. More-

over none of the previous works explicitly cover the performance issues that

the passive analysis of VoIP traffic imposes: the media traffic is carried over

dynamically assigned ports and it is composed by small size packets. The

adoption of capture cards, described in Section 2.4, is suggested in order to

improve the performance. The drawback of this solution is the price which can

be 10/100 times higher than commercial network adapters. Furthermore, ex-

pensive capture cards are capable to accelerate the capture phase, but do not

provide effective and scalable filtering mechanisms. Moreover, it is worthwhile

to note that some monitoring applications may need to run on small-embedded

boxes with limited extensibility.

No relevant research has been carried on VoIP monitoring frameworks

enabling fast development of complex and highly specialized passive VoIP

monitoring systems. Furthermore, even if several SIP libraries already exists

in the software scenario [24, 58], none of them has been developed to implement

passive network probes. In fact the goal of those libraries is to enable faster

development of SIP agents. In any case none of the library provides facilities

to analyze the media traffic quality.

2.2 Packet capture

Packet capture is a commonly used passive monitoring technique which in-

volves the real-time collection of packets as they travel over the networks.

Packet capture probes are network probes that decode the captured traffic

and perform some analysis on it. Passive monitoring accuracy and reliability

depend on the captured traffic portion’s over the total. More packet the probe

15

is able to analyze and more precise is the information it is able to gather.

When the probe is not able to not to loose packets, a smart discarding mech-

anism can be adopted in order to have quantifiable accuracy. This mechanism

is usually referred as packet sampling [16, 15]. However in case of service

oriented network monitoring, such as VoIP monitoring, loosing packets is not

acceptable. In fact packet losses can alter the values of some computed metrics

(e.g. the stream quality). In the worst case, loosing packets can mean that a

VoIP call is not even discovered.

The performance of a network monitor is most simply defined as its abil-

ity to not loose packets while still providing sufficient CPU to decode packets,

analyze protocols and store or visualise the network traffic[37]. Packet han-

dling can be characterized by the Maximum Loss Free packet reception Rate

(MLFR) measured in packets per second for a fixed packet size. The packet

reception rate is determined by several bottlenecks like interruptions handling,

context switch and memory copies from kernel-space to kernel-space and from

kernel-space to user space. To better understand the capture process, a brief

overview of the journey of a captured packet inside the Linux Kernel is given

in the following paragraph. This work focuses on Linux for its importance in

research community especially in the field of network monitoring. Moreover,

Linux is the fastest growing operating system in the embedded domain and

supports a wide range of network interface cards and platforms.

The Linux networking stack is composed of different layers: the NIC

driver, protocol processing and socket layer. After a packet arrives in the net-

work interface card’s FIFO receive buffer, the network interface card (NIC)

transfers the packet by Direct Memory Access (DMA) to the kernel memory

and interrupts the host processor. As a response to the interrupt the host

16

processor run an Interrupt service routine (ISR). The ISR moves the packet

from the DMA memory region to a packet queue implemented in regular ker-

nel memory and raises a softirq which is responsible to perform the protocol

processing. After the fulfilment of this task, the softirq task inserts the packet

in a socket buffer and eventually notifies the scheduler to wake up a blocked

user process. After waking up, the user process completes the reception task

using a read() system call.

The receiving mechanism uses three different buffers (DMA, the packet

queue, the socket buffer) and employs three task threads which run on the

host on three different contexts: ISR, softirq and user space.

Figure 2.1: Linux 2.6 network stack overview

Given the described layered architecture (Figure 2.1) the issue that

limits the packet handling rate are:

• interrupt service overhead: it includes the time consumed in context

switching, memory cache and storing/retrieving process state. For ear-

17

lier Linux versions this cost was per packet since an interrupt is raised

whenever a packet is received.

At high arrival packet rate servicing one interrupt for each received pack-

ets can lead to the “receive livelock”phenomena. The host is constantly

overwhelmed by constantly servicing interrupts, having no more spare

CPU cycles to perform any other useful operations on the received pack-

ets. As a result, the packet reception rate substantially decreases since

only a subset of received packets can be processed and most discarded.

In order to mitigate the problem an hybrid interrupt-polling mechanism

previously suggested by j.Mogul et al.[39] has been introduced in Linux

since kernel 2.4.20 with the development the NAPI [54] driver inter-

face. Thanks to NAPI the behaviour of NAPI aware network interface

cards depends on the traffic load. Under low packet rate reception an

interruption is raised for each received packets. However the number

of interruptions are substantially reduced under high packet arrival rate

conditions thanks to the adoption of a polling mechanism[49].

Figure 2.2: benefits of a polling mechanism (taken from [13])

As depicted in Figure 2.2, a polling scheme can increase the capture rate

and mitigate the livelock phenomena.

18

• data copies: copying packets from the DMA region to the regular kernel

memory and the subsequent copy of from kernel space to user space take

significant CPU time. Some solutions, described later in this chapter

have been developed in order to reduce the number of copies.

• redundant protocol processing:

• kernel to user space boundaries crossing: the received packets are

consumed by a process in user space. Crossing the kernel space and

user space boundary involves a data copy and the execution of a system

call, a context switch. The response time for doing those operations is

significant.

• buffer overflow: packets can be dropped because of buffer overflow.

The buffers involved are the NIC FIFO, the DMA region and the packet

queue. Those buffers are managed by three different producer-consumer

pairs: NIC firmware-ISR task, ISR-softirq task and softirq-user space

task.

When a packet arrives in the NIC’s FIFO buffer it needs to be transferred

into the host’s DMA buffer. If the buffer is full the NIC cannot offload

its FIFO buffer and thus the FIFO buffer can be filled up. If the FIFO

buffer is filled the NIC start dropping packets. Similarly user space task

jitter may cause buffer overflow in the packet queue. If the packet queue

if filled up it can cause buffer overflow in the DMA region.

The number of copies (kernel space to kernel space and kernel space to

user space) can be minimised using kernel packet filters, which are responsible

19

to discard unwanted packets as soon as possible. More details regarding kernel

packet filters are given in Section 2.3.

During the years, many research has been carried in order to improve

the capture performance using custom hardware or even commodity hardware.

The following sections give a brief overview of some of the most important

contemporary solutions.

2.3 Packet filtering

Packet classification can be seen as the categorisation of incoming packets

based on their content according to specific criteria that examine specific por-

tion of a packet. Packets are classified into flows containing packets matching

the same criteria. The criteria are comprised of a set of rules that specify the

content of specific packet fields to result in a match. Fields may be header

fields from layer 1 to layer 7.

The goodness of a packet classifier algorithm is usually evaluated on the

following criteria[28]:

• search speed

• storage requirements

• update time: as classifier changes, data structures may need to be up-

dated or reconstructed from scratch. Data structures that need a com-

pleted reconstruction can be called “pre-processing”.

• scalability in the number of fields used for classification and in the number

of different rules

20

black:/home/fuscof# tcpdump -d udp

(000) ldh [12]

(001) jeq #0x86dd jt 2 jf 4

(002) ldb [20]

(003) jeq #0x11 jt 7 jf 8

(004) jeq #0x800 jt 5 jf 8

(005) ldb [23]

(006) jeq #0x11 jt 7 jf 8

(007) ret #96

(008) ret #0

black:/home/fuscof#

Figure 2.3: A sample BPF program

• flexibility in specification: rules can be complex (e.g. may allow wildcard,

prefixes and so on) or be simple. Usually more complex rules involve the

adoption of more complex data structures.

Firstly proposed by Mogul, Rashid and Accetta in 1987[38], a packet

filter is a programmable abstraction for a boolean predicate applied to a stream

of packets in order to select some specific subset of the stream. Packet filtering

is a packet classification problem.

The BPF (Berkley Packet Filter) [36] is the most widely used solution

to the problem. Every modern operating system provides the filtering mech-

anism. BPF includes a virtual machine capable to execute programs. Each

program is an array of virtual machine instruction that sequentially execute

some action over the virtual machine. The popular tcpdump[26] software, al-

lows bpf programs to be easily inspected. Figure 2.3 shows how tcpdump

compiles a filter to select only udp packets.

The execution of one of the simplest filter needs the execution of 8

instructions. More complex filters, such as filtering all http packets, take more

than double the number of instructions.

21

After BPF, a large number of evolution have been produced by the

research community. Some of them, such as BPF+[4] was developed in order

to optimize the evaluation of complex filters. The Mach Packet Filter (MPF)

[63] enhances the BPF model in order to optimize the case of multiple filters

using similar patterns. The aim of DPF [20] is to improve the performance

of BPF by the adoption of dynamic code generation techniques. Thus the

filtering code is native and no more executed by a virtual machine. However

all of these efforts basically present the same limitations:

• low scalability : only very few filters can be specified

• changing the filter set need a reconfiguration, thus can lead to packet loss

• instruction proportional to the complexity of the filter

Those limitations make the previous approaches unsuitable to effectively

filter multimedia traffic, since the majority of multimedia applications, such

VoIP, uses dynamically assigned UDP or TCP port for media transfers. If

a multimedia application usually pick up a port from a small range of port

numbers, it is possible to specify the entire port range. In any case this is

only a partial solution to the problem, since non multimedia packets need to

be discarded in user space.

To improve the filtering effectiveness of multimedia traffic mmdump[60],

a multimedia oriented tcpdump, suggests the adoption of signalling aware ses-

sion trackers whose task is to perform the signalling analysis in order to dy-

namically reconfigure the underlying BPF filter. Even if the advantages of

performing application layer protocol analysis are clear, the work has some

22

limitations. First, mmdump suffers from the same filter reconfiguration prob-

lem of BPF: if new sessions are established at an high rate, the recompilation

may cause packet losses. That’s why the main purpose of the software is to

analyze prerecorded traffic traces. The adoption of more advanced filtering

techniques capable to reduce the reconfiguration time, such as the one pro-

posed in [14] can only mitigate the problem. Second, it does not offer methods

to select multimedia sessions by content (e.g. specify the caller of the VoIP

calls to be monitored). This means that signalling traffic is always carried in

user space regardless of its importance.

Content based filtering, which means filtering using fields from applica-

tion layer protocols requires much more resources and it is much more difficult

to implement. In fact, there are hundreds of application layer protocols cur-

rently used; there are multiple versions of the same protocol; some protocols,

such as SIP, are text based whereas others are byte driven. The most common

approach to deal with application layer protocol filtering is to use a signature

database that is an ensemble of regular expressions for each text driven pro-

tocol and encapsulation description for byte driven protocols. The creation

of this big database is not easy, thus there are some projects specialized in

this task [33]. Signature based methods are useful to discover if a particular

packet belongs to a certain application level protocol, but offer limited support

for building more accurate filtering mechanisms (e.g. having only SIP packets

coming from the user “Francesco”).

23

2.4 Monitoring hardware

Monitoring very high speed links using commodity hardware is difficult due to

relatively slow buses and memories. The processing power of current general

purpose systems is no more sufficient to passively monitor current high speed

links (10 Gbps and above) and this trend is supposed to not change during

the following years.

For these reasons the industrial research focused on specialised hardware

capable to alleviate the burden on the resources used by monitoring stations.

This section gives a brief overview of specialised hardware devices designed to

overcome those limitations.

2.4.1 Capture cards

Are usually referred as capture cards some feature rich network interface cards

(NICs) explicitly designed for passive monitoring purposes [18, 40]. The term

capture cards is referred to the ability to offload the host system from the

capture process. This increases the number of spare cpu cycles to be used by

network monitoring applications running on the host system. As the libpcap[1]

library became the “de facto” standard of network capturing on UN*X and

Windows as well[62], capture cards usually provide enhanced libpcap capture

libraries so that every libpcap based monitoring software can take advantage

of the underlying specialised hardware without any porting efforts.

Beside accelerating the capture phase, capture cards provide some ad-

vanced features targeted at the passive monitoring domain such as high pre-

cision packet time stamping and hardware packet filtering. Hardware filtering

allows wire speed filtering of packets matching a criteria. However most of

24

the cards allow to specify very few filters (8-64) as they are limited by the

space available on the silicon/RAM used to store filters. Moreover most of the

cards internally adopt Field Programmable Gate Array (FPGA), thus a filter

reconfiguration usually require a general reconfiguration of the hardware. This

operation can take seconds.

In a nutshell, capture cards offload the hosts from the capture process

while allowing standard monitoring software to take advantage of the underly-

ing hardware. However capture cards are expensive and do not provide filtering

mechanisms to be used in a monitoring domain such as VoIP where several

thousands of different filters have to be inserted and removed in real-time.

2.4.2 Network processors

Network processors are integrated circuit with specific features targeted to the

networking applications domain[32]. Network processors (NP) are specialised

to support the implementation of network applications at the highest possible

speed. Network processor are more flexible and less expensive than custom

ASICs (Application-specific Integrated Circuit) because of their programma-

bility. In fact designing and manufacturing custom ASICs is very expensive.

Therefore the ability to use a single device for various applications is an im-

portant factor. By using network processors the same physical device can be

used while different software releases offer different functions.

Although the architectural design of the various network processors of-

ten differ significantly, all are optimized to exploit the inherent parallelism

present in network workloads. Due to their highly specialised and unconven-

tional architectures network processors create new challenges for the software

25

engineers. Network processors are usually programmed using low level assem-

bler like languages. At best, higher level C-like languages are provided to

reduce the development time.

It is worthwhile to note that being programmable do not necessary

means that network processors are the best solution for every network work-

loads. Although they are programmable they do not offer the same flexibility

of traditional general purpose CPUs.

2.4.3 Programmable cards

Network processors are usually multi-core processors, augmented with network

specific instructions, hardware assists and memories. While these specialized

NP features might improve performance, they come at a cost of reduced gener-

ality and familiarity. Programmable cards was introduced in order to overcome

those limitations while keeping the performance high. This is possible due to

the arrival of multi-core general purpose processors in the networking domain

[7, 11].

The adoption of a multi-core general purpose processor in networking

devices provides several advantages. The most obvious advantage is the pro-

grammer productivity improvement. Unlike NP based cards, programmable

cards are usually programmed in C language and they are able to run cus-

tomized version of general purpose operating systems (usually Linux). This

means that it is possible at least in theory to build any standard Linux appli-

cation for them. However porting applications on top of them is not so easy

as it is supposed to be.

26

2.5 Monitoring frameworks and libraries

As stated in Section 2.1.3 little research has been carried on VoIP monitoring

frameworks. Thus it is important to describe the most relevant general pur-

pose passive monitoring frameworks and libraries as they would represent the

starting point to design and implement a VoIP monitoring application.

2.5.1 PF RING

PF RING[13] is an high packet rate capturing solution that improves the stan-

dard Linux kernel capture performance using commodity hardware. PF RING

can take advantage of NAPI aware drivers and do not require any special hard-

ware, thus it can be used with every network interface card supported by the

standard Linux kernel.

PF RING defines a new kind of socket explicitly designed for packet

capture. The socket makes use of a memory mapped buffer, implemented

as a circular FIFO, which is shared between the kernel and the user space

application. The technique, initially proposed by P.Wood [47], allows the

reduction of per packet costs by reducing the number of copies.

Moreover, the kernel networking core has been modified in order to

completely bypass the standard protocol processing. As a consequence the

journey of the packet inside the kernel is substantially reduced.

PF RING comes with a kernel patch and an user space library. The

patched kernel provides a loadable kernel module, the ring module, that al-

lows the usage of the PF RING socket type. The circular buffer size can be

customized using two different module parameters: bucket len and num slots.

The first parameter represents the circular buffer length whereas the second

27

represent the maximum length of the captured packet. If the packet size is

greater than the bucket len, the first bucket len bytes of the packet are stored

in the slot. Decreasing the bucket len below the MTU2 leads to the reduction

of time spent on copies for monitoring applications that need only few bytes

for each packets (e.g. NetFlow probes just need the packet up to transport

layer).

The user space library, called libpfring, enables fast development of

packet capture applications. A PF RING enhanced version of libpcap is pro-

vided so that every application written on top of libpcap can benefit from

PF RING.

PF RING substantially increases the packet capture performance of the

standard Linux operating system and it is considered both by the research

community and by the monitoring industry as one of the most efficient packet

capture solution that does not require expensive hardware to run.

However PF RING still presents some limitations as the performance

offered is largely dependant on the size of the captured packets. PF RING

really shines when the captured traffic is composed by large size packets but

the performance rapidly decreases when the packets size gets smaller.

2.5.2 FFPF

Fairly Fast Packet Filter (FFPF)[6] is a network monitoring framework de-

signed for speed, scalability (in terms of number of applications) and flexibility.

One of the FFPF’s main goal is to use commodity hardware.

Like PF RING it employ shared memory buffers in order to reduce

2Maximum Transmission Unit

28

system load due to packet copying and context switching. Moreover, like

xPF [29], allow the execution of monitoring programs inside the kernel. The

performance of computationally intensive operations, such as content based

filtering is high due to the adoption of external functions. External functions,

implemented as Linux kernel modules, allow the framework to be extended

and have been introduced for monitoring dynamic flows.

An implementation of the popular pcap packet capture library is pro-

vided to ensure backward compatibility with many existing tools. The frame-

work supports several filtering languages including the popular BPF and two

FFPF specific languages called FPL-1 and FPL-2. However the goal of FFPF

is not to optimize the filter expressions and it would not be simple to handle

a large amount of different RTP streams.

2.5.3 SCAMPI

SCAMPI (A Scalable Monitoring Platform for the Internet) [30] is a scalable

and programmable architecture for monitoring multigigabit networks. The

main goals of the project are the following [10]:

• definition of a common monitoring API : SCAMPI based monitoring ap-

plications are written using the Monitoring API(MAPI) library. One of

the goal of the project is to decouple the development of the monitoring

applications from the monitoring environment. This allows the devel-

opment of portable monitoring applications that can benefit from the

features offered by different hardware devices.

• expressive power : the MAPI natively supports some advanced features,

such as packet sampling, IP defragmentation and TCP reassembly, that

29

other monitoring libraries does not provide. Moreover it supports the

same display filter language introduced by the popular Wireshark[27]

free network protocol analyzer. Display filters support hundreds of ap-

plication layer protocols, however they cannot be considered application

layer packet filters, since the filtering is completely done in user space.

• scalability through special purpose hardware: the SCAMPI architecture

can be used on top of commodity hardware. However the main goal of the

project is to use specialised monitoring hardware and to provide an API

taking benefits from heterogeneous specialised monitoring hardware.

If the monitoring station does not provide any specialised hardware the

MAPI is implemented on top of the traditional libpcap library, so that SCAMPI

architecture can run on top of commodity hardware, but with substantial

performance impairments.

2.6 Why a new passive monitoring framework?

Monitoring VoIP in a passive way is a challenge since it imposes orthogonal

requirements coming from network management and software engineering such

as high performance, flexibility and extensibility.

Flexibility and extensibility requirements are needed to measure dif-

ferent kind of metrics, or indicators. Many of the VoIP works presented are

capable to offer a very limited set of indicators. Some of them are only ca-

pable to provide voice quality measurements, while others measure very few

signalling indicators such as the call setup time. However VoIP monitoring

applications should be capable to provide a large set of indicators of which the

30

call setup time is just an example.

Performance requirements come from the VoIP traffic pattern. VoIP

traffic represents one of the worst traffic pattern to capture since it is composed

by a great number of small size packets. VoIP traffic is also very hard to

filter since real-time data such as voice or video is carried over streams using

dynamically assigned ports.

Capture and filtering challenges imposed by VoIP traffic are only par-

tially solved by the adoption of specialized hardware for passive monitoring.

Monitoring cards improve the capture phase but usually offer limited support

for filtering. Moreover they are much more expensive than commodity network

interfaces and due to their costs cannot always be considered a viable way.

The software solutions presented in this chapter are the most promising

solutions for the design and the development of VoIP monitoring applications.

However, from Table 2.1 it is possible to conclude that it would not be so easy

to implement a VoIP monitoring application on top of them as:

• none of them natively provide any facility to analyze the VoIP traffic

• their filtering mechanisms offer very little scalability and this is a big

limitation for a service using dynamically assigned ports

• they are general purpose passive monitoring frameworks that are suited

for experienced network monitoring developers

The above limitations found in existing solutions, have been the driving

force for the author for designing and implementing a new real-time commu-

nication monitoring framework described in the Chapter 4.

31

PF RING FFPF SCAMPI
Ease of usage low low low
Commodity hw. Yes Yes Yes
support
Specialized hw. No Yes Yes
support (Intel IXP NPU) (DAG,SCAMPI,

Intel IXP NPU)
Reference hw. commodity commodity specialized
Filtering language BPF BPF BPF

FPL2 wireshark display filters
Filtering scalability low low low
(commodity hw.)
Content based filtering No partiallya No
libpcap compatibility Yes Yes Yes
Additional features IP defragmentation trusted compiler packet sampling

IPv4 parsing FPL2 IP defragmentation
TCP reassembly

kernel extensibility No Yes NOb

VoIP monitoring No No No
facilities

Table 2.1: Monitoring technologies comparison

acan be implemented using using FFPF’s external functions
bwhen SCAMPI is used with commodity hardware the MAPI is implemented on top of

libpcap (user space)

32

Chapter 3

VoIP service monitoring

This chapter will describe the benefits offered by service network monitoring

and analyze the VoIP monitoring task under this perspective.

Then, it will show why this VoIP service oriented monitoring is helpful

for network manager in order to perform an effective VoIP service management.

At the end, the major challenges to solve will be presented.

3.1 Service oriented monitoring

Service oriented network monitoring goal is to define and measure the Quality

of Experience (QoE) of the provided service. QoE is a collective term to form

a measure of the quality of a service and include all aspects of service: its per-

formance, level of customer satisfaction over the total and so on. Determining

the QoE of a service provides a discriminator between various type of services

and leads opportunities to balance the level of quality offered against price

and customer expectations. QoE itself it is not measurable. Thus, an external

methods is needed in order to have objective measure of the service.

33

Service Level Agreements (SLAs), which have been widely used by

telecommunication service providers, are now being considered for non com-

munication network services and are being adopted to define the agreed perfor-

mance and quality of the service. Unlike QoE, which is a perceptive measure

of the service, SLAs refers to the definition, measurement and reporting of ob-

jective measures. Thus, the key concept is to map perceptive measures from

QoE into objective measures for SLA.

There is a difficulty in mapping service specific measure to technology

specific parameters that are more easily measured and reported. As a conse-

quence, traditional SLAs have focused, almost solely, on the performance of

the supportive service.

However, the growth of service-oriented management leaded to the re-

quirements of new indicators that focus on service quality rather than network

performance. These concepts were introduced by the Wireless Services Hand-

book(GB 932). These new indicators Key Quality Indicator(KQI) and Key

Performance Indicator(KPI), provide a measurement of specific aspect of the

service performance leading to a more complex and more precise SLAs defini-

tion.

Defining the key quality indicator and performance indicator is one of

the most important aspect of service oriented monitoring as they are the met-

rics used to model the user’s quality of experience and to perform conformance

test against SLAs. KQIs derive from a number of sources, including the per-

formance metric of the service or underlying support service as KPI. KQI and

KPI may have an upper and a lower error threshold and an upper and a lower

warning threshold. The mapping between the KPI and the KQI may be em-

pirical or formal. In order to better understand the indicators and how they

34

are related we can consider a simple example. Suppose you have to provide a

typical client/server service. The service performance is measured by the ap-

plication response time (ART) key performance indicator. ART is measured

that the moment from the user enters an application query, command or so

requiring a server response to the moment the user receives the response and

can proceed. The ART depends on servers load and on network bandwidth,

since multiple applications compete for network resources. However in order

to define the overall service quality one of the KQIs listed in Table 3.1 can be

used:

KQI Description

AART average ART
MART maximum ART
SARTP percentile of request with the ART below the threshold

Table 3.1: sample key quality indicators

Given KQIs, KPIs and SLAs, the monitoring task can be defined as

the continuous process of measuring indicators in order to check the SLA

conformance. The measurement activity involves the measure of KPIs which

are collated and combined in order to have the required KQIs. The relationship

between KQIs, KPIs and SLAs are depicted in Figure 3.1.

The following Section analyses the VoIP monitoring task under a service

oriented network monitoring perspective.

3.2 VoIP service oriented monitoring

We usually tend to associate the quality of a voice service, like VoIP, to the

voice quality that the service is capable to offer. However this simplistic view

35

Figure 3.1: service oriented network monitoring overview

of service quality does not take into account other important indicators that

make a voice service an high quality service. We use to measure the service

quality with voice quality simply because traditional telephony services are

consolidated and capable to offer highly reliable, high accuracy and high speed

services.

Quality of Service comprises requirements on all the aspects of a con-

nection, such as service response time, reliability, availability and so on. The

quality of a voice service needs to be evaluated from the call attempt to the

call termination, as depicted in Figure 3.2. This obviously includes also the

measurement of voice quality, but it is not limited to it.

Signalling indicators are covered in Section 3.2.1 whereas the voice qual-

ity indicators are covered in Section 3.2.2.

36

Figure 3.2: VoIP service monitoring overview

3.2.1 Signalling indicators

Traditional telephony services based on PSTN networks have already a con-

solidated of standard signalling performance metrics[17]. During the last few

years the signalling performance of SIP based VoIP networks has been mea-

sured using non standardized metrics. At best, metrics coming from PSTN

based services were adapted even for VoIP in order to have comparable results

between traditional voice services and next generation IP based voice services.

More recently, D. Malas proposed a definition of a standard set of SIP

signalling metrics [34]. The metrics, listed in Table 3.2, introduce a common

foundation for understanding and quantifying performance expectations be-

tween service providers, vendors and the users of services based on SIP. It is

worthwhile to note that the measurements are affected by variables external

to SIP since their scope is to catch an end-to-end performance. The external

37

variables may include network connectivity, router and switch performance

and server and hardware performance.

Those metrics are briefly described below:

• Registration Request Delay (RRD): the registration request delay

is used to detect impairments causing delay in responding to an user

agent register request. The output of this metric is a numerical value

and indicate milliseconds. This metric measures the performance of the

Registrar server and includes the delay caused by user location database

access.

RRD = T imeofF inalResponse − T imeofREGISTERRequest

RRD can be averaged using the following formula:

ARRD =

∑numregister
i=1 RRDi

numregister

• Session Request Delay (SRD): this metric is similar to the Post

Dial Delay (PDD), which is used by traditional telephony services. The

output is a numerical value representing milliseconds.

SRD = T imeofStatusIndicativeResponse − T imeofINV ITE

• Session Disconnect Delay(SDD): the session disconnect delay is uti-

lized to detect impairments delaying the time needed to end a session.

SDD = T imeof2XXorT imeout− T imeofCompletionMessage(BY E)

38

• Session Duration Time (SDT): the metric is used to measure the

duration of a session. In telephony services represent the Call Hold

Time (CHT). Measuring the session duration time and averaging it is

useful since short duration sessions can be caused by poor audio quality

calls.

SDT = T imeofBY EorT imeout − T imeof200OKresponsetoINV ITE

• Average Hop per Request (AHR): AHR is defined as the number of

hops traversed by and INVITE or MESSAGE request and it is measured

in number of hop. An high AHR can be a symptom of inefficient routing

or misconfiguration.

• Session Establishment Rate (SER): this metric is used to detect the

ability of an user agent or a proxy to successfully establish new sessions.

This metric is similar to the Answer Seizure Ratio (ASR).

SER =
#ofINV ITERequestsw/associated200ok

(Total#ofINV ITERequests)− (#ofINV ITERequestsw/3XXResponse)

• Session Establishment Efficiency Rate(SEER): this metric is simi-

lar to the SER and it is computed in the same way. The only difference is

that the numerator represents the number of INVITE requests resulting

in a 200 OK, 480, 486 or 600.

• Session Defects (SD): it is a measure of failures in dialogue processing.

These failures response are in response to initial session setup requests,

such as INVITE. The draft suggests the usage of the following SIP error

responses to mark a session as defective:

39

– 500 Internal Server Error

– 503 Service Unavailable

– 504 Service Timeout

The output of this metric is a numerical value representing the percentile

of session defects.

• Ineffective Session Attempts (ISA): ineffective session attempts oc-

cur when a proxy or an agent internally releases a setup request with

one of the following response codes:

1. 408 Request Timeout

2. 500 Server Internal Error

3. 503 Service Unavailable

ISAs can be caused for example by congestion. The metric has to be

calculated as a percentage of the total session setup requests.

ISA% =
#ofISA

Total#ofSessionRequests

• Session Disconnect Failures (SDF): session disconnect failures occur

when an already established session is terminated in presence of a failure

condition. A typical failure condition is the loss of media related to

an active session which is reported by media gateways to user agents.

The failure condition causes the early termination of the session with

a special BYE message that indicates the abnormal condition in the

Reason header field[56].

40

The SDF is a numerical value, so the metric is computed as a percentage

of total session completed successfully.

SDF% =
#ofSDF

Total#ofSessionRequests

• Session Completion Rate (SCR): a session completion is a SIP di-

alogue that ends without failing due to lack of response from a proxy

or UA. For example a session completion fails when an INVITE is sent

from a UAC, but the related UAS does not respond to the UAC.

SCR is defined as a percentage that can be computed using the following

formula.

SCR% =
#ofSuccessfullyCompletedSessions

Total#ofSessionRequests

• Session Success Rate (SSR): sessions can fail due to ISA or SDF. The

session success rate, most commonly known as Call Success Rate(CSR)

in telephony applications, is defined as the percentage of successfully

completed sessions and can be computed using the ISA and SDF per-

centage.

SSR = 100% − (ISA% + SDF%)

3.2.2 Voice quality indicators

The voice quality of a telephony call depends on many factors including user

equipments, adopted codecs and network performance. The Mean Option

Score(MOS) is one of the most commonly used voice quality indicator. It pro-

41

KPI Name

RRD Registration Request Delay
SRD Session Request Delay
SDD Session Disconnect Delay
SDT Session Duration Time
KQI Name

AHR Average Hop per Request
SER Session Establishment Rate
SEER Session Establishment Efficiency Rate
SDM Session Defects per Million
ISA Ineffective Session Attempts percentile
SCR Session Completion Rate
SSR Session Success Rate

Table 3.2: SIP End-to-End Key Quality Indicators (KQI) and Key Perfor-
mance Indicators (KPI)

vides a numerical indication of the perceived quality of received audio streams.

Several methods were introduced in order to derive the MOS value from

objective measurement. Some measurement techniques are intrusive [46, 45]

whereas others allows to compute the MOS in a totally passive way [44].

Some non-intrusive measurement techniques, such as the E-model, stan-

dardized by the ITU as G.107[23], allow to compute the MOS with simple

formulae rather than with the analysis of voice signals, so that the MOS com-

putation requires very few resources. Those formulae allow to compute the

MOS using the codec, the end-to-end delay and the packet loss.

Beside packet loss and end-to-end delay there are also some other perfor-

mance network parameters that impact on voice quality. They are the band-

width and the jitter. Those network performance parameters are described

below.

42

Figure 3.3: Signalling indicators

Delay

In real-time bidirectional communications keeping the end to end delay low is

very important. Excessive end to end delay in voice communication have two

side-effects:

• Echo: it is caused by the signal reflections of the speaker’s voice from

the far-end telephone equipment back into the speaker’s ear.

• Talk overlap or Hello effect : it is the problem of one talker stepping on

the other talker’s speech

The end to end delay is the sum of delays derived by multiple sources:

• Accumulation delay : it is caused by the need to collect a frame of voice

samples to be processed by the voice codec. It is related to the type of

codec used.

43

• Processing delay : is a function of both processing power and codec used.

It is the time needed to encode and collect the encoded frames into

a single network packet. Often multiple multiple encoded frames are

collected in a single packet to reduce the packet network overhead.

• Network delay : it is caused by the physical medium used to transport

the voice data and by the protocols used. It is a function of link capacity

and the processing that occurs as the packet transit the network.

• Jitter reduction delay : it is introduced by the procedure used to reduce

the effect of jitter, described later.

Jitter

Jitter is defined as the variance of the one-way delay. When jitter is high,

packets arrive in chunks. A jitter buffer is usually used by the receiver to

reduce delay variations. Call quality is not affected by jitter fluctuations as

long as the jitter buffer can mask fluctuations. Latency constraints, which

depend on the codec being used, impose a buffer flush at least 150 ms that

usually corresponds to a few packets. Jitter can be controlled by network traffic

engineering on routers and firewall, so that a preference path is reserved to

voice packets. Nevertheless the de-jittering process, that also includes packet

reordering, is usually performed on VoIP terminals.

Bandwidth

Bandwidth requirements depend mostly on the codec. A codec (COder/ DE-

Coder) is an algorithm used encode audio or video content before sending it

on the network. Codecs are used to represent the original data with less bits

44

while keeping the quality high. The effective bandwidth requirement for a

particular codec is higher than the bit rate of the codec as the overhead of all

network protocols (RTP, UDP, IP, ethernet) should be taken into account.

Packet loss

Another parameter that influences the quality of the communication is the

packet loss percentage. Loss may be caused by discarding packets in IP net-

works (network loss) or by dropping the packets at the terminal due to late

arrival as they do not fit inside the current jitter buffer hence need to be dis-

carded. Network loss is normally caused by large buffers, network congestion,

route instability such route change and link failure. Congestion is the most

common cause of loss.

3.3 VoIP monitoring requirements

Traditional network management identified five different management cate-

gories that can be expressed with the acronym FCAPS. FCAPS is the acronym

of Fault, Configuration, Accounting, Performance, Security. Due to its im-

portance FCAPS describes the different tasks that a Network Management

System(NMS) should be able to perform. Even if FCAPS has a general mean-

ing since it is not bound to specific service monitoring, FCAPS reasoning is

still useful to analyze the monitoring requirements in a certain field, like VoIP

monitoring.

45

3.3.1 Fault management

The goal of fault management is to recognize, isolate and then correct faults

that occur in the network. Failures include hard failures, soft failures, miscon-

figuration, performance bottlenecks, loss of resilience and more.

VoIP infrastructure is quite different from the traditional PSTN infras-

tructure. This impacts on fault management for a variety of reasons.

First, VoIP user equipments are much more complex than traditional

PSTN user equipments. Traditional telephony devices do not need to be con-

figured whereas VoIP user agent needs to be configured using an appropriate

method (web interface or telnet). The configuration task is no more allocated

on a single entity and sometimes VoIP users need to manually adapt their VoIP

configuration by themselves. The lack of a single configuration management

domain makes misconfiguration more frequent.

Second, PSTN is composed by large islands owned and individually

maintained by different organisations or service providers. As a consequence

each island employs an homogeneous hardware and software infrastructure

provided by the same vendor. This is not always true for VoIP networks

where each user is allowed to choose its preferred VoIP device. Having an

homogeneous infrastructure substantially reduces the interoperability issues.

A VoIP monitoring application should offer an easy to use and powerful

interface to help network administrators to detect and resolve interoperability

issues or misconfiguration. The most simple example of interoperability issue

is the lack of a common codec to be used for a conversation. This issue can be

caused by misconfiguration (e.g. some codec are explicitly disabled by user).

Thus, it is important to know what are the most widely used user

46

agents and correlate unsuccessful calls to user agents. Each user agent can be

identified by the couple (vendor, model, firmware).

3.3.2 Configuration management

Configuration management goal is to improve the robustness of the network,

shielding the network resources from human mistake through automation.

This work does not cover this aspect of VoIP management.

3.3.3 Account management

Account management goal is to gather usage statistics for users. The statistics

are used for billing purpose or simply to better understand the service usage.

In this case Account Management is replaced by Administration Management.

Keeping track of users is useful for VoIP. Information like the number of reg-

istrations, the user agent and the different IP address used can be useful to

detect faults or security attacks.

3.3.4 Performance management

Performance management offers a foundation for pro-active management of

efficient network resource utilization, capacity planning and impact analysis.

It can optimize the Return of Investment (ROI) of a network infrastructure

by providing a deep insight into cost/performance tradeoffs at various levels

of network resources. In case of VoIP the resources are the IP network and

the VoIP entities. So the performance which has to be measured, can be

grouped in network performance, that impacts on voice quality and signalling

performance, that impacts on the service quality. The network performance

47

should be measured in order to understand if and when the network is capable

to support the required number of concurrent audio or video calls. Signalling

performance measurement involves the analysis of signalling protocol in order

to discover performance bottlenecks in the VoIP infrastructure.

3.3.5 Security management

Security management has a central role in VoIP monitoring. The adoption of

Internet for carrying both voice and signalling traffic offers new opportunities

but also introduces security risks. First of all, on the internet the most widely

used applications are usually the preferred victims of attackers. Due to its

growing popularity, VoIP is going to become the next likely target. Second,

even if VoIP reached a wide diffusion and the market of SIP devices is growing

fast, vendors do not seems to pay enough attention to security. A VoIP phone

can be a victim of attacks like any other internet host, with the difference

that it has less resources and usually receives less security updates than soft-

phones. As a consequence hard-phones are usually the perfect candidates to

perform denial of service (DoS) attacks. SIP active fingerprinting tools, such

as smap[19] were developed in order to discover the model and the firmware

of the most widely used hard phones. Moreover very few devices support

advanced security features (such as SRTP, SIPS or TLS). Thus, hacking the

current generation of VoIP network is very easy. Third, the vulnerabilities

of VoIP encompass not only the flaws inherent within the VoIP application

itself, but also in the underlying operating systems, applications and proto-

cols that VoIP depends on. The complexity of VoIP creates an high number

of vulnerabilities that affect the three classic areas of information security:

48

confidentiality, integrity and authentication. Some of the most basic security

attacks are presented in the following list:

• session teardown: an attacker could cause the forced termination of

SIP sessions sending crafted BYE or CANCEL SIP messages to one of

the call endpoints.

• media hijacking: Since RTP does not provide neither confidentiality

or message integrity, RTP streams are susceptible to man in the middle

attacks, such as RTP injection. An attacker injects prerecorded media

streams into the outgoing connection. The injected data needs to be

encoded with the same codec used by the eavesdropped data and must

be placed slightly ahead of the eavesdropped data. This should always

require the manipulation of some RTP header fields (SSRC, timestamp,

sequence number) and UDP ports. In practice, some widely used RTP

implementations do not evaluate those fields making the attack even

easier[61].

• registration hijacking: an attacker impersonates a valid user agent

and replaces the legitimate registration with its own address. As a con-

sequence, all the incoming calls are forwarded toward the attacker user

agent.

Detecting service usage deviations from the normal service usage pat-

tern can help network administrator to discover security attacks. For example

having subsequent short duration calls between the same endpoints is a very

suspicious service usage pattern and can be caused by a teardrop attack or by

poor audio quality. Further common service anomalies are listed in Table 3.3.

49

Anomaly detection requires the definition and the measurement of indicators

used to distinguish anomalies from normal usage patterns.

Anomaly D
o
S

p
a
ss

w
o
rd

c
ra

ck
in

g
a
tt

e
m

p
t

a
c
ti

v
e

fi
n
g
e
rp

ri
n
ti

n
g

R
T

P
in

je
c
ti

o
n

re
g
is

tr
a
ti

o
n

h
ij
a
ck

in
g

te
a
rd

ro
p

a
tt

a
ck

Frequent successful registrations of an
user

X

Too many unauthorized registrations of
an user

X

Unknown SIP method X X
SIP OPTIONS X
Malformed RTP packets X X
Subsequent short duration calls be-
tween the same endpoints

X X

Concurrent (or nearly concurrent)
proxy registrations of an user from dif-
ferent IP addresses

X

Table 3.3: Service anomalies and possible attacks

3.4 Why passive monitoring?

There are several approaches to network monitoring. The two common ap-

proaches are the passive and the active one. Active monitoring relies on the

capability to inject test traffic into the network or send packets to servers and

50

applications. Automated VoIP agents are responsible to establish dummy ses-

sions between fake users. Then the system response is analyzed to measure

some parameters such as the end-to-end delay.

Passive monitoring relies on the capability to capture the traffic flowing

across the network. The captured traffic is analyzed in real-time by network

probes.

Active and passive monitoring can be considered as complementary and

have their values and drawbacks. From the performance point of view both

approaches require resources. Passive monitoring requires standalone equip-

ments, the probes, that perform the analysis of the captured traffic. This

means that the service itself is not penalized by the monitoring task. Instead

active monitoring can waste resources (e.g. network bandwidth and processing

power) that are otherwise needed to provide service to real users. Since active

monitoring do not require real traffic it is useful to analyze the network perfor-

mance when the service is not yet provided such as during the VoIP network

assessment phase. Even if active monitoring is capable to offer meaningful

results we should always remember that what is obtained through the syn-

thetic traffic analysis is an estimate of the traffic perceived by users. On the

other hand results coming from passive monitoring correspond to the quality

perceived by the users, especially when the service usage is high. Moreover,

service usage anomalies can only be discovered using a passive approach. This

is the main reason why this work focuses on VoIP passive monitoring.

Furthermore, active monitoring is better suited for end-to-end measure-

ments whereas with passive monitoring is possible to segment the network so

that administrators can have a per network view of network performance met-

rics (such as packet loss and jitter).

51

Having this perspective is useful on large networks, since network bottle-

necks or congested links can be easily identified. The view is especially useful

when voWiFi (VoIP over Wifi) networks are used as VoIP access networks.

Through boundary monitoring, network operators can detect and act

upon problems occurring both within and outside of their networks. Com-

plaints received regarding poor quality calls can be checked against the moni-

toring system.

3.5 Challenges

This chapter has shown that monitoring VoIP services under a service oriented

perspective allows to define the quality of experience of the VoIP service us-

age using objective measurements, called indicators. Several key performance

indicators and key quality indicators, coming from the analysis of both the

signalling and the media transport protocol, have been identified.

Furthermore the chapter has shown that service oriented network moni-

toring offers meaningful information for network managers, as some indicators

are useful in several aspect of network management, including performance

and security management.

The passive monitoring approach has been suggested as it allows to

distinguish anomalies from normal usage patterns. However performing service

oriented network monitoring in a passive way is not an easy task for a variety

of reasons.

First, service oriented monitoring requires the measurements of different

application level metrics, or indicators. Key quality and key performance

indicators should be defined before service deployment since they represent

52

what need to be measured or computed by the service monitoring application.

However this is not always true in practice. Usually new indicators may need

to be introduced in order to provide a more accurate measure of service quality

perception. Moreover some indicators may be defined in order to detect service

usage or protocol anomalies. Thus service monitoring applications need to be

flexible and extensible enough to measure indicators that were not taken into

account during the design phase. New indicators should be introduced with

little programming effort.

Second, measuring those indicators in a passive way usually requires the

complete dissection and analysis of one or more application layer protocols.

Adding application level support to network probes increase the complexity of

monitoring software, since application level protocols are usually more com-

plex and more often updated than lower layer protocols. Protocol complexity

impact on monitoring requirements in terms of size of information set required

and in terms of performance.

In a nutshell, service oriented network monitoring is an enrichment of

traditional network monitoring. Service oriented network monitoring applica-

tions require additional design effort in order to manage the complexity and

achieve high performance at the same time.

53

Chapter 4

RTC-Mon framework

This chapter presents RTC-Mon: a framework designed in order to reduce the

time needed to implement complex service monitoring applications such as

VoIP monitoring applications.

4.1 Design goals

We identified the following design goals in order to design and implement a

framework capable to provide a ready to use infrastructure to speed up the

development of complex VoIP monitoring applications.

4.1.1 Functional design goals

The design has been done in order to provide all the information that a passive

VoIP monitoring application may need to have in order to provide a compre-

hensive view of the VoIP service status. This means that the framework must

be capable to analyze both the signaling and the media protocols in order to

54

gather the information identified in Chapter 3.

4.1.2 Performance

The framework should be able to handle several hundred calls on a desktop

class computer and should overcome some of the performance issue related to

VoIP traffic filtering. In fact the adoption of dynamic ports makes current

packet filtering technologies ineffective. VoIP traffic filtering using the stan-

dard BPF filtering mechanism gives to the developers two different choices:

1. use a single flat “udp” filter

2. use a single “udp and port 5060” to have the signaling traffic and a new

filter for every RTP stream

The first solution practically makes the filtering ineffective and thus re-

sult in wasting system resource. In fact, depending on the traffic behaviour a

large number of non VoIP packets can be forwarded to the user-space appli-

cation and then later on discarded.

The second solution, which seems to be the best one, is not suitable to

handle a great amount of different RTP streams and it is practically unusable

with just few hundreds of VoIP calls. In fact BPF filtering is done at the socket

layer and each socket can accommodate only one BPF filter, so that multiple

BPF filters will require multiple sockets1. This strategy is not scalable and

not efficient, since each packet has to be parsed by every socket.

So it is clear that to improve the performance of BPF we need to have

a filtering mechanism that must be:

1libpcap uses the PF PACKET socket family to perform the packet capture

55

• effective: only the required VoIP traffic should be forwarded to the user-

space

• scalable: the system load due to filtering must not grow up linearly with

the number of filters.

4.1.3 Usability design goals

The framework should be easy to use, flexible and extensible. To be easy

to use, it should hide the complexity of traffic capture, protocol parsing and

thread management.

Flexibility means that the framework should allow users to have access

to application level information, but also to raw packets.

In order to allow users to add support for different kind of protocols the

architecture should be easy to extend and should be modular.

4.2 Rationale

Before starting the design an analysis of the VoIP traffic patterns and protocols

has been done in order to optimize the most costly task while preserving

usability. The key to improve the performance of the framework is to provide

an effective filtering mechanism capable to discard non VoIP traffic at the

kernel level. This can be accomplished exploiting the same approach adopted

by mmap, but improved in order to overcome the BPF limitations. Thus, the

signalling traffic needs to be analyzed in order to dynamically manage a set of

filters.

Moreover in order to improve the performance an analysis of VoIP traffic

56

pattern has been carried on. The Table 4.1 shows the traffic produced by two

VoIP calls using two different audio codecs. The duration of each call is 3

minutes, which is lower than the average call duration time reported by several

telecom providers. Since the VoIP traffic is almost composed by RTP packets,

the RTP analysis is one of the most resource consuming task; thus optimizing

it is the second key to improve the performance.

The RTP analysis does not require the RTP payload inspection. Jitter,

packet loss and out of order packets can be computed using only the RTP

header which is simple to parse. Moreover we can assume that most of the

monitoring applications do not need to inspect the RTP payload. Furthermore

we can reasonably assume that stream analysis results are not often needed:

most of the VoIP monitoring applications need the results only when the call

ends. In the worse case, the analysis results are needed every few seconds. For

that reasons, doing the RTP analysis inside the kernel is feasible and can offer

benefits in terms of performance, if RTP packets are not forwarded in user

space.

The signalling traffic is carried over well known ports and it is easy to

parse. Even if the signalling traffic is only a fraction over the total, performing

the SIP filtering at the kernel level using SIP fields can be a benefit in terms

of performance.

4.3 Framework overview and design choices

Those considerations lead to the design of a mixed user-space kernel-space ar-

chitecture depicted in Figure 4.10. Having a mixed kernel userspace approach

is the best compromise between performance and flexibility. Performing the

57

GSM pkts bytes mean pkt size bandwidth percentile

RTP 19410 1690825 87 99.52%
SIP 22 8161 370 0.48%

G.711 pkts bytes mean pkt size bandwidth percentile

RTP 26515 4262450 160 99.64%
SIP 20 15187 759 0.36%

Table 4.1: Typical VoIP traffic pattern

RTP analysis and SIP filtering at kernel level results in a reduction of the

overall system load due to memory copies and system calls. The SIP filter can

be configured to forward only packets matching content based filters. Thus, it

is possible to filter calls using From, To and some other SIP fields.

The RTP analyzer performs the RTP analysis without forwarding pack-

ets in user space to reduce the number of packet copies. However, if the

userspace application needs to inspect the RTP payload, the RTP analyzer

can be configured in order to forward each analyzed packet to userspace.

An user space library can benefit from these primitives and it is the

most convenient way to keep the state of calls and active users. The library,

called LibVoIP, analyze the SIP filtered traffic in order to instrument the RTP

analyzer at kernel level. LibVoIP is an event based library. This paradigm is

commonly used by several network libraries, such as [58]. The paradigm has

been chosen for a variety of reasons. It allows developers to concentrate on the

implementation of event handler. Moreover it do not require complex message

exchanges that can cause performance impairments.

The library is implemented in C++, which is, unlike C, object oriented.

C++ libraries, such as Standard Template Library(STL) and Boost, allows the

development productivity to be increased. We did not considered interpreted

58

languages with automatic memory management such as Java, C# and Python,

since they usually offer lower performance and requires more resources. More-

over we preferred C++ since programs implemented with this language are

very portable, even if at the source code level; C++ software can be compiled

on almost every platform and architecture, including small embedded boxes,

where Java Runtime Environment and .Net Framework runtime are usually

unavailable.

The RTC-Mon libpfring library represents an intermediate layer be-

tween LibVoIP and the kernel infrastructure. The layer provides a packet

oriented capture library and allows the kernel to be instrumented. Having

this layer important because it allows the kernel infrastructure to be reused in

different contexts.

The framework architecture was designed with VoIP monitoring in

mind, but it can be adapted or extended in order to perform other moni-

toring tasks. Since the extensibility was one of the design goals the framework

can be enhanced and extended at different layers. The framework is capable to

perform VoIP analysis, but it provides a set of features that can be reasonably

exploited in order to allow the monitoring of several real-time services.

In particular the kernel part of the architecture has been designed in

order to provide a deep packet inspection infrastructure rather than a custom

solution that covers VoIP monitoring needs. Thus, the SIP filter and the RTP

analyzer are just examples of the infrastructure usage. A detailed description

of the infrastructure is given in 4.4.

59

Figure 4.1: RTC-Mon overview

4.4 Kernel enhancements

In order to increase the VoIP capture performance the kernel should provide

the following features:

• provide SIP filtering at kernel level : this means that the kernel should

be able to parse some of the SIP header field in order to let users select

which SIP packets should be forwarded to user space.

• be capable to analyze a set of RTP streams : RTP streams analysis in-

volves the ability to compute jitter, packet loss and out of order packets

over an RTP stream. The kernel should provide some primitives used to

manage the set of streams to be monitored. Moreover, it should be able

to know if a captured packet belong to one of the streams in the mon-

60

itoring set. Packets belonging to an RTP stream are not forwarded to

userspace. A polling mechanism in needed in order to read RTP analysis

result.

In order to implement the previously described features we designed an

extensible infrastructure that is not bound to a specific analysis domain. The

infrastructure provides a set of capabilities that can be exploited by developers

in order to implement the filtering and the analysis of disparate application

layer protocols. A specific application layer protocol support can be introduced

by means of plugins taking advantages of infrastructure primitives. Each plu-

gin is a kernel module providing the implementation of a common interface.

These are the primitives offered by the kernel infrastructure:

1. a mechanism used to forward both packets and parsing information to

userspace: one of the tasks that can be performed with plugins is the

filtering of packets using application layer protocol information. To per-

form the filtering, plugins must perform the parsing. The parsing infor-

mation collected by plugins can be forwarded to the userspace instead of

being discarded. This improves the performance and reduce the parsing

effort at the user space level.

2. IP defragmentation: passive monitoring systems usually perform IP de-

fragmentation in user space. However, IP fragments should be reassem-

bled in order to perform application layer protocol analysis in kernel

space.

3. packet header parsing up to transport layer : to perform the parsing of

an application layer protocol is necessary to know the packet payload

61

offset which indicate when the payload begins. The payload offset is not

constant due to the usage of variable length headers and it is known only

after packet parsing up to transport layer.

4. a polling mechanism: userspace applications should be able to poll the

plugins in order to have information regarding the analyzed traffic. The

polling mechanism is especially needed for plugins that perform the anal-

ysis without forwarding packets in userspace. In that case, the polling

mechanism is the only interaction between the userspace and the kernel

space.

5. a connection tracker with persistent memory storage: The analysis of

some protocols can be performed just over each packet. However in some

case, such as RTP, is necessary to perform some computation over flows

more than over packets. Some information, such as packet loss, must

be kept in a persistent memory that is freed only when the connection

tracking of a particular stream is disabled.

6. extensibility by means of plugins : Plugins can take advantage from the

previously listed primitives in order to perform upper layer protocol anal-

ysis. A detailed description of plugin interface is given in section 4.4.2.

7. a mechanism used to associate a plugin to a captured packet : plugins are

enabled on packets matching rules. The rule mechanism is described in

section 4.4.1.

In order to implement the infrastructure we decided to enhance PF RING

rather than writing something from scratch for a variety of reasons. First of

all PF RING already provides some of the needed features. Packets captured

62

width PF RING are enriched with a memory area containing transport layer

parsing information. The mechanism was easily customised in order to carry

also application level parsing information (capability 1). IP defragmentation

was previously implemented by the author (capability 2). PF RING parses

packets up to transport layer (capability 3). PF RING is a special socket and

supports the getsockopt() and setsockopt() system calls. Those system calls

are suited to implement a polling mechanism (capability 4).

Secondly PF RING is a mature project with a large community of users.

Thus it has been deeply tested. It already provides an user space library to

enable faster development of capture applications.

4.4.1 Plugins architecture

We developed the plugin architecture so that developers would be able to

perform a variety of crucial monitoring functions in the kernel, including packet

payload parsing, packet content filtering and traffic statistics computation.

Plugins are essentially kernel modules, providing a simple way for developers

to add support for functions and protocols that the framework might not

already come with. Further, the architecture allows for packets to be handled

by one or many plugins before being discarded, thus enabling the development

of applications that rely on several protocols or functions.

The process begins by creating a PF RING socket and assigning it to

an interface2. The socket has a set of rules associated with it that decide which

plugins to send packets to. Each of these rules has three components: a filter,

2PF RING supports the creation of several sockets per interface, thus allowing several
independent applications to run on the same interface; throughout our discussion we use
only one socket for simplicity’s sake.

63

an ID identifying the plugin to send the packet to in case the filter matches,

and an action ID that decides what happens to the packet in case of a match

once the plugin has processed it.

Figure 4.2: Extended PF RING overview with plugin architecture.

Figure 4.2 illustrates the basic architecture. First, PF RING receives a

packet on a device and parses its headers up to the transport layer, performing

any IP defragmentation where needed. It then goes through the socket’s set

of rules one by one, applying a rule’s associated plugin to a packet only if the

rule’s filter matches (for instance, a rule for an HTTP plugin could have a

filter for TCP packets with port 80).

The rule mechanism requires a closer look. As shown in Figure 4.2,

rules can be of two types: hash or wildcard. Hash rules are used when it

is necessary to track a six-tuple connection with the fields 〈vlan id, protocol,

source IP, source port, destination IP, destination port〉 without incurring the

linear evaluation costs of a rule list. The hash is managed by the plugin, thus

giving it the power to decide what connections to track and what state to keep;

as we will show later, this is used by the RTP plugin to track different media

streams.

Wildcard rules, on the other hand, are more flexible, allowing to match,

for example, all UDP packets going to a specific port. These rules can also

specify a higher-layer, plugin-specific filter. In this way, a user could instru-

64

ment the system to process only INVITE messages.

We mentioned earlier that rules also have an action associated with

them. If a packet matches a rule’s filter, the action determines what happens

to a packet after it has gone through the rule and its plugin (if the packet does

not match the rule it is evaluated against the next rule). In our architecture,

there are three options for the action:

1. Continue rule evaluation.

2. Stop rule evaluation, send packet to user space.

3. Stop rule evaluation, do not send packet to user space.

The first option is straight-forward, allowing subsequent rules and plug-

ins in a socket’s set to also process packets (see Figure 4.3). The other two stop

the rule evaluation: if a packet has already been handled by the appropriate

plugin, a developer can use one of these two options to prevent any further

and perhaps wasteful processing. Finally, a developer might need to pass some

of the information gathered up to user space using option 2. Copying data to

user space can be costly, however, and so option 3 is there to allow a developer

to accumulate data in the plugin that an application can poll from time to

time; this is the mechanism used by the RTP plugin described later in this

chapter.

There are two different memory areas that plugins are allowed to man-

age: the parse memory buffer and the hash memory. The parse memory buffer,

depicted in Figure 4.4 contains pointers to plugin parse buffers. A parse buffer

is a contiguous memory area allocated by plugins whenever a packet needs

to be processed and deallocated by the PF RING core when the packet has

65

Figure 4.3: Packet paths for all possible rule action types.

been handled. Since plugins have been introduced to allow the analysis and

the parsing of different application layer protocols the plugin architecture does

not make assumptions regarding the parse buffer’s content. Plugin developers

can use the parse buffer to allocate plugin dependent parsing information. The

role of the parse buffer is crucial for two reasons. First, the parsing informa-

tion can be used to perform packet filtering using application layer protocols.

Second, the parse buffer of the plugin associated to the latest matching rule

is copied to userspace together with the packet if the action 2 is specified.

Figure 4.5 shows the memory layout of a PF RING slot containing a

successfully parsed packet that needs to be forwarded to userspace. The slot is

composed by three different memory regions. The first region contains packet

parsing information up to layer 4 and includes the length of the captured

packets and the length of the second memory region. It is worthwhile to note

that the PF RING core is responsible to perform packet parsing up to layer 4

so that each packet is parsed up to transport protocol exactly once regardless

of the number of sockets and plugins enabled. This parsing information is

66

Figure 4.4: The parse memory buffer

forwarded to plugins so that plugins developers do not have to take care of

lower layer protocol header dissection.

The second region contains parsing information coming from higher

layer protocol parsing. That’s where plugins come into place. This region

contains the parse buffer of the latest plugin having a match. The third and

last region contains the captured packet.

The second memory area that plugins are allowed to manage is the hash

memory. The hash memory is a traditional hash composed by singly linked

bucket chains. Each bucket represents a single hash rule and contains:

• the pointer to the next bucket

• a void pointer to a plugin dependent memory area

• the length of the memory pointed by the previous pointer

• the hash filtering rule

67

Figure 4.5: PF RING slot layout with plugin parsing information.

The main difference between the parse memory buffer and the hash

memory is that the memory allocated by the hash is not freed until the hash

filtering rule is deleted so that plugins are allowed to keep flow based informa-

tion such as the number of packets of a TCP connection. Another difference is

the mechanism adopted to grant to user space applications the access to that

memory. Parse buffers can be copied to userspace together with the packet.

On the other hand the plugin dependent data pointed by each hash bucket

can be read using a polling mechanism. The RTP analyzer, implemented

as a PF RING plugin makes use of the hash memory to store RTP analysis

information read by user space applications using the polling mechanism.

So far we said that the RTC-Mon PF RING core takes care of many

tasks including IP defragmentation, packet parsing up to layer 4, rule and

plugin management including parse buffer and hash bucket deallocation. On

68

the other hand plugins can introduce the support for upper layer protocol

parsing and analysis. Filtering packets using fields from application layer

protocol is possible and will be described in details in the Section 4.4.2.

Plugins are allowed to allocate their own parse buffer that can eventually

be forwarded to the userspace together with the packet. Moreover they are

allowed to manage hash buckets corresponding to hash rules. The hash bucket

content can be copied on request to userspace using the polling mechanism.

4.4.2 Plugins developement

Plugins are kernel modules providing two entry points module init and mod-

ule exit that are called when the plugin is inserted and removed. The mod-

ule init function is responsible for registering the plugin using a PF RING

function that takes as parameter a struct containing:

• a plugin identifier : an integer used to univocally identify the plugin

• plugin filter skb: a pointer to a function called when a packet needs to

be filtered

• plugin handle skb: a pointer to a function called whenever a packet is

received

• plugin get stats : a pointer to a function called whenever an user wants to

read statistics from a filtering rule that has set this plugin as a filtering

action

Plugin developers can provide the implementation of one or more of the

previously mentioned functions. The following sections describe the defined

pointer to functions in detail.

69

plugin handle skb

typedef int (*plugin_handle_skb)(

filtering_rule_element *rule, /* In case the match is on the list */

filtering_hash_bucket *hash_bucket, /* In case the match is on the hash */

struct pfring_pkthdr *hdr,

struct sk_buff *skb,

u_int16_t filter_plugin_id,

struct parse_buffer *filter_rule_memory_storage);

plugin filter skb

/* Return 1/0 in case of match/no match for the given skb */

typedef int (*plugin_filter_skb)(

filtering_rule_element *rule,

struct pfring_pkthdr *hdr,

struct sk_buff *skb,

struct parse_buffer **filter_rule_memory_storage);

plugin get stats

/* Get stats about the rule */

typedef int (*plugin_get_stats)(

filtering_rule_element *rule,

filtering_hash_bucket *hash_bucket,

u_char* stats_buffer,

u_int stats_buffer_len);

70

4.4.3 Implemented Plugins

SIP plugin

The SIP filter depicted in Figure 4.10 was implemented as a PF RING plugin

called sip plugin. The plugin is meant to be enabled using a wildcard rule

that matches all UDP packets with the source or destination port set to the

standard SIP port (5060 see Appendix A).

The main purpose of the SIP filter is to discard unnecessary signalling

traffic at the kernel level. The following filtering structure is defined for that

purpose.

struct sip_filter {

u_char swap_peers;

/* 1 = match also when swapping caller with called

Used only for filtering and not packet

parsing */

sip_method method;

u_char caller[PEER_LEN]; /* Empty string means ’any’ */

u_char called[PEER_LEN]; /* Empty string means ’any’ */

u_char call_id[CALL_ID_LEN]; /* Empty string means ’any’ */

};

Although the parsing structure is simple it is powerful enough to select

only packets coming from a specific user user or having the specified SIP

method. For example it is possible to select only SIP INVITE packets coming

from user fusco@sip.com or every REGISTER packet regardless of the user.

In order to perform the filtering using the previously described structure

the plugin has to parse SIP packets. The following C structure is the parsing

71

structure defined by the plugin. The structure is copied to user space together

with the packet when the action forward is selected.

struct sip_parse {

sip_method method;

u_char caller[PEER_LEN];

u_char caller_name[PEER_LEN];

u_char called[PEER_LEN];

u_char called_name[PEER_LEN];

u_char call_id[CALL_ID_LEN];

u_int16_t cseq, status_code;

sip_method cseq_method;

/* Offsets with respect to the SIP payload */

u_int16_t user_agent_offset,

sdp_offset, contact_offset,

record_route_offset;

};

The majority of field names are self-explanatory. Some fields such as

caller and called are completely parsed (a char array is given). For other

fields, such as the user agent, it is given only an offset. Moreover, only a small

subset of SIP fields is parsed, thus the plugin is only responsible to perform the

first stage parsing. The parsing of SIP packets needs to be completed by an

userspace analysis library. Parsing very few SIP fields has been a design choice.

We decided not to implement an heavy parsing at the kernel level for many

reasons. First, we wanted to keep the parsing information as small as possible.

72

The parsing structure has to be copied from userspace to kernel space together

with the packet; having a very large parsing struct requires bigger PF RING

slots. Second, the SIP component may need to be reusable by applications

having different requirements. Some applications just may need to have the

basic fields (such as From and To), thus parsing more fields will be useless.

Third, having a bug in kernel can cause a system hang or crash.

The sip plugin also provides an implementation of the plugin get stats

function so that the plugin can be used for monitoring purposes without copy-

ing SIP packets in user space. Using the polling mechanism the following C

structure can be read from user space in order to have statistics regarding the

analyzed traffic.

struct sip_stats {

u_int32_t num_register_pkts, num_options_pkts,

num_invite_pkts, num_ack_pkts,

num_notify_pkts, num_bye_pkts,

num_cancel_pkts, num_sip_pkts,

num_publish_pkts, num_subscribe_pkts,

num_unknown_pkts;

};

The structure contains a counter for each SIP packet type, including

malformed packets. Providing these counters can help network administrator

to discover protocol usage anomalies. For example having a large number of

malformed packets can be a symptom of a denial of service attack.

73

RTP plugin

The RTP analyzer component was implemented as a plugin called rtp plugin.

The plugin performs the RTP analysis of a managed set of RTP streams in-

side the kernel and has to be enabled using hash rules, each representing a

monitored RTP flow. The rtp plugin performs the RTP analysis using fields

from the RTP header so that applications can use the polling mechanism to

read RTP analysis results without copying RTP packets to userspace.

For each monitored RTP stream the RTP analyzer keeps the following

information:

• payload type(8 bits): defines the format of the RTP payload and deter-

mines its interpretation by the application

• total packets(32 bits): this is the number of captured packets belonging

to the monitored stream

• total bytes(32 bits): this quantity represents the total bandwidth con-

sumed by the RTP stream.

• number of malformed packets: an RTP packet is considered malformed

if does not carry any payload

• number of out of order packets: the expected sequence number for a

RTP packet is the sequence number of the previous captured packet plus

one. If the sequence number for a captured packet is different from the

expected sequence number the packet is considered out of order. The

RTP plugin keeps track of the number of malformed packets, so that

RTP injection attacks can be easily discovered.

74

• current, mean and max jitter : three different values for the jitter are

kept. The maximum, the mean and the actual jitter value.

• initial sequence number : corresponds to the lower sequence number ob-

served

• last sequence number : the field represents the highest sequence number

seen.

• initial timestamp: corresponds to the RTP timestamp of the first cap-

tured packet belonging to the monitored RTP stream

• last timestamp: is the RTP timestamp of the latest captured RTP packet

• SSRC : this is the synchronization source identifier for the monitored

RTP stream

With this information is quite easy to compute some of the most im-

portant key performance indicators. The packet loss can be easily computed

using the initial and the last sequence number. The bandwidth consumed by

the monitored RTP stream is kept and can be used together with the number

of packets to compute the mean packet size.

4.5 LibVoIP

LibVoIP is a C++ VoIP analysis library that exploits the features provided by

the kernel infrastructure in order to allow fast developments of complex VoIP

monitoring applications. The library is already capable to perform active calls

and users monitoring and provide a large set of information regarding the an-

alyzed traffic that cover much of the monitoring requirements. However one of

75

the most important library’s design goal is to provide an extensible framework

designed to manage the complexity of VoIP traffic analysis rather than a fixed

and static solution. Thus, the library automates many of the standard tasks,

such as protocol parsing, leaving the developers free to concentrate on writing

more complex library extensions.

4.5.1 Overview

Every passive probe should perform the following activities: packet capturing,

packet parsing and protocol analysis. LibVoIP is an event based library that

covers all of these activities and provides an easy to use interface to export

analysis results to library users. Figure 4.6 provides an overview of the library

and shows the most important LibVoIP components.

Figure 4.6: LibVoIP overview

76

Packet capturing and parsing is performed by the Dispatcher compo-

nent. The class allows to start the capture process from a specified network

interface. The Dispatcher’s start method creates a configurable number of

capture threads. Each thread gets a captured packet using the underlying

libpfring, completes the parsing of signalling packets and then dispatches the

packet together with the parsing information to a set of Tracker components,

described later. Packets, with the corresponding parsing structures are encap-

sulated in PFData class instances. PFData class is substantially a packet con-

tainer with the additional methods parse and get parsed data. The parse

method is called by capture threads to perform the second stage SIP parsing.

The parsing structures are substantially three:

• the layer 4 parsing structure coming from the PF RING core

• the SIP parsing structure from the SIP plugin

• another SIP parsing structure which is filled by the PFData

The capture process can be stopped using the Dispatcher’s stop method.

The Dispatcher is the interface between trackers and the underlying libpfring

library, so it provides some methods to manage the RTP analyzer’s monitoring

set.

Figure 4.7: Trackers and dispatcher relationship

Trackers, such as the CallTracker and the UserTracker are subclasses

of the Tracker class (see Figure 4.8). They are responsible to perform the

77

signalling analysis and to keep the state of something which is relevant for

monitoring purposes. Tracker are organized as hash data structures composed

by singly linked chains of Bucket subclasses instances. Each tracker provides

its own Bucket subclass. Bucket subclasses are used by trackers to keep infor-

mation regarding the analyzed traffic; as they are used by event handlers they

must provide accessors methods.

The library comes with two different trackers, but the library design

allows and encourages the development of custom tracker components. In

Section 4.5.2 the extensibility through tracker is better described whereas Sec-

tion 4.5.3 and 4.5.4 describe the standard trackers provided by the library.

Figure 4.8: Trackers

Trackers emit events when the state they keep changes (e.g. a new

user has been discovered). The library defines three different event types:

NEW BKT EVT, UPD BKT EVT and DEL BKT EVT.

Events are handled by event handlers provided by library users. Each

78

tracker is responsible to execute the set of event handlers associated with the

generated event type. Event handlers are implemented as Callback subclasses

(see Figure 4.9). Callback subclasses must provide an implementation of the

execute method. The method is executed by trackers and takes as argu-

ment: a reference to a Bucket subclass instance and a reference to the PFData

instance that caused the event generation.

Figure 4.9: Callback

The main function of a simple monitoring application written on top of

LibVoIP usually consists of just few lines of code. The main has to perform

to following activities:

1. creation of a new Dispatcher object

2. creation of a new Tracker subclass object

3. creation of a new Callback subclass object

4. subscription of Callback to the tracker (using the Tracker’s subscribe

method

5. registration of the tracker (using the Dispatcher’s add tracker method)

79

6. activation of the capture process (using the Dispatcher’s start method)

Using the provided trackers it is possible to build simple VoIP monitor-

ing applications with very little efforts. For example, a console applications

that prints on the screen every discovered user is less than 30 lines of codes.

A more complex application that shows every successfully completed calls to-

gether with the RTP statistics is just few lines more. In both cases, a single

callback is sufficient and its execute method is less than five lines of code.

4.5.2 Writing custom trackers

Trackers are used to enhance the analysis capabilities of LibVoIP. Thanks to

the modular approach developers can focus on their specific monitoring needs

without wasting time in protocol parsing and so on. What tracker developers

must provide is the implementation of methods responsible to:

• compute an hash value over a captured packet : an hash is used to find

existing buckets which may be updated after the packet analysis. Track-

ers are allowed to provide one ore more hash functions to be used to find

the relevant buckets.

• create a new bucket : trackers are supposed to keep the state of something

relevant for monitoring purposes. Thus they should provide a method

used to allocate their own data structures.

• manage an existing bucket : once a packet is captured it is dispatched to-

gether with parsing information to the trackers for being handled. Track-

ers provide their own method in order to perform the analysis and are

allowed to emit events.

80

However this is only the minimum aid that the library provides to devel-

opers writing custom trackers. Beside parsing, capturing and event handling

the library also provides a purging mechanism to delete expired buckets from

the system. A thread called cleaner thread is responsible to visit all the Tracker

records in order to find (and purge) expired buckets. Developers can override

the Bucket’s expired method in order to customise the default purging be-

haviour, which is timeout based. This mechanism can be used to provide a

more complex and smarter purging. For example the purging mechanism has

been customised during the implementation of the call tracking feature.

4.5.3 Call tracking

The CallTracker is responsible to provide information regarding active calls.

In case of successfully established calls the information includes the network

performance metrics for each media flow discovered by the signalling analysis.

CallTracker employs the RTP analyzer in order to compute the performance

metrics and it is responsible to manage the RTP stream set to be analyzed by

the kernel infrastructure.

The signaling analysis involves the management of CallTrackerBucket

instances keeping the state of each VoIP call. In particular a new CallTracker-

Bucket instance is created whenever a new INVITE message is detected and

purged whenever the VoIP session is closed by means of a BYE or CANCEL

message.

Since BYE and CANCEL messages can be lost, the CallTrackerBucket

expired method has been overridden in order to perform a more sophisticated

purging. In particular, in case of a successfully established call the cleaner

81

Figure 4.10: Interactions between Dispatcher, RTP analyzer and CallTracker

thread updates the statistics of each monitored RTP flows. If no packets are

seen during a configurable time period, the bucket can reasonably considered

expired, thus purged, even if the BYE message has not yet been received.

4.5.4 User tracking

Active calls discovering is performed by the CallTracker component whereas

the UserTracker component is responsible to discover active SIP users. Keep-

82

ing track of users can help network managers to perform a proactive manage-

ment of their networks and to discover misconfigurations. If the number of SIP

users is going to increase, then network managers should expect to see more

SIP calls on their networks. Moreover having a detailed view of SIP users can

be useful to network managers in order to understand service usage anomalies

which can be caused by denial of service attacks or simply misconfiguration.

The UserTracker component was introduced in order to discover active

SIP users. The UserTracker is capable to keep the SIP registration attempts

and the time of the latest successful registration for each user. In this way

network manager can discover SIP phone misconfiguration (e.g. a wrong pass-

word has been inserted by an user), troubles with some SIP registrar servers

and password cracking attempts.

For each discovered user the UserTracker keeps and updates in real time

a set of counters representing the number of sent SIP packets for each packet

type. Using those counters fraudulent users can be easily discovered.

Moreover, the UserTracker allows to keep track of users mobility since

for each user it is kept the contact’s IP address. Last but not least, the com-

ponent detects the User Agent (soft phone or hard phone) for each discovered

user.

83

Chapter 5

RTC-Mon validation

The previous chapter introduced the RTC-Mon framework.

This chapter will present VoIPMon, which is a sample application im-

plemented on top of RTC-Mon and will describe some of the possible use cases

for the framework. Then, the framework performance results will be presented.

At the end the thesis requirements will be validated.

5.1 VoIPMon: RTC-Mon at work

The framework has been designed in order to enable faster development of

comprehensive VoIP monitoring applications. Thus a complete VoIP moni-

toring application has been implemented on top of it. The structure of the

application is depicted in Figure 5.1. The solution is composed by different

components. VoIPStorer is a C++ application that uses RTC-Mon in order

to analyse the VoIP traffic. Analysis results are then stored in a MySQL

database. Time varying data, such as the maximum number of concurrent

calls, is handled in a different way. In fact the RRDUpdater component is

84

responsible to store the time varying data and to produce graphs regarding a

selected time frame.

Since much of the complexity is encapsulated into the LibVoIP library

the software is quite simple and yet capable to provide a large set of information

regarding the analysed VoIP traffic.

Figure 5.1: VoIP-Mon: an RTC-Mon based VoIP monitoring application

85

5.1.1 VoIPStorer

VoIPStorer is a C++ application written on top of the framework in order

to perform the VoIP traffic analysis. The analysis results are then stored in

a MySQL database. Since the packet capture and dissection and protocol

analysis is performed by LibVOIP the software is simple and it is no more

than 800 line of codes. The software make use of both the CallTracker and

UserTracker components in order to perform a comprehensive VoIP analysis.

In order to store the analysis results in the MySQL database it define two

different callbacks responsible to store user and calls information respectively.

5.1.2 RRDUpdater

The RRDUpdater component is responsible to store time varying information

and to generate some graphical reports (png) images that are shown by the

VoIPConsole. RRD stands for Round Robin Database, which is a commonly

used tool[42] to store time series data and to quickly generate graphical rep-

resentations of the data values collected over a definable time period.

The RRDUpdater component uses the information stored in the SQL

database in order to compute some metrics such as:

• the Average Call Duration

• the Maximum Number of Concurrent Calls

• the Bandwidth utilisation

Those metrics are computed every five minutes and then inserted into

Round Robin Databases.

86

5.1.3 VoIPConsole

The VoIPConsole is a web application, written in php, that shows information

regarding calls and VoIP users. Figure 5.2 shows a screenshot of the VoIPCon-

sole calls page. The page shows call attempts and completed calls discovered

in a selected time-frame. For each call, the caller and the called are shown.

Moreover, for successfully established and completed calls the Setup Time and

the Duration are reported.

Figure 5.2: VoIPConsole calls page

The sample application is capable to analyse both the signalling proto-

col and the media transfer protocol. Thus, for each successfully completed call

the information reported by the sample application includes the RTP statistics

for each media stream involved. RTP statistics are shown in the Call Details

page, depicted in Figure 5.3. For each media stream, the number of packet,

the jitter and the codec are reported.

The sample application is capable to discover both VoIP calls and VoIP

users in real time. Detailed information regarding a specific user are shown in

the Peer Details page (Figure 5.4). The information includes some counters

87

Figure 5.3: VoIPConsole call details page

regarding the signalling traffic exchanged by the selected user and the Average

Call Duration (ACD).

5.2 Further RTC-Mon use cases

In the previous Section we presented a sample VoIP monitoring application

called VoIPMon based on RTC-Mon. However the framework allows the de-

velopment of more complex applications (Figure 5.5).

RTC-Mon simplifies the development of distributed monitoring archi-

tectures used to segment the networks in order to provide a per link view of

service parameters. IPFIX network probes, capable to export VoIP informa-

tion toward a central collector can be implemented on top of RTC-Mon.

VoIP spam, often referred as Spam over Internet Telephony(SPIT), is

the proliferation of unwanted automatically dialed phone calls using VoIP.

88

Figure 5.4: VoIPConsole peer details page

89

Figure 5.5: Further RTC-Mon use cases

Much like email spam, it’s believed that as VoIP becomes more popular, SPIT

is sure to follow. Blocking SPIT is far more complex than blocking the tra-

ditional email spam, for example because Internet telephony is a synchronous

service whereas emails are by their nature asynchronous. SPIT is an active re-

search topic and several SPIT detection methods have been proposed [48], but

SPIT detection and prevention research is still at a very early stage. RTC-Mon

provides a comprehensive analysis of both media and signalling traffic and

allows a rapid prototyping of experimental SPIT detection methods. Since

RTC-Mon allows to carry media streams to user space it can be a starting

point for the implementation of complex content based methods.

RTC-Mon can also be useful to perform further measurement studies

in order to better characterise the VoIP traffic and to understand its impact

on current IP networks. Moreover the framework easily allows to conduct

statistical surveys on usage of codecs and user equipments.

90

The framework can be extended in order to discover service usage

anomalies. These are used by both Intrusion Detection Systems and fraud

management systems. VoIP specific IDS systems, such as the one proposed in

[41] can be easily implemented on top of RTC-Mon.

5.3 Performance evaluation

While the RTC-Mon framework provides flexibility and reduces development

time, we still need to show that it is able to cope with high data rates when

using a general purpose computer to monitor traffic. To do so, we built a small

testbed and implemented all of the components of the framework, testing them

to see how well they perform.

Before discussing the evaluation results, it is worth mentioning two

relevant parameters: packet size and the maximum number of concurrent flows

that a link can accommodate. Packet size is important because smaller packets

put higher strain on the monitoring system. The number of flows, on the other

hand, gives a good idea of the maximum amount of state that the system might

need to keep in order to monitor all calls currently active.

Both of these factors depend on the codec used. Different phones (be

them hardware or software-based) support different codecs, and so there is a

variety of them used in VoIP communications. Table 5.1 lists relevant infor-

mation for some of the most common codecs. To calculate these numbers we

assumed Ethernet Gigabit links and IP/UDP/RTP packets, since this is the

most common scenario. As can be seen, packet sizes range from 78 to 218

bytes: it is important that our experiments cover this range, since it is de-

fined by the two most supported codecs, G.729 and G.711 (we arrived at this

91

conclusion by tallying up the supported codecs of 43 hardware and software

phones from companies like Cisco, Grandstream, Linksys, Siemens and Snom

listed in [43]).

The table further shows that the maximum number of concurrent RTP

flows for any of the codes is at most 48,000 or so. This latter is a theoretical

number, since it assumes perfect conditions and no other traffic on the link,

but it gives a worst-case number. As a result, in the rest of the section we will

focus on number of flows from thousands to 50,000.

Sample Sample Bit Packet Ethernet Max Num
Size Rate Rate Size Bandwidth Flows

Codec (bytes) (ms) (Kbps) (bytes) (kbps) (Gb link)
G.711 80 10 64 218 87.2 11,468
G.726 20 5 32 138 55.2 18,116
G.726 15 5 24 118 47.2 21,186
G.728 10 5 16 118 31.5 31,780
G.729 10 10 8 78 31.2 32,051
iLBC 38 20 15.2 96 27.7 36,101

G.723.1 24 30 6.4 82 21.9 45,732
G.723.1 20 30 5.3 78 20.8 48,077

Table 5.1: Rate information for various common VoIP codecs.
The figures assume Ethernet/IP/UDP/RTP headers.

One final factor worth keeping in mind is the maximum theoretical rate

for Gigabit Ethernet. Depending on packet size, the actual rate on such a link

is less than 1Gb, as a result of header overheads including an inter-frame gap of

12 bytes and a preamble of 8 bytes; table 5.2 shows the maximum theoretical

rates for the small packet sizes we are interested in. Please note that the rates

presented in the results are loss free (no packets dropped).

In the rest of the section we evaluate the performance of the RTC-Mon

framework as well as that of VoIP Console, the proof-of-concept application

92

Packet size Size on wire Theoretical Max Theoretical Max
(bytes) (bytes) (in Kpkts/s) (in Mb/s)

64 84 1488 762
100 120 1042 833
150 170 735 882
200 220 568 909
250 270 463 926

Table 5.2: Maximum theoretical rates for Gigabit Ethernet.

built on top of it.

5.3.1 Testbed

As mentioned, we used a small testbed to conduct our tests. The testbed con-

sists of an IXIA 400 traffic generator [31], two computers and an HP Procurve

1800 switch to connect them all (see Figure 5.6). We used the IXIA 400 to

generate trash UDP traffic, a computer to generate VoIP traffic and another

one as the monitoring system.

Figure 5.6: Experiment network topology
The UDP traffic generator, the VoIP generator and the network probe are

shown

93

The VoIP traffic generator consists of an Intel Centrino CPU at 1.86Ghz

with 512MB of memory running a Linux 2.6.24 kernel. The computer injects

VoIP traffic by replaying a packet trace with tcpreplay [2]. The trace contained

about 1,000 calls each lasting 30 seconds: from [5] we know that calls typically

last about 100 seconds, and so we picked 30 seconds as a worst-case scenario,

since we could produce a higher call rate with short calls, thus putting more

load on the system. In addition, the maximum number of concurrent calls in

the trace was about 200; while this may seem small, the tests were run with a

mixture of calls and other, non-VoIP traffic, adding up to as many as 50,000

concurrent flows.

The monitoring system has a Supermicro PDSMI+ mainboard, an Intel

CeleronD running at 3.2 Ghz and 4GB of DDR2 Ram. The mainboard is a

low cost server class mainboard providing two Intel e1000 LOM Gigabit NICs.

The monitoring system also run a Linux 2.6.24 kernel; it is connected to the

switch using a mirror port and receives the combined traffic from the UDP and

the VoIP generators. The device driver used is the e1000 driver developed by

Intel and included with the Linux Kernel, which can be expected to maximize

the performance by using all the available hardware features on the NIC.

It is worthwhile to note that a low budget server has been chosen as

monitoring station. In particular the Intel Celeron is a desktop class CPU

whose price is less than 50 euro.

5.3.2 RTC-Mon performance

In order to test the performance of the RTC-Mon framework we decided to

focus on RTP traffic. The reason for this is that signalling traffic (for example

94

SIP) represents only a small fraction of all traffic of a VoIP call, and so it does

not tax the system nearly as much as the RTP traffic does. In more detail, we

mentioned earlier that calls typically last about 100 seconds. We ran a quick

test capturing 100-second calls using different codecs and discovered that SIP

traffic was only 1% of the total traffic. In addition, the RTP plugin puts

further strain on the system since it keeps state for each ongoing call. While

we also processed and analysed SIP traffic, the tests are designed to stress the

RTP analysis, since we feel this dominates the overall system performance.

As a first test, we wanted to see the system’s performance when dealing

with a mix of VoIP traffic and other UDP traffic. More specifically, we were

interested in the improvement arising from filtering traffic in the kernel rather

than in user space.

To do so, two different libvoip flavours were implemented:

1. LibVoIP RTC-Mon: this is the original LibVoIP built around the kernel

enhancements. It make use of both the RTP analyzer and the SIP filter

and parser. Thus, the kernel is responsible to perform the first stage

signalling parsing and to provide analysis result for a set of analyzed

RTP streams. RTP packets never reach the user space. Analysis result

are read using the PF RING polling mechanism.

2. LibVoIP pfring : the library use the same packet handling approach of the

architecture, however the packet processing and the protocol analysis is

completely done in user space. All UDP packets reach the user space (a

flat ”udp” filter has been used). The RTP analysis is performed with the

RTP analyzer code, with minor modifications. The signalling parsing is

performed by the Dispatcher component in just a single stage, since the

95

SIP analyzer is no more adopted. This means that each packet is first

matched against the RTP analyzer hash. If the packet do not belong to

any monitored RTP streams and it is a SIP packet is parsed and then

dispatched to the trackers, otherwise discarded. Since PF RING is used

to carry packets from user space to kernel space the parsing up to layer

4 is performed by the ring kernel module.

Thanks to the LibVoIP library design it has been quite simple to take

advantage of the different capture and filtering technologies. In fact the Dis-

patcher is the only component that have been modified, so trackers have been

kept unchanged regardless of the capture and filtering mechanism employed.

Moreover all the flavours share the same SIP parsing code and the RTP anal-

ysis code with minor modifications.

The monitoring was driven by voipcapture, a minimal RTC-Mon appli-

cation that forces analysis of both signalling and media traffic, but does no

further processing, ignoring any events it receives. The VoIP traffic generator

machine has been used to inject in loop the previously described VoIP traffic

trace whereas the IXIA 400 has been configured to generate trash UDP traf-

fic. We then measured the load that the VoIP analysis put on the CPU of the

monitoring host.

The results in Figure 5.7 show that performing the analysis in the kernel

yields clear improvement regardless of the incoming packet rate. Further, the

figure demonstrates that the framework can cope with large packet rates while

keeping the CPU relatively idle (between 60% and 40% for the whole Gigabit

range).

So far we have shown that RTC-Mon is quite capable of picking out

VoIP traffic from a loaded link and analyzing it; we now turn our attention

96

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P

U
 Id

le
 P

er
ce

nt
ag

e

Non VoIP Traffic Rate (Mbps)

User-level analysis
Kernel-level analsys

Figure 5.7: Performance when filtering trash UDP traffic from VoIP traffic.

to how well the framework performs when it has large amounts of traffic to

analyze. In order to help with this we wrote a small program, rtpstress, that

provides command-line control of the capture and analysis of RTP traffic by

allowing insertion of a configurable number of RTP rules, each representing

a monitored stream; packets belonging to a stream are used to update the

stream’s statistics.

Since we did not have a powerful VoIP traffic generator handy, we used

the IXIA 400 to generate UDP traffic and configured the RTP plugin (using

the rtpstress program) so that it would consider these packets as malformed

RTP packets, thus forcing them to be analyzed. As mentioned at the beginning

of the section, a Gigabit Ethernet link can carry at most about 50,000 RTP

flows. To test this limit, we configured the IXIA to generate up to this many

flows; the monitoring system tracked every single one of these flows and kept

statistics for them.

Figure 5.8 shows the results of these tests. It contains two graphs per

packet size, one representing the maximum loss free packet rate when all of the

97

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10000 20000 30000 40000 50000

M
bp

s

Number of rules

RTP analyzer: forward vs not forward (Mbps)

Not Forward (128 byte/pkt)
 Forward (128 byte/pkt)

Not Forward (250 byte/pkt)
 Forward (250 byte/pkt)

Figure 5.8: RTC-Mon performance when tracking large numbers of RTP flows.

analysis is done in the kernel without packet forwarding enabled, and another

one when the packet is copied to the PF RING circular buffer. As can be

seen, RTC-Mon yields high rates when monitoring even small packet sizes.

For 128-byte packets and 30,000 RTP rules, for instance, it can process traffic

at about 600Mbps, 70% of the theoretical maximum (recall Figure 5.2); for

250-byte packets, the rate jumps to about 830Mbps, 90% of the maximum.

As expected, copying packets into a PF RING socket results in a performance

hit, but even in this scenario RTC-Mon is able to process packets at a very

respectable 500Mbps for 128-byte packets and 50,000 RTP rules.

Another test has been performed in order to evaluate the cost of per-

forming the RTP analysis. To do so we decided to compare the RTP plugin

with packet forwarding disabled with pfcount which is a simple capture ap-

98

plication written on top of PF RING. The application captures every packets

and then discards them without doing any protocol analysis.

Figure 5.9 shows the results of these tests. It contains two graph per

packet size, one representing the maximum loss free packet rate when the RTP

analysis is done in the kernel without packet forwarding enabled, and another

one when every RTP packet is captured and later on discarded by pfcount.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10000 20000 30000 40000 50000

M
bp

s

Number of rules

RTP analyzer vs pfcount (Mbps)

Not Forward (128 byte/pkt)
pfcount (128 byte/pkt)

Not Forward (250 byte/pkt)
pfcount (250 byte/pkt)

Figure 5.9: RTP analyzer versus pfcount.

The Figure 5.9 shows that performing the RTP analysis inside the kernel

without forwarding RTP packets to user space is a big advantage for small

packet sizes. For 128-bytes packets the RTP analyzer loaded with up to 30,000

rules can handle more bandwidth than the pfcount application which simply

captures and discards packets.

Figure 5.10 shows the CPU idle percentile measured at the maximum

99

loss free rate. It is worthwhile to note that the RTP plugin is not only capable

to handle more bandwidth with 128-bytes packets and up to 30,000 loaded

rules, but it can do it leaving more spare CPU cycles on the monitoring system.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10000 20000 30000 40000 50000

%
id

le

Number of rules

RTP analyzer vs pfcount (%idle)[every pkts in analyzed]

Not Forward (128 byte/pkt)
pfcount (128 byte/pkt)

Not Forward (250 byte/pkt)
pfcount (250 byte/pkt)

Figure 5.10: Idle CPU percentage measured at the maximum loss free rate.

Another important factor concerning a monitoring system is how quickly

it can reconfigure the rules that determine what traffic to track. To give a base-

line number to compare to, we decided to test the BFP library by writing a

simple C program that measures the time needed to compile a complex fil-

ter containing many expressions (monitored RTP streams). Table 5.3 shows

the number of instructions and the compilation time of a single BPF filter

composed by a varying number of different filtering expressions.

For a filter with 200 expressions, the compile time was 800 milliseconds

(we tried filters with more expressions but the kernel refused them, returning

100

Number of instructions Compile time (msec)

Expressions Optimized non Optimized Optimized Not optimized
50 868 3748 50 16
100 1868 7498 200 63
200 3868 14998 800 388

Table 5.3: Compile time and number of instructions for a complex BPF filter.

an error). This means that if we were monitoring 199 streams and wanted to

monitor an extra one, it would take at least this time before the system could

track the new stream. To put this into perspective, G.711 and G.729 generate

a voice packet every 20ms, so as many as 40 packets could go untracked before

the change takes place.

Avg. Ins. Max. Ins. Avg. Del. Max. Del.
Rules (usec) (usec) (usec) (usec)

10,000 20.9 98 4.7 81
20,000 22.3 130 5.3 95
30,000 25.2 210 7.9 150
40,000 27.9 379 12.7 225
50,000 47.1 2037 19.1 527

Table 5.4: Time needed to change a rule (a monitored stream) in RTC-Mon.
Ins stands for insertion, del for deletion and usec for microseconds.

To test the time it takes to change filters in RTC-Mon, we inserted (and

removed) a single rule 500 times for each run, and we repeated the experiment

with a varying number of rules installed in the monitoring system (see Table

5.4). The results clearly show that it is possible to insert rules much faster

than with BFP filters, and that removing them is even quicker. In the worst

case (inserting a rule with 50,000 rules loaded), the total time is about 2

milliseconds, meaning that at most a single G.711 or G.729 would go untracked.

101

5.4 Thesis validation

In order to validate this work is necessary to return to Section 1.5 to see which

requirements are satisfied.

1. Extensibility

The framework supports extensibility at different layers. The kernel

infrastructure allows the introduction of plugins, implemented as kernel

modules. On the other hand LibVoIP is extensible by means of pluggable

components, called trackers.

2. Ease of use and development

RTC-Mon simplifies the development of VoIP monitoring applications

because packet filtering, packet parsing and protocol analysis are com-

pletely performed by the framework. A VoIP monitoring application

that shows the successfully completed calls and performs analysis on the

involved media traffic can be implemented with RTC-Mon in less than

30 lines of code.

In Section 5.1 a more complex RTC-Mon based VoIP monitoring ap-

plication has been described. The application makes use of the most

important building blocks of the framework. It uses the SIP filter and

the RTP analyzer and delegates the signalling traffic analysis to the Lib-

VoIP library. Thanks to RTC-Mon the VoIPStorer component, which

is responsible to perform the VoIP traffic analysis is quite simple. Its

implementation did not require any networking knowledge and most of

its code (800 lines of code) consists of SQL instructions.

102

3. Scalable and high-performance applications

In Section 5.3 the performance of the framework has been evaluated.

The RTP analyzer component have been independently tested. The

experiments results have shown that the RTP analyzer is scalable in

number of different RTP streams and offer great performance. With

small sized packet the RTP analyzer outperforms the simplest capture

application written on top of PF RING, that simply discards packets.

4. Flexibility

The framework is structured in layers, so that framework users are al-

lowed to choose the features they need from the proper layer. LibVoIP,

the upper layer, is a service oriented layer that can be used to build

VoIP monitoring application with very little efforts. Users can extend

LibVoIP to introduce more complex service oriented metrics.

More advanced users can benefit from the lower layers, which are packet

oriented. The kernel infrastructure represents a ready to use environment

for the implementation of more complex analysis plugins.

5. Promotion of reuse

The enhanced PF RING core natively supports IP defragmentation and

parsing up to transport layer; in addition it provides a polling mecha-

nism, an hash based flow tracker and allows to carry parsing information

from kernel space to user space. Those features substantially simplifies

the development of custom PF RING plugins.

6. Efficient resource utilization and ability to run on environments of lim-

ited resources

103

Real-time communication services, such as VoIP, produce many media

streams carried over UDP packets having dynamically assigned ports.

Without an effective filtering mechanism a lot of resources are wasted,

since many packets have to be discarded in user space. The framework is

able to pick out VoIP packets from a loaded link and to discard non VoIP

packets early. Moreover the framework can perform the media stream

analysis inside the kernel. Those solutions reduce the number of packet

copies and bring to a better resources handling.

7. Commodity hardware

The framework does not require any special hardware to run and can

be used with every network interface card supported by the GNU/Linux

operating system. Unlike other solutions it does not rely on specialised

monitoring hardware to achieve performance.

104

Chapter 6

Final remarks

This work has shown that VoIP monitoring is necessary in order to meet

VoIP user expectations, to allow a proactive management and to detect in

real time service degradations caused by misconfiguration, network congestion

or security attacks.

Monitoring current high speed VoIP networks is a challenge for many

reasons. First, the traffic produced by VoIP services is the worst traffic to

analyze in a passive way because it is mostly composed by RTP streams using

dynamically assigned ports and because each stream is composed by small

sized packets. Second, several indicators have to be considered in order to

define and measure the overall quality of experience.

A novel monitoring framework has been designed and implemented to

solve the previously mentioned issues. The main results of this work are a

modular kernel infrastructure providing a SIP packet filter and a RTP protocol

analyzer, an user level library exploiting the features offered by the kernel

infrastructure and a sample VoIP monitoring application implemented as a

test bed for the proposed framework.

105

The validation phase has shown that the adoption of a mixed kernel

space user space approach is the key to achieve high performance. A large

VoIP network has been simulated using synthetic traffic and some experiments

have been conducted in order to compare the framework against the current

state of the art solutions for packet filtering and packet capture. First of all,

the filtering solution adopted allows to pick out VoIP traffic from a loaded

link and to discard non VoIP traffic at the kernel level. This reduce the CPU

load on the monitoring system by a factor of two in case of highly loaded

links. Moreover the RTP analyzer is capable to analyze several thousands of

different audio/video streams using a low budget server. The time needed to

dynamically add a new discovered stream to the monitored set is below 3 ms

even with a monitoring set composed by 50,000 different streams. This value

is two order of magnitude lower than time needed to dynamically change a

filter corresponding to only 200 media streams with the current state of art

filtering technology.

6.1 Open issues and future work

The framework already provides a large set of information including signalling

performance indicators and streaming performance indicators such as jitter.

There are, however, several aspects to the framework that requires further

work.

The CallTracker component have to be extended in order to compute

some more signalling metrics.

Moreover a very valuable addition would be the introduction of the

RTCP protocol dissection. In particular the end-to-end delay, which can be

106

computed using the information present in RTCP packets, would have been

very useful to compute the MOS (Mean Option Score). Another interesting

addition would be the ability to generate RTCP reports regarding the observed

RTP streams. Furthermore, the framework assumes that the signalling traffic

and the media traffic can be captured from the same observation point. This,

however, is not always true in practice. So the framework has to be extended

in order to allow the remote instrumentation of RTP analysis probes.

The modular kernel infrastructure, on top of which the SIP filter and the

RTP analyzer have been implemented, is not bound to VoIP monitoring. An

IPFIX[9] plugin is currently under development; an HTTP plugin has already

been implemented. However the framework is packet oriented and does not

have a TCP reassembler. The lack of a TCP reassembler is not a big issue for

VoIP protocols, but it can represent a limitation for some protocols, such as

HTTP, where some fields can be split across different IP packets (e.g. the url

for the HTTP protocol).

The framework has been designed and implemented in order to build

complex VoIP monitoring architectures. The VoIPMon sample application

is no more than a prof of concept intended as a test bed to measure the

framework against the monitoring requirements. In the future, we plan to

use the framework for the implementation of distributed VoIP monitoring

architectures capable to provide to network managers a per link view of the

VoIP service quality.

107

Appendix A

Session Initiation Protocol

According to the definition in RFC3261 [53], Session initiation protocol(SIP) is

an application layer control (signalling) protocol for creating, modifying and

terminating sessions with one or more participants. These sessions include

multimedia conference, multimedia distribution and least but not last Internet

telephony calls.

A.1 Purpose of SIP

SIP supports five facets of establishing and terminating multimedia commu-

nications:

1. user location: determination of the end system to be used for communi-

cation

2. user availability : determination of the willingness of the called party to

engage in communications;

108

3. user capabilities: determination of the media and media parameters to

be used;

4. session setup: ”ringing”, establishment of session parameters at both

called and calling party;

5. session management : including transfer and termination of sessions,

modifying session parameters, and invoking services.

SIP dictates no protocol to be used inside a session. Anyway SIP follows

the standard IETF approach which have always been protocol reuse. The most

common use of SIP is to describe audio and video session and SIP adopts the

Session Description Protocol (SDP) as payload to describe media streams.

A.2 Transport protocols

SIP does not make any assumption regarding the transport protocol to be

used: it can run on top of TCP, UDP or SCTP[52]. Since SIP implements

its own retransmission mechanism to recover from loss packet and since it

is a connection less protocol usually SIP uses UDP as transport protocol.

Moreover the adoption of UDP, rather than TCP, offers some advantages in

term of response time and resource usage.

IANA1 assigned port number 5060 for UDP, TCP and SCTP, and 5061

for TCP over TLS.

1Internet Assigned Number Authority

109

A.3 SIP entities

A.3.1 User agents

User agents (UAs) are endpoints that use SIP protocol to find each other and

to negotiate session characteristics. UA can be physical devices (such as desk

phones or PDAs) or software applications which interact with human users,

but also services like PSTN gateways and so on.

Each UA acts as two different logical entities:

• User Agent Client (UAC): it creates request messages and uses the client

transaction state machinery to send it and wait for the response

• User Agent Server (UAS): it accepts requests from UAC and generate a

response. The response accept, reject or redirect the request.

A.3.2 Registrar

The Registrar server process the registration requests and places the infor-

mation it receives in those requests into the location service for the domain it

handles. It is the front-end to the user location service and it is often colocated

within the Proxy server of its domain.

A.3.3 Proxy server

The proxy server is an intermediate device that receives SIP requests from a

client and then forwards the requests on the client’s behalf. It is used primarily

for routing purposes: its aim is to forward the messages to another entity

110

”closer” to the targeted user. This entity can be a proxy server, a redirect

server or an User Agent.

A.3.4 Redirect server

It receives request messages and sends back a list of alternative URIs in a 3xx

class response. Those URI can be used by the UAC to get closer to the target

UAS. Redirect servers are mainly used to reduce the load of routing requests,

pushing back routing informations to the requester.

A.4 SIP messages

Like in HTTP, SIP messages can be requests from a client to a server or

responses to a request. For all the messages the general format is the following:

1. a mandatory start line (request or response)

2. some header fields

3. an empty line

4. an optional message body Each line ends with a carriage return-line feed

(CRLF).

SIP requests

The first line of a SIP request has the following structure:

METHOD Request-URI SIP/2.0

RFC3261 define six type(method) of requests(listed in Table A.1); anyway it

allows extensions to specify new methods.

111

Method Description

INVITE Request to establish a new session
ACK Confirms a final response reception
BYE Terminates a successfully established call
CANCEL Used to CANCEL a previous request sent by a client
OPTIONS Queries the capabilities of the server
REGISTER Registers the address listed in the To header field

with a SIP server

Table A.1: SIP requests

SIP responses

The first line of a SIP response has the following structure:

SIP/2.0 Status-Code Reason-Phrase

RFC3261 defines six classes of status codes (listed in Table A.2); the Reason-Phrase

gives additional information about the corresponding status code.

Code Description

1xx Provisional response: the request has been received
2xx The action was successfully received, understood and accepted
3xx Further actions needs to be taken in order to complete the request
4xx Server error: the server failed to fulfil the request
5xx Global failure: the request cannot be fulfilled at any server

Table A.2: SIP status codes

A.4.1 Header fields

Among the other fields that can follow the request line From, To, Call-ID,

Via, CSeq and Max-Forwards are mandatory. These six header fields are the

fundamental building blocks of a SIP message, as they jointly provide for most

of the critical message routing services including the addressing of messages,

112

the routing of responses, limiting message propagation, ordering of messages

and the unique identification of transactions. Table A.3 shows the header

set that has some relevance in order to better understand this work. In the

following sections a description of each field is given.

Field Description

Call-ID a globally unique identifier for a call
To logical recipient of the request
From logical identity of the initiator of the request
CSeq used to identify retransmissions
Max-Forwards maximum number of times a message can be

forwarded
Contact a SIP URI that represents a direct route to

contact an user
Via indicates the transport used for transmit-

ting the request and identifies the address to
which the response has to be sent

Table A.3: SIP header fields

From

The From field indicates the logical identity of of the initiator of the request. It

contains a URI (a SIP URI or another URI schema) and optionally a display

name. The following is an example of a valid From field:

From: "Luca Deri" <sip:luca@ntop.org:5060>

To

The To field indicates the logical recipient of the request. This may be or not

the ultimate recipient of the request. The following is an example of a valid

To field:

113

To: <sip:luca@ntop.org:5060>

Call-ID

The Call-ID is an unique identifier to group together a series of messages and

the same Call-ID value is present in subsequent messages belonging to the

same dialogue. The following is a valid Call-ID header field:

Call-ID: 12456124561245612456

CSeq

The CSeq contains an integer and a method name. The integer is a traditional

sequence number, incremented for each new request. The CSeq field has the

following structure:

CSeq: number METHOD_TYPE

A.5 SIP requests

A.5.1 REGISTER

SIP users register their current location to a registrar server using REGISTER

request. Registrar servers act as the front end to the location service for a

domain, reading and writing mappings based on the contents of REGISTER re-

quests. The location service is consulted by the proxy server that is responsible

for routing requests for that domain.

A REGISTER request specifies the SIP user with the To header field and

the current IP address using the Contact field. Moreover the UAs may indicate

114

how long the mappings should be considered valid, specifying a duration in

seconds in the Expire header.

A.5.2 INVITE, ACK, BYE

The INVITE method is used to establish a session between two UAs. This

request initiates a transaction. An INVITE request can receive the following

common provisional answers:

• 100 Trying : this response is sent by intermediate SIP nodes in order to

stop retransmission of the INVITE request

• 180 Ringing : this response is sent by the remote UA to indicate that the

user is being notified of the incoming call, but has not yet answered

The transaction ends with a final response. Typical responses are:

• 200 OK : the call has been accepted by the remote user

• 486 Busy Here: the remote user is busy

A.5.3 SUBSCRIBE, NOTIFY

RFC3265 [50] is a SIP extension defined in order to allow request notification

from remote nodes indicating that certain events have occurred. For this

purpose two new methods has been defined: SUBSCRIBE to request notifications

and NOTIFY to report. A simple usage of this mechanism is the presence

subscription, defined in RFC3856 [51].

115

A.6 Authentication

SIP defines a stateless, challenge-based authentication mechanism similar to

HTTP authentication described in RFC 2617[21]. When a registrar server re-

ceives a request that have to be authenticate, it responds with a 401 Unauthorized

message, conveying the challenge in the WWW-Authenticate header field. Then

the UAC, re-issues the request again adding an Authorization header contain-

ing the response to the challenge. A sample message exchange is depicted in

Figure A.1

REGISTER
w/o credentials

407

User Agent Registrar

REGISTER
w/ credentials

200 OK

Figure A.1: UAC registration

The same procedure applies to proxies, except that the authentication

response message is 407 Proxy Authentication Required.

A.7 Message routing

A.7.1 SIP transactions

A transaction is a series of independent SIP messages exchanges. A transaction

starts with a request, may include some provisional responses (1xx) and ends

with a final response. SIP requires that responses follow the reverse path of

116

the request, i.e. they traverse the same SIP entities but, in reverse order. This

can be accomplished using the Via header. At every hop of the request a

Via header is added to the message before the previous one so that the UAS

receiving the request has a list of all the SIP network elements that has been

traversed.

A.7.2 SIP trapezoid

Figure A.2 shows the typical message exchange for a VoIP call, that is com-

monly referred as sip trapezoid. The user alice, identified by the URI al-

ice@ntop.org uses its phone to call the user bob@unipi.it. The intermediate

proxy servers help to setup the session on behalf of the users. The outbound

proxy for user alice is responsible to locate the proxy server of the target user

and to forward any request to the target UA.

After the message exchange of the transaction, both the UAs know a

valid transport (from the Contact header) to reach their peer, so that they

should send subsequent message directly, without traversing SIP proxies.

A.8 SIP and VoIP

SIP is a general purpose session establishment protocol. In relation to VoIP,

SIP has the role of delivering the offer and the answer containing the de-

scription of the multimedia session to be established. Information about the

sessions are exchanged using the Session Description Protocol(SDP)??.

117

100 Trying F3

alice@ntop.org
 softphone

ntop.org
 proxy

unipi.it
 proxy

INVITE F2
INVITE F4

INVITE F1

100 Trying F5
180 RINGING F6

180 RINGING F7

180 RINGING F8
200 OK F9

200 OK F10

200 OK F11

ACK F12

BYE F13

200 OK F14

media stream

bob@unipi.it
 softphone

Figure A.2: SIP trapezoid

A.8.1 SDP

SDP provides a textual description of the session to be established, indepen-

dently of the actual transport protocol. It is usually employed to describe

RTP and RTCP flows, described in Appendix B.

The description of such a session includes the following information:

• session name and purpose

• information needed to receive the media (addresses, ports, formats, etc

• contact information for the person responsible for the session

118

SDP is a textual protocol composed by a number of text lines of the

form type=value, where type is always one character long and case significant,

while value is a structured text.

An SDP session description consists of a session level description and

optionally several media-level descriptions. The session level part starts with a

v= line and continues to the first media-level section. Each media description

starts with a m= line.

The session level description lines we are interested in are the following:

• v=<protocol version>

current version is 0

• o=<username><session id><version><network type><address

type><address>

this line specifies the name of the user who is going to create the ses-

sion. The session id is a randomly generated number; the version is the

sequence number of the session announcement; network type is a string

representing the type of network(IN stands for Internet); address is the

IP address of the UA.

• c=<network type><address type><address>

This line can be omitted if every media level description provides its own

connection information. The fields of this line follow the same convention

of the line o=.

The media level description lines we are interested in are the following:

• m=<media><port><protocol><format>

119

v=0

o=francesco 2890844526 2890844526 IN IP4 192.168.0.210

s=-

c=IN IP4 192.0.0.210

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Figure A.3: A sample SDP offer

media can be audio, video, text and other values. port and protocol

specify the reception port and the protocol used, which is usually RTP/AVP

(RTP with Audio-Video Profile).format is the list of supported codecs2.

• a=rtpmap:<payloadtype> <encoding name>/<clock rate>[/

<encoding parameters>]

rtpmap attributes are used to convey additional information regarding

payload types specified. Up to one rtpmap attribute can be specified for

each media format.

• c=<network type><address type><address>

it is the same c= line of the session level description.

Figure A.3 shows an SDP offer example.

A.8.2 Session negotiation

SDP messages are exchanged as SIP payloads between the two parties. In this

way during the session creation the characteristics of the session are negotiated.

The caller appends the SDP as payload of the SIP INVITE request, while the

called party inserts it in the 200 OK response.

2IANA

120

Appendix B

Real-time Transfer Protocol

Real-Time Transfer Protocol (RTP), defined in RFC3550 [55], provides trans-

port functions to carry real-time data, such as audio and video over multicast

or unicast networks.

RTP is used to transport real-time data, but it does not ensure timely

delivery or provide other quality of service guarantees. RTP relies on lower

level services to do so, but it does not assume that the underlying services are

capable to grant delivery or prevent out of order delivery. RTP usually uses

UDP as transport protocol.

RTP provides the following functions suitable for real-time content de-

livery:

• payload type identification: the information is used by the receiver to

know what kind of content is being transferred.

• sequence numbering : PDU1 sequence numbers are mainly used to detect

losses. The sequence numbers increase by one for each RTP packet

1Protocol Data Unit

121

transmitted.

• time stamping : it is used to synchronize the coder and the encoder;

timestamps are used to place the incoming audio or video packets in

the correct timing order. Subsequent packets may have the same times-

tamps.

B.1 RTP sessions

A RTP session is an associations of participants communicating with RTP.

A participant may be involved in multiple sessions at the same time. This is

what usually happens for multimedia sessions where each media is carried in

a separate RTP session. For example a video call involves the creation of two

distinct RTP sessions: the first one for the audio and the second one for the

video.

RTP uses the transport address to multiplex different RTP sessions.

Each RTP session is identified by a pair of transport addresses. A transport

address is composed by an IP address and by a pair of UDP ports. The first

port is used to identify the UDP flow on top of with the RTP PDUs are

transported. The second port identify the UDP flows carrying RTCP PDUs.

RTCP will be described in Section B.3.

An alternative choice would have been to transfer over the same RTP

session different media streams corresponding to the same application. How-

ever this choice would have introduced several problems:

• would have been much more difficult to dynamically change the payload

type for one of the media flows

122

• mixers would have to recognize each media carried over the same RTP

session

• the reception of a single media (e.g. audio) would have been more com-

plex

The adoption of transport addresses to multiplex different RTP sessions

solves the previously listed issues, but introduces some other issues for moni-

toring applications performing the passive analysis of RTP sessions. Using a

different RTP session for each media increases the number of different RTP

flows to be monitored. For example, an audio call involves the creation of two

different RTP streams whereas a video call produces four RTP streams.

B.2 RTP header

Figure B.3 shows the RTP header structure.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|V=2|P|X| CC |M| PT | sequence number |

+-+

| timestamp |

+-+

| synchronization source (SSRC) identifier |

| |

+=+

| contributing source (CSRC) identifiers |

| |

| |

| |

+-+

Figure B.1: RTP header

123

• version(V): 2 bits

This field identifies the version of RTP.

• padding(P): 1 bit

If the padding bit is set, the packet contains one or more additional

padding octets at the end which are not part of the payload.

• extension(X): 1 bit

RTP header is extensible by means of header extensions. If the exten-

sions is set, the fixed header is followed by exactly one header extension.

• CRCC count(CC): 4 bits

Identifies the number of CSRC identifiers that follow the fixed header.

• marker(M): 1 bit

Used by specific applications.

• payload type(PT): 7 bits

The payload type identifies the format of the RTP payload. This field is

not intended for multiplexing separate media, thus it is usually constant

for a given RTP stream.

• sequence number : 16 bits

The sequence number is incremented by the transmission source by one

for each RTP packet sent. It is used by the receiver to detect packet loss

and for packet ordering. The initial sequence number for a given RTP

stream is chosen randomly.

124

• timestamp: 32 bits

The timestamp reflects the sampling instant of the first octet in the

RTP packet. The sampling instant must be derived from a clock that

increments monotonically and linearly in time to allow synchronization

and jitter computation.

• SSRC : 32 bits

The source of a stream of RTP packets is identified by a randomly cho-

sen numeric identifier, called SSRC. The source of a stream is called

synchronization source.

• CSRC list : 0 to 15 items, 32 bits each

This field is updated by intermediate systems called mixers. Mixers

combine multiple RTP streams into a single one, which is identified by

a different SSRC. The CSRC list contains the SSRC of the contributing

sources for the newly created stream.

B.3 RTCP

Besides RTP, another protocol is optionally used to convey streaming infor-

mation: the RTP Control Protocol (RTCP), defined in RFC3550 [55]. The

main purpose of RTCP protocol is to provide feedback on the quality of data

distribution. The protocol is based on the periodic transmission of control

packets to participant of RTP session, using the same distribution mechanism

as the data packets.

Like RTP packets, RTCP packets begins with a fixed part, followed by

125

structured elements with variable lengths. RTCP defines five types of RTCP

packets:

1. SS: Sender report, conveys transmission and reception statistics from

participants that are senders.

2. RR: Receiver report, for reception statistics form participants that are

receivers and not senders

3. BYE: Used to indicate end of participation

4. SDES: Conveys additional information regarding the source

5. APP: Application specific function

SR and RR packets conveys information regarding end-to-end RTP

stream quality. Figure B.2 shows the structure of a sender report RTCP

packet. The packet is composed by an header, a sender information which is

followed by zero or more report blocks.

The header contains the version and padding fields, such as in RTP

packets. The payload type identify the packet as SR RTCP packet. The

length represents the packet length expressed in bytes.

The second section, the sender information, is 20 bytes long and contains

information regarding the RTP stream sent by the sender issuing the RTP

sender report. The fields have the following meaning:

• NTP timestamp: 64 bits

Represents the time when the Sender Report has been sent.

126

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

header |V=2|P| RC | PT=SR=200 | length |

+-+

| SSRC of sender |

+=+

sender | NTP timestamp, most significant word |

info +-+

| NTP timestamp, least significant word |

+-+

| RTP timestamp |

+-+

| sender’s packet count |

+-+

| sender’s octet count |

+=+

report | SSRC_1 (SSRC of first source) |

block +-+

1 | fraction lost | cumulative number of packets lost |

+-+

| extended highest sequence number received |

+-+

| interarrival jitter |

+-+

| last SR (LSR) |

+-+

| delay since last SR (DLSR) |

+=+

report | SSRC_2 (SSRC of second source) |

block +-+

2 : ... :

+=+

| profile-specific extensions |

+-+

Figure B.2: RTCP sender report header

127

• RTP timestamp: 32 bits

It is the same time of NTP timestamp, but expressed in the same units

and with the same random offset as the RTP timestamps in RTP packets.

• sender’s packet count : 32 bits

The total number of RTP packets sent by the sender since starting trans-

mission.

• sender’s octet count : 32 bits

The total number of bytes transmitted in RTP packets by the sender.

Header and padding are excluded by octet count.

The third sections contains reception report blocks. Each reception

report block conveys statistics on the reception of RTP packets from a specified

synchronization source (sender).

• SSRC i :

The synchronization source identifier.

• fraction lost : 8 bits

The fraction of RTP packets lost since the previous SS or RR was sent.

• cumulative number of packet lost : 24 bits

The total number of RTP packets received from SSRC i that have been

lost since the beginning of reception.

• highest sequence number : 32 bits

The low 16 bits represent the highest sequence number received from

SSRC i. The other couple of bytes represent the sequence number cycles.

128

• jitter : 32 bits

The jitter is an estimate of the statistical variance of the RTP data

packet interarrival time. The jitter is measured in timestamp units and

expressed as an unsigned integer. The jitter is the difference of the “rel-

ative transit time” for two subsequent packets; the relative transit time

is the difference in timestamp units between a packet’s RTP timestamp

and the receiver clock at the time of arrival.

The difference D of the “relative transit time” between two packets i

and j can be computed using the following formula:

D(i, j) = (Rj − Ri) − (Sj − Si) = (Rj − Sj) − (Ri − Si)

where Rk is the time of arrival of packet k and Sk is the RTP timestamp

of packet k.

The jitter should be computed continuously and the new computed value

must be averaged using the following formula:

J(i) = J(i − 1) + (|D(i − 1, i)| − J(i − 1))/16

• last SR timestamp(LSR): 32 bits

The middle 32 bits out of 64 in the NTP timestamp received as part of

a previous SR packet from SSRC i.

• delay since last SR(DSLR):

The delay between receiving the last SR packet from SSRC i and sending

this reception report block.

129

Receiver report (RR) packets have the same structure of Sender report

(SR) packets excepts for the sender info section which is omitted. The payload

type for RTCP packets contains the constant 201.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

header |V=2|P| RC | PT=RR=201 | length |

+-+

| SSRC of packet sender |

+=+

report | SSRC_1 (SSRC of first source) |

block +-+

1 | fraction lost | cumulative number of packets lost |

+-+

| extended highest sequence number received |

+-+

| interarrival jitter |

+-+

| last SR (LSR) |

+-+

| delay since last SR (DLSR) |

+=+

report | SSRC_2 (SSRC of second source) |

block +-+

2 : ... :

+=+

| profile-specific extensions |

+-+

Figure B.3: RTCP receiver report

If both the sender and the receiver exchange SR and RR packets each

pair of the communication is able to compute an estimation of the round trip

time.

130

[10 Nov 1995 11:33:25.125 UTC] [10 Nov 1995 11:33:36.5 UTC]

n SR(n) A=b710:8000 (46864.500 s)

-->

v ^

ntp_sec =0xb44db705 v ^ dlsr=0x0005:4000 (5.250s)

ntp_frac=0x20000000 v ^ lsr =0xb705:2000 (46853.125s)

(3024992005.125 s) v ^

r v ^ RR(n)

-->

|<-DLSR->|

(5.250 s)

A 0xb710:8000 (46864.500 s)

DLSR -0x0005:4000 (5.250 s)

LSR -0xb705:2000 (46853.125 s)

delay 0x0006:2000 (6.125 s)

Figure B.4: Round trip time computation

131

Acknowledgments

First of all, I wish to present my sincerest gratitude to Dr. Luca Deri for

introducing me into the field of network monitoring and for his encouragements

during these years.

I would like to thank NEC Europe Ltd. for welcoming me to work on

this subject at the NEC Network Laboratories in Heidelberg. I especially thank

Dr. Saverio Niccolini for his valuable discussions on the problems examined

in this study.

Endless gratitude goes to my family, who allowed me to fulfil my wishes

and supported me in everything I did. Last but not least, I would like to thank

all my study mates in Pisa and friends.

Fusco Francesco

The University of Pisa

July 2008

132

Bibliography

[1] libpcap. www.tcpdump.org/libpcap.

[2] RRDTool - About RDDTool. http://tcpreplay.synfin.net.

[3] S. Agrawal, J. Ramamirtham, and R. Rastogi. Design of active and pas-

sive probes for voip service quality monitoring. In Telecommunications

Network Strategy and Planning Symposium, 2006.

[4] Andrew Begel, Steven McCanne, and Susan L. Graham. Bpf+: exploiting

global data-flow optimization in a generalized packet filter architecture.

SIGCOMM Comput. Commun. Rev., 29(4):123–134, 1999.

[5] Robert Birke, Marco Mellia, Michael Petracca, and Dario Rossi. Un-

derstanding voip from backbone measurements. In INFOCOM, pages

2027–2035, 2007.

[6] Herbert Bos, Willem de Bruijn, Mihai Cristea, Trung Nguyen, and Geor-

gios Portokalidis. FFPF: fairly fast packet filters. In OSDI’04: Proceed-

ings of the 6th conference on Symposium on Opearting Systems Design &

Implementation, pages 24–24, Berkeley, CA, USA, 2004. USENIX Asso-

ciation.

133

[7] Cavium. octeon. http://www.cavium.com/.

[8] Xiuzhong Chen, Chunfeng Wang, Dong Xuan, Zhongcheng Li, Yinghua

Min, and Wei Zhao. Survey on QoS Management of VoIP. In ICC-

NMC ’03: Proceedings of the 2003 International Conference on Computer

Networks and Mobile Computing, page 69, Washington, DC, USA, 2003.

IEEE Computer Society.

[9] B. Claise. Specification of the IP Flow Information Export (IPFIX) Pro-

tocol for the Exchange of IP Traffic Flow Information. Number 5101 in

Request for Comments. IETF, January 2008.

[10] Jan Coppens, Steven Van den Berghe, Herbert Bos, Evangelos Markatos,

Filip De Turck, Arne sleb, and Sven Ubik. SCAMPI: A scalable and pro-

grammable architecture for monitoring gigabit networks. In Proceedings

of E2EMON Workshop, Belfast, UK, September 2003.

[11] Tilera Corporation. TILExpress-64 Card. http://www.tilera.com/.

[12] Ana Flàvia M. de Lima, Leandro S. G. de Carvalho, José Neuman

de Souza, and Edjair de Souza Mota. A framework for network quality

monitoring in the voip environment. Int. J. Netw. Manag., 17(4):263–274,

2007.

[13] Luca Deri. Improving Passive Packet Capture:Beyond Device Polling.

In System Administration and Network Engineering Conference (SANE),

2004.

[14] Luca Deri. High-speed dynamic packet filtering. Journal of Network and

Systems Management, 15(3):401–415, 2007.

134

[15] Nick Duffield and Carsten Lund. Predicting resource usage and estima-

tion accuracy in an ip flow measurement collection infrastructure. In

IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet

measurement, pages 179–191, New York, NY, USA, 2003. ACM.

[16] Nick G. Duffield, Carsten Lund, and Mikkel Thorup. Learn more, sample

less: control of volume and variance in network measurement. IEEE

Transactions on Information Theory, 51(5):1756–1775, 2005.

[17] ITU-T E.411. Series e: Overall network operation, telephone service,

service operation and human factors. 1998.

[18] Endace. DAG network monitoring cards. http://www.endace.com/.

[19] David Endler and Mark Collier. Hacking Exposed VoIP: Voice Over IP

Security Secrets & Solutions (Hacking Exposed). McGraw-Hill Osborne

Media, 2006.

[20] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, flexible message

demultiplexing using dynamic code generation. In SIGCOMM, pages 53–

59, 1996.

[21] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luo-

tonen, and L. Stewart. HTTP Authentication: Basic and Digest Access

Authentication. RFC 2617 (Draft Standard), June 1999.

[22] F. Fusco, F. Huici, L. Deri, S. Niccolini, and T. Ewald. Enabling high-

speed and extensible real-time communications monitoring. Ready for

submission to the IFIP/IEEE International Symposium on Integrated

Network Management, jun 2009.

135

[23] ITU-T Recommendation G.107. The e-model, a computational model

for use in transmission planning. ITU International Telecommunication

Union, 2002.

[24] GNU. The GNU oSIP library. http://www.gnu.org/software/osip.

[25] S. Gokhale and J. Lu. Signaling performance of sip based voip: A

measurement-based approach. 2005.

[26] The Tcpdump Group. tcpdump. http://www.tcpdump.org.

[27] The Wireshark Group. Wireshark. http://www.wireshark.org.

[28] P. Gupta and N. McKeown. Algorithms for packet classification, 2001.

[29] S. Ioannidis, K. Anagnostakis, J. Ioannidis, and A. Keromytis. xpf: packet

filtering for lowcost network monitoring, May 2002.

[30] IST-SCAMPI. A scaleable monitoring platform for the internet.

http://www.ist-scampi.org.

[31] IXIA. Ixia - leader in ip performance testing. http://www.ixiacom.com/.

[32] Panos Lekkas. Network Processors: Architectures, Protocols and Plat-

forms. McGraw-Hill, Inc., New York, NY, USA, 2003.

[33] J. Levandoski, E. Sommer, and M. Strait. Application Layer Packet Clas-

sifier for Linux. http://l7-filter.sourceforge.net/.

[34] D. Malas. SIP End-to-End Performance Metrics, February 2008.

136

[35] Michael Manousos, Spyros Apostolacos, Ioannis Grammatikakis, Dim-

itrios Mexis, Dimitrios Kagklis, and Efstathios Sykas. Voice-Quality Mon-

itoring and Control for VoIP. IEEE Internet Computing, 9(4):35–42, 2005.

[36] Steven McCanne and Van Jacobson. The bsd packet filter: a new archi-

tecture for user-level packet capture. In USENIX’93: Proceedings of the

USENIX Winter 1993 Conference, pages 259–270, Berkeley, CA, USA,

1993. USENIX Association.

[37] J. Mogul. Efficient use of workstations for passive monitoring of local area

networks. SIGCOMM Comput. Commun. Rev., 20(4):253–263, 1990.

[38] J. Mogul, R. Rashid, and M. Accetta. The packer filter: an efficient mech-

anism for user-level network code. SIGOPS Oper. Syst. Rev., 21(5):39–51,

1987.

[39] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in

an interrupt-driven kernel. In Proceedings of Winter Usenix Conference,

January 1996.

[40] Napatech. X Adapter Family. http://www.napatech.com/.

[41] Mohamed Nassar, Saverio Niccolini, Radu State, and Thilo Ewald. Holis-

tic voip intrusion detection and prevention system. In IPTComm ’07:

Proceedings of the 1st international conference on Principles, systems and

applications of IP telecommunications, pages 1–9, New York, NY, USA,

2007. ACM.

[42] T. Oetiker. RRDTool - About RDDTool. http://oss.oetiker.ch/rrdtool/.

137

[43] Ozvoip.com. Codec Support in VoIP Devices.

http://www.ozvoip.com/voip-codecs/devices/.

[44] ITU-T Recommendation P.563. Single-ended method for objective speech

quality assessment in narrow-band telephony applications. ITU Interna-

tional Telecommunication Union, 2004.

[45] ITU-T Recommendation P.861. Objective quality measurement of

telephone-band (300-3400 hz) speech codecs. ITU International Telecom-

munication Union, 1998.

[46] ITU-T Recommendation P.862. Perceptual evaluation of speech quality

(pesq): An objective method for end-to-end speech quality assessment of

narrow-band telephone networks and speech codecs. ITU International

Telecommunication Union, 2001.

[47] P.Wood. http://public.lanl.gov/cpw.

[48] J. Quittek, S. Niccolini, S. Tartarelli, M. Stiemerling, M. Brunner, and

T. Ewald. Detecting spit calls by checking human communication pat-

terns. In ICC ’07: Proceedings of the 2007 International Conference on

Computer Networks and Mobile Computing, pages 1979–1984, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[49] L. Rizzo. Device polling support for freebsd, 2001.

[50] A. B. Roach. Session initiation protocol (sip)-specific event notification.

RFC 3265 (Proposed Standard), June 2002.

[51] J. Rosenberg. A presence event package for the session initiation protocol

(sip). RFC 3265 (Proposed Standard), August 2004.

138

[52] J. Rosenberg, H. Schulzrinne, and G. Camarillo. The Stream Control

Transmission Protocol (SCTP) as a Transport for the Session Initiation

Protocol (SIP). RFC 4168 (Proposed Standard), October 2005.

[53] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.

RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265,

3853, 4320, 4916.

[54] Jamal Hadi Salim. When napi comes to tawn, 2005.

[55] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Trans-

port Protocol for Real-Time Applications. RFC 3550 (Standard), July

2003.

[56] H. Schulzrinne, D. Oran, and G. Camarillo. The Reason Header Field for

the Session Initiation Protocol (SIP). RFC 3326 (Proposed Standard),

December 2002.

[57] C. So-In. A Survey of Network Traffic Monitoring and Analysis Tools.

Technical report, Washington University, 2008.

[58] Sourceforge. Sofia-SIP Library. http://sofia-sip.sourceforge.net/.

[59] A. Takahashi, H. Yoshino, and N. Kitawaki. Perceptual QoS assessment

technologies for VoIP. IEEE Communications Magazine, July 2004.

[60] Jacobus van der Merwe, Ramón Cáceres, Yang hua Chu, and Cormac

Sreenan. mmdump: a tool for monitoring internet multimedia traffic.

SIGCOMM Comput. Commun. Rev., 30(5):48–59, 2000.

139

[61] Takanen A. Wieser C., Rning J. Security analysis and experiments for

voice over ip rtp media streams. In 8th International Symposium on

Systems and Information Security (SSI’2006), November 08-10 2006.

[62] winpcap. The packet capture and network monitoring library for windows.

www.winpcap.org.

[63] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss.

Efficient packet demultiplexing for multiple endpoints and large messages.

In WTEC’94: Proceedings of the USENIX Winter 1994 Technical Confer-

ence on USENIX Winter 1994 Technical Conference, pages 13–13, Berke-

ley, CA, USA, 1994. USENIX Association.

140

