
UNIVERSITA’ DEGLI STUDI DI PISA
Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Informatica

COMPUTING ASSETS CATEGORIZATION
ACCORDING TO

COLLECTED CONFIGURATION
AND

USAGE INFORMATION

Candidate

Milco Filoni

Supervisors : Reviewer :

Prof. Maurizio Bonuccelli , University of Pisa Prof. Dino Pedreschi, University of Pisa

Dott. Luca Deri, Netikos S.p.a.

Dieter Gantenbein, IBM Zurich Research Laboratory

Academic Year 2000/01

Abstract

Building an accurate inventory of computing assets in an unknown system

and networking environment is a challenging task. Accounting records, physical

inventories, computing service configurations, traffic monitors, network and

applications server logs all represent valid sources of information. Their

integration into a consistent model of the reality is a desirable goal, e.g. as basis

for building commercial Information Technology (IT) Inventory systems, or as

background information for Intrusion Detection Systems (IDS).

During this project, we will study the optimal integration of relevant

information sources, aiming to generate an enhanced inventory of deployed

computing assets categorized according to their usage. In particular, we will

investigate the use of log information from HTTP and SMTP/POP servers,

Socks/Proxy gateways, and network monitors, and then define a knowledge

discovery in database (KDD) process to prepare data for subsequent data-mining

tasks aiming to generate an enhanced inventory of the deployed computing assets

and categorize them according to their usage.

The data integration and mining will be prototyped and validated in the context

of the IBM Intelligent Device Discovery (IDD) project and ongoing activities

related to network management and intrusion detection at the University of Pisa.

ACKNOWLEDGEMENTS

I wish to acknowledge all of those inside and outside of the IBM ZRL who

contributed their time, effort, and expertise to help produce this thesis. In

particular I want to thank Dieter Gantenbein for his valuable and detailed

critiques, assistance, and constant support throughout the development of this

publication, Luca Deri who provided several ideas for discussions, and Prof.

Maurizio Bonuccelli for his help in accessing the data we used for the validation.

Thanks also to Chris Giblin and Matthieu Verbert who helped developing the

software and to my manager Lucas Heusler for giving me the possibility to join a

so agreeable environment.

Since this document will complete my university studies I want also to thank my

family, in particular my parents but also Pierangelo and Melina, for the provided

non technical support. Special thanks go to all the friends of the “Three Cripples’

Tavern” with whom I have spent most of my free time in the last years (sorry but

I cannot list your names, you are too many!). Final thanks to Christian, Stefano,

and Patrizio for all the cheerful moments spent together.

ii ii

iii iii

RINGRAZIAMENTI

Voglio innanzitutto ringraziare tutti coloro che fuori e dentro lo ZRL hanno

speso parte del loro tempo per aiutarmi a portare a termine questa tesi di laurea.

In particolare voglio ringraziare Dieter Gantenbein per le sue preziose e

costruttive critiche e per il supporto datomi durante tutto lo svolgimento del

lavoro, Luca Deri per le diverse idee proposte ed il Prof. Maurizio Bonuccelli per

averci fornito i dati che ci hanno permesso di validare l’intero processo descritto

in questo documento. Un grazie anche a Chris Giblin e a Matthieu Verbert per

l’aiuto offertomi nello sviluppo del software.

Poiche’ questo documento conclude i miei studi universitari, voglio anche

ringraziare la mia famiglia, i miei genitori in particolare ma anche Pierangelo e

Melina, per la loro costante presenza e per il supporto morale fornitomi in tutti

questi anni. Ringrazio poi tutti gli amici de “La Taverna Dei Tre Storpi” con i

quali ho passato la maggior parte del mio tempo libero negli ultimi anni

(scusatemi se non vi elenco ma siete troppi). Per finire un grazie speciale a

Christian, Stefano e Patrizio per tutti i momenti allegri passati insieme.

iv iv

v v

TABLE OF CONTENTS

1 Introduction.. 1
1.1 Computing Infrastructure as a Critical Business Resource............................ 1
1.2 Proposal...2
1.3 Document Organization .. 4
1.4 Summary.. 4

2 State of the Art ... 5
2.1 Passive Network Mapping... 6
2.2 Active Network Mapping .. 7
2.3 Host and Service Mapping...10
2.4 Available Commercial and Freeware Products ..12

2.4.1 Tivoli NetView ..12
2.4.2 HP OpenView ...13
2.4.3 InfraTools Network Discovery ..15
2.4.4 Microsoft Visio ..16
2.4.5 InfraTools Desktop Discovery...17
2.4.6 Nmap...18
2.4.7 Winfingerprint ...20
2.4.8 Tcpdump ..16
2.4.9 IBM IDD..21
2.4.10 Conclusions..22

2.5 Summary..23
3 The Overall Approach..25

3.1 Data Integration Architecture ...27
3.1.1 First Phase: Data Parsing and Aggregation..28
3.1.2 Second Phase: Data Integration ...29

3.3 Summary..31
4 Log File Analysis ..33

4.1 HTTP logs ..33
4.1.1 The Common Log File Format..33
4.1.2 The Extended Common Log File Format ...34
4.1.3 E-R Diagram for HTTP Servers ..35

4.2 PROXY Logs ...36
4.3 SMTP Logs...38

4.3.1 Sendmail..38
4.3.2 Microsoft Exchange..41
4.3.3 E-R diagram for SMPT servers ..42

4.4 POP / IMAP Logs..42
4.5 FTP Logs...45

vi vi

4.6 DNS Logs ...48
4.7 NET Logs ...48

4.7.1 TcpDump Logs ...49
4.7.2 SOCKS Logs..51
4.7.3 E-R diagram for NET logs..52

4.8 Activity-Entity Synthesis ..54
4.9 Summary..55

5 Data Parsing and Aggregation...57
5.1 Web Log File ..58
5.2 SMTP Log File...60
5.3 Pop Log File ...64
5.4 Net Log File..66

5.4.1 SMTP and POP/IMAP Traffic..66
5.5 Summary..71

6 Computing Aggregated Activities...73
6.1 Web Surfing Activities..74
6.2 Email Downloading Activities ..79

6.2.1 Local Email Downloading...79
6.2.2 Remote Email Downloading ..82

6.3 Email Sending Activities ..83
6.3.1 Local Email Sending Activities ...84
6.3.2 Remote Email Sending Activities...85

6.4 Summary..88
7 Validation on a Campus Network ..89

7.1 Data Sources Integration..90
7.2 Some Results ..92
7.3 Summary..99

8 Conclusions and Future Work .. 101

Bibliography ...105

Appendix A: The Log Aggregators..109

A.1 The Net Log Aggregator...119
A.2 The Web Log Aggregator ...119
A.3 The Smtp Log Aggregator ..127
A.4 The Pop Log Aggregator ..133
A.5 The Imap Log Aggregator ..141

Appendix B: The Activities Builder... 149

vii vii

LIST OF FIGURES

Figure 1: Infratools Physical Map .. 16
Figure 2: WinFingerPrint Window .. 20
Figure 3: Products Comparison.. 23
Figure 4: The Overall Approach .. 27
Figure 5: Data Collection Architecture ... 28
Figure 6: An Example of Redundancy.. 29
Figure 7: Data Integration Phase.. 31
Figure 8: Web Log E-R Diagram... 35
Figure 9: Sendmail Log Example ... 39
Figure 10: SMTP Log E-R Diagram.. 42
Figure 11: Pop/Imap Service.. 43
Figure 12: E-R Diagram for Pop/Imap Logs.. 45
Figure 13: E-R Diagram for FTP logs .. 47
Figure 14: E-R Diagram for DNS logs ... 48
Figure 15: E-R Diagram for Net logs.. 53
Figure 16: A Complete Picture ... 54
Figure 17: SMTP Server in DMZ .. 62
Figure 18: Actual Network at University of Pisa... 73
Figure 19: Email Service Configuration.. 87
Figure 20: Actual Network and Log-File Sources at the University of Pisa 89
Figure 21: Log File Sizes .. 90
Figure 22: Activity Records Distribution.. 92
Figure 23: Users on Hosts ... 93
Figure 24: Hosts Utilization and Configuration .. 94
Figure 25: Example of a Host Behavior ... 95
Figure 26: Example of a User Behavior.. 97
Figure 27: Some Statistics I ... 98
Figure 28: Some Statistics II.. 99
Figure 29: Processing Stages for the Computation of Business Values................ 102

viii viii

ix ix

C h a p t e r 1

INTRODUCTION

In today’s dynamic information society, organizations critically depend on the

computing infrastructure. Tracking computing devices as assets and their usage

helps in the provision and maintenance of an efficient, optimized service. A

precise understanding of the operational infrastructure and its users also plays a

key role during the negotiation of outsourcing contracts and for planning mergers

and acquisitions. Building an accurate inventory of computing assets is especially

difficult in unknown heterogeneous systems and networking environments

without prior device instrumentation. User mobility and mobile, not-always-

signed-on, computing devices add to the challenge.

1.1 Computing Infrastructure as a Critical Business Resource

Modern e-business environments tightly link the customer and supplier systems

with the internal computing infrastructure. Hence the performance of the end-to-

end business processes becomes critically dependent on the availability of the

underlying computing infrastructure. From an economic perspective, the efficient

cost-effective and resource-optimized provision of the required services is

another argument in many organizations to justify the tight grip on the computing

assets deployed and their usage [34].

Classical methods for inventory and asset management quickly reach their limit in

today’s dynamic environments: Periodic physical inventories (“wall-to-wall”) have

the clear advantage of identifying the actual location of the devices but require

costly human visits (“sneaker net”) and can detect neither mobile, currently out-

of-office equipment nor the existence and use of logical assets. Financial asset

tracking, while being an accepted process in its own right, cannot detect additional

equipment brought into or accessing the resources of an organization. Periodic

self-assessment questionnaires to be filled out by individual end users or their

cost-center managers are another and often complementary approach. Apart from

the human effort they require and the inaccurate and incomplete data that results,

most forms pose questions the answer of which could easily be read out of the

infrastructure itself.

Well-managed computing infrastructures typically equip servers and end-user

devices with software daemons for the tracking of resources and the system as

well as for application performance monitoring [59], [60]. There are many

situations, however, in which this cannot be assumed and used. In many

organizations, there are a fair number of devices that are brought in ad-hoc and

are not instrumented accordingly, for which instrumentation is not available, or

on which instrumentation has been disabled. After a merger/acquisition, for

example, we can hardly assume to find an encompassing management

environment in place across the entire holding organization. However, a good

understanding of the provided infrastructure and its users is essential, actually

already prior to the acquisition or during the negotiation of an outsourcing

contract. Such investigations to gather the data, required to allow more accurate

service cost predictions and to reduce the risk of unforeseen contractual

responsibilities, are often called Due Diligence or Joint Verification.

1.2 Proposal

In this work, we argue that it is no longer sufficient to keep a static inventory of

information technology (IT) assets, but that the online tracking and categorization

of resource usage based on found communication patterns provide a much richer

information base, and enable faster and more accurate decisions in today’s

2 2

evolving e-business environment. We propose therefore to complement basic

network-based discovery techniques (described in detail in Chapter 2) with the

combined log information from network and application servers to compute a

aggregate picture of assets, and to categorize their usage.

The following statements summarize the benefits we expect to have with respect

to both classical methods and network-based techniques for assets discovery and

tracking:

• The main benefit is that log files provide historical information. They not

only complement asset-tracking tools in building an accurate asset

inventory but also provide information on how such entities interact

during network usage. We argue that in order to better manage assets a

good understanding of their usage is needed. In other words we believe

that two hosts with exactly the same configuration but used in a different

way also need to be managed differently.

• No daemon for collecting data has to be installed because each

application server has its own logging mechanism. Most of the time log

files already exist, ready to be used. In some cases the server needs to be

configured explicitly configured but this is quite straightforward

compared to installing new software that may also be system dependent.

• It is a totally passive approach. This means that no traffic has to be

generated in order to collect data. This is another advantage that our

approach has over most of the network-based discovery techniques.

• Application server log files can provide protocol-specific information that

cannot be collected in lower layers of the network stack such as for

example information about users.

3 3

Unfortunately data stored in log files are difficult to manage because they are

completely flat and uncorrelated. A common integrated repository with a unified

scheme in which such raw and uncorrelated data can be stored is needed.

However this is only one face of the medal. We also need as flexible an approach

as possible that allows data from new logs to be added easily and in a simple way.

We will show that although the logging syntax is in most cases implementation-

specific the semantic of such data is quite similar: a network activity is always

started by an initiating host and/or by an initiating user, and it always has a target

host and/or one or more target users. In this work we propose a solution to all

these problems.

1.3 Document Organization

The next chapter reviews the used network-based discovery techniques currently

used most often. Chapter 3 gives an idea of the overall approach followed in our

work to complement these techniques with our proposal. Chapter 4 analyses

information found in common network and application log files. Chapters 5 and

6 then propose how to warehouse and compute aggregated activities to prepare

for the data mining to categorize assets and users. Chapter 7 shows a validation of

the log analysis techniques on a small campus network, and Chapter 8 contains

the conclusions and an outlook in terms of future work.

1.4 Summary

In this chapter we have mainly introduced the problem of assets tracking as a

keyword for the provision and maintenance of an efficient, optimized network

service. We have also given a short overview of the classical methods used for

such purpose and described with their limitations. Then we stated our proposal,

describing what benefits we expect to obtain respect to the other known

methods.

4 4

C h a p t e r 2

STATE OF THE ART

Besides the classical methods briefly described in Chapter 1 (“wall to wall”,

“financial assets tracking” etc.) an increasingly popular inventory method is to

collect information using the network itself. Network-based inventories can

significantly reduce the time and cost of an IT audit, and can also make regularly

scheduled inventories feasible, providing more up-to-date information [7][54].

Network-based asset discovery and tracking techniques can be classified into

“online” methods (to determine the actual state of end-systems, network and

services) and “historic” log information processing (to analyze recorded network

and service usage traces). Whereas online monitoring may also keep historic

information, it cannot see into the past, i.e. into events that happened prior to its

start. If the time period available for asset discovery is limited, i.e. too short to see

all sporadically connecting devices, or if it is difficult to obtain sufficiently broad

and deep administrative access to the overall infrastructure, it is attractive to

reconstruct the global picture of computing assets and their usage from historic

and redundant log information. Before focusing on the analysis of log

information in the subsequent chapters, the following section surveys currently

known techniques for online discovery.

As described in [1], there is no single technique that can perform an exhaustive

network discovery, as every network has some peculiarity (e.g. some network

parts are protected by firewalls, whereas others are accessible only from a few

selected hosts) and also because not all networks run the same set of network

protocols. In addition, network interface cards for mobile computers can easily be

5 5

shared (plug-n-play) and swapped, and more and more portables are already

equipped with wireless network interfaces, making these devices difficult to track

and identify as they can move and change link and network addresses during their

lifetime. Network-based online discovery techniques can be further classified into

methods that (i) passively listen and map the network, (ii) actively talk and walk

the network and services, and (iii) interact and footprint individual hosts and

target application services. The following sections highlight and position several

such techniques.

2.1 Passive Network Mapping

Passive network mapping enables the discovery and identification of network

assets in a purely passive fashion, i.e. without generating any kind of traffic that

stimulates target machines in order to discover their presence [3].

Network Packet Sniffing

Packet sniffing consists of capturing packets that are received by one or more

network adapters, and does not interfere with normal network operations as the

packet capture application (network probe) generates no traffic whatsoever. As

modern networks make intensive use of switches for filtering out unnecessary

traffic, a probe can see only traffic directed to the host in which the probe is

running and broadcast/multicast traffic. The network administrator’s reaction is

to adopt techniques such as ARP poisoning and port mirroring to avoid

duplicating probes on each sub-network to be monitored [56]. Packet capture is

location dependent, hence the probe should be placed where the traffic actually

flows, which can pose quite a challenge. The probe needs to have decoders for

each of the protocols the network administrator is interested in. As network

traffic can be quite bursty, probes must be fast enough to handle all traffic in

quasi real-time and to avoid loosing track of the ongoing traffic sessions.

6 6

Applications that belong to this category include ntop[13][14][15], and ethereal

[53].

Subscription to Network and Syslogs

As most of the network devices and services store activity reports in log files,

often even enabled for remote forwarding via syslog, it is quite common to

subscribe to these log files for tracking network activities. In particular, log files

can be very useful in the case of dial-in modem servers, corporate VPN gateways,

mobile users, and WAP gateways. Some drawbacks of using logs are that their

format is usually fixed and not customizable by network administrators, that it is

necessary to periodically read the logs as they can wrap and hence overwrite

historical information, and that access typically requires administrator privileges.

2.2 Active Network Mapping

There are several different techniques that can be employed for actively mapping

network assets[5]. They all share the principle that the network needs to be

exhaustively explored from a starting point using a repetitive algorithm that walks

the entire network up to an endpoint or until the entire IP address range has been

worked.

SNMP Walking of Network Topology

Starting point: the current default route of the host that performs the mapping.

Recursive propagation algorithm: using SNMP [21] contact all adjacent routers,

learn all their current interfaces, and read their ARP [62] table for learning all local

hosts. Applications that belong to this category include NetView [55]. Specific

MIBs can also provide hardware-related configuration information, e.g. allow the

algorithm to drill down to racks, frames, and individual plugs in wiring closets.

Termination condition: recurs until network closure or until a limited access

authorization (SNMP community string) blocks the walking. The technique is

7 7

potentially hazardous for networks as SNMP traffic is not suitable for large

networks and can interfere with normal operations. For security reasons, network

administrators may deny remote SNMP GET operations. Moreover, SNMP can

be either disabled or misconfigured.

Ping/Broadcast Ping

Starting point: the host that performs the mapping. Contact all hosts of the

network being explored, e.g. using ICMP ECHO (a.k.a. ping) [20]. Every IP host

is required to echo an ICMP ping packet back to its source. The ping tool

therefore accurately indicates whether the pinged machine is alive or not (actually,

since ping packets can get lost, we always ping an address twice, deeming it

unreachable only if both do not elicit a reply). With suitably small packets, ping

also has a low overhead. Pings to live hosts succeed within a single round-trip

time, which is a few tens of milliseconds, so the tool is fast. Pings to dead or non-

existent hosts, however, timeout after a conservative interval of 20 seconds, so

pings to such hosts are expensive.

“Directed broadcast ping” refers to a ping packet addressed to an entire subnet

rather than just one machine. This can be done by addressing either the ‘255’ or

the ‘0’ node in the subnet (e.g. to broadcast to all nodes in the 128.84.155 subnet,

ping 128.84.155.0 or ping 128.84.155.255—more generally, these two addresses

corresponding to extending the subnet address either with all 0s or all 1s). A

broadcast ping is received by all hosts in the subnet, each of which is supposed to

reply to originator of the ping. This is useful in finding all the machines in a

subnet. Ping broadcast however is not supported fully in all networks. In some

networks, only the router responsible for that subnet responds to the broadcast

ping (we refer to this as the weak ping broadcast assumption). In other networks,

broadcast ping is not even responded to at all. These modifications prevent a

denial-of-service attack called “smurfing” where a large subnet is broadcast with a

8 8

ping packet whose return address is set to that of the victim. The victim gets

swamped with ICMP ping replies and soon dies.

Evaluation: End-to-end method that works in many situations where SNMP

router walking is blocked. NAT and firewall devices block inbound IP ping

sweeps, whereas unmanaged IP addresses can still talk to most servers, even in

other network segments. Hence the starting point for ping sweeps should be

selected carefully. Ping typically works as long as end systems have an inherent

business need to communicate. Although the generation of ICMP traffic may

interfere with normal operations, ICMP ECHO can be (partially) disabled for

security reasons. Other techniques such as Nmap [56] or Traceroute [61] may

produce better results in terms of efficiency and accuracy.

Traceroute

Traceroute [61] discovers the route between a probe point and a destination host

by sending packets with progressively increasing TTLs. Routers along the path,

on seeing a packet with a zero TTL, send ICMP TTL-expired replies to the sender,

which tallies these to discover the path. Traceroute is usually accurate because all

Internet routers are required to send the TTL-expired ICMP message. However,

some ISPs are known to hide their routers from traceroute by manipulating these

replies to collapse their internal topology. This reduces both the accuracy and the

completeness of topologies discovered using traceroute. Traceroute sends two

probes to every router along the path, so it generates considerably more overhead

than ping. Since probes to consecutive routers are spaced apart to minimize the

instantaneous network load, the time to complete a traceroute is also much longer

than a ping.

DNS Network Domain Name-Space Walking

Starting point: the local DNS server [46]. Algorithm: walk the DNS space by

performing a zone transfer in order to know all known hosts and DNS servers.

9 9

Recurs until network closure or until a DNS forbids the zone transfer.

Evaluation: technique can produce misleading data as some DNS servers may be

out of synchronization with the actual network state. Typically provides good

information about stable network services and applications; naming conventions

may allow further conclusions on intended main host usage (DNS, Notes, Mail

Exchange, etc.). DNS walking is useless in non-IP networks of course, and fails

on networks in which names have not been configured. Its results need to be

carefully analyzed in particular when dynamic address protocols (e.g. BOOTP

[64] and DHCP[65]) are in use.

DHCP Lease Information

Starting point: the local DHCP service or administrative access to the

corresponding server. There is no standardized access across products.

Microsoft’s Win/NT Resource Kit contains utilities to find DHCP servers and

list clients. Resulting data contains the currently assigned IP addresses with

associated MAC address as key to client information. The value of this technique

lies in particular in the tracking of devices connected only sporadically to the

network.

Windows and Novell Network-Domains, LDAP, and Active Directory

Starting points: the local directory services of LDAP [66] and the corresponding

Microsoft and Novell application networking. This technique nicely complements

DNS walking on IP-based networks. On networks in which dynamic DNS is

implemented results can partially overlap owing to misconfigurations; directories

tend to have richer data [31].

2.3 Host and Service Mapping

Once a host has been discovered, we may want to employ specialized tools to

learn about the operating system (OS) currently running and the services the host

10 10

provides. One of the principles of network mapping is that the more we know

about a host the more we can find out. The easiest way to identify the OS is to

parse the logon banners a server returns when opening TCP/IP ports.

Unfortunately, not all hosts offer such services. However, a large class of

workstations provides further Windows-specific data. If both approaches fail, the

ultimate resort is to use advanced techniques to directly analyze the TCP/IP stack

[5].

TCP/IP Stack Analysis and OS Detection

The standardized TCP/IP protocols allow a certain degree of local-system

freedom. Such local choices may impact system tuning and application

performance. Hence different stack implementations feature slightly differing

behavior, especially when challenged with peculiar protocol situations such as

bogus flags, out-of-scope packets, or windowing information. The current

internet-shared database contains fingerprints for more than 500 IP

implementations. The most popular tool is Nmap[56]. The results of stack-based

OS analysis must be carefully interpreted as they are based on heuristics that can

produce vague or even wrong results. Moreover, care must be exercised when

interacting with some - typically old and badly maintained - hosts as the odd

requests against the stack may crash the host currently being mapped.

UDP/TCP Port Scans

Port scanning is the technique that tries to communicate with remote ports, and

map the TCP/IP services available from a host. Access can be tried by using

either a small list of well-known ports (such as TELNET, FTP, HTTP and

POP3), the entire range of named services, or by scanning the entire 64K-large

port range. In addition, access can stop when granted (early close) or continue

(full open) until the banners are displayed. The former can be an alternative to

ping in network environments that block ICMP packets. There are also various

11 11

tools available to security analysts that further scan for possible security

vulnerabilities [57]. To reduce the impact on end-systems and visibility in

intrusion-detection systems, “stealth” modes are commonly available to sequence

randomly across IP addresses and ports. Unfortunately port scan is a potentially

hostile activity, hence it needs to be used carefully and only after the local network

administrators have been informed. There is a growing list of personal tools that

are able to detect port scans.

Remote Windows Fingerprinting

For Windows systems, there are specialized scanners that connect to the remote

interfaces of Windows systems management. In particular, and especially with

proper credentials, this yields a wealth of information on the hardware,

networking, and software configuration of the remote host. An example is

Winfingerprint [52].

2.4 Available Commercial and Freeware Products

We will survey now some of the most widely used commercial and freeware tools

for network, systems, and inventory management with a particular focus on the

methods they use to track assets.

2.4.1 Tivoli Net View

Tivoli NetView discovers TCP/IP networks, displays network topologies,

correlates and manages events and SNMP traps, monitors network health, and

gathers performance data [55]. For technical details on used network discovery

technqiues, please refer to the following section 2.4.2.

12 12

2.4.2 HP OpenView

Since no one product can address all the aspects of network management, HP

OpenView [67] consists of many products that address different aspects of the

process.

Network Node Manager (NNM)

Network Node Manager is the foundation from which most of the HP

OpenView products operate. When installed, the other HP OpenView products

appear as added functionality within NNM. NNM not only functions as a

solution on its own, but can collect data for, and forward data to, other HP

OpenView products. Although NNM uses several protocols (such as TCP/IP,

IPX/DMI, ICMP) to maintain communication channels with each managed

device it is mainly based on SNMPv1 and SNMPv2 protocols [21].

When you start the NNM background processes, all IP and Level 2 devices

(devices that support bridge, repeater, and MAU MIBs) on your network are

automatically discovered and mapped out. If you are running NNM on a

management station running the Windows NT operating system, IPX devices are

also discovered and mapped out. This map is a visual representation of the

communications channels established between NNM and the devices in your

network. Be aware that this map is not a physical representation; rather, it is a

logical representation. The accuracy of these communications channels between

NNM and your network devices determine whether or not NNM can provide the

information you need in order to manage your network.

The initial polling process may take several hours, or even over night, to discover

all the devices on your network. The netmon service (background process) uses a

combination of SNMP requests and ICMP pings transmitted over UDP and IPX

to find out about the nodes on your network.

13 13

To discover the nodes on the network, netmon needs access to the following

information:

� The subnet mask from the agent on the management station.

� The address of the default router in the management station's routing

table.

� SNMP information from, at a minimum, the default router, and from

other routers and nodes on the network.

For netmon to work, it requires the following:

� The management station must be running an SNMP agent.

� Nodes must be up and responding to ping requests to be discovered.

� All gateways/routers and the management station must have correctly

configured subnet masks for all interfaces.

During IP discovery, netmon works best in these situations:

� The more routers in the network the better; and those routers should be

running configured SNMP agents.

� The more nodes running configured SNMP agents the better.

Information about the discovered nodes is stored in NNM's databases and is used

to automatically generate the network map.

Over time, NNM will discover new nodes on the network. However, if a new

node never talks with a gateway or other nodes on the network that support

SNMP, NNM may not find it. In this instance you can use menu items within

NNM to send a low-level ICMP ping that forces NNM to discover the node; or

you can add the node manually.

14 14

NNM takes advantage of information provided in three standard MIBs to

discover bridges (switches) and hubs. These MIBs are the bridge MIB (RFC

1493), the repeater MIB (RFC 2108), and the 8023MAU MIB (RFC 1515). If a

network device supports any of these MIBs, netmon will use the information

reported to develop a model of the topology which better represents how and to

what the device is interconnected. In the case of switches and bridges, additional

information is gathered from the bridge MIB. In the case of hubs, addition

information is gathered either from the repeater MIB or the 8023MAU MIB.

The status of non-IP or non-IPX interfaces on switches, bridges, and hubs is

determined via SNMP based on the administrative and operating status of the

port.

2.4.3 Peregrine InfraTools Network Discovery

InfraTools is a set of tools developed by Peregrine Systems which allow to track

assets. The two most important discovery tools are the InfraTools Network Discovery

and the InfraTools Desktop Discovery tools. InfraTools Network Discovery enables

you to proactively manage the network resources and protect the business

technology investment by providing accurate asset inventory [68]. As a vendor

neutral solution, InfraTools Network Discovery identifies and continuously

monitors all managed and unmanaged network devices without agents. The

developers claim that it is able to identify all devices attached to the network with

99.99% accuracy, continuously exploring the network for every device by DNS

name, IP address, MAC (Level 2), or SNMP field. The system evaluates a variety

of data sources in order to maintain its real-time resource inventory. For managed

devices it queries for standard MIB attributes such as manufacturer, model, URL,

Y2K compliance, firmware version, and operational status. To assist with

unmanaged devices or where incomplete or incorrect MIB data exists, device-

specific scripts extract information in an effort to determine its traffic role. A

15 15

heuristic engine compensates for any false, incomplete, or incorrect information,

determines the kind of device (such as router, switch, or workstation), and builds

a data model of the device in the network.

Like OpenView NNM, InfraTools Network Discovery produces a physical

topology network map.

Figure 1: Infratools Physical Map

The system assigns specific device icons and line types to graphically represent the

network in real-time, and adapts dynamically to stay current.

2.4.4 Microsoft Visio

Microsoft Visio 2000[63] delivers powerful, automated design and documentation

tools for IT professionals who develop and maintain networks, databases,

software applications, and web sites. The most significant feature for network

managers is the auto-discovery and layout function. You can use this to

automatically create logical diagrams of your network topology using

representative icons for each network node--note that this only refers to IP-based

16 16

networks, so any IPX-only devices, some print servers for instance, won't be

detected and won't show up on any discoveries. You're free to add such devices

manually afterwards, but you shouldn't rely on Visio Enterprise as a

comprehensive network inventory tool.

The auto-discovery feature uses a separate, but automatically launched program to

search the network and find any nodes it can. You start by specifying whether the

network is switched or routed. Since this distinction makes little sense on large

networks, it's worth noting that the decision relates to the discovery method used.

What it should ask is whether there is either one or more IP subnets on the

network. In a routed network, the default gateway is used as a starting point for

discovery. Its ARP cache is queried using SNMP to find any nodes on the

network.

In a switched network, the PC will ping every possible address on the subnet of

which it is a member. This is a more time-consuming method that can generate

more traffic than an ARP cache discovery, and with several hundred nodes on a

network, the discovery may take hours and the layout even longer. You can also

do an advanced discovery, where a combination of both methods is used. You

can also choose to ignore devices that aren't SNMP-enabled. Since most desktop

PCs don't have SNMP responders installed, this will reduce the number of items

that Visio tries to include on the diagram.

The database viewer application lists devices by type, showing the interfaces and

attached networks for each device in the database. This can be used to prune the

database of entries that aren't of interest.

2.4.5 Peregrine InfraTools Desktop Discovery

InfraTools Desktop Discovery [68] extends the breadth of asset inventory

provided by the tools described above to include user-input (i.e. user name,

17 17

location, department, cost codes etc.) and specific data extracts (i.e. embedded

asset information such as asset tag and serial numbers).

In regards to the hardware scan, InfraTools Desktop Discovery searches through

the usual sources (i.e. Windows registry) like many inventory tools, but also

couples information from these sources with its own hardware level scans. These

scans utilize new and emerging asset management standards as well as existing

technologies such as DMI and SMBIOS.

One of InfraTools Desktop Discovery's strongest differentiators is its inherent

software scanning abilities. Two of the following distinct capabilities emerge

within the software scan:

Application Recognition - This component is based on the leading application

recognition technology, which utilizes heuristic algorithms to analyze file

relationships and provide application and version recognition.

File Recognition - In addition to applications, InfraTools Desktop Discovery is able

to recognize any file (user data or otherwise) from local hard disks, irrespective of

any partition format or independent operating system.

2.4.6 Nmap

Nmap ("Network Mapper") is an open source utility for network exploration or

security auditing[56]. It was designed to rapidly scan large networks, although it

works fine against single hosts. Nmap uses raw IP packets in novel ways to

determine what hosts are available on the network, what services (ports) they are

offering, what operating system (and OS version) they are running, what type of

packet filters/firewalls are in use, and dozens of other characteristics. Nmap runs

on most types of computers, and both console and graphical versions are

18 18

available. Nmap is free software, available with full source code under the terms

of the GNU GPL.

Nmap supports dozens of advanced techniques for mapping out networks filled

with IP filters, firewalls, routers, and other obstacles. This includes many port

scanning mechanisms (both TCP & UDP), OS detection, pings sweeps, and

more. The result of running nmap is usually a list of interesting ports on the

machine(s) being scanned (if any). Nmap always gives the port’s “well known”

service name (if any), number, state, and protocol. The state is either 'open',

'filtered', or 'unfiltered'. Open means that target machine will accept connections

on that port. Filtered means that a firewall, filter, or other network obstacle is

covering the port and preventing nmap from determining whether the port is

open. Unfiltered means that the port is known by nmap to be closed and no

firewall/filter seems to be interfering with nmap's attempts to determine this.

Unfiltered ports are the common case and are only shown when most of the

scanned ports are in the filtered state.

Depending on options used, nmap may also report the following characteristics

of the remote host: OS in use, usernames running the programs which have

bound to each port, the DNS name, whether the host is a smurf address, and a

few others.

2.4.7 Winfingerprint

Winfingerprint [52] is a Win32 based security tool that is able to determine OS,

enumerate users, groups, shares, transports, sessions, services, service pack and

hotfix level, and data and time, and tcp ports.

19 19

Figure 2: WinFingerPrint Window

Winfingerprint is capable of querying/enumerating information without any

logon credentials via the Windows null session. Essentially, the null session is an

unauthenticated connection to an NT machine used for anonymous information

gathering (user lists, for example). While the availability of null sessions eases

some administrative burden by providing services to tools like Explorer, null

sessions are similar to the Unix “finger” service. They are an intruder's dream:

access to users, shares and other potentially useful information, remotely and

anonymously. While null sessions can be disabled using a registry hack most

organizations have not made these changes.

2.4.8 Tcpdump

The active (e.g. intrusive) performance monitoring conducted by previously

described tools would be well complemented with an understanding of passive

monitoring, that is genuine user traffic as it comes in and goes out of the network.

Tcpdump is a powerful tool that allows people to sniff network packets and make

some statistical analysis out of those dumps[48]. One major drawback to tcpdump

20 20

is the size of the flat file containing the text output (see section 4.7.1 for a detailed

example). The simplest way to use Tcpdump is to run it with just an -i switch to

specify which network interface should be used. This will dump summary

information for every Internet packet received or transmitted on the interface.

However, Tcpdump provides several important options, as well as the ability to

specify an expression to restrict the range of packets you wish to study.

Rather than rehash here what is better documented elsewhere, I suggest you read

Tcpdump's well written manual page [71].

2.4.9 IBM IDD Project

Intelligent Device Discovery (IDD) is an ongoing project at the IBM Zurich

Research Laboratory. The IDD tool launches an encompassing low-intrusive

network-based discovery of hardware and software in a heterogeneous unknown

systems and networking environment [34].

The IDD tool discovers all IP network-attached devices through a multi-stepped,

non-intrusive process:

� NetView is used to discover information about the network. The

NetView IDD extractor tool extracts SNMP and non-SNMP gathered

information from NetView to further help provide device information,

active networks, and validate the IP ranges to be scanned by the IDD

suite of collectors.

� IP Scanner discovers functioning IP addresses, to then be scanned in

scanners below.

� Port Scanner combines port scanning (scans TCP/UDP ports: ftp, telnet,

smtp, http, nameserver) and fingerprinting to determine OS.

21 21

� Winfingerprint is used to gain remote read-only access to the Windows

registry and Netbios information. This tool provides specific

configuration data of a Windows Server or Windows Desktop/Laptop.

NO Port Scanning is involved.

� DIG performs DNS zone transfer to gather IP addresses and namespace

info.

� DHCP Collector imports DHCP logs, capturing the latest dynamic IP

addresses assigned to devices.

The integration of such tools with many others allows the discovery of PC's, Intel

& Unix Servers, LAN printers, Routers, Hubs, the O/S, IP & Ethernet Addresses

etc.

The tool is implemented on an open data-integration and automation platform

and integrates the various network and host mapping tool sources of information

into an aggregated consistent data model in a DB2 database.

2.4.10 Conclusions

Although previously described commercial and freeware products all represent

powerful and valid solutions, none of them seems to use log files as source of

information for asset tracking. The table below summarizes the characteristics of

previous tools according to the category they belong:

22 22

Products
Categorization

Network
Management

[55] [67]

Network
Scanners

[56]

OS specific
Scanners

[52]

Asset
Management

[70] [58]

Network
Doc. Tools

[58] [63]

Consulting
tools
[34]

Discovery:

Network Topology Yes No No No Yes Yes
IP/Port scanning No Yes No No Yes Yes
Stack OS analysis No Yes No No No Yes
NetBIOS sysinfo No No Yes No Yes Yes
Win Tel Registry No No Yes No Yes Yes

Windows scanner No No No Yes No Yes
Unix scanner No No No Yes No Yes
Log Analysis No No No No No No

 Figure 3: Product Discovery Categories

In terms of “historic” log information processing methods we did not find any

interesting work in which these methods have been successfully applied to asset

discovery and tracking. We believe instead that log data can be very useful in

many situations. The Internet abounds with tools that parse individual log files

(look at [68] [69] to have some examples) and produce a wealth of statistics on

how the particular service has been used, but in our case we want something

more. We want to integrate information coming from different protocols (e.g.

different logs) into a consistent repository in order to build a more accurate

inventory of computing assets, complementing the information collected using

the other surveyed network based techniques with usage information, e.g.

information about how assets (and not only protocols) are actually used.

2.5 Summary

The goal of this chapter was to survey both the currently most popular network-

based techniques for asset discovery and tracking, and the actually most used

commercial and freeware products that make use of them. We have seen that

several tools are available but all of them have in common that they do not

provide enough information about the usage of discovered assets. The challenge

23 23

in next chapters is now to convince the reader that logs data can be useful for

such purposes in many situations.

24 24

25 25

C h a p t e r 3

THE OVERALL APPROACH

In this chapter we will give a brief overview about how the process of

transforming raw and uncorrelated log data into meaningful information has been

organized. As the details will be given in the subsequent chapters we will merely

describe here the main problems we encountered in trying to integrate data

coming from different protocols into a common repository.

We have already said that our proposed overall approach is to complement basic

network-based discovery with the combined log information from network and

application servers, and then to compute an aggregate picture of assets and

prepare data for categorization with data-mining techniques [11] [12]. The main

benefit of merging different kinds of data is clearly that each log potentially

represents a slice of both users and computing assets behavior. HTTP logs

therefore provide information on how the users use the web whereas SMTP logs

tell us how they use the email service etc., and together they contribute to a more

complete user/asset behavior model. The more logs we can analyze, the more

information we potentially have. For this reason we decided also to analyze logs

such as the Socks, Gateways and Firewalls logs (generically called Net logs from

now on) that are not specifically related to a particular protocol but that can help

us to have more evidence on how users deploy the network.

26 26

3.1 Data Integration Architecture

Our first goal in selecting the data integration architecture is flexibility, in terms of

the effort involved in introducing a new service. We have therefore chosen to

split our system into two parts according to two different phases individuated:

• A first phase called Data Parsing and Aggregation, in which data from several

different protocols are parsed and aggregated in order to be stored into a

relational database.

• A second phase called Data Integration, in which data resulting from the

first phase are cleaned and integrated into more meaningful units, called

Activities.

Figure 4: The Overall Approach

Figure 4 also shows a third phase in which Activities obtained as result of phase 2

are used as sources of categorization. Although this Categorization phase is not

really a part of this work, we will show some preliminary categorization results in

Chapter 7, which were obtained by simply querying the activities table, leaving the

application of data-mining algorithms to discover hidden information to future

work.

27 27

3.1.1 First Phase: Data Parsing and Aggregation

As stated, one of our goals is flexibility. For the moment this means that we want

to have a structure such that if we decide to introduce data about a new service

we do not have to modify the entire environment. Figure 5 shows the entities

involved in this first phase.

Figure 5: Data Collection Architecture

In our study, we will focus on SMTP, POP/IMAP, WEB, and NET log

sources[18][19][25]. For each of these sources we built a parser that not only

transforms text log entries into database records but also aggregates and reduces

the data size in such a way that they can be stored in a database. The size of the

data is in fact the biggest problem encountered in this phase. To get an idea, just

observe that in our test data samples (one week of traffic) from a small/medium-

sized network we handled about 100 millions of log entries.

28 28

During this first phase, we dealt with two contrasting requirements: on the one

hand, it is not possible to deal with such big sets of data so that we must reduce it,

whereas on the other hand we do not want to lose information in passing from

log entries to usage records. A first degree of filtering has been applied in this

phase to cleaning the logs from all those “dirty entries” such as errors messages or

debug information that are not of interest to us but that log files unfortunately

report quite often. The result of this phase should be as accurate a representation

of aggregated logs data in a relational format as possible.

Some effort has also been dedicated to the code architecture such that it should

not require numerous changes in order to parse logs coming from different

servers implementing the same protocol (unless they use completely different

logging procedures). For this we have chosen to make use of regular expressions.

This means that if two logs differ only in the syntax used the code can be

completely reused simply changing the regular expression that defines the syntax

used for that particular log file. We do not want to go into too much detail here

about the code, but refer the interested reader to Appendix A.

3.1.2 Second Phase: Data Integration

The input of this phase consists of the Usage table obtained as result of the Data

Parsing and Aggregation phase. Starting from it, the goal is now to define more

meaningful units by trying to eliminate any usage entries that are redundant and

that could yield false results. The redundancy can be viewed as a consequence of

the intrinsically distributed nature of network usage. In general, note the

following:

• The same activity can be observed at several moments in the time.

• The same activity can be observed in several locations.

29 29

• The same activity can be observed by several protocols.

The first means that an activity generally consists of several usage records. We are

no longer interested in knowing that a user has browsed a certain web page, but

rather in information such as: “user X has surfed from host Y for W minutes,

generating Z bytes of traffic”. Similarly we are no longer interested in knowing

that at a certain time an attempt to download emails has been started from a

certain host by a certain user, but we would like to know, for example, that for a

certain time a POP client demon has been running on that host polling the POP

server for new emails every X seconds. Because of the two other bullets, this

process of transforming Usage records into such units of information has to be

done carefully because redundant data could falsify the result. The example below

allows us to be more concrete by showing a situation in which the same activity

has been logged in two different locations by two different protocols.

Example

Let us imagine a situation like that shown in Figure 4.

Figure 6: An example of redundancy

In such a situation the activity to be traced is the act of user A sending an email to

a remote user. The user sends the email to the local SMTP server, which then

forwards it to the remote SMTP server, passing through the local Net-Gw server.

30 30

In this example (e.g. with this network topology) this activity has been traced

twice: first by the local SMTP server and then by the Net-Gw server. This means

that (at least) two usage records document this fact. When we model activities

only one of them has to be selected. However, we want emphasize the fact that

the Net-Gw log still is necessary, for example, for tracking all attempts made by a

local user to send emails using extranet SMTP server whose log files are not

available.

As shown in Figure 7, a specific agent we called Activities Builder has been built

for this purpose:

Figure 7: Data Integration Phase

The benefit of this multitiered architecture is that we can change the way we build

activities by abstracting from the specific application server log-file formats and

therefore without having to change anything in data collecting.

3.3 Summary

This chapter gave a short overview of the main problems encountered in the two

main phases that led us from raw and uncorrelated log data to what we called

activities records. The keywords in the first phase (described in more detail in

Chapter 4) have been data parsing and data-size reduction. The result is a usage

table that represents an easily manageable picture of log data in a relational

format. In the second stage (described more fully in Chapter 5) related usage

records from multiple network and application protocols and observation points

are aggregated into a server-independent perception of activities. The main effort

31 31

in this second phase has focused on noise reduction. The result of this process is

an activities table that will now be used as starting point for the categorization of

computing assets.

32 32

C h a p t e r 4

LOG FILES ANALYSIS

Our work starts by analyzing the various sources of data we selected. We will

therefore show several examples of log files generated by different protocols as

well as by different implementations of the same protocol. Although this work

can be extended or adapted to a specific network, we decided to focus on the

services most used by network users: web and email. In our University of Pisa

data samples we observed that more than two thirds of the entire traffic is

generated by these services. We will also try to describe the entities involved

during the normal use of the services mentioned. We will see that in some cases

there are standards in how servers log information whereas in some others this

depends on the particular implementation. We will however show that although

log entries can change depending on the particular implementation, the entities

involved (people and assets) and the information about them is almost the same.

4.1 HTTP logs

HTTP log files are one of the most important sources of data in our study.

Fortunately in this case the information that HTTP servers log has been

standardized by the W3 Consortium, and today almost all the web servers adhere

to these standards. There are two standards for http log entries. The first is called

Common Log File Format [32], the second Extended Common Log File

Format [33].

4.1.1 The Common Log File Format

The Common Log File Format has the following fields separated by a space:

33 33

• RemoteHost: The DNS name (or the corresponding IP address if no DNS
service is available) of the host that made the request

• RemoteUser: The remote login name of the user (if not available, a dash is
typically placed in the field).

• AuthUser: The username as which the user has authenticated himself. This is
available when using password-protected WWW pages. (If not available, a dash
is typically placed in the field.)

• Timestamp: Date and time of the request.

• RequestType: The request line exactly as it came from the client (i.e., the
resource name and the method used to retrieve it [typically GET]).

• Status: The HTTP response code returned to the client; indicates whether the
file was successfully retrieved, and if not, which error message was returned.

• Bytes: The number of bytes transferred.

Here are a few lines of a Common Log File created by an Apache web server

version 1.3.19 running on a Windows2000 system:

131.114.4.xxx - - [25/Aug/2001:22:54:16 +0200] "GET /main.html HTTP/1.0" 200 4234

131.114.4.xxx - - [25/Aug/2001:22:54:16 +0200] "GET /images/header.gif HTTP/1.0" 200 9342

131.114.4.xxx - - [25/Aug/2001:22:54:16 +0200] "GET /images/dot.gif HTTP/1.0" 200 8765

131.114.4.xxx - - [25/Aug/2001:22:54:17 +0200] "GET /foto/iris.jpg HTTP/1.0" 200 7104

By default, Apache servers generate log files in the Common Log File Format.

4.1.2 The Extended Common Log File Format

The Extended Common Log File Format is obtained from the Common Log File

Format simply by adding the following two fields separated by a space:

• Referer: The URL the client was on prior requesting the current URL. (If it
cannot be determined a dash will be placed in this field.)

• UserAgent: The software the client claims to be using. (If it cannot be
determined a dash will be placed in this field.)

34 34

Here are a few lines of the Extended Common Log File Format logged by an

Apache web server version 1.3.19 explicitly configured to use this kind of log

format:

131.114.4.69 - - [25/Aug/2001:22:54:16 +0200] "GET /main.html HTTP/1.0" 200 4234 "-"
"Mozilla/4.71 [en] (WinNT; I)"

 131.114.4.69 - - [25/Aug/2001:22:54:16 +0200] "GET /images/header.gif HTTP/1.0" 200 9342
"http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

 131.114.4.69 - - [25/Aug/2001:22:54:16 +0200] "GET /images/dot.gif HTTP/1.0" 200 8765
"http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

 131.114.4.69 - - [25/Aug/2001:22:54:17 +0200] "GET /foto/iris.jpg HTTP/1.0" 200 7104
"http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

4.1.3 E-R Diagram for HTTP Servers

We derive the entity-relationship diagram of http logs

Figure 8: Web Log E-R Diagram

Figure 8 shows that by analyzing a generic http log we can learn that userX from

35 35

hostY requested resourceZ at a certain time. In fact this is not completely true

because unless the resource or, in general the web site that contains it has some

form of access restriction by means of explicit user authentication, the web log

contains no information about user. Unfortunately this is true in the

overwhelming majority of cases. On the other hand the diagram does not show

that http logs also allow us to obtain information about the operating system and

the browser used by the user. For example a UserAgent field with value "Mozilla/4.0

(compatible; MSIE 5.01; Windows NT 5.0)" tells us that the machine used runs the

Windows NT version 5 operating system and that the user has used Microsoft

Explorer version 5.01 to access the resource. This information can be very useful

for example for asset and user inventory tools to integrate or complement

information collected in other ways.

4.2 PROXY Logs

Web proxies [35][41] enable a more efficient access to popular websites. Instead

of downloading data from a remote site, the page is held in a cache on the server.

This means quicker access to the page and no overhead in bandwidth resources

every time the same page is downloaded. Although there seems not to be a

predominant proxy server on the market, the content of proxy logs is quite similar

in the proxy servers of the various vendors. Proxy servers can be used with

several protocols; however the one used most is the http protocol. Below I show

few lines from a log file created by the Squid [42] http proxy server (Squid is a

widely used proxy caching server for web clients, supporting FTP, gopher, and

HTTP data objects):

975963427.854 2310 193.43.104.202 TCP_MISS/200 25976 GET http://quicken.excite.com/ -
DIRECT/quicken.excite.com text/html

975963428.621 477 193.43.104.202 TCP_REFRESH_HIT/200 6705 GET
http://a1896.g.akamai.net/7/1896/942/0004/quicken.excite.com/g/excitelogo.gif -
DIRECT/a1896.g.akamai.net image/gif

36 36

975963429.749 1295 193.43.104.202 TCP_MISS/200 12348 GET
http://image.eimg.com/ads/141650_am_ban_trvl_x7_x_468x60_3.gif - DIRECT/image.eimg.com
image/gif

975963434.902 538 193.43.104.202 TCP_REFRESH_HIT/200 3837 GET
http://quicken.excite.com/images/hp_chart_green.gif - DIRECT/quicken.excite.com image/gif

975965970.299 7524 193.43.104.202 TCP_MISS/404 1504 GET
ftp://ftp.dlux.net/software/windows/compression/winzip95.exe - DIRECT/ftp.dlux.net -

Here is the meaning of various fields:

• Timestamp: A temporal reference. The value is the raw Unix time (since Jan 1,
1970) plus milliseconds.

• Elapsed: The time elapsed (milliseconds) during the client connection.

• FromHost: The IP address of the client host.

• Code: The "cache result'' of the request.

• Status: The HTTP status code (200 = Ok, etc.).

• Bytes: The number of bytes delivered to the client.

• Method: GET, HEAD, POST, etc. for HTTP requests.

• URL: The requested URL.

• AuthUser: Always NULL ("-") for Squid logs.

• PeerStatus: A status code that explains how the request was forwarded, either to
your peer (neighbor) caches, or directly to the origin server.

• PeerHost: The host to which the request was forwarded.

• PageType: The page extension.

As we can see, they are very similar to those that we saw when we analyzed http

logs in section 3.1. In particular, for http requests we can find all the information

we would find into a Common Log File Format: we have a timestamp (although

in a different format), the IP address of the host that made the request, the name

of the resource requested, etc. The E-R diagram is the same as that for http logs

and therefore will not be shown here.

37 37

4.3 SMTP Logs

Unfortunately, in this case there is not a standard log-file format. I will therefore

examine the two most widely used implementations of this protocol [18] in order

to find a common denominator of the information we can find in these logs.

Although there is no standard, the two types of SMTP servers chosen should

cover almost the totality of SMTP servers actually running on Internet.

4.3.1 Sendmail

Here are some lines generated by a Sendmail server [43]:

Dec 13 05:28:27 mailhub sendmail[26690]: FAA26690: from=<user@has.a.godcomplex.com>,
size=643, class=0, pri=30643, nrcpts=1, msgid=<19981032.CAA22824@has.a.godcomplex.com>,
proto=ESMTP, relay=user@has.a.godcomplex.com [216.32.32.176]

Dec 13 05:29:13 mailhub sendmail[26695]: FAA26695: from=<root@host.ccs.neu.edu>, size=9600,
class=0, pri=39600, nrcpts=1, msgid=<199812131029.FAA15005@host.ccs.neu.edu>,
proto=ESMTP, relay=root@host.ccs.neu.edu [129.10.116.69]

Dec 13 05:29:15 mailhub sendmail[26691]: FAA26690: to=<user@ccs.neu.edu>, delay=00:00:02,
xdelay=00:00:01, mailer=local, stat=Sent

Dec 13 05:29:19 mailhub sendmail[26696]: FAA26695: to="|IFS=' '&&exec /usr/bin/procmail -f-
||exit 75 #user", ctladdr=user (6603/104), delay=00:00:06, xdelay=00:00:06, mailer=prog, stat=Sent

As outlined in Figure 9, each line has at least one partner entry that shows the

source and destination of each message. When a message enters the system it is

assigned a unique "Message-ID", highlighted in Figure 9, that identifies the

message while it is being processed. This Message-ID allows us to associate

related lines in an interleaved log file.

38 38

Figure 9: Sendmail Log Example

Here is an example of an entry logged when a message has entered the system:

Jun 3 09:00:13 localhost sendmail 9852]: JAA09852: from=<francisco@franciscoCompany.com>,
size=955, class=0, pri=90955, nrcpts=3, msgid=<3CFE3C6E0508B0FFFD70BB4BF@SANTCO>,
proto=ESMTP, relay=franciscoHost.franciscoCompany.com [194.113.245.71]

In this kind of entry we find the following information

• Timestamp: Month, day and time at which the message was received by the
local smtp server.

• HostRecorder: The name of the host that has logged the entry.

• InternalId: An internal message ID that allows the system to associate related
lines in an interleaved log file.

• From: The name of the sender in the form of senderName@senderDomain.

• Size: The size of the incoming message in bytes.

• Class: the numeric value defined in the sendmail configuration file for the
keyword given in the Precedence header of the processed message.

• Pri: The initial priority assigned to the message.

• Nrcpts: The number of recipients for the message.

• MsgId: A unique message identifier defined as local-part@domain that allows
linking the message across services.

• Proto: The protocol that was used when the message was received; this is either
SMTP, ESMTP, internal, or assigned with the -p command-line switch.

39 39

• Relay: Where the message comes from. The semantic of this field can vary. In
this case, assuming that the message has been sent from a local user, this field
contains either the IP address or DNS name (sometimes both) of the host that
forwarded the message to the local SMTP server (usually the host from which
the local user has sent the message).

And here is the corresponding entry logged once the local SMTP server has
forwarded the message to the remote SMTP server:

Jun 3 09:03:00 localhost sendmail[9854]: JAA09852: to=<pablo@pabloCompany.com>,
delay=00:02:47, xdelay=00:02:47, mailer=esmtp, relay=smtpServer.pabloCompany.com.
[192.65.17.15], stat=Sent (2.0.0 f537mq511438 Message accepted for delivery)

This kind of entry contains the following information:

• Timestamp: Month, day and time at which the message was forwarded to the
remote smtp server.

• HostRecorder: The name of the host that as logged the entry.

• InternalId: An internal message ID that allows the system to associate this line
with the one showed above.

• To: The name of the recipient in the form addresseeName@addresseeDomain.

• Delay: The total message delay (the time difference between reception and final
delivery).

• Xdelay: The total time the message took to be transmitted during final delivery.
This differs from the delay= equate, in that the xdelay= equate only counts the
time in the actual final delivery.

• Mailer: The symbolic name (defined in the sendmail configuration file) for the
program (known as delivery agent) that performed the message delivery.

• Relay: Shows the name of the host to which the message has been forwarded
(in this case the SMTP server of addressee).

• Stat: The delivery status of the message (Sent, Deferred, User unknown, etc.).

In conclusion, we say that for each message entering the system we will have an

entry logged when the message was received and an entry for each delivery

attempt (normally one).

40 40

4.3.2 Microsoft Exchange

Another widely used SMTP server is Microsoft Exchange [44]. In this case the

information that is logged when the default message-tracking configuration is in

use is the following (Exchange 2000) [45]:

• Date: Date when the entry was logged.

• Time: Time at which the entry was logged.

• FromHostIP: IP address of connecting client.

• FromHostName: Hostname of connecting client.

• PartnerName: Name of the messaging service the message is being handed off
to. In Exchange 2000, the service could be SMTP, X400, MAPI, IMAP, POP3,
or STORE.

• RecorderIP: IP address of the server making the log entry.

• RecorderName: Host name of the server making the log entry

• ToUser: Message recipient (SMTP or X.400 address).

• EventID: Integer corresponding to the event ID of the action logged, that is,
sent, received, deleted, retrieved, and so on.

• MSGID: Message ID.

• Priority: -1,0,1 corresponding to low, normal, high., respectively.

• Recipient Report Status: A number representing the result of an attempt to
deliver a report to the recipient.

• TotalBytes: Length of message in bytes.

• NumberRecipients: Total number of recipients.

• Origination Time: Timestamp of when the message first entered the Exchange
2000 organization (either via an external gateway or by creation through a
client). Can be used in conjunction with the Date field to determine how long
the message has been in the Exchange organization.

• Encryption: For the primary body part: 0 if no encryption, 1 if signed only, 2 if
encrypted.

• ServiceVersion: Version of the service making the log entry.

• LinkedMSGID: If there is a MSG ID from another service, it is given here to
link the message across services.

41 41

• FromUser: Primary address of the originating mailbox. This could be SMTP,
X.400, or DN, depending on transport.

4.3.3 E-R Diagram for SMPT Servers

Figure 10 represents the relationships between the entities involved into the

process of sending/receiving e-mail derived from the logs shown:

Figure 10: SMTP Log E-R Diagram

As you can see from the E-R diagram, also in this case we have selected a set of

properties that we can reasonably assume to find in every SMTP server, and

omitted all those details that are insignificant. The result is that by looking at a

generic SMTP server log we can say that at a certain time FromUser has sent a

message of MsgSize bytes from FromHost to ToUser passing via ToHost.

4.4 POP / IMAP Logs

Post Office Protocol [19] and Internet Mail Access Protocol [20] are Internet

protocols that allow clients to download e-mails from their remote mailbox. The

first aim in POP/IMAP definitions was in fact merely to permit dynamic access

42 42

to a maildrop on a server host in a useful fashion from various workstations.

Usually, this means that POP/IMAP protocols are used to allow a workstation to

retrieve mails the server holds for it.

Figure 11: Pop/Imap Service

In a typical situation (showed in Figure 11) a message is first stored into the

filesystem by the SMTP server that received it and then, when the user requests to

download new e-mails, it is extracted from the mailbox by the POP/IMAP server

and sent to the user.

In this case there are not standards regarding the information that these kinds of

servers log during their activity, but again our requirements will be sufficiently

weak to be satisfied by almost all of the various implementations. Here are a few

lines logged by UW-Imap server:

Mar 24 00:32:15 aladdin imapd[5330]: imap service init from 9.4.16.57

Mar 24 00:32:15 aladdin imapd[5330]: Authenticated user=mfi host=giuncarico [9.4.16.57]

Mar 24 00:32:16 aladdin imapd[5330]: Moved 3864 bytes of new mail to /home/mfi/mbox from
/var/spool/mail/mfi host= giuncarico [9.4.16.57]

Mar 24 00:32:17 aladdin imapd[5330]: Logout user=mfi host=giuncarico [9.4.16.57]

Mar 26 21:39:23 aladdin imapd[7467]: imap service init from 9.4.16.64

Mar 26 21:39:23 aladdin imapd[7467]: Authenticated user=ydu host=jasmine [9.4.16.64]

Mar 26 21:39:23 aladdin imapd[7467]: Moved 1478 bytes of new mail to /home/ydu/mbox from
/var/spool/mail/ydu host= jasmine [9.4.16.64]

43 43

Mar 26 21:39:24 aladdin imapd[7467]: Logout user=ydu host=jasmine [9.4.16.64]

Below you find some examples of log entries generated by the Popd server used

for POP service at the Pisa Computer Science Department:

Sep 4 12:01:08 apis ipop3d[13719]: pop3 service init from 131.114.4.xxx

Sep 4 12:01:08 apis ipop3d[13719]: Auth user=verdi host=pc-verdi [131.114.4.xxx] nmsgs=8/8

Sep 4 12:01:08 apis ipop3d[13719]: Logout user=verdi host=pc-verdi [131.114.4.xxx] nmsgs=8 ndele=0

Sep 4 12:01:13 apis ipop3d[13727]: pop3 service init from 131.114.2.yyy

Sep 4 12:01:13 apis ipop3d[13727]: Login user=neri host=pc-neri [131.114.2.yyy] nmsgs=0/0

Sep 4 12:01:13 apis ipop3d[13727]: Logout user=neri host=pc-neri [131.114.2.yyy] nmsgs=0 ndele=0

In the first case, four log entries are logged for each downloading attempt. The

first when the server receive the request from the client (init service), the second

when the user authenticates itself by sending its credentials (Authenticated), the

third when new messages have been copied to the local mailbox (Moved…), and

the fourth when the client logs out from the service (Logout). The second case is

more or less similar to the first except that the “Moved…” entry is lacking.

Although the two logs use different ways to log data (the syntax is not exactly the

same and the number of entries generated for each download attempt is different)

the semantic is almost the same in terms of resulting information: in both cases

we can learn that at a certain time a certain user has downloaded new e-mails

from a certain host, plus some information about the session (number of bytes

moved in the first case, number of messages found/deleted/left in the second

case).

Figure 12 graphically represents the above statements:

44 44

Figure 12: E-R Diagram for Pop/Imap Logs

In this case, a typical Pop/Imap object can be seen as consisting of the following

fields:

• Timestamp: a temporal reference (when the entry was logged).

• FromUser: the login name of the user who has connected to the POP/IMAP
server.

• FromHost: the name or IP address of the host to which messages have been
moved.

• DataInfo: Information about emails downloaded.

How these Pop/Imap objects have actually been built will be explained in
Chapter 4.

4.5 FTP Logs

Although numerous different FTP servers are available on the market, the

information logged by them seems to be quite the same. Here are some sample

lines from a wu-ftpd version 2.6.x server transfer log:

Sun Dec 27 05:18:57 1998 1 nic.funet.fi 11868 /net/ftp.funet.fi/CPAN/MIRRORING.FROM a _ o a
cpan@perl.org ftp 0 * c

45 45

Sun Dec 27 05:52:28 1998 25 kju.hc.congress.ccc.de 269273 /CPAN/doc/FAQs/FAQ/PerlFAQ.html
a _ o a mozilla@ ftp 0 * c

 Sun Dec 27 06:15:04 1998 1 rising-sun.media.mit.edu 11868 /CPAN/MIRRORING.FROM b _ o a
root@rising-sun.media.mit.edu ftp 0 * c

Sun Dec 27 06:15:05 1998 1 rising-sun.media.mit.edu 35993 /CPAN/RECENT.html b _ o a
root@rising-sun.media.mit.edu ftp 0 * c

Wuarchive-ftpd [49] is a replacement ftp daemon for Unix systems developed at

Washington University. Wu-ftpd probably is the most popular ftp daemon on the

Internet, used on many anonymous ftp sites throughout the world. A wu-ftp

(version 2.6) log entry has the following fields:

• Timestamp: a temporal reference when the entry was logged.

• TransferTime: the duration of the transfer.

• RemoteHost: the name of the remote client.

• FileSize: the size of the file transferred.

• FileName: the name of the file transferred.

• Transfer-type: a single character indicating the type of transfer. Can be

 a for an ASCII transfer, or

 b for a binary transfer.

• Flags: one or more single-character flags indicating any special action taken. Can
be one or several of

 C file was compressed,

 U file was uncompressed,

 T file was tar'ed, or

 _ no action was taken

• Direction: the direction of the transfer. Can be either

 o outgoing, or

 i incoming.

• AccessMode: the method by which the user is logged in:

a (anonymous) for an anonymous guest user,

g (guest) for an pass-worded guest user, or

r (real) for a local authenticated user.

46 46

• Username: the local username, or if guest, the ID string given.

• ServiceName: the name of the service being invoked, usually FTP.

• AuthenticationMethod: the method of authentication used, either

0 none, or

1 RFC931 authentication.

• AuthenticatedUserId: the user id returned by the authentication method. A * is
used if no authenticated user id is available.

• CompletionStatus: a single character indicating the status of the transfer:

c complete transfer, or

i incomplete transfer.

Here is the derived E-R diagram:

Figure 13: E-R Diagram for FTP logs

47 47

4.6 DNS Logs

For this kind of logs we will take the log file created by the BIND version 8 [47]

server which is the most widely used DNS [46] server, as model. Here is an

example:

10-Apr-2000 00:01:20.307 XX /10.2.3.4/1.2.3.in-addr.arpa/SOA/IN

10-Apr-2000 00:01:20.308 XX+/10.4.3.2/host.foo.com/A/IN

A typical entry has the following fields:

• Timestamp: A temporal reference when the entry was logged.

• Recursive: Whether the request was recursive: + means recursive, a blank
means non-recursive.

• RequestingHost: The IP address of the host, which sent the request

• RequestedName: The name to be resolved

• Type: The type of request, such as SOA, IN, PTR, MX etc.

• Protocol: The protocol being requested. Nearly always, this is IN.

This is the E-R diagram:

Figure 14: E-R Diagram for DNS logs

4.7 NET Logs

We have already mentioned that in order to model users/hosts behavior we will

also look at logs that are not specifically related to a particular protocol but that

48 48

can be used to complement protocol-specific log information. Again the set of

available formats is quite big but we will show that our requirements are

sufficiently weak to assume that each such log provides the information we need.

4.7.1 TcpDump Logs

Tcpdump allows you to dump the traffic on a network. It can be used to print out

the headers of packets on a network interface that matches a given expression[48].

Although it is mainly intended for Unix systems, it has been ported on almost

every platform.

The general format of a tcpdump log line is

Timestamp > src > dst: flags data-seqno ack window urgent options

Src and dst are the source and destination IP addresses and ports. Flags are

some combination of S (SYN), F (FIN), P (PUSH) or R (RST) or a single “.”

(no flags). Data-seqno describes the portion of sequence space covered

by the data in this packet (see example below). Ack is sequence number of the

next data expected from the other direction on this connection. Window is the

number of bytes of available receive buffer space in the other direction on this

connection. Urg indicates that the packet contains “urgent” data. Options are

tcp options enclosed in angle brackets (e.g., <mss 1024>). Src, dst and flags are

always present. The other fields depend on the contents of the packet's tcp

protocol header, and are output only if appropriate.

Here is the opening portion of an rlogin from host rtsg to host csam extracted

from an example reported in the tcpdump man page:

999598392.567349 > rtsg.1023 > csam.login: S 768512:768512(0) win 4096 <mss 1024>

999598392.726146 < csam.login > rtsg.1023: S 947648:947648(0) ack 768513 win 4096 <mss 1024>

999598392.730587 > rtsg.1023 > csam.login: . ack 1 win 4096

49 49

999598392.731026 > rtsg.1023 > csam.login: P 1:2(1) ack 1 win 4096

999598392.908579 < csam.login > rtsg.1023: . ack 2 win 4096

999598392.927531 > rtsg.1023 > csam.login: P 2:21(19) ack 1 win 4096

999598392.958701 < csam.login > rtsg.1023: P 1:2(1) ack 21 win 4077

999598392.955132 < csam.login > rtsg.1023: P 2:3(1) ack 21 win 4077 urg 1

999598393.012867 < csam.login > rtsg.1023: P 3:4(1) ack 21 win 4077 urg 1

The first line says that tcp port 1023 on rtsg sent a packet to port login on csam.

The S indicates that the SYN flag was set. The packet sequence number

was 768512 and it contained no data (the notation is “first : last (nbytes)” which

means “sequence numbers first up to but not including last which is nbytes bytes

of user data”). There was no piggybacked ack, the available receive window was

4096 bytes, and there was a max-segment-size option requesting an mss of 1024

bytes. Csam replies with a similar packet except that it includes a piggybacked ack

for rtsg's SYN. Rtsg then acks csam's SYN. The “.” means that no flags were set.

The packet contained no data so there is no data sequence number. The

first time tcpdump sees a tcp “conversation”, it prints the sequence number of

the packet. On subsequent packets of the conversation, the difference between

the current packet's sequence number and this initial sequence number is printed.

This means that all sequence numbers after the first one can be interpreted as

relative byte positions in the conversation’s data stream (with the first data byte in

each direction being “1”). On the 6th line, rtsg sends csam 19 bytes of data (bytes

2 through 20 in the rtsg -> csam side of the conversation). The PUSH flag is set

in the packet. On the 7th line, csam says it has received data sent by rtsg up to but

not including byte 21. Most of this data is apparently sitting in the socket buffer

because the size of csam's receive window has decreased by 19 bytes. Csam also

sends one byte of data to rtsg in this packet. On the 8th and 9th lines, csam sends

two bytes of urgent, pushed data to rtsg.

50 50

4.7.2 SOCKS Logs

SOCKS [23] [24] is a networking proxy protocol that enables hosts on one side of

a SOCKS server to gain full access to hosts on the other side of the SOCKS

server without requiring direct IP reachability. A SOCKS redirects connection

requests from hosts on opposite sides of a SOCKS server. The SOCKS server

authenticates and authorizes the requests, establishes a proxy connection, and

relays data. SOCKS is commonly used as a network firewall that enables hosts

behind a SOCKS server to gain full access to the Internet, while preventing

unauthorized access from the Internet to the internal hosts. There are two main

versions of SOCKS: SOCKS V4 and SOCKS V5. Also in this case, without

standards, we need to study some specific implementations of the protocol. In

particular we will analyze the log files generated by the NetProxy version 3.0

server [35]. NetProxy is a proxy server and firewall system for Windows 95,

Windows 98 and Windows NT. It allows many users to access the Internet

simultaneously using a single connection of almost any kind (modem, ISDN,

cable modem, leased line, etc.). NetProxy provides several proxy services, as well

as a configurable firewall, access logging, and Socks (both version 4 and 5)

service.

SOCKS 4

This is an entry that indicates SOCKS v4.0 traffic:

Timestamp OriginIp OriginPort DestinationIp DestinationPort UserName

31/Aug/1997:12:09:48 +0100 10.84.128.147 60403 208.48.218.33 80 fred

If no username was specified, the field contains a single hyphen character (-).

51 51

SOCKS 5

This is an entry that indicates SOCKS v5.0 traffic. The format is exactly the same

as the SOCKS 4 entry, except for the fact the text "UDP" may appear at the end

of the line to indicate an UDP port association rather than a mapped TCP port.

Timestamp OriginIp OriginPort DestinationIp DestinationPort UserName Protocol

31/Aug/1997:12:09:48 +0100 10.84.128.147 60403 208.48.218.33 80 fred UDP

where

• Timestamp: when the entry was logged

• OriginIP: the IP address of the host that started the session

• OriginPort:: the port number used by the application that started the session

• DestinationIP: The IP address of the destination host

• DestinationPort: The port number on which the destination application will
receive data

• UserName: The name of the user that made the request

• Protocol: The protocol used (only for SOCKS version 5 traffic)

4.7.3 E-R Diagram for NET Logs

Although the information provided by Net logs can be very specific and detailed

we will continue our attempt to find a subset that can reasonably be assumed to

be as provided by all these log types.

Here is the proposed E-R schema:

52 52

Figure 15: E-R Diagram for Net logs

To be as general as possible we merely require the following:

• Timestamp: a temporal reference.

• FromHost: the IP address or DNS name of the host that sent the packet.

• FromPort: the origin port from which the packet was sent.

• ToHost: the IP address or DNS name of the destination host.

• ToPort: the destination port to which the packet has been.

• Volume: the number of bytes sent.

• UserName: the name of the user that started the session (optional: only for
socks entries).

More details about the implementation will be given in Chapter 4.

53 53

4.8 Activity-Entity Synthesis

We conclude the chapter with the complete E-R diagram that results by merging

all the "individual E-R diagrams" presented in preceding paragraphs.

Figure 16: A Complete Picture

The main intent of this E-R diagram is to have an overall picture that summarizes

everything we said during the analysis made in preceding paragraphs. This picture

shows on the upper and lower borders all the various sources of information that

we assume to have used during the entire process (except for FTP and DNS

54 54

logs). In the center of the diagram we can see the main entities involved in this

process (hosts and people), and further down, other "observable" entities (ports

and files) that we have reported for completeness, but that will be not considered

in detail from now on.

4.9 Summary

In this chapter we have first described the services that we have chosen to analyze

in our study. Although these protocols do not cover the complete network

activity, they represent a large slice of the whole. Then we have analyzed several

logs from servers that implement these protocols. We showed that, except for the

http protocol, the format of these logs has not been standardized. However

although the content of these logs varies, the semantic of the information is

almost the same for the various implementations of the same protocol. For each

protocol analyzed we presented an E-R diagram pointing out relationships

between the entities involved in such a protocol. Finally, we concluded the

chapter with a diagram resulting from the merging of all these "single-service

diagrams", to provide a complete picture of the information that we can assume

to be available henceforth.

55 55

56 56

C h a p t e r 5

DATA PARSING AND AGGREGATION

In this chapter we will describe in a more details how the Data Parsing and

Aggregation phase has been implemented. The main goal of this phase is to

obtain a consistent repository in which data coming from several different logs

will be stored according to our proposed integrated logic scheme. This is needed

mainly because our data sources have too many entries so that the data cannot be

easily used unless aggregated. Consider that the fact that for a week of logged

traffic (which we consider to be the minimum period that has to be analyzed in

order to obtain significant data) would lead to at least 100 millions log entries on a

medium-sized network like the one that is object of our study. Here is our Usage

schema:

ID Category RecordType StartTime EndTime InitiatingUser InitiatingHost TargetUser TargetHost

GlobRef LocRef Description DataPkts DataVol Tmin Tmax Tavg TstdDev

Table 1: The Usage Schema

The semantic of some fields is slightly different depending on the RecordType

value, and will therefore be explained separately in next few subsections; we can

however observe that in general a usage record potentially has a StartTime and an

EndTime, a initiating user and/or host as well as a target user and/or host plus

some information (Tmin, Tmax, Tavg, TstdDev) about the distribution over the

time of log entries used to generate the usage record.

57 57

5.1 Web Log File

Let us start with the web log file. In this case our approach consists of aggregating

all entries that refer to web requests coming from the same host within a certain

time in one individual usage record. Below we show an example of such an

aggregation.

Example 4.1.1

These entries were logged when host 131.114.4.6x accessed the index.html page

of the Computer Science Department web site of the University of Pisa:

131.114.4.6x - - [25/Aug/2001:22:54:16 +0200] "GET / HTTP/1.0" 200 4234 "-"
"Mozilla/4.71 [en] (WinNT; I)"

 131.114.4.6x - - [25/Aug/2001:22:54:16 +0200] "GET /images/header.gif HTTP/1.0" 200
9342 "http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

 131.114.4.6x - - [25/Aug/2001:22:54:16 +0200] "GET /images/dot.gif HTTP/1.0" 200
8765 "http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

 131.114.4.6x - - [25/Aug/2001:22:54:17 +0200] "GET /foto/iris.jpg HTTP/1.0" 200 7104
"http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

 131.114.4.6x - - [25/Aug/2001:22:54:17 +0200] "GET /foto/palloncini1.jpg HTTP/1.0"
200 4549 "http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

 131.114.4.6x - - [25/Aug/2001:22:54:17 +0200] "GET /foto/cortile.jpg HTTP/1.0" 200
8483 "http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

 131.114.4.6x - - [25/Aug/2001:22:54:17 +0200] "GET /foto/ingresso2.jpg HTTP/1.0" 200
3224 "http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

.

. Assuming that host 131.114.4.6x generates no other log entries for

. more than one minute

.
131.114.4.6x - - [25/Aug/2001:22:55:20 +0200] "GET ~prof1/index.html HTTP/1.0" 200
3224 "http://www.di.unipi.it/" "Mozilla/4.71 [en] (WinNT; I)"

The HTTP server logs a separate entry for each file requested from the client

browser. Therefore, a user’s request to view a particular page (the index.html page

in this example) often results in several log entries because graphics and scripts

are downloaded in addition to the HTML file (next 6 entries in this example)

58 58

without an explicit user request. Here is the corresponding usage record created

and stored into the database:

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser TgtHost

1 Web Log Http Session 2001-08-25 22:54:16 2001-08-25 22:55:20 131.114.4.6x 131.114.4.11

GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 Mozilla/4.71 [en] (WinNT; I) 7 45701 0 1000 167 372

where the meaning of the fields is

ID: A unique usage record identifier.

Category: The log from which the usage record has been generated. In this case
“Web Log”.

RecordType: The type of the record. In the case of web log files its value is always
“Http Session”.

StartTime: Timestamp of the first web log entry that belongs to this usage record.

EndTime: Timestamp of the last web log entry that belongs to this usage record.

InitiatingUser: This field should contain the user credentials but it is almost always
empty (unless authentication is required to access a particular web page.

InitiatingHost: The IP address of the host that made the request.

TargetUser: Always empty.

TargetHost: The IP address of the web server.

GlobalRef: Always empty.

LocalRef: Always empty.

Description: Information about the user agent (Netscape Navigator, Internet
Explorer, etc.) as well as about the operating system of the host.

DataPackets: The total number of web log entries that have contributed to create
this usage record.

DataVolume: The sum of all bytes of each log entry that belongs to this usage
record.

The ideal situation would correspond to have a usage record for each page

explicitly requested by the user, aggregating all those entries that are generated

59 59

automatically because of HTML tags. This can be done with some degree of

approximation using the Referrer field. However this computation requires an

overhead that is not justifiable in our situation, because we are not doing an ad

hoc web site study that requires such fine a granularity, which in any case would

be lost when, in the next phase, several usage records will be collapsed into one

activity[6][8][10].

5.2 SMTP Log File

The SMTP log file is the one that has been the least filtered of the ones we

parsed. This is due to the fact that, as we showed in Section 3.3, in general there is

a relation 1 to n that relates the sender to the n recipients of an email. We would

like to retain this information without complicating the database logic schema,

meaning that at this point we do not want to add new tables to model the

relation. Therefore we just filtered any data we do not need from each log entry

without collapsing more entries into one usage record.

Example 4.2.1

Let us have a look at SMTP log entries generated when user Rossi@di.unipi.it

sends an email to local user Verdi@di.unipi.it and to remote user

Bianchi@informatik.uni-freiburg.de. These are the log entries generated:

Jun 18 09:26:37 apis sendmail[30933]: JAA14975: from=<rossi@di.unipi.it>, size=1038, class=0,
pri=61038, nrcpts=2, msgid=<005101c0f7ee$54e36640$5b027283@kdd>, proto=SMTP, relay=pc-
rossi [131.114.2.91]

 Jun 18 09:27:06 apis sendmail[30934]: JAA14975: to=<verdi@di.unipi.it>,
ctladdr=<rossi@di.unipi.it> (15124/110), delay=00:00:29, xdelay=00:00:00, mailer=local, stat=Sent

 Jun 18 09:27:06 apis sendmail[30934]: JAA14975: to=<bianchi@informatik.uni-freiburg.de>,
ctladdr=<rossi@di.unipi.it> (15124/110), delay=00:00:29, xdelay=00:00:28, mailer=esmtp,
relay=mailgateway1.uni-freiburg.de. [132.230.1.211], stat=Sent (OK id=15BxcV-0003Xy-00

Here are the corresponding usage records created

60 60

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser

1 Smtp Log Message
Sending

2001-06-18
09:26:37 Rossi@di.unipi.it 131.114.4.xxx

2 Smtp Log LclForwarding 2001-06-18
09:27:06

2001-06-18
09:27:06 Verdi@di.unipi.it

3 Smtp Log RmtForwarding 2001-06-18
09:27:06

2001-06-18
09:27:xx Bianchi@informatik.uni-

freiburg.de

TgtHost GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 Msg1@di.unipi.it JAA14975 1 1038

 JAA14975 1

mailgateway1.uni-freiburg.de JAA14975 1

The meaning of each field is the following:

ID: A unique usage record identifier.

Category: Always “Smtp Log”.

RecordType: The type of the record. It can assume one of these four values:
"MsgSending", "MsgReceiving", "LclForwarding", "RmtForwarding":

• MsgSending refers to emails sent by local users,

• MsgReceiving refers to emails sent by remote users,

• LclForwarding refers to the act of forwarding an email to a local user, and

• RmtForwarding refers to the act of forwarding an email, sent by a local user,
to a remote SMTP server.

StartTime: Timestamp that records when the corresponding log entry has been
logged.

EndTime: Empty for “MsgSending” and “MsgReceiving” records, StartTime +
xdelay for the others.

InitiatingUser: The sender's name (empty for "LclForwarding" and
"RmtForwarding" records).

InitiatingHost: The IP address of the host that made the request.

TargetUser: The recipient's name (unfilled for “MsgSending” and “MsgReceiving”
records).

TargetHost: The IP address of the host to which the message was forwarded (the
remote SMTP server for outgoing messages; the host holding the recipient’s
mailbox for the others).

GlobalRef: The global message id (see Section 3.3.1).

61 61

LocalRef: An id that states that the three entries refer to the same email-sending
activity.

Description: Always unfilled.

DataPackets: Always equal to 1.

DataVolume: The size of the email. Empty for “LclForwarding” and
“RmtForwarding” records.

Tmin, Tmax, Tavg, TstdDev: Always empty.

The example above describes the case in which the message is sent from inside

the network by a local user. In this case the InitiatingHost field refers to the host

from which the Smtp server received the message. Most of the time this host is

the host from which the sender has sent the email, but there are some cases

(depending on how the network/email-service is configured) in which the

semantic of this field is different. For example in a situation like that showed

Figure 17 below where the SMTP server is in a DMZ and the firewall acts as IP

masquerador.

Figure 17: SMTP Server in DMZ

Here there is no way for the SMTP server to know the IP address of the host

from which the email was sent because it is hidden by the firewall. In such a case

the usage records created would be the following:

62 62

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser

1 Smtp
Log

Message
Sending

2001-06-18
09:26:37 Rossi@di.unipi.it net-

gw.di.unipi.it

2 Smtp
Log LclForwarding 2001-06-18

09:27:06
2001-06-18

09:27:06 Verdi@di.unipi.it

3 Smtp
Log RmtForwarding 2001-06-18

09:27:06
2001-06-18

09:27:xx Bianchi@informatik.uni-
freiburg.de

TgtHost GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 Msg1@di.unipi.it JAA14975 1 1038

 JAA14975 1

mailgateway1.uni-freiburg.de JAA14975 1

As we can see, now the InitiatingHost field refers to the firewall host.

Still another situation occurs if the message is sent by a remote user. Let us

imagine that the same email was sent by the remote user Bianchi@informatik.uni-

freiburg.de to the local user Rossi@di.unipi.it. The corresponding usage records

created would be the following:

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser

1 Smtp
Log MsgReceiving 2001-06-18

09:26:37 Bianchi@informatik.uni-
freiburg.de

mailgateway1.uni-
freiburg.de

2 Smtp
Log LclForwarding 2001-06-18

09:27:06
2001-06-18

09:27:06 Rossi@di.unipi.it

TgtHost GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 Msg1@di.unipi.it JAA14975 1 1038

 JAA14975 1

Now the InitiatingHost field has another meaning: it refers to the host that has

forwarded the email to the local SMTP server (most of the time the remote user's

SMTP server).

All these differences must be taken into account when usage records will be used

for activities modeling, but this will be discussed later, in the next chapter.

63 63

5.3 Pop Log File

As shown in Section 3.4 the information that can reasonably assumed to be

available in this kind of logs includes the user name, the host from which the pop

session has been executed, and some information about the emails downloaded

(number of emails downloaded or number of bytes moved, etc.). Our approach

consists of creating one usage record for each email-downloading attempt. This

choice allows us to not lose any data in passing from log entries to usage records

and at the same time it allows us to reduce the size of data set normally by a

factor 3 although this source of data does not present particular problems in

terms of compression as it generally represents only a small slice of the total. This

means that in a normal situation one usage record is created for every three log

entries.

The next example shows what are the log entries logged and the corresponding

usage record created when user Rossi@di.unipi.it starts a Pop session from his

host pc-rossi@di.unipi.it (131.114.2.9x).

Example 4.3.1

User Rossi starts a Pop session from his host pc-rossi.di.unipi.it to download any

emails received since the last Pop session. These are the log entries logged:

Jun 18 09:26:49 apis ipop3d[733352]: pop3 service init from 131.114.2.9x

Jun 18 09:26:50 apis ipop3d[733352]: Auth user=Rossi host=pc-rossi.di.unipi.it [131.114.2.9x]

nmsgs=32/32

Jun 18 09:26:51 apis ipop3d[733352]: Logout user=Rossi host=pc-rossi.di.unipi.it [131.114.2.9x]

nmsgs=27 ndele=5

The first line is logged when the service request arrives at the pop server,

indicating that host 131.114.2.9x has started a Pop session. The second line is

logged when the Pop client authenticates itself sending user credentials. In this

line we can find information about the user and about new messages in the form

64 64

of new-messages-received/total-messages-in-mailbox. Finally, the third line is

logged when the client closes the session. This line reports (among the other

things) how many messages were left in the mailbox and how many were deleted.

As you can see these three entries are related by the [733352] field, which is the

number of the thread that served the session. In practice for each session started

the pop server creates a new thread that serves the session and then expires.

Although this number is not unique, it can be supposed to be in a quite short

interval and therefore has been used to merge information coming from different

log entries of the same session into the following Email Downloading usage record:

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser

1 Pop Log Pop Session 2001-06-18
09:26:49

2001-06-18
09:26:51 Rossi@di.unipi.it 131.114.2.9x

TgtHost GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

131.114.4.6 27 32 1000 1000 1000 0

The meaning of each field is the following:

ID: A unique usage record identifier.

RecordType: Always "POP Session".

StartTime: Timestamp of the first POP log entry that belongs to the

corresponding pop session.

EndTime: Timestamp of the last POP log entry that belongs to the corresponding

pop session.

InitiatingUser: Name of the user whose credentials were used to validate session.

InitiatingHost: The IP address of the host that started the POP session.

TargetUser: Always unfilled.

TargetHost: The POP server IP address.

GlobalRef: Always empty.

LocalRef: Always empty.

Description: Always empty.

65 65

DataPackets: Number of messages left in the mailbox.

DataVolume: Number of messages downloaded.

Again, the Tmin, Tmax, Tavg and TstdDev fields contain information about the

time distribution of the log entries that generated this usage record.

5.4 Net Log File

The largest compression effort is needed for NET logs. This is due to the fact

that NET logs are by far the largest source of information we have. Therefore we

need some criteria that allow us to appreciably reduce the number of usage

records to be created but that at the same time prevent the loss of too much

information in passing from log entries to database records. The first idea was to

try to aggregate all log entries that refer to the same tcp connection as a unique

usage record, but then we realized that this was not sufficient in the sense that the

compression factor was still not sufficiently high and resulted in a number of

records still of the order of millions. In particular most of them (about 95%) were

http connections, thus the next step for this kind of connections was to collapse

more than one connection into one usage record. We will go into more details in

next few subsections.

5.4.1 SMTP and POP/IMAP Traffic

For Net log entries that refer to SMTP and POP/IMAP traffic, the aggregation

algorithm works in the same way. It makes use of a hash table where one bucket

is reserved for each SMTP or POP/IMAP connection open at a certain time. The

key that identifies the connection consists of ClientIP.ClientPort.ServerIP.ServerPort,

where ServerPort has to be either 25 (default SMTP service port) or 110/143

(default POP/IMAP service port). For each net log entry the algorithm simply

checks to which connections it belongs, updating its fields such as end time, data

volume, number of packets and so on. If the net log entry refers to the first

66 66

packet of a new connection, a new bucket is created. Each connection is

considered closed (and correspondingly a new usage record is created) when the

time elapsed from last packet received is greater than a fixed (GAP) parameter.

Tests with different GAP parameters showed that if we choose a sufficiently high

GAP (e.g. 1 min) we can be reasonably sure that all packets belonging to one such

connection will be part of the same usage record. This is because normally clients

who eventually close the current and open a new connection with the same server

before the GAP has elapsed, use a different port, allowing us to distinguish the

current connection from the previous one.

Example 5.4.1.1

This example shows a situation in which the local host 131.114.2.11x starts a POP

session with an Internet POP server [217.58.130.18].

Here are the corresponding entries logged:

999598392.171337 > 131.114.2.11x.45316 > 217.58.130.18.pop3: S 3331168056:3331168056(0) win 5840

<mss 1460,sackOK,timestamp 364005685 0,nop,wscale 0> (DF)

999598392.338684 < 217.58.130.18.pop3 > 131.114.2.11x.45316: S 3319002880:3319002880(0) ack

3331168057 win 32120 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)

999598392.339018 > 131.114.2.11x.45316 > 217.58.130.18.pop3: . 1:1(0) ack 1 win 5840 (DF)

999598392.562244 < 217.58.130.18.pop3 > 131.114.2.11x.45316: P 1:42(41) ack 1 win 32120 (DF)

999598392.562617 > 131.114.2.11x.45316 > 217.58.130.18.pop3: . 1:1(0) ack 42 win 5840 (DF)

999598392.567349 > 131.114.2.11x.45316 > 217.58.130.18.pop3: P 1:7(6) ack 42 win 5840 (DF)

999598392.726146 < 217.58.130.18.pop3 > 131.114.2.11x.45316: . 42:42(0) ack 7 win 32120 (DF)

999598392.730587 < 217.58.130.18.pop3 > 131.114.2.11x.45316: P 42:94(52) ack 7 win 32120 (DF)

999598392.731026 > 131.114.2.11x.45316 > 217.58.130.18.pop3: P 7:19(12) ack 94 win 5840 (DF)

999598392.908579 < 217.58.130.18.pop3 > 131.114.2.11x.45316: P 94:114(20) ack 19 win 32120 (DF)

999598392.940426 > 131.114.2.11x.45316 > 217.58.130.18.pop3: P 19:33(14) ack 114 win 5840 (DF)

999598393.107232 < 217.58.130.18.pop3 > 131.114.2.11x.45316: P 114:130(16) ack 33 win 32120 (DF)

999598393.108099 > 131.114.2.11x.45316 > 217.58.130.18.pop3: P 33:43(10) ack 130 win 5840 (DF)

999598393.296012 < 217.58.130.18.pop3 > 131.114.2.11x.45316: . 130:130(0) ack 43 win 32120 (DF)

999598399.074977 < 217.58.130.18.pop3 > 131.114.2.11x.45316: P 130:160(30) ack 43 win 32120 (DF)

999598399.075676 > 131.114.2.11x.45316 > 217.58.130.18.pop3: P 43:49(6) ack 160 win 5840 (DF)

67 67

999598399.247457 < 217.58.130.18.pop3 > 131.114.2.11x.45316: P 160:169(9) ack 49 win 32120 (DF)

999598399.247994 > 131.114.2.11x.45316 > 217.58.130.18.pop3: P 49:55(6) ack 169 win 5840 (DF)

999598399.424459 < 217.58.130.18.pop3 > 131.114.2.11x.45316: . 169:169(0) ack 55 win 32120 (DF)

999598401.423016 < 217.58.130.18.pop3 > 131.114.2.11x.45316: P 169:183(14) ack 55 win 32120 (DF)

999598401.425679 > 131.114.2.11x.45316 > 217.58.130.18.pop3: F 55:55(0) ack 183 win 5840 (DF)

999598401.429685 < 217.58.130.18.pop3 > 131.114.2.11x.45316: F 183:183(0) ack 55 win 32120 (DF)

999598401.430058 > 131.114.2.11x.45316 > 217.58.130.18.pop3: . 56:56(0) ack 184 win 5840 (DF)

999598401.614889 < 217.58.130.18.pop3 > 131.114.2.11x.45316: . 184:184(0) ack 56 win 32120 (DF)

 No Packets between 131.114.2.11x and 217.58.130.18 for 20 seconds

999598421.515854 > 131.114.2.11x.45320 > 217.58.130.18.pop3: S 3369225773:3369225773(0) win

5840 <mss 1460,sackOK,timestamp 364008620 0,nop,wscale 0> (DF)

As you can see the client 131.114.2.11x starts a tcp connection on port 45316 with

the pop server 217.58.130.18 (port 110 is the default Pop service port). On this

connection several packets are sent and received by both hosts with a maximum

delay of less than 6 seconds between two successive packets. When GAP has

elapsed since the last packet received, the connection bucket will be removed and

the corresponding usage record stored into the database. This is the usage record

resulting from collapsing all previously shown log entries:

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser TgtHost

1 Net Log Pop Session 2001-09-04 12:13:12 2001-09-04 12:13:21 131.114.2.11x 217.58.130.18

GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 2 24 236 0 5778 410 1212

The meaning of each field is the following:

StartTime: The timestamp of the first packet of the connection.

EndTime: The timestamp of the last packet of the connection.

Description: This field can be either “One” or “Two”. “One” means that data
have been sent only in one direction, whereas “Two” means that data have been
sent in both directions.

68 68

DataPackets: Number of packets (e.g. net log entries) that have contributed to the
usage record.

DataVolume: Sum of bytes exchanged between the two hosts during the session.

The Description value allows us to discriminate between connections in which

client and server have really interacted by exchanging data and connections in

which data have been sent only in one direction (an example of such bad data are

packets sent for port scanning). The example also shows that when the client

starts a new session with the same pop server, it uses a new, different port (45320

vs. 45316). This will result in a new bucket being created into the hashtable, and

consequently in a new usage record stored into the database.

5.4.2 HTTP traffic

The situation with HTTP traffic differs somewhat. For this kind of traffic,

connection level aggregation is not sufficient because the total number of usage

records created would be too high. We must collapse more than one connection

into one usage record. The algorithm behavior is very similar to the previous one,

with the difference that now all simultaneous connections between two hosts are

aggregated. Http protocol [25] allows clients to have multiple connections open at

the same time. This means that normally when a user surfing the web downloads

a web page, more than one connection are open between the browser and the

web server in order to download all the resources composing the page. This

behavior is slightly limited with http version 1.1, where connection persistence

allows web browsers to send multiple requests in pipeline on the same connection

so that the number of simultaneous connections usually is not more than two.

Example 5.4.2.1

This example shows a situation in which local host 131.114.4.17x starts an http

session with a web server running on remote host 212.48.9.22. The NET log

69 69

entries below show that the client opens two simultaneous connections with the

web server, the first on port 2099, the second on port 2100.

999597426.543181 > 131.114.4.17x.2099 > 212.48.9.22.www: S 2586282406:2586282406(0) win 16384
<mss 1460,nop, nop, sackOK> (DF)

999597426.729384 < 212.48.9.22.www > 131.114.4.17x.2099: S 1463449978:1463449978(0) ack
2586282407 win 8760 <nop,nop,sackOK,mss 1460> (DF)

999597426.729871 > 131.114.4.17x.2099 > 212.48.9.22.www: . 1:1(0) ack 1 win 17520 (DF)

999597427.952043 > 131.114.4.17x.2099 > 212.48.9.22.www: P 1:325(324) ack 1 win 17520 (DF)

999597427.955892 > 131.114.4.17x.2100 > 212.48.9.22.www: S 2586682374:2586682374(0) win 16384
<mss 1460,nop,nop,sackOK> (DF)

999597428.162305 < 212.48.9.22.www > 131.114.4.17x.2099: . 1:1(0) ack 325 win 8760 (DF)

999597428.164911 < 212.48.9.22.www > 131.114.4.17x.2100: S 3857102380:3857102380(0) ack
2586682375 win 8760 <nop,nop,sackOK,mss 1460> (DF)

999597428.166708 > 131.114.4.17x.2100 > 212.48.9.22.www: . 1:1(0) ack 1 win 17520 (DF)

999597428.166737 < 212.48.9.22.www > 131.114.4.17x.2099: P 1:134(133) ack 325 win 8760 (DF)

999597428.167321 < 212.48.9.22.www > 131.114.4.17x.2099: P 134:559(425) ack 325 win 8760 (DF)

999597428.168232 > 131.114.4.17x.2100 > 212.48.9.22.www: P 1:329(328) ack 1 win 17520 (DF)

999597428.168286 > 131.114.4.17x.2099 > 212.48.9.22.www: . 325:325(0) ack 559 win 16962 (DF)

999597428.375082 < 212.48.9.22.www > 131.114.4.17x.2100: . 1:1(0) ack 329 win 8760 (DF)

999597428.390022 < 212.48.9.22.www > 131.114.4.17x.2100: P 1:134(133) ack 329 win 8760 (DF)

999597428.390564 < 212.48.9.22.www > 131.114.4.17x.2100: F 523:523(0) ack 329 win 8760 (DF)

999597428.390693 < 212.48.9.22.www > 131.114.4.17x.2100: P 134:523(389) ack 329 win 8760 (DF)

999597428.391304 > 131.114.4.17x.2100 > 212.48.9.22.www: . 329:329(0) ack 134 win 17387 <nop,nop,
sack 1 {523:524} > (DF)

999597428.391436 > 131.114.4.17x.2100 > 212.48.9.22.www: . 329:329(0) ack 524 win 16998 <nop,nop,
sack 1 {523:524} > (DF)

999597433.786891 > 131.114.4.17x.2100 > 212.48.9.22.www: F 329:329(0) ack 524 win 16998 (DF)

999597434.028688 < 212.48.9.22.www > 131.114.4.17x.2100: R 3857102904:3857102904(0) win 0 (DF)

999597471.802370 > 131.114.4.17x.2099 > 212.48.9.22.www: R 2586282731:2586282731(0) win 0 (DF)

70 70

The algorithm will consider these two connections as only one fact, thus

generating just one usage record:

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser TgtHost

21 Net Log Http Session 2001-09-04 11:57:06 2001-09-04 11:57:51 131.114.4.17x 212.48.9.22

GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 2 21 1732 0 37784 2262 8232

The meaning of each field is the same as before.

For HTTP 1.0, the number of simultaneous connections is even greater so

that one can have five or more simultaneous connections open between one

client and one server. Moreover, some analysis of web log data showed that

although HTTP 1.0 is older it is still used at least as much as 1.1 is. We have

calculated that on average about 4 connections have been collapsed into one

usage record.

5.5 Summary

In this chapter we have shown how the Data Parsing and Aggregation phase has

been implemented. For each source of data we have presented several examples

about how log entries have been parsed and collapsed into usage records. As

already said, the greatest effort has been devoted to data size reduction. The

Usage table resulting from this phase will be the starting point of the next phase

described in the next chapter.

71 71

72 72

C h a p t e r 6

COMPUTING AGGREGATED ACTIVITIES

In this chapter we will explain how aggregated activities have been built in our

specific test case. We want to point out that this process of merging usage records

into more meaningful Activities records is strongly dependent on how the

network is structured. This means that different network topologies and different

services configurations could lead to different activities or at least to different

merging procedures. We will now focus on a particular case, the Computer

Science departmental network of the University of Pisa. The topology of the

Computer Science departmental network is shown below:

Figure 18: Actual Network at University of Pisa

As you can see the network has its own web and mail (SMTP, POP, IMAP)

servers that can be accessed by any local host without any intermediation. All

these entities are protected from the outside world by a firewall that represents

the only way to cross the perimeter of the network: all incoming and outgoing

traffic must pass through it. As shown in Figure 18, five different logs are

supposed to be available: the internal public WEB server log, the POP and IMAP

73 73

servers logs for emails downloads, the SMTP server log for emails sending and

receiving, and the NET-GATEWAY log for all the outgoing and incoming tcp

traffic. Such a configuration, which is very common in the real world, allows us to

use local server logs for tracking internal activities whereas the net-gateway

(firewall) can be used for tracking all the activities that represent interactions with

the external world.

6.1 Web Surfing Activities

At this point we will assume that all web and net log entries that refer to http

traffic have already been parsed and aggregated into the corresponding Http

Session usage records as described in Chapter 5. Now we want to collapse these

different usage records into more meaningful units that we call Local Web Surfing

activities. Here is the pseudocode of the algorithm used by the Activities Builder

to model Local Web Surfing activities:

For each (LocalHost) {

 SELECT *
 FROM usage table
 WHERE RecordType = Http Session
 AND InitiatingHost = CrntHost

 ORDER BY StartTime

 CurrentActivity = empty activity

 For each of such usage records {

 if the time gap since previous is less than GAP {
 include it into the current activity
 } else {
 close current activity
 store it into the activities table
 start a new activity
 }
 }
}

74 74

A Local Web Surfing activity is obtained using the Web usage records (Category =

Web Log AND RecordType = Http Session) for internal http traffic and the Net

usage records (Category = Net Log AND RecordType = Http Session) for outgoing

http traffic. For each local host the algorithm selects all Http Session-type records

from the Usage table, and orders them according to the time they happened.

Then it starts aggregating such records until the time gap between two successive

usage facts is greater than a fixed GAP interval. Clearly the GAP setting reflects

the degree of granularity of the resulting activities, and also influences the number

of activities created: a GAP equal or close to zero would lead to one activity per

usage record; a GAP of one week would lead to at most one activity per host. Of

course interesting GAP values are between these two extremes. We obtained the

best results in terms of number of Web Surfing activities created and activities

duration for GAP values of approx. 1 hour.

We now try to show more clearly how a Web Surfing activity is built using an

example.

Example 6.1.1

Let us imagine that professor Doe arrives in his office late in the morning and

starts his web browser, which is configured in such a way that it downloads as

first URL the main page of the local web server. Then it surfs the Sun’s web site

(192.18.97.241) for half an hour, and IBM’s web site (129.42.18.99) for five

minutes. Then he realizes that it is time to have lunch so he leaves his office for

an hour and half. When he comes back, he starts surfing again. This situation

results in these four usage records:

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser TgtHost

21 Http Log Http Session 2001-09-04 10:57:52 2001-09-04 10:57:55 131.114.4.xxx 131.114.4.11

22 Net Log Http Session 2001-09-04 11:03:01 2001-09-04 11:04:20 131.114.4.xxx 192.18.97.241

23 Net Log Http Session 2001-09-04 11:33:12 2001-09-04 11:33:20 131.114.4.xxx 129.42.18.99

24 Net Log Http Session 2001-09-04 13:00:51 2001-09-04 13:01:27 131.114.4.xxx 216.239.35.100

75 75

GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

\Index.html Http/1.1 Mozilla/4.71[en](WinNT;I) 9 16859 0 2000 375 695

 Two 156 64184 0 8102 117 659

 Two 81 26552 0 2423 97 314

 Two 77 27884 0 29781 476 3386

As already mentioned, starting from first usage record, the Activities Builder

algorithm collapse into the same Local Web Surfing activity all those records for

which the time elapsed between the EndTime of the current record and the

StartTime of the successive record is less than the fixed one-hour-long GAP. In

this example it first collapses three usage records into the same activity because

when it checks the fourth it finds that the time elapsed between the third and the

fourth record is one hour and half. Therefore it closes the current activity, stores

it into the Activities table, and starts a new one with the fourth usage record. This

is the resulting activity record:

ID RecordType StartTime EndTime InitUser InitHost Target(s)

55 Local Web
Surfing

2001-09-04
10:57:52

2001-09-04
11:33:20 131.114.4.xxx 131.114.4.11||192.18.97.241||129.42.18.99

Description NumUsages Data1 Data2 Data3 Tmin Tmax Tavg TstdDev

Mozilla/4.71[en](WinNT;I) 3 246 107595 306000 1732000 1019000

The StartTime of the activity corresponds to the StartTime of the first usage

record collapsed into this activity; the EndTime corresponds to the EndTime of

the last usage record that belongs to this activity (the third in our example). The

Target(s) field contains a concatenation of all target hosts surfed during the

activity, and the Description field contains the web browser used or a

concatenation of them if more than one web browser have been used. The latter

case corresponds to a situation in which two or more different web browsers

76 76

have been used at the same time on the same host for web surfing. The

NumUsages field shows how many usage records have been used for generating

the activity, while data1 and data2 corresponds to the number of packets (log

entries) that contributed for activity creation and the volume of traffic generated

during the activity, respectively. Finally we have information on the distribution of

usage records during the entire activity: Tmin and Tmax are the minimum and

maximum gap, respectively, between two successive usage records, and Tavg and

TstdDev are the average and the standard deviation of such a distribution,

respectively.

The example above corresponds to a web-surfing activity generated by a local

host. Another quite frequent situation is that often also some other local (e.g.

intranet) web servers are installed apart from the official(s) one(s). The difference

is that no logs are available from them because they are not managed by the

network administrators staff, who may not even know that they exist. Such

activities are therefore built by looking for valid Net-Http usage records whose

TargetHost is a local host. This is the pseudo code:

For each (LocalHost) {

 SELECT *
 FROM usage table
 WHERE RecordType=Http Session
 AND TargetHost = CrntHost

 ORDER BY StartTime

 CurrentActivity = empty activity

 For each of such usage records {

 if the time gap since previous is less than GAP {
 include it into the current activity

 } else {
 close current activity
 store it into the activities table
 start a new activity

 }
 }

 }

77 77

The result will be an activity record like the following:

ID RecordType StartTime EndTime InitUser InitHost Target(s)

55 Remote Web Surfing 2001-09-04 10:57:52 2001-09-04 11:33:20 192.16.6.3 131.114.4.xxx

Description NumUsages Data1 Data2 Data3 Tmin Tmax Tavg TstdDev

 3 123 87632 306000 1732000 1019000

Here no information about the browser used is available because only Net-Http

usage records have been used to generate this activity. The record type now is

Remote Web Surfing, meaning that a local host has been surfed by a remote one.

The remaining fields have the same meaning as in the previous example.

A final remark regards the concept of valid usage records. We said in Chapter 4

that the usage table is mainly intended as a more flexible way to use log data. We

also said that in passing from log files to usage records as little filtering as possible

must be applied. This requirement implies that the usage table still contains noise

and some not significant data that could yeld false results. Passing from usage to

activities records we want to eliminate this noise. Therefore in this specific case,

for example, we do not consider all those Net usage records that refer to one-

direction traffic (maybe due to a Port scanning).

Example 6.1.2

 If an external host sends a web packet on port 80 of a local host that does not

run any web server or that does not even exist, this will result in a Http Session-

type usage record where the local host is the TargetHost of the record, meaning

that some kind of Http interaction between the two hosts has taken place.

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser TgtHost

21 Net Log Http Session 2001-09-04 10:57:52 2001-09-04 10:57:55 192.16.6.3 131.114.4.xxx

78 78

GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 One 9 16859 0 2000 375 695

Table 2: Example of an invalid usage record

But this does not correspond to what actually happened: the external host tried to

access the local host, the net gateway has logged this attempt but there was no

interaction between external host and local host simply because no web server

was running on the local host, and hence this record does not have to be taken

into consideration when building the activity.

6.2 Email Downloading Activities

In this case the sources are the POP/IMAP and NET-POP/IMAP usage

records. The first are used for Local Email Downloading activities meaning all those

activities, started by users or by pop-client demons in order to download any

emails eventually received from the local official POP/IMAP intranet server.

NET-POP/IMAP usage records are used for Remote Email Downloading activities,

meaning those activities that refer to attempts made by local users to download

emails from an extranet mailbox. Again we will assume that all POP/IMAP log

entries and all NET log entries that refer to POP/IMAP traffic have already been

parsed and aggregated into the corresponding Pop Session usage records as

described in Chapter 4.

6.2.1 Local Email Downloading

For Local Email Downloading activities we will use only POP/IMAP usage records

(Category = Pop Log or Category = Imap Log). Although these records already

provide information about the individual attempts to download emails from the

official intranet POP/IMAP servers, they are too numerous and difficult to

79 79

manage because almost every POP/IMAP client is configured in such a way that

it polls the server at regular intervals for new emails. We therefore need a

reasonable way to collapse several of them into just one activity without losing

important information. Below I reported some POP usage records showing

individual interactions between user Verdi’s POP client and the intranet POP

server:

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser TgtHost

21 Pop Log Pop Session 2001-09-07 11:17:01 2001-09-07 11:17:07 Verdi 131.114.2.xxx 131.114.4.6

22 Pop Log Pop Session 2001-09-07 11:26:56 2001-09-07 11:26:56 Verdi 131.114.2.xxx 131.114.4.6

23 Pop Log Pop Session 2001-09-07 11:36:56 2001-09-07 11:36:56 Verdi 131.114.2.xxx 131.114.4.6

24 Pop Log Pop Session 2001-09-07 11:46:56 2001-09-07 11:46:56 Verdi 131.114.2.xxx 131.114.4.6

GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 5 15 1000 5000 3000 2000

 7 3 0 600 300 300

 7 1 1000 1000 1000 0

 9 0 0 1000 500 500

All four of these records will be merged into one Local Email Downloading activity

as shown below:

ID RecordType StartTime EndTime InitiatingUser InitiatingHost

55 Local Email Downloading 2001-09-07 11:17:01 2001-09-07 11:46:56 Verdi 131.114.4.xxx

Target(s) Description NumUsages Data1 Data2 Data3 Tmin Tmax Tavg TstdDev

131.114.4.6 4 20 19 9 595000 600000 598333 244

Also here the StartTime and EndTime are, respectively, the StartTime of the first

usage record and the EndTime of the last usage record that is considered as aving

generated such activity. InitiatingUser is the name of the user whose credentials

were used for authentication, and InitiatingHost and Target(s) are, respectively,

the host from which the download started and the IP address of the host on

which the POP server is running. Data1 corresponds to the total number of

80 80

messages found into the mailbox when the activity started, Data2 corresponds to

the total number of messages deleted from the mailbox during the entire activity,

and Data3 represents the number of messages left into the mailbox at the end of

the activity. The difference between (Data2 + Data3) – Data1 gives the number

of new messages received during the activity. Similarly to Web Surfing activities,

Tmin and Tmax here represent the minimum and maximum time elapsed

between two successive downloading attempts, while Tavg and TstdDev

correspond to the average and standard deviation of the usage records

distribution over time. In this particular case, we can observe a very low TstdDev

value. This means that interactions between pop client and server happened at

regular intervals, possibly because they are automatically started by a POP client

demon. High TstdDev values could mean that during the activity the user was

physically sitting at the InitiatingHost and that ho or she has explicitly started an

interaction with the POP server. Here is the pseudo code for the piece of the

Activities Builder that generates Local Email Downloading activities:

SELECT DISTINCT InitiatingUser, InitiatingHost
FROM usage table
WHERE Category = “Pop Log”

For each of such pairs {

 SELECT *
 FROM usage table
 WHERE InitiatingUser = CrntUser
 AND InitiatingHost = CrntHost
 ORDER BY StartTime

 While (there are more usage records) {
 If the time elapsed since the previous is less than GAP {
 Include this usage record into the activity
 } else {
 close current activity
 store it into the activities table
 and start a new one with current usage record
 }
 }
}

81 81

Note that the overall structure is almost the same used that for modeling Web

Surfing activities. Of course, here, the usage records selected are different.

6.2.2 Remote Email Downloading

Besides the official company email account most users nowadays have other email

accounts in various locations on the Internet. Although we cannot assume the

availability of log files from such extranet servers, we can use local NET-GW

information to capture such activities. At this stage each individual remote email

download attempt has already been stored into one usage record like the

following (see Chapter 4):

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser TgtHost

21 Net Log Pop Session 2001-09-04 12:22:29 2001-09-04 12:22:35 131.114.4.xxx 192.18.97.241

GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 41 19141 0 5997 261 935

A Remote Email Downloading activity will be the result of the aggregation of one

or more of these usage records between the same pair of origin and destination

host. The activity is supposed to be finished, and a new one is started when the

time elapsed between two successive usage records is greater than a fixed

REMOTE_POP_IMAP_GAP parameter. Such an activity record looks as

follows:

ID RecordType StartTime EndTime InitiatingUser InitiatingHost

55 Remote Email Downloading 2001-09-06-08.19.50 2001-09-06-12.06.51 131.114.4.xxx

Target(s) Description NumUsages Data1 Data2 Data3 Tmin Tmax Tavg TstdDev

192.18.97.241 232 4650 50946 3000 61000 58965 1853

82 82

Note that no information about the user is available. In this case this activity,

which took almost 4 h, has been built starting from 232 single email downloading

attemps, resulting in 4650 tcp packets for a total of 50946 bytes exchanged. As

the TstdDev value is quite low, this traffic could have been generated by a demon

with a refresh interval of about 60 seconds. This is the pseudo code:

SELECT DISTINCT InitiatingHost, TargetHost
FROM usage table
WHERE Category = “Net Log”
AND RecordType=”Pop Session”

For each of such pairs {

 SELECT *
 FROM usage table
 WHERE InitiatingHost = CrntLocalHost
 AND TargetHost = CrntRemoteHost
 ORDER BY StartTime

 While (there are more usage records) {
 If the time elapsed since the previous is less than GAP {
 Include this usage record into the activity
 } else {
 close current activity
 store it into the activities table
 and start a new one with current usage record
 }
 }
}

6.3 Email Sending Activities

An Email Sending activity models the action of a user sending e-mail. We can

distinguish two types of such activities: Local Email Sending and Remote Email

Sending. The first corresponds to sending an email by means of the intranet SMTP

server, whereas the second corresponds to sending an email using an extranet

SMTP server whose log files we cannot assume to be available. They will be

described separately in next two paragraphs.

83 83

6.3.1 Local Email Sending Activities

Local Email Sending activities have been modeled starting from SMTP usage

records (Category = Smtp Log). At this stage we assume that each email sent

from a local user to n recipients is described by n + 1 usage records. So, reusing

Example 4.2.1, the act of sending an email by local user Rossi@di.unipi.it to the

two recipients Verdi@di.unipi.it and Bianchi@informatik.uni-freiburg.de is

described by the following three usage records:

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser

1 Smtp Log Message
Sending

2001-06-18
09:26:37 Rossi@di.unipi.it 131.114.4.xxx

2 Smtp Log LclForwarding 2001-06-18
09:27:06

2001-06-18
09:27:06 Verdi@di.unipi.it

3 Smtp Log RmtForwarding 2001-06-18
09:27:06

2001-06-18
09:27:15 Bianchi@informatik.uni-

freiburg.de

TgtHost GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 Msg1@di.unipi.it JAA14975 1 1038

 JAA14975 1

mailgateway1.uni-freiburg.de JAA14975 1

Now we want to collapse all three records into one Local Email Sending activity like

the following:

ID RecordType StartTime EndTime InitiatingUser InitiatingHost

55 Local Email Sending 2001-06-18 09:26:37 2001-06-18 09:27:15 Rossi@di.unipi.it 131.114.4.xxx

Target(s) Description NumUsages Data1 Data2 Data3 Tmin Tmax Tavg TstdDev

Verdi@di.unipi.it
|| Bianchi@informatik.uni-freiburg.de 3 1038 2

84 84

Here is the pseudocode used for modeling this activity.

SELECT DISTINCT LocalRef
FROM usage table
WHERE Category = “Smtp Log”
AND RecordType=”Message Sending”

For each different LocalRef {

 SELECT *
 FROM usage table
 WHERE Category = ‘SMTP Log’
 AND LocalRef = CrntRef
 ORDER BY StartTime

 create a new activity using results of last query
 and store it into the activities table

}

We note that it is always possible to relate usage records that refer to the same

email by looking at the LocRef field. This LocRef id is assigned to the message

when it enters the system and can be considered unique for a reasonably long

period of time. For each different email (e.g. LocRef value), the algorithm will

build a new Local Email Sending activity, merging information from all usage

records that refer to that particular email. The result is that we can now merely

look at such an activity record to learn that at a certain time a particular user has

sent an email of size Data1 to Data2 recipients whose names are reported in the

Target(s) field.

6.3.2 Remote Email Sending Activities

It happens quite often that users use an extranet SMTP server to send emails.

This kind of activity, which we call Remote Email Sending, can be modeled starting

from NET-SMTP usage records (Category = Net Log AND RecordType = Smtp

session).

85 85

Each such activity is described by a usage record like the following

ID Category RecordType StartTime EndTime InitUser InitHost TgtUser TgtHost

1 Net Log Smtp Session 2001-09-08-10.45.17 2001-09-08-10.45.20 131.114.2.8x 146.48.65.88

GlobRef LocRef Descr DataPkts DataVol Tmin Tmax Tavg TstdDev

 Two 89 27366 0 199 38 62

Such a usage record actually is already an activity: it means that at a certain time a

27-Kb email was sent from the local host 131.114.2.8x using the extranet SMTP

server running on remote host 146.48.65.88. The Activities Builder merely has to

copy such a record into the activities table according to the activities schema.

Here is the pesudocode:

SELECT *
FROM usage table
WHERE Category = “Net Log”
AND RecordType = ”Smtp Session”
AND InitiatingHost <> IntranetMailserver
AND TargetHost <> IntranetServer

For each of such records{

 create a new activity using current record
 and store it into the activities table

}

 As you can see the Activities Builder does not select every usage record that

represents an interaction between a local host and a remote SMTP server because

some of them are redundant. In particular, note that the usage table contains also

all those records that refer to local emails (emails sent using the intranet SMTP

server) forwarded by the intranet mail server to the remote recipients’ SMTP

servers.

86 86

Figure 19: Email Service Configuration

Figure 19 shows the path followed by a generic email sent by a local user using the

intranet SMTP server: UserA first sends the email to the intranet SMTP server,

which then forwards it to the recipient’s SMTP server. In such a situation this

activity has already been considered as Local Email Sending activity. This is the

reason why the Activities Builder omits from its selection all those usage records

that have the intranet SMTP server as InitiatingHost or TargetHost. Here is the

resulting Remote Email Sending activity.

ID RecordType StartTime EndTime InitiatingUser InitiatingHost

27 Remote Email Sending 2001-09-08-10.45.17 2001-09-08-10.45.20 131.114.2.8x

Target(s) Description NumUsages Data1 Data2 Data3 Tmin Tmax Tavg TstdDev

146.48.65.88 1 27366 89 0 199 38 62

The information provided by this kind of record is different from the preceding

one because now we know neither the sender nor the recipients of the email sent.

87 87

6.4 Summary

In this chapter we described in detail how an activities table is filled. We have

individuated six kinds of activities: Local Web Surfing, Remote Web Surfing,

Local Email Downloading, Remote Email Downloading, Local Email Sending,

and Remote Email Sending. They have been obtained by integrating different

types of usage records resulting from the Data Parsing and Aggregation phase. The

result consists of a table of meaningful entries that can now be used for OLAP

analysis or as starting point for the application of data-mining tasks.

88 88

C h a p t e r 7

VALIDATION ON A CAMPUS NETWORK

To validate the process of combining log information from network and

application servers to compute an aggregate picture of computers and users

according to detected communication patterns, we tested it with the Computer

Science departmental staff network of the University of Pisa. According to a

human source, there exist a total of approx. 300 hosts (50 servers and 250

workstations). Under a confidentiality agreement we were able to get access to a

full 7-day week of real traffic logs from the departmental web and mail servers

and the gateway to the backbone of the university network. The validation

playground is depicted in Figure 20.

Figure 20: Actual Network and Log-File Sources at the
University of Pisa

89 89

7.1 Data Sources Integration

As already stated, a significant problem tackled by the author is the large amount

of data to parse. In the setup described, the first week in September corresponds

to a total of 13 Gbytes uncompressed raw TCPDUMP, 46 MB HTTP, 8/2 MB

POP/IMAP, and 7 MB SMTP log files.

1

10

100

1000

10000

100000

Net Log Web Log Smtp Log Pop Log Imap Log

M
b

66963128

259642

35147
95460

22068

1

10

100

1000

10000

100000

1000000

10000000

100000000

Net Log W eb Log Smtp Log Pop Log Imap Log

Figure 21: Log File Sizes and Log Entries

Although the first releases of our parsers needed more than two days to complete

the Data Parsing and Aggregation phase, the actual warehousing of usage records

take less than two hours, parsing approx. 100,000,000 log entries, directly filtering

out 30% as not-studied protocols, and creating 335,000 usage records. The two

charts in Figure show from which log file usage records have been generated and

their distribution over the different protocols. The usage records are distributed as

follows over the protocols studied: 64% HTTP, 19% SMTP, 14% POP, 3%

IMAP. The distribution of the usage-record log source is 68% Net, 10% Web,

22% Mail.

90 90

Distribution of the 335079 created Usage
Records over the different log sources

Net Log

68%

Web Log

10%
Smtp Log

11%Pop Log

9%
Imap Log

2%

Distribution of the 335079 created Usage
Records over the different protocols

Http
Records

64%

Imap
Records

3%

Pop
Records

14%

Smtp
Records

19%

Figure 19: Usage Records Distributions

In other words, most usage records correspond to Internet web surfing logged by

the network gateway. The protocol used most in terms of usage records (with 1

min. as usage gap) is definitively HTTP with 64%.

Finally, the usage records were aggregated into 9,100 activities, as consolidated

input for the subsequent data analysis. In the form of aggregated activities (with

60 min as activity gap) web surfing still represent 29%, whereas email sending and

downloading activities are at 50% and 21%, respectively.

91 91

Distribution of the 8964 activities created into the
different types

Web Surfing
29%

Email
Downloading

21%

Email Sending
50%

Figure 22: Activity Records Distribution

Note that it should not be surprising that Email Sending activities have a much

higher share than the others: The reason is that one such activity corresponds to

one email sent whereas the other types regard activities that can last several hours.

7.2 Some Results

We will show now some preliminary results obtained merely by querying the

activities table. Clearly it is always possible to calculate a lot of statistics about the

traffic generated by each single host (we will give some examples at the end of the

chapter) but here we want to do something more.

Figure 23 shows that 56% of the discovered hosts that were analyzed are used by a

single user, hence can be considered private workstations.

92 92

Used by one
user
56%

Used by more
than 5 users

7%
Unknown

25%

Used by less
than 5 users

12%

Figure 23: Users on Hosts

This chart has been obtained looking at POP/IMAP and SMTP activities (which

provide user information) started from each host. The 25% of unknown means

that no POP/IMAP or SMTP activities were started from those hosts during the

week, whereas 13 hosts (7% of 182) have been used by more than 5 different

users to download emails; this is not completely true because 8 of them are IP

addresses that are dynamically assigned by a dial-up service when people connect

to the departmental network via a modem, whereas the others are servers that

users can use via telnet to download emails from outside. The others (hosts with

fewer than 5 users) are shared machines that can be used for example by students

for their thesis work.

Hosts are mainly used for both web and mail but there are 32 of the discovered

hosts that are used only for web surfing, and 5 hosts that are used only for email.

93 93

Web and
Email
77%

Web
20%

Email
3%

W in and
Linux
3% Linux

28%

W in
28%

Mac
12%

Unknown
29%

Figure 24: Hosts Utilization and

Configuration

The 56% of the discovered hosts are Windows and Linux machines; about 12%

are Macs. Finally, 3% of discovered hosts run both Windows and Linux operating

systems. This information has been collected by looking at the description field of

the Local Web Surfing activities. The 29% unknown means that about 50 hosts

never surfed the intranet web server during the week, and that therefore no

information about the operating system is available.

We now want to focus on a particular user or host, and try to gather information

about its behavior.

Example 7.2.1

This example shows the results obtained by querying the activities table for all

activities started from host 131.114.4.XXX on September 10. Looking at Local

Email Downloading and Local Email Sending activities, we learn that host

131.114.4.XXX, which is a Linux machine, is shared by users Jordan and Bird.

Figure 25 reveals that on September 10 both users used the host.

94 94

TYPE START END INITUSER DESCR NUSG VOLUME AVG SDEV
Local Email
Downloading

 9:33:59
AM

6:02:25
PM

Jordan 542 151 58 19

Local Web Surfing 9:36:07
AM

11:01:19
AM

 Mozilla/4.76 [en] (X11; U; Linux
2.4.2-2smp i686)

16 426448 340 354

Local Email
Sending

9:41:59
AM

9:41:59
AM

Jordan 1 1174

Local Email
Sending

9:42:35
AM

9:42:35
AM

Jordan 1 1235

Local Email
Sending

9:50:30
AM

9:50:54
AM

Jordan 2 529508

Local Email
Sending

9:55:27
AM

9:56:32
AM

Jordan 1 2322

Local Email
Sending

10:36:04
AM

10:36:04
AM

Jordan 1 1486

Local Email
Sending

10:57:13
AM

10:57:14
AM

Jordan 1 2396

Local Email
Sending

11:31:51
AM

11:31:51
AM

Jordan 2 1646

Local Email
Sending

11:34:57
AM

11:35:13
AM

Jordan 1 3996

Local Email
Sending

11:36:46
AM

11:36:48
AM

Jordan 1 1142

Local Email
Sending

11:38:02
AM

11:38:02
AM

Jordan 1 1579

Local Web Surfing 1:52:25
PM

1:52:26
PM

 Mozilla/4.76 [en] (X11; U; Linux
2.4.2-2smp i686)

1 43867 0 0

Local Web Surfing 3:19:32
PM

3:19:33
PM

 Mozilla/4.76 [en] (X11; U; Linux
2.4.2-2smp i686)

1 43867 0 0

Local Email
Sending

4:12:35
PM

4:12:35
PM

Jordan 1 2281

Local Email
Sending

4:16:30
PM

4:16:52
PM

Jordan 1 3544

Local Web Surfing 4:33:58
PM

5:31:07
PM

 Mozilla/4.76 [en] (X11; U; Linux
2.4.2-2smp i686)

11 298857 342 688

Local Email
Downloading

6:46:25
PM

6:46:32
PM

Bird 1 0 0

Web Surfing 6:48:03
PM

7:06:19
PM

 64 901660 17 25

Local Email
Downloading

8:49:29
PM

8:54:37
PM

Bird 2 81 0

Local Web Surfing 8:55:16
PM

9:31:19
PM

 Mozilla/4.76 [en] (X11; U; Linux
2.4.2-2smp i686)

21 885162 108 405

Local Web Surfing 10:49:51
PM

11:27:57
PM

 Mozilla/4.76 [en] (X11; U; Linux
2.4.2-2smp i686)

92 3306098 24 46

Local Email
Downloading

11:05:29
PM

11:08:43
PM

Bird 1 0 0

Local Email
Sending

11:05:55
PM

11:05:56
PM

Bird 1 549

Figure 25: Example of a Host Behavior

95 95

In particular we can say that a POP client daemon (started by user Jordan at

9:33:59 AM) has been running until 6:02:25 PM, with a refresh range of about 60

seconds. Then host 131.114.4.XXX has been used for web surfing for about one

and a half hour using a Mozilla 4.76 web browser. During this time, several emails

were sent to several recipients (not shown in Figure 25, but available into the

database) from the host by user Jordan. The host was not used between 11:38:02

AM and 1:52:26 PM, but the POP client daemon was still running and polling the

intranet POP server every minute. Then several web and email activities were

started in the afternoon. At 6:46:25, the host started to be used by another user

(user Bird), which generated activities until 11:05:55 PM for a total of 5MB of

traffic exchanged. In this example some information such as the number of

messages downloaded or the name of the hosts surfed has been omitted.

In next example the focus is no longer on the host but on the user instead.

Example 7.2.2

By looking at Local Email Downloading and Local Email Sending activities, we learnt

that user Platini has two private workstations: host 131.114.1X (a Windows 95

machine) and host 131.114.2Y (a Windows NT 4 machine). Figure 26 below

shows the activities started by user Platini on September 7.

TYPE START END INITHOST DESCR USG VOLUME AVG
Web Surfing 9:01:43

AM
9:04:18

AM
131.114.4.1X Mozilla/4.0 (compatible; MSIE

5.5; Windows 95)
2 49029 149

Local Email
Downloading

9:04:32
AM

1:44:54
PM

131.114.4.1X 30 2 579

Web Surfing 9:05:12
AM

11:51:29
AM

131.114.4.2Y Mozilla/4.0 (compatible; MSIE
6.0b; Windows NT 4.0)

151 6795963 66

Remote Email
Downloading

9:07:12
AM

10:22:29
AM

131.114.4.2Y 13 214890 375

Web Surfing 10:31:14
AM

1:10:11
PM

131.114.4.1X 84 3544627 114

Local Email Sending 10:34:01
AM

10:34:02
AM

131.114.4.1X 1 25194

96 96

TYPE START END INITHOST DESCR USG VOLUME AVG
Local Email Sending 10:37:58

AM
10:37:58

AM
131.114.4.1X 1 2282

Local Email Sending 10:56:45
AM

10:56:46
AM

131.114.4.1X 1 8486

Remote Email
Downloading

11:16:15
AM

11:55:11
AM

131.114.4.2Y 9 262047 292

Remote Email
Downloading

11:16:15
AM

1:35:23
PM

131.114.4.2Y 29 6318 298

Remote Email
Sending

11:20:35
AM

11:20:35
AM

131.114.4.2Y 1 352 0

Remote Email
Sending

11:23:20
AM

11:23:20
AM

131.114.4.2Y 1 352 0

Remote Email
Sending

11:37:58
AM

11:37:59
AM

131.114.4.2Y 1 279 0

Remote Email
Downloading

11:56:41
AM

1:35:23
PM

131.114.4.2Y 20 6830 311

Local Email Sending 12:31:54
PM

12:31:55
PM

131.114.4.1X 1 202657

Local Email Sending 12:59:36
PM

12:59:37
PM

131.114.4.1X 1 4689

Local Email Sending 1:00:36
PM

1:00:37
PM

131.114.4.1X 1 1053

Web Surfing 1:04:53
PM

1:25:45
PM

131.114.4.2Y Mozilla/4.0 (compatible; MSIE
6.0b; Windows NT 4.0)

9 2905667 152

Remote Email
Downloading

2:46:21
PM

3:06:01
PM

131.114.4.2Y 4 11204 393

Remote Email
Downloading

2:46:22
PM

3:06:02
PM

131.114.4.2Y 4 876 393

Web Surfing 3:07:52
PM

4:51:34
PM

131.114.4.2Y 123 3406742 50

Remote Email
Downloading

3:09:55
PM

4:40:31
PM

131.114.4.2Y 13 94541 452

Local Email
Downloading

3:54:50
PM

5:35:20
PM

131.114.4.1X 9 1 751

Web Surfing 3:59:59
PM

5:33:56
PM

131.114.4.1X 30 655751 191

Remote Email
Downloading

4:51:49
PM

5:32:45
PM

131.114.4.2Y 7 25848 409

Remote Email
Downloading

4:51:50
PM

5:34:35
PM

131.114.4.2Y 8 1740 366

Local Email Sending 5:05:34
PM

5:05:54
PM

131.114.4.1X 1 1068558

Remote Email
Downloading

5:34:32
PM

5:34:32
PM

131.114.4.2Y 1 843 0

Figure 26: Example of a User Behavior

97 97

As you can see user Platini has started many activities throughout the day starting

at 9:01:43 AM: he sent several emails using both the local SMTP server and two

different extranet SMTP servers, he downloaded emails using both intranet and

extranet servers, and he surfed the web generating about 20 MB of traffic. We can

also say that he used a POP client daemon on host 131.114.4.1X for polling the

intranet POP server and a POP client daemon running on host 131.114.4.2Y for

polling the other extranet POP servers to which he is subscribed. Another

interesting observation regards the fact that he uses the two hosts differently: host

131.114.4.2Y is used for all interactions with external mail servers, whereas all

activities involving intranet mail servers are started from host 131.114.4.1X.

As already mentioned, it is always possible to obtain a lot of statistic about the

protocols studied merely by using SQL queries or scripts. Some examples are

shown in Figure 27 and Figure 28 below.

Categorization discovered hosts according to
the average volume generated during the

week on a day basis

0

50

100

150

200

Less than
10

Between 10
and 50

Between 50
and 100

More than
100

Volume generated (MB)

N
um

be
r o

f h
os

ts

Categorization of discovered hosts according
to the max volume of traffic generated on a

day basis

126

36
11 2 2

0

50

100

150

200

Less
than 10

Between
10 and

50

Between
50 and

100

Between
100 and

300

More
than 300

Volume generated (Mb)

N
um

be
r o

f h
os

ts

Figure 27: Some Statistics I

98 98

 Categorization of discovered hosts according
to the total volume of web and mail traffic

generated during the whole week

150

12 11 3 2
0

20
40
60
80

100
120
140
160

Less than
50

Between
50 and

100

Between
100 and

200

Between
200 and

500

More
than 500

Volume generated (MB)

N
um

be
r o

f H
os

ts

Categorization of the discovered users
according to the total volume of web and mail

traffic generated

38
29

5 5 2
0

10
20
30
40

Less
than 10

Between
10 and

50

Between
50 and

100

Between
100 and

200

More
than 200

Volume Generated (MB)

N
um

be
r o

f U
se

rs

Figure 28: Some Statistics II

The aim of showing all these examples is to convince the reader that now a lot of

information is available to the analyst. Data now are easily manageable, clean, and

stored in a relational database that can be used as starting point for further

specific analysis by means of either SQL queries or more advanced data-mining

tasks to discover hidden information.

7.3 Summary

In this chapter we summarized the validation process of our approach using data

from the Computer Science departmental network. We started with about 13 GB

of log data, and finished with about 9K of activity records after a process of both

merging data from different sources and cleaning them from inconsistencies and

redundancy. The chapter is concluded with several examples on how such

meaningful entries can be used to model asset and user behavior.

99 99

100 100

C h a p t e r 8

CONCLUSIONS AND FUTURE WORK

In today's dynamic information society, organizations critically depend on the

underlying computing infrastructure. Tracking computing devices as assets and

their usage helps in the provision and maintenance of an efficient, optimized

service. Building an accurate inventory of computing assets is especially difficult

in unknown heterogeneous systems and networking environments without prior

device instrumentation. User mobility and mobile, not-always-signed-on,

computing devices add to the challenge. We therefore propose to complement

basic network-based online discovery techniques with the combined historic log

information from network and application servers to compute an aggregate

picture of assets, and to categorize their usage with data-mining techniques

according to detected communication patterns[7].

In this work we outlined the process of warehousing and analyzing network and

application server logs to track assets and their usage. Given our initial validation,

we hope to establish the potential of integrating the consolidated historic

knowledge residing in access-specific gateways, firewalls, VPN servers, and

network proxies, and the growing wealth of application-specific servers. We

anticipate that in the long run the gathering of usage information from the various

network and application subsystems will prove to be the most cost-effective asset

and usage management scheme. Having already been established as the best

method for pervasive devices, it may actually become standard usage for

unknown heterogeneous environments and nicely complement the management

of other, more static hosts, always-on workstations and servers.

101 101

The authors are aware that this work is not complete as there are some open

problems and challenges in categorizing computing assets. Referring to the

lessons learnt during the validation process, the value of the warehoused data

increases with more careful cleaning and coding. In particular, this work also

needs to be extended in order to categorize accurately mobile and pervasive

devices that can roam across different networks and be active only for a limited

period of time.

Network intrusion-detection and customer-relationship management are

established fields that benefit from OLAP techniques. We hope to promote the

use of similar forms of data mining also as techniques for corporate asset

management and to establish a flexible and dynamic management infrastructure

for e-business services[11][12]. Figure 29 proposes a chain of processing steps,

starting with the classical network discoveries, adding log analysis for usage

categorization, that may eventually allow questions about the cost, utility, and risk

associated with individual assets to be answered on the one hand, and the

computation of associated values on the other.

Figure 29: Processing Stages for the Computation of Business Values

Additional ideas include the following:

� Enlarge the set of data sources studying and integrating new protocols to

discover chat[22] and Instant Messaging sessions[37], streaming audio and

102 102

video, ftp and similar files downloading protocols (such as Napster and

Gnutella), telnet, ssh, https etc.

� Enhance the proposed system with an accounting application that allows

tracking the service usage, its users, and its availability.

� Study how to generate alarms (e.g. SNMP traps) when an asset modifies

its behavior (e.g. if a computer that is known not to handle mail at some

point routes emails, it means that something has changed or that a virus is

running on the asset).

� Apply data-mining algorithms to activities resulting from the warehousing

process of log files data in order to discover hidden regularities among

assets and users behavior[11].

Eventually, we would like to derive conclusions such as: "Computer A is used by

a secretarial person 5/7 days a week in the morning. Computer B probably is a

student-lab workstation, shared by users X, Y and Z.” The lessons learned during

the validation process are that (i) there is hope to achieve this – eventually – but

(ii) it is of utmost importance to minutely parse, clean, code, and compress the

original data sources, and (iii) there is no way around having a well-known sample

population of users and computers to establish a data-mining model allowing

OLAP predictions in newly discovered environments.

103 103

104 104

BIBLIOGRAPHY

[01] R.Siamwalla, R.Sharma, and S.Keshav, Discovering Internet Topology. Cornell

 Network Research Group Department of Computer Science Cornell

 University, Ithaca, NY 14853

[02] D.J. Beckett, Combined log system Computer Networks and ISDN Systems

 Proceedings of the Third International World-Wide Web Conference,

 April 1995

[03] R.H. Katz, S. Seshan, and M. Stemm, SPAND: Shared Passive Network

 Performance Discovery, Proc 1st Usenix Symposium on Internet

 Technologies and Systems (USITS '97), Monterey, CA, December 1997.

[04] M.S. Chen, J.S. Park, and P.S. Yu. Data Mining for path traversal patterns in a

 Web environment. In Proceedings of the 16th International Conference on

 Distributed Computing Systems, pages 385-392, 1996.

[05] Dethy. Advanced Host Detection: Technques to validate Host-Connectivity,

 http://www.synnergy.net/downloads/papers/host-detection.txt

[06] R. Cooley, B. Mobasher, and J. Srivastava. Grouping Web Page References into

 Transactions for Mining World Wide Web Browsing Patterns. In Proceedings of

 KDEX'97, Newport Beach, CA, 1997

[07] D. Gantenbein, M. Filoni, L. Deri. Categorizing Computing Assets According to

 Communication Patterns, submitted to Networking 2002, Pisa, May 2002.

[08] R. Cooley, B. Mobasher, and J. Srivastava. Data Preparation for Mining World

 Wide Web Browsing Patterns. Knowledge and Information Systems Conference.

 Springer-Verlag 1999

[09] S.Ruggieri et al., Web Log Data Warehousing and Mining for Intelligent Web

 Caching. Data and Knowledge Engineering. Vol 32, Issue 2, October 2001,

 165-189.

[10] L. Catledge and J.Pitkow. Characterizing browsing behaviors on the World Wide

105 105

 Web. Computer Networks and ISDN Systems, 1995

[11] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Academic

 Press, 2001, ISBN 1-55860-489-8

[12] P. Adriaans, D. Zantinge, Data Mining, Addison-Wesley, 1996, ISBN 0-201-

 40380-3

[13] L.Deri, S.Suin. Monitoring Networks Using Ntop. In Proceedings of the 2001

 IEEE/IFIP International Symposium on Integrated Network Management.

 Seattle, 2001.

[14] L. Deri and S.Suin, Effective Traffic Measurement using ntop, IEEE

 Communications Magazine, May 2000.

[15] L. Deri and S.Suin, Ntop: beyond Ping and Traceroute, DSOM, 1999,

[16] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s ear: Extracting usable

 structures from the Web. In proc. of 1996 Conference on Human Factors in

 Computing Systems, Vancouver 1996.

[17] J. Pitkow. In search of reliable usage data on the www. In Sixth International World

 Wide Web Conference, pages 451-463, Santa Clara, CA, 1997.

[18] Jonathan B. Postel. Rfc 821: Simple Mail Transfer Protocol. August 1982

[19] J.Myers, M.Rose. Rfc 1939: Post Office Protocol - Version 3, May 1996

[20] M. Crispin. Rfc 1730: Internet Message Aceess Protocol – Version 4, December 1996

[21] J. Case et.al., Rfc 1157: Simple Network Management Protocol (SNMP).

[22] J. Oikarinen, D. Reed. Rfc 1459: Internet Relay Chat Protocol.

[23] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, L. Jones Rfc 1928: SOCKS

 Protocol Version 5.

[24] Ying-Da Lee. SOCKS: A protocol for TCP proxy across firewalls.

[25] Fielding, et al. Rfc 2616: Hypertext Transfer Protocol -- HTTP 1.1.

[26] J. Postel. Rfc 792: Internet Control Message Protocol. September 1981.

[27] C. Kalt. Rfc 2810: Internet Relay Chat: Architecture. April 2000.

[28] C. Kalt. Rfc 2811: Internet Relay Chat: Channel Management. April 2000.

106 106

[29] C. Kalt. Rfc 2812: Internet Relay Chat: Client Protocol. April 2000.

[30] C. Kalt. Rfc 2813: Internet Relay Chat: Server Protocol. April 2000.

[31] A. G. Lowe-Norris, Windows 2000 Active Directory, O’Reilly, ISBN 3-89721-

 171-8, 2001

[32] W3 Consortium: Logging Control in W3C httpd

[33] W3 Consortium: Extended Common Log File Format. Working Draft

[34] Intelligent Device Discovery (IDD) Project, IBM Zurich Research Laboratory,

 http://www.zurich.ibm.com/csc/ibi/idd.html

[35] NetProxy Home Page. http://info.grok.co.uk/index.html

[36] ICQ web site. http://www.icq.com/products/

[37] ICQ Protocol Specification. http://omega.uta.edu/~tom/ICQ/

[38] AOL Instant Messenger http://www.aol.com/aim/

[39] AIM/OSCAR protocol specification. www.zigamorph.net/faim/protocol/

[40] The Apache Software foundation. http://www.apache.org/

[41] Squid Home Page.http://www.squid-cache.org

[42] Squid Log Files. http://www.squid-cache.org/Doc/FAQ/FAQ-6.html

[43] Sendmail Home Page. http://www.sendmail.org

[44] Microsoft Exchange Home Page. http://www.microsoft.com/Exchange

[45] Microsoft Exchange: Tracking Log,

 http://www.microsoft.com/Exchange/en/55/help/default.asp

[46] DNS Resources Directory. http://www.dns.net/dnsrd/

[47] Internet Software Consortium: BIND. http://www.isc.org/products/BIND/

[48] V. Jacobson, C. Leres, and S. McCanne, tcpdump, Lawrence Berkeley National

 Labs, ftp://ftp.ee.lbl.gov/, 1989

[49] Wuarchive-ftpd Home Page. http://www.wu-ftpd.org

[50] Baromedia 2001: Resultats du barometre des medias suisses.

[51] Access Log Analyzers. http://www.uu.se/Software/Analyzers/Access-analyzers.html

[52] Winfingerprint Windows Information Gathering Tool,

107 107

 http://winfingerprint.sourceforge.net/

[53] Ethereal free network protocol analyzer for Unix and Windows,

 http://www.ethereal.com/

[54] Centennial, Network Inventory Audit, http://www.intertechnology.ca/soft-1.htm

[55] NetView: Tivoli product, http://www.tivoli.com/products/index/netview/

[56] NMAP Free Security Scanner, http://www.insecure.org/nmap/index.html

[57] NSA Firewall Network Security Auditor,

 http://www.research.ibm.com/gsal/gsal-watson.html

[58] Infratools: Network and Desktop Discovery http://www.peregrine.com

[59] Tivoli, Inventory management, http://www.tivoli.com/products/index/inventory/

[60] Tivoli, Performance solutions,

 http://www.tivoli.com/products/solutions/availability/news.html

[61] S. Branigan et al., What can you do with Traceroute?,

 http://www.computer.org/internet/v5n5/index.htm

[62] David C. Plummer. Rfc 826: An Ethernet Address Resolution Protocol , Nov 1982

[63] Microsoft Office - Microsoft Visio Home Page

 www.microsoft.com/office/visio/default.htm

[64] B. Croft, and J. Gilmore. Rfc 951: Bootstrap Protocol (BOOTP), Stanford

 and SUN Microsystems, September 1985.

[65] R. Droms Rfc 2131: Dynamic Host Configuration Protocol, March 1997

[66] W. Yeong, T. Howes, S. Kille. Rfc 1777: Lightweight Directory Access Protocol,

 March 1995

[67] HP OpenView homepage. http://www.openview.hp.com

[68] Extreme Tracking http://www.extreme-dm.com/tracking/?home

[69] Log Analyzers http://www.uu.se/Software/Analyzers

[70] Tivoli Asset Management Architecture

 http://www.tivoli.com/support/public/Prodman/public_manuals/td/

 TSD/TSD6_techref/en_US/HTML/rtamarch.htm

108 108

A p p e n d i x A

THE AGGREGATORS

A.1 Net Log Aggregator

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'NetLogParser' class generates usage records aggregating
 * Net log entries
 *
 * File : NetLogParser.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.io.*;
import java.sql.*;
import com.ibm.idd.db.*;
import gnu.getopt.Getopt;

import com.ibm.idd.lib.conv.Regex2DB;
import com.ibm.idd.lib.AppFileProperties;

/* Sample Net log line:
*
*
* 998736153.079056 < 216.218.255.232.www > 131.114.2.26.3669: . 32121:33581(1460) ack 326 win
6432 (DF)
*
*
*/

class NetLogParser{

 static File logFile = null;

 public static void main(String args[]) {

 Connection dbCon = null;
 BufferedReader logReader = null;
 String user = "", localHostName = "", recorder = "";
 String application = "Net-Gw", schema = "CADLI";

 109

 String server = "", source, sqlStatement;
 long time1 = 0;
 int c;

 try {
 // have to do this to init log4j:
 AppFileProperties.loadProperties();

 // Default
 localHostName = java.net.InetAddress.getLocalHost().getHostName();

 // COMMAND LINE PARSING
 Getopt g = new Getopt("CommandLineParser", args, "u:h:a:s:l:");
 while ((c = g.getopt()) != -1) {
 switch(c) {
 case 'u':
 user = g.getOptarg();
 break;
 case 'h':
 localHostName = g.getOptarg();
 break;
 case 'a':
 application = g.getOptarg();
 break;
 case 's':
 schema = g.getOptarg();
 break;
 case 'l':
 server = g.getOptarg();
 break;
 case '?':
 break;
 default:
 System.out.println("getopt() returned " + c + "\n");
 }
 }

 if (user.equals("")) {
 recorder = localHostName;
 }
 else {
 recorder = user + " on " + localHostName;
 }
 source = args[g.getOptind()];
 logFile = new File(source);

 // TABLES AND CONNECTIONS CREATION
 TableAccessProperty tap =
 new TableAccessProperty (DatabaseAccessProperty.getDefault(), schema, "USAGE");
 SimpleTableLocalAccess.assertTableCreated(tap);
 dbCon = DatabaseLocalAccess.getConnection();
 dbCon.setAutoCommit(true);

 // LOG PARSING
 if (logFile.exists() == true) {
 FileReader fr = new FileReader(logFile);
 logReader = new BufferedReader(fr);

 // define SQL template
 sqlStatement = "INSERT into " + schema + ".USAGE " +
 "values (DEFAULT,'Net Log','" + server + "','" + source + "','{3}'," +
 "'{0}','{1}','','{2}','','{4}','','',"+
 "'{11}',{6},{5},{7},{8},{9},{10},'" + recorder + "',DEFAULT)";

 110

 // define regex:
 String regex = "([.\\d]*) [<>] ([\\d]*.[\\d]*.[\\d]*.[\\d]*).([\\w]*) > " +
 "([\\d]*.[\\d]*.[\\d]*.[\\d]*).([\\w]*): [.FPRS]* [:\\d]*\\(([\\d]*)\\) .*";

 Regex2DB conv = new Regex2DB(logReader,regex,dbCon,sqlStatement);
 conv.setParsingHandler(new NetParsingHandler());

 // ... and then convert:
 conv.convert();

 // that's it
 System.exit(0);
 }
 else System.out.println("Error: File " + args[0] + " doesn't exist");

 } catch (Exception e) {
 System.out.println("Error: Exception occurred");
 e.printStackTrace();
 } finally {
 if (dbCon != null) {
 try {
 dbCon.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 if (logReader != null) {
 try {
 logReader.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
 }
}

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'NetParsingHandler' class handles Net log entries
 *
 *
 * File : NetParsingHandler.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.sql.*;
import java.util.*;
import com.ibm.idd.lib.parser.BasicParsingHandler;

 111

import com.ibm.idd.lib.parser.GeneratorException;

public class NetParsingHandler extends BasicParsingHandler {

 final int RANGE = 60000; // 1 minute
 final int REFRESH_RANGE = RANGE * 1;
 static Hashtable hashCon = new Hashtable();
 static long prvTime = 0;

 public NetParsingHandler() {
 super();
 }

 /*
 * This method is called when a line of text has
 * successfully parsed. The parsed tokens are passed as
 * an array of String. The line which was
 * parsed is given for information purposes.
 */

 public void processTokens (String line, String[] tokens) throws GeneratorException {

 String[] ntokens = new String[12];
 String hashKey = null, crntKey;
 String msString, secString;
 long msLong, msTemp, secLong;
 long crntTime, lastTime, crntGap, numBytes;
 int direction = 0;
 double avg = 0, stdDev = 0;
 NetObj hashEl;

 try {
 if ((tokens == null) || (tokens.length == 0)) {
 return;
 }

 // right now we handle only {www,pop,imap,smtp,chat,ssh,telnet,ftp} sessions
 // direction = 1 : client -> server
 // direction = 2 : server -> client

 if (tokens[2].equals("www")) {

 hashKey = tokens[3] + tokens[1] + tokens[2];
 direction = 2;

 } else if (tokens[4].equals("www")) {

 hashKey = tokens[1] + tokens[3] + tokens[4];
 direction = 1;

 } else if (tokens[2].equals("pop3") || tokens[2].equals("imap2") ||
 tokens[2].equals("smtp") || tokens[2].equals("5190") ||
 tokens[2].equals("ssh") || tokens[2].equals("telnet")||
 tokens[2].equals("ftp")) {

 hashKey = tokens[3] + tokens[4] + tokens[1] + tokens[2];
 direction = 2;

 } else if (tokens[4].equals("pop3") || tokens[4].equals("imap2") ||
 tokens[4].equals("smtp") || tokens[4].equals("5190") ||

 112

 tokens[4].equals("ssh") || tokens[4].equals("telnet")||
 tokens[4].equals("ftp")) {

 hashKey = tokens[1] + tokens[2] + tokens[3] + tokens[4];
 direction = 1;

 } else {

 return;

 }

 // Timestamp creation from raw log time field
 secString = tokens[0].substring(0,tokens[0].indexOf("."));
 secLong = new Long(secString).longValue();
 msLong = secLong * 1000;
 msString = tokens[0].substring(tokens[0].indexOf(".")+1, tokens[0].length());
 msTemp = new Long(msString).longValue();
 msLong = msLong + (msTemp/1000);

 if (prvTime == 0) {
 prvTime = msLong;
 }

 crntTime = msLong;
 numBytes = new Integer(tokens[5]).intValue();

 // if this session is already present into the hashtable
 if (hashCon.containsKey(hashKey)) {

 hashEl = (NetObj)hashCon.remove(hashKey);
 lastTime = hashEl.getEndTime();
 crntGap = crntTime - lastTime;

 // if the elapsed time since last packet of this session is greater than RANGE
 if ((crntGap) >= RANGE) {

 // I first store the corresponding bucket into the DB
 ntokens[0] = new Timestamp(hashEl.getStartTime()).toString();// StartTime
 ntokens[1] = new Timestamp(lastTime).toString(); // EndTime
 ntokens[2] = hashEl.getOrHost(); // InitiatingHost
 ntokens[3] = hashEl.getType(); // RecordType
 ntokens[4] = hashEl.getDstHost(); // TargetHost
 ntokens[5] = new Long(hashEl.getVolume()).toString(); // DataVolume
 ntokens[6] = new Integer(hashEl.getPackets()).toString(); // DataPackets
 ntokens[7] = new Long(hashEl.getMin()).toString(); // Tmin
 ntokens[8] = new Long(hashEl.getMax()).toString(); // Tmax

 avg = (hashEl.getAvgCounter()
 / Math.max((hashEl.getPackets() - 1),1));
 ntokens[9] = new Double(avg).toString(); // Tavg

 stdDev = Math.sqrt((hashEl.getStdDevCounter()
 / Math.max((hashEl.getPackets() - 1),1)) - (avg * avg));
 ntokens[10] = new Double(stdDev).toString(); // TstdDev

 if (hashEl.getDir() == 3) {

 ntokens[11] = "Two";

 } else {

 ntokens[11] = "One";

 113

 }
 processTokens(ntokens);

 // and now I store the new packet into the hash table
 hashEl.setStartTime(crntTime);
 hashEl.setEndTime(crntTime);
 hashEl.setVolume(numBytes);
 hashEl.setPackets(1);
 hashEl.setMin(Integer.MAX_VALUE);
 hashEl.setMax(0);
 hashEl.setAvgCounter(0);
 hashEl.setStdDevCounter(0);
 hashEl.setDir(direction);
 hashCon.put(hashKey, hashEl);

 } else {
 //otherwise I just update the current connection
 hashEl.setEndTime(crntTime);
 hashEl.setVolume(hashEl.getVolume() + numBytes);
 hashEl.setPackets(hashEl.getPackets() + 1);
 hashEl.setMin(Math.min(crntGap,hashEl.getMin()));
 hashEl.setMax(Math.max(crntGap,hashEl.getMax()));
 hashEl.setAvgCounter(hashEl.getAvgCounter() + crntGap);
 hashEl.setStdDevCounter(hashEl.getStdDevCounter() + (crntGap * crntGap));

 if ((hashEl.getDir() != direction) && (numBytes > 0)) {
 hashEl.setDir(3);
 }
 hashCon.put(hashKey, hashEl);

 }

 } else {

 // I create a new session object and I insert it into the hash table
 if (tokens[2].equals("www")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[3],tokens[1],"Http Session",numBytes,2);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[4].equals("www")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[1],tokens[3],"Http Session",numBytes,1);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[2].equals("pop3")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[3],tokens[1],"Pop Session",numBytes,2);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[4].equals("pop3")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[1],tokens[3],"Pop Session",numBytes,1);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[2].equals("imap2")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[3],tokens[1],"Imap Session",numBytes,2);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[4].equals("imap2")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[1],tokens[3],"Imap Session",numBytes,1);
 hashCon.put(hashKey, hashSlot);

 114

 }else if (tokens[2].equals("smtp")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[3],tokens[1],"Smtp Session",numBytes,2);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[4].equals("smtp")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[1],tokens[3],"Smtp Session",numBytes,1);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[2].equals("5190")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[3],tokens[1],"Chat Session",numBytes,2);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[4].equals("5190")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[1],tokens[3],"Chat Session",numBytes,1);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[2].equals("ssh")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[3],tokens[1],"Ssh Session",numBytes,2);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[4].equals("ssh")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[1],tokens[3],"Ssh Session",numBytes,1);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[2].equals("telnet")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[3],tokens[1],"Telnet Session",numBytes,2);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[4].equals("telnet")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[1],tokens[3],"Telnet Session",numBytes,1);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[2].equals("ftp")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[3],tokens[1],"Ftp Session",numBytes,2);
 hashCon.put(hashKey, hashSlot);

 }else if (tokens[4].equals("ftp")) {

 NetObj hashSlot = new NetObj(crntTime,tokens[1],tokens[3],"Ftp Session",numBytes,1);
 hashCon.put(hashKey, hashSlot);

 }
 }

 // HASH TABLE REFRESHING
 if (crntTime >= (prvTime + REFRESH_RANGE)) {

 Enumeration hashKeys = hashCon.keys();

 for (;hashKeys.hasMoreElements() ;) {

 crntKey = (String)hashKeys.nextElement();
 hashEl = (NetObj)hashCon.get(crntKey);
 lastTime = hashEl.getEndTime();

 115

 crntGap = crntTime - lastTime;

 if (crntGap >= RANGE) {
 hashEl = (NetObj)hashCon.remove(crntKey);
 ntokens[0] = new Timestamp(hashEl.getStartTime()).toString();
 ntokens[1] = new Timestamp(hashEl.getEndTime()).toString();
 ntokens[2] = hashEl.getOrHost();
 ntokens[3] = hashEl.getType();
 ntokens[4] = hashEl.getDstHost();
 ntokens[5] = new Long(hashEl.getVolume()).toString();
 ntokens[6] = new Integer(hashEl.getPackets()).toString();
 ntokens[7] = new Long(hashEl.getMin()).toString();
 ntokens[8] = new Long(hashEl.getMax()).toString();

 avg = (hashEl.getAvgCounter() / Math.max((hashEl.getPackets() - 1),1));
 ntokens[9] = new Double(avg).toString();
 stdDev = Math.sqrt((hashEl.getStdDevCounter()
 / Math.max((hashEl.getPackets() - 1),1)) - (avg * avg));
 ntokens[10] = new Double(stdDev).toString();

 if (hashEl.getDir() == 3) {

 ntokens[11] = "Two";

 } else {

 ntokens[11] = "One";

 }
 processTokens(ntokens);

 }
 }

 prvTime = prvTime + REFRESH_RANGE;

 }

 } catch (Exception ex) {

 System.out.println("Error: Exception occurred");
 ex.printStackTrace();

 }
 }
}

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'NetObj' class is used to store Net sessions info
 *
 *
 * File : NetObj.java
 * Created : 25/05/2001
 *

 116

 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

public class NetObj {

 long startTime = 0;
 long endTime = 0;
 String orHost = "";
 String dstHost = "";
 String typeCon = "";
 long volume = 0;
 int packets = 0;
 long min = Integer.MAX_VALUE;
 long max = 0;
 long avgCounter = 0;
 long stdDevCounter = 0;
 int direction = 0;

 public NetObj(long begin, String origin,
 String dest, String type, long bytes, int dir) {
 super();
 startTime = begin;
 endTime = begin;
 typeCon = type;
 orHost = origin;
 dstHost = dest;
 volume = bytes;
 packets = 1;
 min = Integer.MAX_VALUE;
 max = 0;
 avgCounter = 0;
 stdDevCounter = 0;
 direction = dir;
 }

 public long getStartTime() {
 return(startTime);
 }

 public long getEndTime() {
 return(endTime);
 }

 public String getOrHost() {
 return(orHost);
 }

 public String getDstHost() {
 return(dstHost);
 }

 public String getType() {
 return(typeCon);
 }

 public long getVolume() {
 return(volume);
 }

 117

 public int getPackets() {
 return(packets);
 }

 public long getMin() {
 return(min);
 }

 public long getMax() {
 return(max);
 }

 public long getAvgCounter() {
 return(avgCounter);
 }

 public int getDir() {
 return(direction);
 }

 public long getStdDevCounter() {
 return(stdDevCounter);
 }

 public void setStartTime(long start) {
 startTime = start;
 }

 public void setEndTime(long end) {
 endTime = end;
 }

 public void setOrHost(String origin) {
 orHost = origin;
 }

 public void setDstHost(String dest) {
 dstHost = dest;
 }

 public void setType(String type) {
 typeCon = type;
 }

 public void setVolume(long bytes) {
 volume = bytes;
 }

 public void setPackets(int pcks) {
 packets = pcks;
 }

 public void setMin(long newValue) {
 min = newValue;
 }

 public void setMax(long newValue) {
 max = newValue;
 }

 public void setAvgCounter(long newValue) {
 avgCounter = newValue;
 }

 118

 public void setDir(int dir) {
 direction = dir;
 }

 public void setStdDevCounter(long newValue) {
 stdDevCounter = newValue;
 }
}

A.2 The WEB Log Aggregator

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'NetLogParser' class generates usage records aggregating
 * Web log entries
 *
 * File : WebLogParser.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.io.*;
import java.util.*;
import java.sql.*;
import com.ibm.idd.db.*;
import gnu.getopt.Getopt;

import com.ibm.idd.lib.conv.Regex2DB;
import com.ibm.idd.lib.AppFileProperties;

/* Sample Apache log line:
*
* 131.114.4.239 - - [25/Aug/2001:12:05:50 +0200] "GET /foto/portal.jpg HTTP/1.0" 200
*
* 4884 "http://www.di.unipi.it/" "Mozilla/4.73 [en] (X11; U; Linux 2.2.14-5.0smp i686)"
*
*
*/

class WebLogParser{

 static File webLog = null;

 public static void main(String args[]) {

 Connection dbCon = null;
 BufferedReader logFile = null;
 String user = "", host, application, schema, targetHost = "";
 String server = "", source, recorder, sqlStatement;
 long time1 = 0;

 119

 try {

 // have to do this to init log4j:
 AppFileProperties.loadProperties();

 // DEFAULTS
 host = java.net.InetAddress.getLocalHost().getHostName();
 application = "Webserver";
 schema = "CADLI";

 // COMMAND LINE PARSING
 Getopt g = new Getopt("CommandLineParser", args, "u:h:a:s:l:");

 int c;

 while ((c = g.getopt()) != -1) {
 switch(c) {
 case 'u':
 user = g.getOptarg();
 break;
 case 'h':
 host = g.getOptarg();
 break;
 case 'a':
 application = g.getOptarg();
 break;
 case 's':
 schema = g.getOptarg();
 break;
 case 'l':
 server = g.getOptarg();
 break;
 case '?':
 break;
 default:
 System.out.println("getopt() returned " + c + "\n");
 }
 }

 recorder = user + " on " + host;
 if (!(server.equals(""))) {
 java.net.InetAddress iAdd = java.net.InetAddress.getByName(server);
 targetHost = iAdd.getHostAddress();
 }
 source = args[g.getOptind()];
 webLog = new File(source);

 // TABLES AND CONNECTIONS CREATION
 TableAccessProperty tap = new TableAccessProperty (DatabaseAccessProperty.getDefault(),
 schema, "USAGE");
 SimpleTableLocalAccess.assertTableCreated(tap);
 dbCon = DatabaseLocalAccess.getConnection();
 dbCon.setAutoCommit(true);

 // LOG PARSING
 if (webLog.exists() == true) {
 FileReader fr = new FileReader(webLog);
 logFile = new BufferedReader(fr);

 // define SQL template
 sqlStatement = "INSERT INTO " + schema + ".USAGE " +
 "VALUES (DEFAULT,'Http Log','" + server + "','" + source +
 "','Http Session','{0}','{1}','{2}','{3}','','" + targetHost + "','{7}','{8}',"+

 120

 "'{4}',{5},{6},{9},{10},{11},{12},'" + recorder + "',DEFAULT)";

 //131.114.4.239 - - [25/Aug/2001:12:05:50 +0200] "GET /foto/portal.jpg HTTP/1.0" 200
 //4884 "http://www.di.unipi.it/" "Mozilla/4.73 [en] (X11; U; Linux 2.2.14-5.0smp i686)"
 // tokens[0] = 131.114.4.239
 // tokens[1] = -
 // tokens[2] = -
 // tokens[3] = 25/Aug/2001:12:05:50 +0200
 // tokens[4] = /foto/portal.jpg
 // tokens[5] = HTTP/1.0
 // tokens[6] = 200
 // tokens[7] = 4884
 // tokens[8] = http://www.di.unipi.it/
 // tokens[9] = Mozilla/4.73 [en] (X11; U; Linux 2.2.14-5.0smp i686)

 String regex = "([.\\w]*) ([-\\w]*) ([-\\w]*) \\[([:/\\w]* \\+\\d{4})\\] \"[\\w]* "+
 "([~-/_.:\\w]*)(HTTP/[.\\d]*)\" ([-\\d]*) ([-\\d]*) \"(.*)\" \"(.*)\"";

 Regex2DB conv = new Regex2DB(logFile,regex,dbCon,sqlStatement);
 conv.setParsingHandler(new WebParsingHandler());

 // ... and then convert:
 conv.convert();

 // that's it
 System.exit(0);

 }
 else System.out.println("Error: File " + args[0] + " doesn't exist");

 } catch (Exception e) {
 System.out.println("Error: Exception occurred");
 e.printStackTrace();
 } finally {
 if (dbCon != null) {
 try {
 dbCon.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 if (logFile != null) {
 try {
 logFile.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
 }
}

**

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.

 121

 *
 * The 'WebParsingHandler' class handles Web log entries
 *
 *
 * File : WebParsingHandler.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.sql.*;
import java.util.*;
import java.text.SimpleDateFormat;

import com.ibm.idd.lib.parser.BasicParsingHandler;
import com.ibm.idd.lib.parser.GeneratorException;

public class WebParsingHandler extends BasicParsingHandler {

 final int RANGE = 60000;
 final int REFRESH_RANGE = RANGE * 1;
 static Hashtable hashCon = new Hashtable();
 static long prvTime = 0;

 public WebParsingHandler() {
 super();
 }

 /**
 * This method is called when a line of text has been
 * successfully parsed. The parsed tokens are passed as
 * an array of String. The line which was
 * parsed is given for information purposes.
 */
 public void processTokens (String line, String[] tokens) throws GeneratorException {

 long msLong, msTemp, secLong;
 String msString, secString, hashKey, crntKey;
 long crntTime, numBytes;
 String[] ntokens = new String[13];
 WebObj hashEl;
 long firstTime, lastTime, crntGap;
 double avg = 0, stdDev = 0;

 try {
 if ((tokens == null) || (tokens.length == 0)) {
 return;
 }

 SimpleDateFormat format = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss zzzz");
 java.util.Date rec = format.parse(tokens[3]);
 if (prvTime == 0) {
 prvTime = rec.getTime();
 }
 crntTime = rec.getTime();

 // the hashKey is: originIP + agent

 122

 hashKey = tokens[0] + tokens[9];
 if (tokens[7].equals("-")) tokens[7]="0";
 numBytes = new Integer(tokens[7]).intValue();

 // if this connection is already present into the hashtable
 if (hashCon.containsKey(hashKey)) {
 hashEl = (WebObj)hashCon.remove(hashKey);
 lastTime = hashEl.getEndTime();
 crntGap = crntTime - lastTime;
 // if the time since last packet of this connection is greater than RANGE
 if (crntGap >= RANGE) {
 // I store the correspondant bucket into the DB
 ntokens[0] = new Timestamp(hashEl.getStartTime()).toString();
 ntokens[1] = new Timestamp(lastTime).toString();
 ntokens[2] = hashEl.getOrUser();
 ntokens[3] = hashEl.getOrHost();
 ntokens[4] = hashEl.getDescr();
 ntokens[5] = new Integer(hashEl.getPackets()).toString();
 ntokens[6] = new Long(hashEl.getVolume()).toString();
 ntokens[7] = hashEl.getProtVersion();
 ntokens[8] = hashEl.getFirstUrl();
 if (hashEl.getMin() != RANGE) {
 ntokens[9]=new Long(hashEl.getMin()).toString();
 }
 else {
 ntokens[9]="0";
 }
 ntokens[10]=new Long(hashEl.getMax()).toString();
 avg = (hashEl.getAvgCounter() / Math.max((hashEl.getPackets() - 1),1));
 ntokens[11]=new Double(avg).toString();
 stdDev = Math.sqrt((hashEl.getStdDevCounter() /
 Math.max((hashEl.getPackets() - 1),1)) - (avg * avg));
 ntokens[12]=new Double(stdDev).toString();
 processTokens(ntokens);

 // and now I store the new packet into the hash table
 hashEl.setStartTime(crntTime);
 hashEl.setEndTime(crntTime);
 hashEl.setDescr(tokens[9]);
 hashEl.setVolume(numBytes);
 hashEl.setPackets(1);
 hashEl.setProtVersion(tokens[5]);
 hashEl.setFirstUrl(tokens[4]);
 hashEl.setMin(RANGE);
 hashEl.setMax(0);
 hashEl.setAvgCounter(0);
 hashEl.setStdDevCounter(0);
 hashCon.put(hashKey, hashEl);
 }
 else {
 //otherwise I just update the current object
 hashEl.setEndTime(crntTime);
 hashEl.setVolume(hashEl.getVolume() + numBytes);
 hashEl.setPackets(hashEl.getPackets() + 1);
 if ((hashEl.getProtVersion()).indexOf(tokens[5]) == -1) {
 hashEl.setProtVersion(hashEl.getProtVersion() + " " + tokens[5]);
 }
 if ((crntGap) < hashEl.getMin()) {
 hashEl.setMin(crntGap);
 }
 if ((crntGap) > hashEl.getMax()) {
 hashEl.setMax(crntGap);
 }
 hashEl.setAvgCounter(hashEl.getAvgCounter() + crntGap);

 123

 hashEl.setStdDevCounter(hashEl.getStdDevCounter() + (crntGap * crntGap));
 hashCon.put(hashKey, hashEl);
 }
 }
 else { // the connection doesn't exist
 // I insert a new object into the hash table
 WebObj hashSlot =
 new WebObj(crntTime,tokens[0],tokens[1],tokens[5],tokens[4],numBytes,tokens[9]);
 hashCon.put(hashKey, hashSlot);
 }

 if (crntTime >= (prvTime + REFRESH_RANGE)) {
 // refresh hashtable
 Enumeration hashKeys = hashCon.keys();
 for (;hashKeys.hasMoreElements() ;) {

 crntKey = (String)hashKeys.nextElement();
 hashEl = (WebObj)hashCon.get(crntKey);
 lastTime = hashEl.getEndTime();
 if ((crntTime - lastTime) >= RANGE) {

 hashEl = (WebObj)hashCon.remove(crntKey);
 ntokens[0] = new Timestamp(hashEl.getStartTime()).toString();
 ntokens[1] = new Timestamp(lastTime).toString();
 ntokens[2] = hashEl.getOrUser();
 ntokens[3] = hashEl.getOrHost();
 ntokens[4] = hashEl.getDescr();
 ntokens[5] = new Integer(hashEl.getPackets()).toString();
 ntokens[6] = new Long(hashEl.getVolume()).toString();
 ntokens[7] = hashEl.getProtVersion();
 ntokens[8] = hashEl.getFirstUrl();
 if (hashEl.getMin() != RANGE) {
 ntokens[9]=new Long(hashEl.getMin()).toString();
 }
 else {
 ntokens[9]="0";
 }
 ntokens[10]=new Long(hashEl.getMax()).toString();
 avg = (hashEl.getAvgCounter() / Math.max((hashEl.getPackets() - 1),1));
 ntokens[11]=new Double(avg).toString();
 stdDev = Math.sqrt((hashEl.getStdDevCounter() /
 Math.max((hashEl.getPackets() - 1),1)) - (avg * avg));
 ntokens[12]=new Double(stdDev).toString();
 processTokens(ntokens);
 }
 }
 prvTime = prvTime + REFRESH_RANGE;

 }

 } catch (Exception ex) {
 System.out.println("Error: Exception occurred");
 ex.printStackTrace();
 }
 }
}

 124

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'WebObj' class is used to store Web usage info
 *
 *
 * File : WebObj.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

public class WebObj {

 long startTime = 0;
 long endTime = 0;
 String orUser = "";
 String orHost = "";
 String descr = "";
 int packets = 0;
 long volume = 0;
 String protVersion = "";
 String firstUrl = "";
 long min = 60000;
 long max = 0;
 long avgCounter = 0;
 long stdDevCounter = 0;

 public WebObj(long begin, String origin, String user,
 String version, String first, long bytes, String agent) {
 super();
 startTime = begin;
 endTime = begin;
 orUser = user;
 orHost = origin;
 descr = agent;
 packets = 1;
 volume = bytes;
 protVersion = version;
 firstUrl = first;
 min = 60000;
 max = 0;
 avgCounter = 0;
 stdDevCounter = 0;
 }

 public long getStartTime() {
 return(startTime);
 }

 public long getEndTime() {
 return(endTime);
 }

 public String getOrUser() {
 return(orUser);
 }

 125

 public String getOrHost() {
 return(orHost);
 }

 public String getDescr() {
 return(descr);
 }

 public long getVolume() {
 return(volume);
 }

 public int getPackets() {
 return(packets);
 }

 public String getProtVersion() {
 return(protVersion);
 }

 public String getFirstUrl() {
 return(firstUrl);
 }

 public long getMin() {
 return(min);
 }

 public long getMax() {
 return(max);
 }

 public long getAvgCounter() {
 return(avgCounter);
 }

 public long getStdDevCounter() {
 return(stdDevCounter);
 }

 public void setStartTime(long start) {
 startTime = start;
 }

 public void setEndTime(long end) {
 endTime = end;
 }

 public void setOrHost(String origin) {
 orHost = origin;
 }

 public void setDescr(String agent) {
 descr = agent;
 }

 public void setVolume(long bytes) {
 volume = bytes;
 }

 public void setPackets(int pcks) {
 packets = pcks;
 }

 126

 public void setProtVersion(String version) {
 protVersion = version;
 }

 public void setFirstUrl(String first) {
 firstUrl = first;
 }

 public void setMin(long newValue) {
 min = newValue;
 }

 public void setMax(long newValue) {
 max = newValue;
 }

 public void setAvgCounter(long newValue) {
 avgCounter = newValue;
 }

 public void setStdDevCounter(long newValue) {
 stdDevCounter = newValue;
 }
}

A.3 The SMTP Log Aggregator

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'SmtpLogParser' class generates usage records aggregating
 * Smtp log entries
 *
 * File : SmtpLogParser.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.io.*;
import java.util.*;
import java.sql.*;
import com.ibm.idd.db.*;
import gnu.getopt.Getopt;

import com.ibm.idd.lib.conv.Regex2DB;
import com.ibm.idd.lib.AppFileProperties;

/* Sample Sendmail log line:
*
*Aug 25 12:06:31 apis sendmail[19674]: MAA19674: from=<grimaldi@di.unipi.it>,
*size=1891, class=0, pri=31891, nrcpts=1, msgid=<01082512074901.13293@cleopatra.di.unipi.it>,
*bodytype=8BITMIME, proto=SMTP, relay=IDENT:grimaldi@cleopatra [131.114.4.204]
*

 127

*
*Aug 25 12:06:33 apis sendmail[19676]: MAA19674: to=<mariaciocchetti@yahoo.com>,
*ctladdr=<grimaldi@di.unipi.it> (15774/180), delay=00:00:03, xdelay=00:00:02, mailer=esmtp,
relay=mx2.mail.yahoo.com. [64.157.4.84], stat=Sent (ok dirdel)
*
*/

class SmtpLogParser{

 static File logFile = null;

 public static void main(String args[]) {

 Connection dbCon = null;
 BufferedReader logReader = null;
 String user = "", host, application, schema;
 String server = "",source, recorder,sqlStatement;
 long time1 = 0;

 try {
 // have to do this to init log4j:
 AppFileProperties.loadProperties();

 // DEFAULTS
 host = java.net.InetAddress.getLocalHost().getHostName();
 application = "Smtp server";
 schema = "CADLI";

 // COMMAND LINE PARSING
 Getopt g = new Getopt("CommandLineParser", args, "u:h:a:s:l:");

 int c;

 while ((c = g.getopt()) != -1) {
 switch(c) {
 case 'u':
 user = g.getOptarg();
 break;
 case 'h':
 host = g.getOptarg();
 break;
 case 'a':
 application = g.getOptarg();
 break;
 case 's':
 schema = g.getOptarg();
 break;
 case 'l':
 server = g.getOptarg();
 break;
 case '?':
 break; // getopt() already printed an error
 default:
 System.out.println("getopt() returned " + c + "\n");
 }
 }

 recorder = user + " on " + host;
 source = args[g.getOptind()];
 logFile = new File(source);

 // TABLES AND CONNECTIONS CREATION
 TableAccessProperty tap = new TableAccessProperty (DatabaseAccessProperty.getDefault(),
 schema, "USAGE");

 128

 SimpleTableLocalAccess.assertTableCreated(tap);
 dbCon = DatabaseLocalAccess.getConnection();
 dbCon.setAutoCommit(true);

 // LOG PARSING
 if (logFile.exists() == true) {
 FileReader fr = new FileReader(logFile);
 logReader = new BufferedReader(fr);

 // define SQL template
 sqlStatement = "INSERT INTO " + schema + ".USAGE " +
 "VALUES (DEFAULT,'Smtp Log','" + server +"','" + source + "','{0}'," +
 "'{1}','{1}','{2}','{3}','{4}','{5}','{6}','{7}',"+
 "'',{8},{9},0,0,0,0,'" + recorder + "',DEFAULT)";

 String regex = "([.\\w]*)[\\s]*([\\d]*) ([:\\d]*) [\\w]* [\\[\\]\\w]*: ([\\w]*): " +
 "(?:from=([\\S]*), size=([\\d]*), [-=\\w]*, [=\\w]*, " +
 "nrcpts=([\\d]*), msgid=<([\\S]*)>, (?:[\\s\\S\\^,]*,)?[=\\w]*, relay=(?:[\\S]* " +
 ")?\\[([.\\d]*)\\].*)?" +
 "(?:to=([\\S]*), (?:[\\s\\S\\^,]*,)?delay=([:\\+\\d]*), xdelay=([:\\d]*), " +
 "[=\\w]*, (?:relay=(?:[\\S]*)?\\[([.\\d]*)\\],)?stat=Sent.*)?";

 Regex2DB conv = new Regex2DB(logReader,regex,dbCon,sqlStatement);
 conv.setParsingHandler(new SmtpParsingHandler());

 // ... and then convert:
 conv.convert();

 // that's it
 System.exit(0);

 }
 else System.out.println("Error: File " + args[0] + " doesn't exist");

 } catch (Exception e) {
 System.out.println("Error: Exception occurred");
 e.printStackTrace();
 } finally {
 if (dbCon != null) {
 try {
 dbCon.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 if (logReader != null) {
 try {
 logReader.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
 }
}

 129

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'SmtpParsingHandler' class handles Smtp log entries
 *
 *
 * File : SmtpParsingHandler.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.sql.*;
import java.util.*;
import java.text.SimpleDateFormat;

import com.ibm.idd.lib.parser.BasicParsingHandler;
import com.ibm.idd.lib.parser.GeneratorException;

public class SmtpParsingHandler extends BasicParsingHandler {

 static int numParsed = 0; //for profiling

 public SmtpParsingHandler() {
 super();
 }

 /**
 * This method is called when a line of text has been
 * successfully parsed. The parsed tokens are passed as
 * an array of String. The line which was
 * parsed is given for information purposes.
 *
 * Aug 25 12:06:31 apis sendmail[19674]: MAA19674: from=<grimaldi@di.unipi.it>, size=1891,
 *
 * class=0, pri=31891, nrcpts=1, msgid=<01082512074901.13293@cleopatra.di.unipi.it>,
 *
 * bodytype=8BITMIME, proto=SMTP, relay=IDENT:grimaldi@cleopatra [131.114.4.204]
 *
 * tokens[0] = Aug -> Month
 * tokens[1] = 25 -> Day
 * tokens[2] = 12:06:31 -> Time
 * tokens[3] = MAA19674 -> localRef
 * tokens[4] = <grimaldi@di.unipi.it -> sender
 * tokens[5] = 1891 -> size
 * tokens[6] = 1 -> nrcpts
 * tokens[7] = 01082512074901.13293@cleopatra.di.unipi.it -> msgID
 * tokens[8] = 131.114.4.204 -> userHost
 * tokens[9] = null -> recipient
 * tokens[10] = null -> delay
 * tokens[11] = null -> xdelay
 * tokens[12] = null -> relay

 130

 *
 *
 * Aug 25 12:06:33 apis sendmail[19676]: MAA19674: to=<mariaciocchetti@yahoo.com>,
 *
 * ctladdr=<grimaldi@di.unipi.it> (15774/180), delay=00:00:03, xdelay=00:00:02,
 *
 * mailer=esmtp, relay=mx2.mail.yahoo.com. [64.157.4.84], stat=Sent (ok dirdel)*
 *
 * tokens[0] = Aug -> Month
 * tokens[1] = 25 -> Day
 * tokens[2] = 12:06:33 -> Time
 * tokens[3] = MAA19674 -> localRef
 * tokens[4] = null -> sender
 * tokens[5] = null -> size
 * tokens[6] = null -> nrcpts
 * tokens[7] = null -> msgID
 * tokens[8] = null -> userHost
 * tokens[9] = mariaciocchetti@yahoo.com -> recipient
 * tokens[10] = 00:00:03 -> delay
 * tokens[11] = 00:00:02 -> xdelay
 * tokens[12] = 64.157.4.8 -> relay
 *
 *
 */

 public void processTokens (String line, String[] tokens) throws GeneratorException {

 String[] ntokens = new String[10];
 String yearString = "2001"; // To be generalized
 StringBuffer tmstBuf = new StringBuffer(yearString);

 try {
 if ((tokens == null) || (tokens.length == 0)) {
 return;
 }

 // I start creating an sql timestamp for this entry
 if (tokens[1].length() == 1) {
 //day must have two digits
 tokens[1] = "0" + tokens[1];
 }
 for (int i=0; i<=2; i++) {
 tmstBuf.append(tokens[i]);
 }
 SimpleDateFormat format = new SimpleDateFormat("yyyyMMMddHH:mm:ss");
 java.util.Date rec = format.parse(tmstBuf.toString());
 ntokens[1] = new Timestamp(rec.getTime()).toString();

 if (tokens[4] != null) {
 // It's a "from=...." line
 if (tokens[4].startsWith("<")) {
 ntokens[2] = tokens[4].substring(1,tokens[4].length()-1);
 }
 else {
 ntokens[2] = tokens[4];
 }
 if (tokens[8] != null) {
 ntokens[3] = tokens[8];
 }
 else {
 ntokens[3] = "";
 }
 ntokens[4] = "";
 ntokens[5] = "";

 131

 ntokens[6] = tokens[7];
 ntokens[7] = tokens[3];
 ntokens[8] = tokens[6];
 ntokens[9] = tokens[5];

 if ((ntokens[2].toLowerCase()).endsWith("@di.unipi.it")) {
 ntokens[0] = "Message Sending";
 ntokens[2] =
 ntokens[2].substring(0,(ntokens[2].toLowerCase()).indexOf("@di.unipi.it"));
 }
 else {
 ntokens[0] = "Message Receiving";
 }
 processTokens(ntokens);

 }
 else if (tokens[9] != null) {
 // tokens[8] general form is <a@z>,<b@z>, ...,<k@z>,
 while(tokens[9].indexOf(">,<") != -1) {

 ntokens[0] = "Remote Forwarding";
 ntokens[2] = "";
 ntokens[3] = "";
 ntokens[4] = tokens[9].substring(1,tokens[9].indexOf(">,<"));
 if (tokens[12] != null) {
 ntokens[5] = tokens[12];
 }
 else {
 ntokens[5] = "";
 }
 ntokens[6] = "";
 ntokens[7] = tokens[3];
 ntokens[8] = "0";
 ntokens[9] = "0";
 processTokens(ntokens);
 tokens[9] = tokens[9].substring(tokens[9].indexOf(">,<") + 2, tokens[9].length());
 }

 if (tokens[9].startsWith("<")) {
 ntokens[4] = tokens[9].substring(1,tokens[9].length()-1);
 }
 else {
 ntokens[4] = tokens[9];
 }
 if ((ntokens[4].toLowerCase()).endsWith("@di.unipi.it")) {
 ntokens[0] = "Local Forwarding";
 ntokens[4] =
 ntokens[4].substring(0,(ntokens[4].toLowerCase()).indexOf("@di.unipi.it"));
 }
 else {
 ntokens[0] = "Remote Forwarding";
 }
 ntokens[2] = "";
 ntokens[3] = "";
 if (tokens[12] != null) {
 ntokens[5] = tokens[12];
 }
 else {
 ntokens[5] = "";
 }
 ntokens[6] = "";
 ntokens[7] = tokens[3];
 ntokens[8] = "0";
 ntokens[9] = "0";

 132

 processTokens(ntokens);

 }
 else return;

 } catch (Exception ex) {
 System.out.println("Error: Exception occurred");
 ex.printStackTrace();
 }
 }
}

A.4 The POP Log Aggregator

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'PopLogParser' class generates usage records aggregating
 * Pop log entries
 *
 * File : PopLogParser.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.io.*;
import java.util.*;
import java.sql.*;
import com.ibm.idd.db.*;
import gnu.getopt.Getopt;

import com.ibm.idd.lib.conv.Regex2DB;
import com.ibm.idd.lib.AppFileProperties;

/* Sample Popd log line:
*
*Aug 25 12:01:05 apis ipop3d[19490]: pop3 service init from 131.114.2.9x
*Aug 25 12:01:05 apis ipop3d[19490]: Login user=pippo host=capraia [131.114.2.9x] nmsgs=0/0
*Aug 25 12:01:05 apis ipop3d[19490]: Logout user=pippo host=capraia [131.114.2.9x] nmsgs=0
*ndele=0
*
*
*/

class PopLogParser {

 static File logFile = null;

 public static void main(String args[]) {

 133

 Connection dbCon = null;
 BufferedReader logReader = null;
 String user = "", host, application, schema;
 String server = "",source,recorder,sqlStatement;

 try {

 // have to do this to init log4j:
 AppFileProperties.loadProperties();

 // DEFAULTS
 host = java.net.InetAddress.getLocalHost().getHostName();
 application = "Smtp server";
 schema = "CADLI";

 // COMMAND LINE PARSING
 Getopt g = new Getopt("CommandLineParser", args, "u:h:a:s:l:");

 int c;

 while ((c = g.getopt()) != -1) {
 switch(c) {
 case 'u':
 user = g.getOptarg();
 break;
 case 'h':
 host = g.getOptarg();
 break;
 case 'a':
 application = g.getOptarg();
 break;
 case 's':
 schema = g.getOptarg();
 break;
 case 'l':
 server = g.getOptarg();
 break;
 case '?':
 break;
 default:
 System.out.println("getopt() returned " + c + "\n");
 }
 }

 recorder = user + " on " + host;
 source = args[g.getOptind()];
 logFile = new File(source);

 // TABLES AND CONNECTIONS CREATION
 TableAccessProperty tap = new TableAccessProperty (DatabaseAccessProperty.getDefault(),
 schema, "USAGE");
 SimpleTableLocalAccess.assertTableCreated(tap);
 dbCon = DatabaseLocalAccess.getConnection();
 dbCon.setAutoCommit(true);

 // LOG PARSING
 if (logFile.exists() == true) {
 FileReader fr = new FileReader(logFile);
 logReader = new BufferedReader(fr);

 // define SQL template
 sqlStatement = "INSERT INTO " + schema + ".USAGE " +

 134

 "VALUES (DEFAULT,'Pop Log','" + server + "','" + source +
 "','Pop Session','{0}','{1}','{2}','{3}','','','',''," +
 "'',{4},{5},{6},{7},{8},{9},'" + recorder + "',DEFAULT)";

 String regex = "([.\\w]*)[\\s]*([\\d]*) ([:\\d]*) [\\w]* [\\S]*\\[([\\d]*)\\]: " +
 "(?:pop3 service init from ([.\\d]*))?" +
 "(?:Login user=([\\S]*) host=([\\S]*) \\[([.\\d]*)\\] nmsgs=([\\d]*)/([\\d]*))?" +
 "(?:Auth user=([\\S]*) host=([\\S]*) \\[([.\\d]*)\\] nmsgs=([\\d]*)/([\\d]*))?" +
 "(?:Logout user=([\\S]*) host=([\\S]*) \\[([.\\d]*)\\] nmsgs=([\\d]*) " +
 "ndele=([\\d]*))?";

 Regex2DB conv = new Regex2DB(logReader,regex,dbCon,sqlStatement);
 conv.setParsingHandler(new PopParsingHandler());

 // ... and then convert:
 conv.convert();

 // that's it
 System.exit(0);

 }
 else System.out.println("Error: File " + args[0] + " doesn't exist");

 } catch (Exception e) {
 System.out.println("Error: Exception occurred");
 e.printStackTrace();
 } finally {
 if (dbCon != null) {
 try {
 dbCon.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 if (logReader != null) {
 try {
 logReader.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
 }
}

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'PopParsingHandler' class handles Pop log entries
 *
 *
 * File : PopParsingHandler.java
 * Created : 25/05/2001

 135

 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.sql.*;
import java.util.*;
import java.text.SimpleDateFormat;

import com.ibm.idd.lib.parser.BasicParsingHandler;
import com.ibm.idd.lib.parser.GeneratorException;

public class PopParsingHandler extends BasicParsingHandler {

 final int REFRESH_RANGE = 300000;
 static int numParsed = 0; //for profiling
 static int numHandled = 0; //for profiling
 static Hashtable hashCon = new Hashtable();
 static long prvTime = 0;

 public PopParsingHandler() {
 super();
 }

 /**
 * This method is called when a line of text has been
 * successfully parsed. The parsed tokens are passed as
 * an array of String. The line which was
 * parsed is given for information purposes.
 */

 public void processTokens (String line, String[] tokens) throws GeneratorException {

 String[] ntokens = new String[10];
 String yearString = "2001"; // To be generalized
 StringBuffer tmstBuf = new StringBuffer(yearString);
 long crntTime = 0;
 String hashKey = "";
 PopObj hashEl = null;
 long gap,min,max;
 double avg,stdDev;

 try {
 if ((tokens == null) || (tokens.length == 0)) {
 return;
 }

 // I start creating an sql timestamp for this entry
 if (tokens[1].length() == 1) {
 //day must have two digits
 tokens[1] = "0" + tokens[1];
 }
 for (int i=0; i<=2; i++) {
 tmstBuf.append(tokens[i]);
 }
 SimpleDateFormat format = new SimpleDateFormat("yyyyMMMddHH:mm:ss");
 java.util.Date rec = format.parse(tmstBuf.toString());

 136

 if (prvTime == 0) {
 prvTime = rec.getTime();
 }
 crntTime = rec.getTime();

 hashKey = tokens[3];
 if (!(tokens[4] == null)) {
 // It's an Init entry
 if (hashCon.containsKey(hashKey)) {
 hashEl = (PopObj)hashCon.remove(hashKey);
 hashEl.setStartTime(crntTime);
 hashEl.setEndTime(crntTime);
 hashEl.setHostIp(tokens[4]);
 hashCon.put(hashKey, hashEl);
 }
 else {
 hashEl = new PopObj(crntTime,tokens[4]);
 hashCon.put(hashKey, hashEl);
 }
 }
 else if (!(tokens[5] == null)) {
 //It's a Login entry
 if (hashCon.containsKey(hashKey)) {
 hashEl = (PopObj)hashCon.remove(hashKey);
 gap = crntTime - hashEl.getEndTime();
 hashEl.setEndTime(crntTime);
 hashEl.setHostIp(tokens[7]);
 hashEl.setUser(tokens[5]);
 hashEl.setNmsgs(tokens[8]);
 hashEl.setMin(gap);
 hashEl.setMax(gap);
 hashEl.setAvgCounter(gap);
 hashEl.setStdDevCounter(gap * gap);
 hashCon.put(hashKey, hashEl);
 }
 else {
 hashEl = new PopObj(crntTime,tokens[5],tokens[7],tokens[8]);
 hashCon.put(hashKey, hashEl);
 }
 }
 else if (!(tokens[10] == null)) {
 //it's an Auth log entry
 if (hashCon.containsKey(hashKey)) {
 hashEl = (PopObj)hashCon.remove(hashKey);
 gap = crntTime - hashEl.getEndTime();
 hashEl.setEndTime(crntTime);
 hashEl.setHostIp(tokens[12]);
 hashEl.setUser(tokens[10]);
 hashEl.setNmsgs(tokens[13]);
 hashEl.setMin(gap);
 hashEl.setMax(gap);
 hashEl.setAvgCounter(gap);
 hashEl.setStdDevCounter(gap * gap);
 hashCon.put(hashKey, hashEl);
 }
 else {
 hashEl = new PopObj(crntTime,tokens[10],tokens[12],tokens[13]);
 hashCon.put(hashKey, hashEl);
 }
 }
 else if (!(tokens[15] == null)) {
 //It's a logout entry
 if (hashCon.containsKey(hashKey)) {
 hashEl = (PopObj)hashCon.remove(hashKey);;

 137

 ntokens[0] = (new Timestamp(hashEl.getStartTime())).toString();
 ntokens[1] = (new Timestamp(crntTime)).toString();
 ntokens[2] = tokens[15];
 ntokens[3] = tokens[17];
 ntokens[4] = tokens[18];
 ntokens[5] = tokens[19];
 gap = crntTime - hashEl.getEndTime();
 min = Math.min(gap,hashEl.getMin());
 ntokens[6] = (new Long(min)).toString();
 max = Math.max(gap,hashEl.getMax());
 ntokens[7] = (new Long(max)).toString();
 avg = (hashEl.getAvgCounter() + gap) / 2;
 ntokens[8] = (new Double(avg)).toString();
 stdDev = Math.sqrt(((hashEl.getStdDevCounter() + (gap * gap))/2) - (avg * avg));
 ntokens[9] = (new Double(stdDev)).toString();
 processTokens(ntokens);
 }
 else {
 ntokens[0] = (new Timestamp(crntTime)).toString();
 ntokens[1] = (new Timestamp(crntTime)).toString();
 ntokens[2] = tokens[15];
 ntokens[3] = tokens[17];
 ntokens[4] = tokens[18];
 ntokens[5] = tokens[19];
 ntokens[6] = "-1";
 ntokens[7] = "-1";
 ntokens[8] = "-1";
 ntokens[9] = "-1";
 processTokens(ntokens);
 }
 }
 else return;

 if (crntTime >= (prvTime + REFRESH_RANGE)) {
 // refresh hashtable
 System.out.println("***** HASH TABLE REFRESHING *****");
 Enumeration hashKeys = hashCon.keys();
 for (;hashKeys.hasMoreElements() ;) {
 hashKey = (String)hashKeys.nextElement();
 hashEl = (PopObj)hashCon.get(hashKey);
 if (!(hashEl.getNdel().equals(""))) {
 hashEl = (PopObj)hashCon.remove(hashKey);
 ntokens[0] = (new Timestamp(hashEl.getStartTime())).toString();
 ntokens[1] = (new Timestamp(hashEl.getEndTime())).toString();
 ntokens[2] = hashEl.getUser();
 ntokens[3] = hashEl.getHostIp();
 ntokens[4] = hashEl.getNmsgs();
 ntokens[5] = hashEl.getNdel();
 ntokens[6] = (new Long(hashEl.getMin())).toString();
 ntokens[7] = (new Long(hashEl.getMax())).toString();
 ntokens[8] = (new Double(hashEl.getAvgCounter())).toString();
 ntokens[9] = "0";
 processTokens(ntokens);
 }
 }
 prvTime = prvTime + REFRESH_RANGE;
 }

 } catch (Exception ex) {
 System.out.println("Error: Exception occurred");
 ex.printStackTrace();
 }
 }
}

 138

**

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'PopObj' class is used to store Pop usage info
 *
 *
 * File : PopObj.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

public class PopObj {

 long startTime = 0;
 long endTime = 0;
 String userName = "";
 String hostIp = "";
 String nmsgs = "";
 String deleted = "";
 long min = Long.MAX_VALUE;
 long max = 0;
 long avgCounter = 0;
 long stdDevCounter = 0;

 public PopObj(long begin, String fromHost) {
 super();
 startTime = begin;
 endTime = begin;
 hostIp = fromHost;
 min = Long.MAX_VALUE;
 max = 0;
 avgCounter = 0;
 stdDevCounter = 0;
 }

 public PopObj(long begin, String fromUser, String fromHost, String numMsgs) {
 super();
 startTime = begin;
 endTime = begin;
 userName = fromUser;
 hostIp = fromHost;
 nmsgs = numMsgs;
 min = Long.MAX_VALUE;
 max = 0;
 avgCounter = 0;
 stdDevCounter = 0;
 }

 public PopObj(long begin, String fromUser, String fromHost,
 String numMsgs, String numDeleted) {
 super();

 139

 startTime = begin;
 endTime = begin;
 userName = fromUser;
 hostIp = fromHost;
 nmsgs = numMsgs;
 deleted = numDeleted;
 min = Long.MAX_VALUE;
 max = 0;
 avgCounter = 0;
 stdDevCounter = 0;
 }

 public long getStartTime() {
 return(startTime);
 }

 public long getEndTime() {
 return(endTime);
 }

 public String getUser() {
 return(userName);
 }

 public String getHostIp() {
 return(hostIp);
 }

 public String getNmsgs() {
 return(nmsgs);
 }

 public String getNdel() {
 return(deleted);
 }

 public long getMin() {
 return(min);
 }

 public long getMax() {
 return(max);
 }

 public long getAvgCounter() {
 return(avgCounter);
 }

 public long getStdDevCounter() {
 return(stdDevCounter);
 }

 public void setStartTime(long start) {
 startTime = start;
 }

 public void setEndTime(long end) {
 endTime = end;
 }

 public void setUser(String user) {
 userName = user;
 }

 140

 public void setHostIp(String host) {
 hostIp = host;
 }

 public void setNmsgs(String numMsgs) {
 nmsgs = numMsgs;
 }

 public void setNdel(String ndel) {
 deleted = ndel;
 }

 public void setMin(long newValue) {
 min = newValue;
 }

 public void setMax(long newValue) {
 max = newValue;
 }

 public void setAvgCounter(long newValue) {
 avgCounter = newValue;
 }

 public void setStdDevCounter(long newValue) {
 stdDevCounter = newValue;
 }
}

A.5 The IMAP Log Aggregator

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'ImapLogParser' class generates usage records aggregating
 * Imap log entries
 *
 * File : ImapLogParser.java
 * Created : 25/05/2001
 *

 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.io.*;
import java.util.*;
import java.sql.*;

import gnu.getopt.Getopt;

import com.ibm.idd.lib.conv.Regex2DB;
import com.ibm.idd.lib.AppFileProperties;

/* Sample Popd log line:

 * @author Milco Filoni (mfi@zurich.ibm.com)

import com.ibm.idd.db.*;

 141

*
*Aug 25 12:01:05 apis imapd[19490]: imap service init from 131.114.2.9x
*Aug 25 12:01:05 apis imapd[19490]: Login user=verdi host=pc-verdi [131.114.2.9x]
*Aug 25 12:01:05 apis imapd[19490]: Logout user=verdi host=pc-verdi [131.114.2.9x]
*
*/

class ImapLogParser{

 static File logFile = null;

 public static void main(String args[]){

 Connection dbCon = null;
 BufferedReader logReader = null;
 String source, application = "Imap Server";
 String server = "", sqlStatement, schema = "CADLI";
 String recorder, localHostName, user = "";

 try {

 // DEFAULTS
 localHostName = java.net.InetAddress.getLocalHost().getHostName();

 // COMMAND LINE PARSING
 Getopt g = new Getopt("CommandLineParser", args, "u:h:a:s:l:");

 int c;

 while ((c = g.getopt()) != -1) {
 switch(c) {
 case 'u':
 user = g.getOptarg();
 break;
 case 'h':
 localHostName = g.getOptarg();
 break;
 case 'a':
 application = g.getOptarg();
 break;
 case 's':
 schema = g.getOptarg();
 break;
 case 'l':
 server = g.getOptarg();
 break;
 case '?':
 break;
 default:
 System.out.println("getopt() returned " + c + "\n");
 }
 }

 if (user.equals("")) {
 recorder = localHostName;
 } else {
 recorder = user + " on " + localHostName;
 }
 source = args[g.getOptind()];
 logFile = new File(source);

 // TABLES AND CONNECTIONS CREATION
 TableAccessProperty tap = new TableAccessProperty
 (DatabaseAccessProperty.getDefault(), schema, "USAGE");

 142

 SimpleTableLocalAccess.assertTableCreated(tap);
 dbCon = DatabaseLocalAccess.getConnection();
 dbCon.setAutoCommit(true);

 // LOG PARSING
 if (logFile.exists() == true){
 FileReader fr = new FileReader(logFile);
 logReader = new BufferedReader(fr);

 // define SQL template
 sqlStatement =
 "INSERT INTO " + schema + ".USAGE " +
 "VALUES (DEFAULT,'Imap Log','" + server +"','" + source +
 "','Imap Session','{0}','{1}','{2}','{3}','','','','',"+
 "'',-1,-1,{4},{5},{6},{7},'" + recorder + "',DEFAULT)";

 String regex =
 "([.\\w]*)[\\s]*([\\d]*) ([:\\d]*) [\\w]* [\\S]*\\[([\\d]*)\\]: " +
 "(?:imap service init from ([.\\d]*))?" +
 "(?:Login user=([\\S]*) host=([\\S]*) \\[([.\\d]*)\\])?" +
 "(?:Authenticated user=([\\S]*) host=([\\S]*) \\[([.\\d]*)\\])?" +
 "(?:Logout user=([\\S]*) host=([\\S]*) \\[([.\\d]*)\\])?";

 Regex2DB conv = new Regex2DB(logReader,regex,dbCon,sqlStatement);
 conv.setParsingHandler(new ImapParsingHandler());

 // ...and then convert:
 conv.convert();

 // that's it
 System.exit(0);
 }

 else System.out.println("Error: File " + args[0] + " doesn't exist");

 }catch (Exception e){

 System.out.println("Error: Exception occurred");
 e.printStackTrace();

 }finally {
 if (dbCon != null) {
 try {
 dbCon.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 if (logReader != null) {
 try {
 logReader.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }

**

 143

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'ImapParsingHandler' class handles Imap log entries
 *
 *
 * File : ImapParsingHandler.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.sql.*;
import java.util.*;
import java.text.SimpleDateFormat;
import com.ibm.idd.lib.parser.BasicParsingHandler;
import com.ibm.idd.lib.parser.GeneratorException;

public class ImapParsingHandler extends BasicParsingHandler {

 static Hashtable hashCon = new Hashtable();
 static long prvTime = 0;

 public ImapParsingHandler() {
 super();
 }

 /**
 * This method is called when a line of text has been
 * successfully parsed. The parsed tokens are passed as
 * an array of String. The line which was
 * parsed is given for information purposes.
 */

public void processTokens (String line, String[] tokens) throws GeneratorException {

 String[] ntokens = new String[8];
 String yearString = "2001"; // To be generalized
 StringBuffer tmstBuf = new StringBuffer(yearString);
 long crntTime = 0;
 String hashKey = "";
 ImapObj hashEl = null;
 long gap,min,max;
 double avg,stdDev;

 try {

 if ((tokens == null) || (tokens.length == 0)) {
 return;
 };

 // I start creating an sql timestamp for this entry
 if (tokens[1].length() == 1) {
 //day must have two digits
 tokens[1] = "0" + tokens[1];
 }

 144

 for (int i=0; i<=2; i++) {
 tmstBuf.append(tokens[i]);
 }
 SimpleDateFormat format = new SimpleDateFormat("yyyyMMMddHH:mm:ss");
 java.util.Date rec = format.parse(tmstBuf.toString());
 if (prvTime == 0) {
 prvTime = rec.getTime();
 }
 crntTime = rec.getTime();

 hashKey = tokens[3];
 if (!(tokens[4] == null)) {
 // It's an Init entry
 if (hashCon.containsKey(hashKey)) {
 hashEl = (ImapObj)hashCon.remove(hashKey);
 hashEl.setEndTime(crntTime);
 hashEl.setHostIp(tokens[4]);
 hashCon.put(hashKey, hashEl);
 }
 else {
 hashEl = new ImapObj(crntTime,tokens[4]);
 hashCon.put(hashKey, hashEl);
 }
 }
 else if (!(tokens[5] == null)) {
 //It's a Login entry
 if (hashCon.containsKey(hashKey)) {
 hashEl = (ImapObj)hashCon.remove(hashKey);
 gap = crntTime - hashEl.getEndTime();
 hashEl.setEndTime(crntTime);
 hashEl.setHostIp(tokens[7]);
 hashEl.setUser(tokens[5]);
 hashEl.setMin(gap);
 hashEl.setMax(gap);
 hashEl.setAvgCounter(gap);
 hashEl.setStdDevCounter(gap * gap);
 hashCon.put(hashKey, hashEl);
 }
 else {
 hashEl = new ImapObj(crntTime,tokens[5],tokens[7]);
 hashCon.put(hashKey, hashEl);
 }
 }
 else if (!(tokens[8] == null)) {
 //it's an Auth log entry
 if (hashCon.containsKey(hashKey)) {
 hashEl = (ImapObj)hashCon.remove(hashKey);
 gap = crntTime - hashEl.getEndTime();
 hashEl.setEndTime(crntTime);
 hashEl.setHostIp(tokens[10]);
 hashEl.setUser(tokens[8]);
 hashEl.setMin(gap);
 hashEl.setMax(gap);
 hashEl.setAvgCounter(gap);
 hashEl.setStdDevCounter(gap * gap);
 hashCon.put(hashKey, hashEl);
 }
 else {
 hashEl = new ImapObj(crntTime,tokens[8],tokens[10]);
 hashCon.put(hashKey, hashEl);
 }
 }
 else if (!(tokens[11] == null)) {
 //It's a logout entry

 145

 if (hashCon.containsKey(hashKey)) {
 hashEl = (ImapObj)hashCon.remove(hashKey);
 ntokens[0] = (new Timestamp(hashEl.getStartTime())).toString();
 ntokens[1] = (new Timestamp(crntTime)).toString();
 ntokens[2] = tokens[11];
 ntokens[3] = tokens[13];
 gap = crntTime - hashEl.getEndTime();
 min = Math.min(gap,hashEl.getMin());
 ntokens[4] = (new Long(min)).toString();
 max = Math.max(gap,hashEl.getMax());
 ntokens[5] = (new Long(max)).toString();
 avg = (hashEl.getAvgCounter() + gap) / 2;
 ntokens[6] = (new Double(avg)).toString();
 stdDev = Math.sqrt(((hashEl.getStdDevCounter() + (gap * gap))/2) - (avg * avg));
 ntokens[7] = (new Double(stdDev)).toString();
 processTokens(ntokens);
 }
 else {
 ntokens[0] = (new Timestamp(crntTime)).toString();
 ntokens[1] = (new Timestamp(crntTime)).toString();
 ntokens[2] = tokens[11];
 ntokens[3] = tokens[13];
 ntokens[4] = "-1";
 ntokens[5] = "-1";
 ntokens[6] = "-1";
 ntokens[7] = "-1";
 processTokens(ntokens);
 }
 }
 else return;

 } catch (Exception ex) {
 System.out.println("Error: Exception occurred");
 ex.printStackTrace();
 }
 }
}

**

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'ImapObj' class is used to store Imap usage info
 *
 *
 * File : ImapObj.java
 * Created : 25/05/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

 146

public class ImapObj {

 long startTime = 0;
 long endTime = 0;
 String userName = "";
 String hostIp = "";
 long min = Long.MAX_VALUE;
 long max = 0;
 long avgCounter = 0;
 long stdDevCounter = 0;

 public ImapObj(long begin, String fromHost) {
 super();
 startTime = begin;
 endTime = begin;
 hostIp = fromHost;
 long min = Long.MAX_VALUE;
 long max = 0;
 long avgCounter = 0;
 long stdDevCounter = 0;
 }

 public ImapObj(long begin, String fromUser, String fromHost) {
 super();
 startTime = begin;
 endTime = begin;
 userName = fromUser;
 hostIp = fromHost;
 long min = Long.MAX_VALUE;
 long max = 0;
 long avgCounter = 0;
 long stdDevCounter = 0;
 }

 public long getStartTime() {
 return(startTime);
 }

 public long getEndTime() {
 return(endTime);
 }

 public String getUser() {
 return(userName);
 }

 public String getHostIp() {
 return(hostIp);
 }

 public long getMin() {
 return(min);
 }

 public long getMax() {
 return(max);
 }

 public long getAvgCounter() {
 return(avgCounter);
 }

 147

 public long getStdDevCounter() {
 return(stdDevCounter);
 }

 public void setStartTime(long start) {
 startTime = start;
 }

 public void setEndTime(long end) {
 endTime = end;
 }

 public void setUser(String user) {
 userName = user;
 }

 public void setHostIp(String host) {
 hostIp = host;
 }

 public void setMin(long newValue) {
 min = newValue;
 }

 public void setMax(long newValue) {
 max = newValue;
 }

 public void setAvgCounter(long newValue) {
 avgCounter = newValue;
 }

 public void setStdDevCounter(long newValue) {
 stdDevCounter = newValue;
 }

}

 148

A p p e n d i x B

THE ACTIVITIES BUILDER

/**
 *
 * © Copyright International Business Machines Corporation 2000, 2001.
 * All rights reserved.
 *
 * The 'ActivitiesBuilder' class generates activities starting from
 * the Usage Table
 *
 * File : ActivitiesBuilder.java
 * Created : 01/07/2001
 *
 * @author Milco Filoni (mfi@zurich.ibm.com)
 * @version 1.00, 25/11/2001
 * @since JDK 1.3
 *

 **/
*

import java.io.*;
import java.util.*;
import java.sql.*;
import com.ibm.idd.db.*;
import gnu.getopt.Getopt;

import com.ibm.idd.lib.AppFileProperties;

public class ActivitiesBuilder {

 static Connection dbCon = null;
 static String schema = "CADLI";
 static String recorder = "";

 public static void BuildLocalWebActivities() throws java.sql.SQLException {

 Timestamp startTime = null, endTime = null;
 String sqlStatement0 = null, sqlStatement1 = null, sqlStatement2 = null;
 String crntHost,agent,targetHost = null,descr = null;
 int activityGap = 3600000; // 1 hour
 int packets = 0,volume = 0;
 int min = Integer.MAX_VALUE,max = -1,numUsages = 0;
 long crntTime = 0,prvTime = 0,crntGap = 0;
 long avgCounter = 0,stdDevCounter = 0;
 double avg = 0, stdDev = 0;
 boolean flag = false;

 System.out.println("******* LocalWebActivities **********");

 sqlStatement0 = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +

 149

 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement pstmt = dbCon.prepareStatement(sqlStatement0);

 Statement stmt1 = dbCon.createStatement();
 Statement stmt2 = dbCon.createStatement();

 // I first select all the local hosts that have
 // been seen at least in one usage record
 sqlStatement1 = "SELECT DISTINCT InitiatingHost " +
 "FROM " + schema + ".usage " +
 "WHERE (InitiatingHost LIKE '131.114.2.%' " +
 "OR InitiatingHost LIKE '131.114.4.%') " +
 "AND RecordType='Http Session'";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);
 while (rs1.next()) {

 crntHost = rs1.getString(1);
 System.out.println("crntHost=" + crntHost);

 // then for each of such hosts I select all usage records
 // that refer to valid ('Two' directions and with DataVolume>0)
 // web activities (from both net and web log)
 sqlStatement2 =
 "SELECT StartTime,EndTime,Description,DataPackets,DataVolume,TargetHost,Category "+
 "FROM " + schema + ".usage " +
 "WHERE InitiatingHost='" + crntHost + "' " +
 "AND RecordType='Http Session' " +
 "ORDER BY StartTime";

 ResultSet rs2 = stmt2.executeQuery(sqlStatement2);
 crntTime = 0;
 flag = false;
 while (rs2.next()) {
 flag = true;
 prvTime = crntTime;
 crntTime = (rs2.getTimestamp(1)).getTime();
 if (prvTime == 0) {
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 targetHost = rs2.getString(6);
 if (rs2.getString(7).equals("Http Log")) {
 descr = rs2.getString(3);
 }
 else descr = "";
 packets = rs2.getInt(4);
 volume = rs2.getInt(5);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 else if ((crntGap = (crntTime - prvTime)) <= activityGap) {
 endTime = rs2.getTimestamp(2);
 if (targetHost.indexOf(rs2.getString(6)) == -1) {
 targetHost = targetHost + " || " + rs2.getString(6);

 }
 if ((rs2.getString(7).equals("Http Log")) &&
 (descr.indexOf(rs2.getString(3)) == -1)) {

 150

 descr = descr + " || " + rs2.getString(3);
 }
 packets = packets + rs2.getInt(4);
 volume = volume + rs2.getInt(5);
 min = (int)Math.min(min, crntGap);
 max = (int)Math.max(max, crntGap);
 avgCounter = avgCounter + crntGap;
 stdDevCounter = stdDevCounter + (crntGap * crntGap);
 numUsages++;

 }
 else if (volume > 0) {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Web Surfing");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, targetHost.substring(0,Math.min(511,targetHost.length())));
 pstmt.setString(7, descr.substring(0,Math.min(511,descr.length())));
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, packets);
 pstmt.setInt(10, volume);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 // and start a new one
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 targetHost = rs2.getString(6);
 if (rs2.getString(7).equals("Http Log")) {
 descr = rs2.getString(3);
 }
 else descr = "";
 packets = rs2.getInt(4);
 volume = rs2.getInt(5);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 else {
 // just start a new one
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 targetHost = rs2.getString(6);
 if (rs2.getString(7).equals("Http Log")) {
 descr = rs2.getString(3);
 }
 else descr = "";
 packets = rs2.getInt(4);
 volume = rs2.getInt(5);

 151

 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }

 }

 if (flag && (volume > 0)) {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Web Surfing");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, targetHost.substring(0,Math.min(511,targetHost.length())));
 pstmt.setString(7, descr.substring(0,Math.min(511,descr.length())));
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, packets);
 pstmt.setInt(10, volume);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 }
 }
 }

 public static void BuildRemoteWebActivities() throws java.sql.SQLException {

 int activityGap = 1800000; // 1 hour
 String sqlStatement1 = null, sqlStatement2 = null;
 String sqlStatement0 = null;
 String crntHost = null, crntServer = null;
 long crntTime = 0,prvTime = 0,crntGap = 0;
 Timestamp startTime = null, endTime = null;
 int min = Integer.MAX_VALUE,max = -1,numUsages = 0;
 int data1 = 0, data2 = 0;
 long avgCounter = 0,stdDevCounter = 0;
 double avg = 0, stdDev = 0;
 boolean flag = false;

 System.out.println("******* RemoteWebActivities **********");

 sqlStatement0 = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +
 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement pstmt = dbCon.prepareStatement(sqlStatement0);

 Statement stmt1 = dbCon.createStatement();

 152

 Statement stmt2 = dbCon.createStatement();

 sqlStatement1 = "SELECT DISTINCT TargetHost " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +
 "AND RecordType='Http Session' " +
 "AND (TargetHost LIKE '131.114.2.%' " +
 "OR TargetHost LIKE '131.114.4.%') " +
 "AND TargetHost <> '131.114.4.11' " +
 "AND description = 'Two' " +
 "AND DataVolume > 0";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);
 while (rs1 = rs1.getString(1); .next()) {
 crntHost
 System.out.println("LocalHost:" + crntHost);
 sqlStatement2 = "SELECT StartTime,EndTime,DataPackets,DataVolume " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +
 "AND RecordType='Http Session' " +
 "AND TargetHost='" + crntHost + "' " +
 "AND Description = 'Two' " +
 "AND DataVolume > 3000 " +
 "ORDER BY StartTime";
 ResultSet rs2 = stmt2.executeQuery(sqlStatement2);
 crntTime = 0;
 flag = false;
 while (rs2.next()) {
 flag = true;
 prvTime = crntTime;
 crntTime = (rs2.getTimestamp(1)).getTime();
 if (prvTime == 0) {
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);
 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 else if ((crntGap = (crntTime - prvTime)) <= activityGap) {
 endTime = rs2.getTimestamp(2);
 data1 = data1 + rs2.getInt(3);
 data2 = data2 + rs2.getInt(4);
 min = (int)Math.min(min, crntGap);
 max = (int)Math.max(max, crntGap);
 avgCounter = avgCounter + crntGap;
 stdDevCounter = stdDevCounter + (crntGap * crntGap);
 numUsages++;

 }
 else {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Web Surfing");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, crntServer);
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);

 153

 pstmt.setInt(9, data1);
 pstmt.setInt(10, data2);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 // and start a new one
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);
 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 }

 if (flag) {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Web Surfing");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, crntServer);
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, data1);
 pstmt.setInt(10, data2);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 }
 }
 }

 public static void BuildLocalSmtpActivities() throws java.sql.SQLException {

 String sqlStatement1 = null, sqlStatement2 = null;
 String senderStatement, recipientStatement;
 String crntRef = null, crntUser = null;
 String recList = "";

 154

 Timestamp lastSending = null;

 System.out.println("******* LocalSmtpActivities **********");

 senderStatement = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +
 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement pstmtSender = dbCon.prepareStatement(senderStatement);

 recipientStatement = "INSERT INTO " + schema + ".recipients " +
 "(MsgId,StartTime,EndTime,Recipient,HostIp) " +
 "VALUES (?,?,?,?,?)";
 PreparedStatement pstmtRecipient = dbCon.prepareStatement(recipientStatement);

 Statement stmt1 = dbCon.createStatement();
 Statement stmt2 = dbCon.createStatement();

 sqlStatement1 = "SELECT DISTINCT LocalRef " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Smtp Log'" +
 "AND RecordType='Message Sending'";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);
 while (rs1.next()) {
 crntRef = rs1.getString(1);
 System.out.println("CrntRef:" + crntRef);
 sqlStatement2 = "SELECT * " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Smtp Log' " +
 "AND LocalRef='" + crntRef + "' " +
 "ORDER BY Recorded";
 ResultSet rs2 = stmt2.executeQuery(sqlStatement2);
 recList = "";
 while (rs2.next()) {

 pstmtSender.setInt(12, -1);

 if (!((rs2.getString(8)).equals(""))) {
 pstmtSender.clearParameters();
 pstmtSender.setString(1, "Local Email Sending");
 pstmtSender.setTimestamp(2, rs2.getTimestamp(6));
 lastSending = rs2.getTimestamp(7);
 pstmtSender.setString(4, rs2.getString(8));
 pstmtSender.setString(5, rs2.getString(9));
 pstmtSender.setString(7, rs2.getString(12));
 pstmtSender.setInt(8, rs2.getInt(15));
 pstmtSender.setInt(9, rs2.getInt(15));
 pstmtSender.setInt(10, rs2.getInt(16));
 pstmtSender.setInt(11, -1);

 pstmtSender.setInt(13, -1);
 pstmtSender.setInt(14, -1);
 pstmtSender.setInt(15, -1);
 pstmtSender.setString(16,recorder);

 }
 else {
 pstmtRecipient.clearParameters();
 pstmtRecipient.setInt(1, -1);
 pstmtRecipient.setTimestamp(2, rs2.getTimestamp(6));
 lastSending = rs2.getTimestamp(7);
 recList = recList + " || " + rs2.getString(10);
 pstmtRecipient.setTimestamp(3, lastSending);

 155

 pstmtRecipient.setString(4, rs2.getString(10));
 pstmtRecipient.setString(5, rs2.getString(11));
 pstmtRecipient.executeUpdate();
 }

 }
 pstmtSender.setTimestamp(3, lastSending);
 recList = recList.substring(0, Math.min(511, recList.length()));
 pstmtSender.setString(6, recList);
 pstmtSender.executeUpdate();
 }

 }

 public static void BuildRemoteSmtpActivities() throws java.sql.SQLException {

 String sqlStatement1 = null;
 String sqlStatement0 = null;

 System.out.println("******* RemoteSmtpActivities **********");

 sqlStatement0 = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +
 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement pstmt = dbCon.prepareStatement(sqlStatement0);

 Statement stmt1 = dbCon.createStatement();
 sqlStatement1 = "SELECT StartTime,EndTime,InitiatingHost,TargetHost, " +
 "DataPackets,DataVolume,Min,Max,Average,StdDev " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +
 "AND RecordType='Smtp Session' " +
 "AND InitiatingHost <> '131.114.4.6' " +
 "AND TargetHost <> '131.114.4.6' " +
 "AND DataVolume > 0";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);
 while (rs1.next()) {
 // store current activity
 pstmt.clearParameters();
 if ((rs1.getString(3).indexOf("131.114.2.") == -1) &&
 (rs1.getString(3).indexOf("131.114.4.") == -1)) {
 pstmt.setString(1, "Remote Email Receiving");
 }
 else {
 pstmt.setString(1, "Remote Email Sending");
 }
 pstmt.setTimestamp(2, rs1.getTimestamp(1));
 pstmt.setTimestamp(3, rs1.getTimestamp(2));
 pstmt.setString(4, "");
 pstmt.setString(5, rs1.getString(3));
 pstmt.setString(6, rs1.getString(4));
 pstmt.setString(7, "");
 pstmt.setInt(8, 1);
 pstmt.setInt(9, rs1.getInt(5));
 pstmt.setInt(10, rs1.getInt(6));
 pstmt.setInt(11, -1);
 pstmt.setInt(12, rs1.getInt(7));
 pstmt.setInt(13, rs1.getInt(8));
 pstmt.setDouble(14, rs1.getInt(9));
 pstmt.setDouble(15, rs1.getInt(10));

 156

 pstmt.setString(16, recorder);
 pstmt.executeUpdate();
 }
 }

 public static void BuildLocalPopActivities() throws java.sql.SQLException {

 int activityGap = 3600000; // 1 hour
 String sqlStatement1 = null, sqlStatement2 = null;
 String sqlStatement0 = null;
 String crntUser = null,crntHost = null;
 long crntTime = 0,prvTime = 0,crntGap = 0;
 Timestamp startTime = null, endTime = null;
 int newMsgs = 0,delMsgs = 0,leftMsgs = 0,foundMsgs = 0;
 int min = Integer.MAX_VALUE,max = -1,numUsages = 0;
 long avgCounter = 0,stdDevCounter = 0;
 double avg = 0, stdDev = 0;
 boolean flag = false;

 System.out.println("******* LocalPopActivities **********");

 sqlStatement0 = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +
 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement pstmt = dbCon.prepareStatement(sqlStatement0);

 Statement stmt1 = dbCon.createStatement();
 Statement stmt2 = dbCon.createStatement();

 sqlStatement1 = "SELECT DISTINCT InitiatingUser,InitiatingHost " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Pop Log' ";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);
 while (rs1.next()) {
 crntUser = rs1.getString(1);
 crntHost = rs1.getString(2);
 System.out.println("CrntUser:" + crntUser + " " + "CrntHost:" + crntHost);
 sqlStatement2 = "SELECT StartTime,EndTime,DataPackets,DataVolume " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Pop Log' " +
 "AND InitiatingUser='" + crntUser + "' " +
 "AND InitiatingHost='" + crntHost + "' " +
 "ORDER BY StartTime";
 ResultSet rs2 = stmt2.executeQuery(sqlStatement2);
 crntTime = 0;
 flag = false;
 while (rs2.next()) {
 flag = true;
 prvTime = crntTime;
 crntTime = (rs2.getTimestamp(1)).getTime();
 if (prvTime == 0) {

 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 foundMsgs = rs2.getInt(3) + rs2.getInt(4);
 leftMsgs = rs2.getInt(3);
 delMsgs = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;

 157

 avgCounter = 0;

 stdDevCounter = stdDevCounter + (crntGap * crntGap);

 pstmt.setString(6, "");

 pstmt.setInt(10, delMsgs);

 }

 pstmt.setDouble(14, avg);

 endTime = rs2.getTimestamp(2);

 min = Integer.MAX_VALUE;

 numUsages = 1;

 if (flag) {

 stdDevCounter = 0;
 numUsages = 1;

 }
 else if ((crntGap = (crntTime - prvTime)) <= activityGap) {
 endTime = rs2.getTimestamp(2);
 delMsgs = delMsgs + rs2.getInt(4);
 leftMsgs = rs2.getInt(4);
 min = (int)Math.min(min, crntGap);
 max = (int)Math.max(max, crntGap);
 avgCounter = avgCounter + crntGap;

 numUsages++;

 }
 else {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Local Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, crntUser);
 pstmt.setString(5, crntHost);

 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, foundMsgs);

 pstmt.setInt(11, leftMsgs);
 if (min == Integer.MAX_VALUE) {
 min = -1;

 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);

 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 // and start a new one
 startTime = rs2.getTimestamp(1);

 foundMsgs = rs2.getInt(3) + rs2.getInt(4);
 leftMsgs = rs2.getInt(3);
 delMsgs = rs2.getInt(4);

 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;

 }
 }

 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Local Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, crntUser);
 pstmt.setString(5, crntHost);

 158

 pstmt.setString(6, "");
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, foundMsgs);
 pstmt.setInt(10, delMsgs);
 pstmt.setInt(11, leftMsgs);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 }
 }
 }

 public static void BuildRemoteOutPopActivities() throws java.sql.SQLException {

 int activityGap = 3600000; // 1 hour
 String sqlStatement1 = null, sqlStatement2 = null;
 String sqlStatement0 = null;
 String crntHost = null, crntServer = null;
 long crntTime = 0,prvTime = 0,crntGap = 0;
 Timestamp startTime = null, endTime = null;
 int min = Integer.MAX_VALUE,max = -1,numUsages = 0;
 int data1 = 0, data2 = 0;
 long avgCounter = 0,stdDevCounter = 0;
 double avg = 0, stdDev = 0;
 boolean flag = false;

 System.out.println("******* RemoteOutPopActivities **********");

 sqlStatement0 = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +
 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement pstmt = dbCon.prepareStatement(sqlStatement0);

 Statement stmt1 = dbCon.createStatement();

 while (rs1.next()) {

 Statement stmt2 = dbCon.createStatement();

 sqlStatement1 = "SELECT DISTINCT InitiatingHost,TargetHost " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +
 "AND RecordType='Pop Session' " +
 "AND (initiatinghost LIKE '131.114.2.%' " +
 "OR initiatinghost LIKE '131.114.4.%')";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);

 crntHost = rs1.getString(1);
 crntServer = rs1.getString(2);
 System.out.println("LocalHost:" + crntHost + " " + "RemoteHost:" + crntServer);

 sqlStatement2 = "SELECT StartTime,EndTime,DataPackets,DataVolume " +
 "FROM " + schema + ".usage " +

 159

 "WHERE Category='Net Log' " +
 "AND RecordType='Pop Session' " +
 "AND InitiatingHost='" + crntHost + "' " +
 "AND TargetHost='" + crntServer + "' " +
 "AND DataVolume <> 0 " +
 "ORDER BY StartTime";
 ResultSet rs2 = stmt2.executeQuery(sqlStatement2);

 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));

 crntTime = 0;
 flag = false;
 while (rs2.next()) {

 flag = true;
 prvTime = crntTime;
 crntTime = (rs2.getTimestamp(1)).getTime();
 if (prvTime == 0) {
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);
 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 else if ((crntGap = (crntTime - prvTime)) <= activityGap) {
 endTime = rs2.getTimestamp(2);
 data1 = data1 + rs2.getInt(3);
 data2 = data2 + rs2.getInt(4);
 min = (int)Math.min(min, crntGap);
 max = (int)Math.max(max, crntGap);
 avgCounter = avgCounter + crntGap;
 stdDevCounter = stdDevCounter + (crntGap * crntGap);
 numUsages++;

 }
 else {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, crntServer);
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, data1);
 pstmt.setInt(10, data2);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);

 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 // and start a new one

 160

 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);
 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 }

 if (flag) {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Email Downloading");

 pstmt.setString(5, crntHost);

 pstmt.setInt(8, numUsages);

 pstmt.setInt(11, -1);

 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");

 pstmt.setString(6, crntServer);
 pstmt.setString(7, "");

 pstmt.setInt(9, data1);
 pstmt.setInt(10, data2);

 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 }
 }
 }

 public static void BuildRemoteInPopActivities() throws java.sql.SQLException {

 int activityGap = 3600000; // 1 hour
 String sqlStatement1 = null, sqlStatement2 = null;
 String sqlStatement0 = null;
 String crntHost = null, crntServer = null;
 long crntTime = 0,prvTime = 0,crntGap = 0;
 Timestamp startTime = null, endTime = null;
 int min = Integer.MAX_VALUE,max = -1,numUsages = 0;
 int data1 = 0, data2 = 0;
 long avgCounter = 0,stdDevCounter = 0;
 double avg = 0, stdDev = 0;
 boolean flag = false;

 System.out.println("******* RemoteInPopActivities **********");

 sqlStatement0 = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +
 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";

 161

 PreparedStatement pstmt = dbCon.prepareStatement(sqlStatement0);

 Statement stmt1 = dbCon.createStatement();
 Statement stmt2 = dbCon.createStatement();

 sqlStatement1 = "SELECT DISTINCT InitiatingHost,TargetHost " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +
 "AND RecordType='Pop Session' " +
 "AND (TargetHost LIKE '131.114.2.%' " +
 "OR TargetHost LIKE '131.114.4.%') " +
 "AND TargetHost <> '131.114.4.6'";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);
 while (rs1.next()) {
 crntHost = rs1.getString(1);

 System.out.println("LocalHost:" + crntHost + " " + "RemoteHost:" + crntServer);
 crntServer = rs1.getString(2);

 sqlStatement2 = "SELECT StartTime,EndTime,DataPackets,DataVolume " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +
 "AND RecordType='Pop Session' " +
 "AND InitiatingHost='" + crntHost + "' " +
 "AND TargetHost='" + crntServer + "' " +
 "AND DataVolume > 0 " +
 "ORDER BY StartTime";
 ResultSet rs2 = stmt2.executeQuery(sqlStatement2);

 crntTime = 0;
 flag = false;
 while (rs2.next()) {

 flag = true;
 prvTime = crntTime;
 crntTime = (rs2.getTimestamp(1)).getTime();
 if (prvTime == 0) {
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);
 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 else if ((crntGap = (crntTime - prvTime)) <= activityGap) {
 endTime = rs2.getTimestamp(2);
 data1 = data1 + rs2.getInt(3);
 data2 = data2 + rs2.getInt(4);
 min = (int)Math.min(min, crntGap);
 max = (int)Math.max(max, crntGap);
 avgCounter = avgCounter + crntGap;
 stdDevCounter = stdDevCounter + (crntGap * crntGap);
 numUsages++;

 }
 else {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");

 162

 pstmt.setString(5, crntHost);
 pstmt.setString(6, crntServer);
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, data1);
 pstmt.setInt(10, data2);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 // and start a new one
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);
 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 }

 if (flag) {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, crntServer);
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, data1);
 pstmt.setInt(10, data2);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 }
 }
 }

 public static void BuildLocalImapActivities() throws java.sql.SQLException {

 163

 int activityGap = 3600000; // 1 hour
 String sqlStatement1 = null, sqlStatement2 = null;
 String sqlStatement0 = null;
 String crntUser = null,crntHost = null;
 long crntTime = 0,prvTime = 0,crntGap = 0;
 Timestamp startTime = null, endTime = null;
 int min = Integer.MAX_VALUE,max = -1,numUsages = 0;
 long avgCounter = 0,stdDevCounter = 0;
 double avg = 0, stdDev = 0;
 boolean flag = false;

 System.out.println("******* LocalImapActivities **********");

 sqlStatement0 = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +
 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement pstmt = dbCon.prepareStatement(sqlStatement0);

 Statement stmt1 = dbCon.createStatement();
 Statement stmt2 = dbCon.createStatement();

 sqlStatement1 = "SELECT DISTINCT InitiatingUser,InitiatingHost " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Imap Log' ";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);
 while (rs1.next()) {
 crntUser = rs1.getString(1);
 crntHost = rs1.getString(2);
 System.out.println("CrntUser:" + crntUser + " " + "CrntHost:" + crntHost);
 sqlStatement2 = "SELECT StartTime,EndTime,InitiatingHost,DataPackets,DataVolume " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Imap Log' " +
 "AND InitiatingUser='" + crntUser + "' " +
 "AND InitiatingHost='" + crntHost + "' " +
 "ORDER BY StartTime";
 ResultSet rs2 = stmt2.executeQuery(sqlStatement2);
 crntTime = 0;
 flag = false;
 while (rs2.next()) {
 flag = true;
 prvTime = crntTime;

 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;

 crntTime = (rs2.getTimestamp(1)).getTime();
 if (prvTime == 0) {
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 min = Integer.MAX_VALUE;
 max = -1;

 }
 else if ((crntGap = (crntTime - prvTime)) <= activityGap) {
 endTime = rs2.getTimestamp(2);
 min = (int)Math.min(min, crntGap);
 max = (int)Math.max(max, crntGap);
 avgCounter = avgCounter + crntGap;
 stdDevCounter = stdDevCounter + (crntGap * crntGap);
 numUsages++;

 }

 164

 else {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Local Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, crntUser);
 pstmt.setString(5, crntHost);
 pstmt.setString(6, "");
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, -1);
 pstmt.setInt(10, -1);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 // and start a new one
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 }

 if (flag) {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Local Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, crntUser);
 pstmt.setString(5, crntHost);
 pstmt.setString(6, "");
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, -1);
 pstmt.setInt(10, -1);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 }

 165

 }
 }

 public static void BuildRemoteOutImapActivities() throws java.sql.SQLException {

 int activityGap = 3600000; // 1 hour
 String sqlStatement1 = null, sqlStatement2 = null;
 String sqlStatement0 = null;
 String crntHost = null, crntServer = null;
 long crntTime = 0,prvTime = 0,crntGap = 0;
 Timestamp startTime = null, endTime = null;
 int min = Integer.MAX_VALUE,max = -1,numUsages = 0;
 int data1 = 0, data2 = 0;
 long avgCounter = 0,stdDevCounter = 0;
 double avg = 0, stdDev = 0;
 boolean flag = false;

 System.out.println("******* RemoteOutImapActivities **********");

 sqlStatement1 = "SELECT DISTINCT InitiatingHost,TargetHost " +

 while (rs1.next()) {

 ResultSet rs2 = stmt2.executeQuery(sqlStatement2);

 startTime = rs2.getTimestamp(1);

sqlStatement0 = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +
 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement pstmt = dbCon.prepareStatement(sqlStatement0);

 Statement stmt1 = dbCon.createStatement();
 Statement stmt2 = dbCon.createStatement();

 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +
 "AND RecordType='Imap Session' " +
 "AND (initiatinghost LIKE '131.114.2.%' " +
 "OR initiatinghost LIKE '131.114.4.%')";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);

 crntHost = rs1.getString(1);
 crntServer = rs1.getString(2);
 System.out.println("LocalHost:" + crntHost + " " + "RemoteHost:" + crntServer);
 sqlStatement2 = "SELECT StartTime,EndTime,DataPackets,DataVolume " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +
 "AND RecordType='Imap Session' " +
 "AND InitiatingHost='" + crntHost + "' " +
 "AND TargetHost='" + crntServer + "' " +
 "AND DataVolume > 0 " +
 "ORDER BY StartTime";

 crntTime = 0;
 flag = false;
 while (rs2.next()) {
 flag = true;
 prvTime = crntTime;
 crntTime = (rs2.getTimestamp(1)).getTime();
 if (prvTime == 0) {

 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);
 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;

 166

 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 else if ((crntGap = (crntTime - prvTime)) <= activityGap) {
 endTime = rs2.getTimestamp(2);
 data1 = data1 + rs2.getInt(3);
 data2 = data2 + rs2.getInt(4);
 min = (int)Math.min(min, crntGap);
 max = (int)Math.max(max, crntGap);
 avgCounter = avgCounter + crntGap;
 stdDevCounter = stdDevCounter + (crntGap * crntGap);
 numUsages++;

 }
 else {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, crntServer);
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, data1);
 pstmt.setInt(10, data2);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 // and start a new one
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);
 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 }

 if (flag) {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, crntServer);

 167

 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, data1);
 pstmt.setInt(10, data2);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 }
 }
 }

 public static void BuildRemoteInImapActivities() throws java.sql.SQLException {

 int activityGap = 3600000; // 1 hour
 String sqlStatement1 = null, sqlStatement2 = null;
 String sqlStatement0 = null;
 String crntHost = null, crntServer = null;
 long crntTime = 0,prvTime = 0,crntGap = 0;
 Timestamp startTime = null, endTime = null;
 int min = Integer.MAX_VALUE,max = -1,numUsages = 0;
 int data1 = 0, data2 = 0;
 long avgCounter = 0,stdDevCounter = 0;
 double avg = 0, stdDev = 0;
 boolean flag = false;

 System.out.println("******* RemoteInImapActivities **********");

 sqlStatement0 = "INSERT INTO " + schema + ".activities " +
 "(RecordType,StartTime,EndTime," +
 " InitiatingUser,InitiatingHost,Target," +
 " Description,NumUsages,Data1,Data2,Data3," +
 " Min,Max,Average,StdDev,Recorder)" +
 " VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement pstmt = dbCon.prepareStatement(sqlStatement0);

 Statement stmt1 = dbCon.createStatement();
 Statement stmt2 = dbCon.createStatement();

 sqlStatement1 = "SELECT DISTINCT InitiatingHost,TargetHost " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +
 "AND RecordType='Imap Session' " +
 "AND (TargetHost LIKE '131.114.2.%' " +
 "OR TargetHost LIKE '131.114.4.%') " +
 "AND TargetHost <> '131.114.4.6'";

 ResultSet rs1 = stmt1.executeQuery(sqlStatement1);
 while (rs1.next()) {
 crntHost = rs1.getString(1);
 crntServer = rs1.getString(2);
 System.out.println("LocalHost:" + crntHost + " " + "RemoteHost:" + crntServer);
 sqlStatement2 = "SELECT StartTime,EndTime,DataPackets,DataVolume " +
 "FROM " + schema + ".usage " +
 "WHERE Category='Net Log' " +

 168

 "AND RecordType='Imap Session' " +
 "AND InitiatingHost='" + crntHost + "' " +
 "AND TargetHost='" + crntServer + "' " +
 "AND DataVolume > 0 " +
 "ORDER BY StartTime";
 ResultSet rs2 = stmt2.executeQuery(sqlStatement2);
 crntTime = 0;
 flag = false;
 while (rs2.next()) {
 flag = true;
 prvTime = crntTime;
 crntTime = (rs2.getTimestamp(1)).getTime();
 if (prvTime == 0) {
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);
 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;
 }
 else if ((crntGap = (crntTime - prvTime)) <= activityGap) {
 endTime = rs2.getTimestamp(2);
 data1 = data1 + rs2.getInt(3);
 data2 = data2 + rs2.getInt(4);
 min = (int)Math.min(min, crntGap);
 max = (int)Math.max(max, crntGap);
 avgCounter = avgCounter + crntGap;
 stdDevCounter = stdDevCounter + (crntGap * crntGap);
 numUsages++;

 }
 else {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, crntServer);
 pstmt.setString(7, "");
 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, data1);
 pstmt.setInt(10, data2);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 // and start a new one
 startTime = rs2.getTimestamp(1);
 endTime = rs2.getTimestamp(2);
 data1 = rs2.getInt(3);

 169

 data2 = rs2.getInt(4);
 min = Integer.MAX_VALUE;
 max = -1;
 avgCounter = 0;
 stdDevCounter = 0;
 numUsages = 1;

 pstmt.setInt(8, numUsages);
 pstmt.setInt(9, data1);

 }
 }

 if (flag) {
 // close and store current activity
 pstmt.clearParameters();
 pstmt.setString(1, "Remote Email Downloading");
 pstmt.setTimestamp(2, startTime);
 pstmt.setTimestamp(3, endTime);
 pstmt.setString(4, "");
 pstmt.setString(5, crntHost);
 pstmt.setString(6, crntServer);
 pstmt.setString(7, "");

 pstmt.setInt(10, data2);
 pstmt.setInt(11, -1);
 if (min == Integer.MAX_VALUE) {
 min = -1;
 }
 pstmt.setInt(12, min);
 pstmt.setInt(13, max);
 avg = avgCounter / Math.max(numUsages - 1, 1);
 pstmt.setDouble(14, avg);
 stdDev = Math.sqrt((stdDevCounter / Math.max(numUsages - 1, 1)) - (avg * avg));
 pstmt.setDouble(15, stdDev);
 pstmt.setString(16, recorder);
 pstmt.executeUpdate();

 }
 }
 }

 public static void main(String args[]) {

 String user = "", host, application;
 String server = "", source;
 long time1 = 0;

 try {

 // have to do this to init log4j:
 AppFileProperties.loadProperties();

 // DEFAULTS
 host = java.net.InetAddress.getLocalHost().getHostName();
 application = "ActivitiesBuilder";

 // COMMAND LINE PARSING
 Getopt g = new Getopt("CommandLineParser", args, "u:h:a:s:l:");

 int c;

 while ((c = g.getopt()) != -1) {
 switch(c) {
 case 'u':
 user = g.getOptarg();
 break;

 170

 case 'h':
 host = g.getOptarg();
 break;
 case 'a':
 application = g.getOptarg();
 break;
 case 's':
 schema = g.getOptarg();
 break;
 case 'l':
 server = g.getOptarg();

 BuildRemoteOutPopActivities();

 break;
 case '?':
 break; // getopt() already printed an error
 default:
 System.out.println("getopt() returned " + c + "\n");
 }
 }

 recorder = user + " on " + host;

 // TABLES CREATION
 TableAccessProperty tap1 = new TableAccessProperty (DatabaseAccessProperty.getDefault(),
 schema, "ACTIVITIES");
 SimpleTableLocalAccess.assertTableCreated(tap1);
 TableAccessProperty tap2 = new TableAccessProperty (DatabaseAccessProperty.getDefault(),
 schema, "RECIPIENTS");
 SimpleTableLocalAccess.assertTableCreated(tap2);
 dbCon = DatabaseLocalAccess.getConnection();
 dbCon.setAutoCommit(true);

 BuildLocalWebActivities();
 BuildLocalPopActivities();

 BuildRemoteInPopActivities();
 BuildLocalImapActivities();
 BuildRemoteOutImapActivities();
 BuildRemoteInImapActivities();
 BuildRemoteSmtpActivities();
 BuildRemoteWebActivities();
 BuildLocalSmtpActivities();

 } catch (Exception e) {
 System.out.println("Error: Exception occurred");
 e.printStackTrace();
 } finally {
 if (dbCon != null) {
 try {
 dbCon.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
 }
}

 171

 4

	1.1 Computing Infrastructure as a Critical Business Resource
	1.2 Proposal
	1.3 Document Organization
	1.4 Summary
	2.1 Passive Network Mapping
	
	Network Packet Sniffing
	Subscription to Network and Syslogs

	2.2 Active Network Mapping
	
	SNMP Walking of Network Topology
	Ping/Broadcast Ping
	Traceroute
	DNS Network Domain Name-Space Walking
	DHCP Lease Information
	Windows and Novell Network-Domains, LDAP, and Active Directory

	2.3 Host and Service Mapping
	
	TCP/IP Stack Analysis and OS Detection
	UDP/TCP Port Scans
	Remote Windows Fingerprinting

	2.4 Available Commercial and Freeware Products
	2.4.1 Tivoli Net View
	2.4.2 HP OpenView
	Network Node Manager (NNM)

	2.4.3 Peregrine InfraTools Network Discovery
	2.4.4 Microsoft Visio
	2.4.5 Peregrine InfraTools Desktop Discovery
	2.4.6 Nmap
	2.4.7 Winfingerprint
	2.4.8 Tcpdump
	2.4.9 IBM IDD Project
	2.4.10 Conclusions

	2.5 Summary
	3.1 Data Integration Architecture
	3.1.1 First Phase: Data Parsing and Aggregation
	3.1.2 Second Phase: Data Integration
	Example

	3.3 Summary
	4.1 HTTP logs
	4.1.1 The Common Log File Format
	4.1.2 The Extended Common Log File Format
	4.1.3 E-R Diagram for HTTP Servers

	4.2 PROXY Logs
	4.3 SMTP Logs
	4.3.1 Sendmail
	4.3.2 Microsoft Exchange
	4.3.3 E-R Diagram for SMPT Servers

	4.4 POP / IMAP Logs
	4.5 FTP Logs
	4.6 DNS Logs
	4.7 NET Logs
	4.7.1 TcpDump Logs
	4.7.2 SOCKS Logs
	SOCKS 4
	SOCKS 5

	4.7.3 E-R Diagram for NET Logs

	4.8 Activity-Entity Synthesis
	4.9 Summary
	5.1 Web Log File
	
	Example 4.1.1

	5.2 SMTP Log File
	
	Example 4.2.1

	5.3 Pop Log File
	
	Example 4.3.1

	5.4 Net Log File
	5.4.1 SMTP and POP/IMAP Traffic
	Example 5.4.1.1
	5.4.2 HTTP traffic

	5.5 Summary
	6.1 Web Surfing Activities
	
	Example 6.1.1
	Example 6.1.2

	6.2 Email Downloading Activities
	6.2.1 Local Email Downloading
	6.2.2 Remote Email Downloading

	6.3 Email Sending Activities
	6.3.1 Local Email Sending Activities
	6.3.2 Remote Email Sending Activities

	6.4 Summary
	7.1 Data Sources Integration
	7.2 Some Results
	
	Example 7.2.1
	Example 7.2.2

	7.3 Summary
	A.1 Net Log Aggregator
	A.2 The WEB Log Aggregator
	A.3 The SMTP Log Aggregator
	A.4 The POP Log Aggregator
	A.5 The IMAP Log Aggregator

