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1 Introduction

1.1 Network anomaly detection

Intrusion detection systems (IDSs) are popular topics in research with many surveys

stating the problem and overviewing prior work [Chalapathy et al., 2019][Moustafa

et al., 2019]. The main goal can be summarized as to discriminate between normal

user activity and malicious or unusual one. What is to be considered normal is, of

course, still a debate.

IDSs can be classified into two main families: misuse-based (M-IDS) and anomaly

based (A-IDS) [Sommer et al., 2010]. The former assumes a known set of malicious be-

haviour and examine the data available to look for signatures suggesting an attempted

intrusion or a successful attack. Due to encryption, creating signatures is becoming

harder and more expensive, constraining IDSs to decrypt network traffic or to look for

different metrics other than packet payloads [Yaacoubi, 2019]. Moreover M-IDSs flaw

to detect previously unknown threats. To overcome this lack A-IDSs aim to build up

a model of normal system behavior and report any deviation from this known good

pattern. Typically, A-IDSs monitor a device for a reasonable amount of time and then

use the collected data to learn how the device behaves under normal conditions. A

supervised A-IDS uses data labeled by humans or in an automatic way to learn how to

discriminate between good and malicious behavior, whereas an unsupervised approach

uses the data collected during the monitoring phase without any additional information

concerning what is normal and what is to be considered an anomaly. Even if A-IDSs

can detect previously unseen anomalies, current A-IDSs are prone to false positives

and often require non-negligible resources such as time for learning and ad-hoc hard-

ware to achieve reasonable performance. Recent studies in the field of adversarial

attacks have also raised an additional concern due to the fact that this type of systems

may be fooled by an attacker [Lin et al., 2018]. Thus, M-IDSs remain widespread.

IDSs can also be subdivided by examining the data used. Host IDSs (HIDSs) use data

such as logs, system calls traces or any other data collected on the monitored machine,

whereas a Network IDS (NIDS) use only the data collected by monitoring network traf-
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fic.

Most of the work in the literature concerning anomaly based intrusion detection sys-

tems addresses supervised anomaly detection. However, this approach has the major

shortcoming of creating models biased towards the dataset, which is often too small,

doesn’t reflect the data collected in real-case scenarios and may become quickly dep-

recated due to fast changes in the current technologies [Hindy et al., 2020]. Indeed,

labelling data is often costly or impossible due the volume of the data itself. Moreover

employing a probe on the host being monitored to collect information beyond network

traffic is also unfeasible in many situations. To overcome these issues this work aims

to study the unsupervised anomaly based network IDS (A-NIDS) problem in which we

are provided only with raw traffic data collected from many devices and no clues on

how the anomalous traffic may look like.

Most of the techniques used in unsupervised A-NIDS does not take into account the

temporal nature of network monitoring or use models, like holt-winter [Winters, 1960],

which are unable to correlate many network metrics at once and cannot combine the

data collected from different devices to build up a general knowledge of how devices

usually behaves. Autoencoders are the main artificial neural network architecture used

for unsupervised A-NIDS and address this issues, however they can be expensive in

terms of resource usage. Moreover, most of the tools available does not offer addi-

tional control beyond computing an anomaly score that measures the probability of a

sample being an outlier. We propose a new learning framework based on multivari-

ate time series representation learning for network activity. The latent representations

computed by our model can be used for: a) create a fingerprint of the device behavior

at a given time; b) detect anomalous behaviors, i.e. those events that are not coherent

with the behavior expected by a device or are very close to known bad ones; c) finding

similarities between devices and their behavior.

To summarize, our main contributions are:

• An unsupervised anomaly detection tool able to combine the information col-

lected from different devices and to correlate different network metrics.

• A comparative study of different techniques available to address unsupervised
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A-NIDS.

• The proposal of a methodology to provide network administrators additional

tools based on device behavior similarity which enable to look for similar events

in different networks or in the historical data.

The rest of the document is organized as follows. Recent works in unsupervised A-

NIDS is described in subsection 1.2. Our methodology is described in section 2 and

experiments are reported in section 3. Finally, conclusions are drawn in section 6.

1.2 Related work

The limits that supervised methods currently have made unsupervised A-NIDS a field

growing in popularity. In [Usama et al., 2019] a comprehensive view of the problems

and current solutions is given. The authors of [Dromard et al., 2019] compared out-

liers detection algorithms using a subsample of the famous KDD99 [Hettich, 1999],

a dataset containing intrusions simulated in a network environment. From their study

they pointed out that using robust principal component analysis (PCA) [Kwitt et al.,

2007] to detect anomalous connections achieve great detection accuracy with signif-

icant parameter robustness and high performance. Robust PCA is able to reduce the

impact of outliers in the training set, thus leading to better performance compared to

classical PCA. However, it is worth to say that in the very same study they pointed out

that anomalous samples in the dataset had an extremely skewed value in at least one

dimension of the feature space. Thus, even a naive algorithm can achieve astonish-

ing accuracy on KDD99. Further analysis on a different dataset is left as future work.

The authors of [Dromard et al., 2016] proposed ORUNADA, a near real-time evolution

of UNADA [Casas et al., 2011]. As its predecessor, ORUNADA aggregates network

packets into flows using a key such as source or destination IP. Flows are described by

a set of d statistics, or features, which are then partitioned into
(d

2

)
subgroups. Den-

sity based clustering algorithm is then applied to each pair of features. To achieve

reasonable speed they used a sliding window and applied incremental grid-based clus-

tering (IDGCA) [Chen et al., 2002] over the feature space at each sliding window step.
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Dense regions in the feature space are grouped together and a threshold is used to re-

move small clusters. When IDGCA has been applied to the whole sliding window, the

detection algorithm is started. The anomaly score of flow x is computed as the sum

of the distances d(xs,C), with s a subspace in which x is considered an outlier, xs the

projection of x in that subspace, C the biggest centroid in s and d a distance measure.

We point out that computing every possible combination of the features extracted by

each flow may result in an excessive waste of resources due to the fact that many fea-

tures are poorly correlated. Furthermore using binary groups of features may leave out

interesting correlations which involves more than two features.

A semi-supervised technique is proposed by the authors of [Aygun et al., 2017]. Artifi-

cial neural network autoencoders (AE) [Rogers and McClelland, 2014] and denoising

autoencoders (DAE) [Vincent et al., 2010] have been compared to classify a flow as

anomalous using the reconstruction error computed over the features provided by the

dataset used, NSL-KDD [CSE, 2009]. The algorithm is trained on normal traffic sam-

ples, then a threshold is optimally chosen using a labeled validation set composed of

normal and anomalous traffic. Even if the model is trained in a semi-supervised envi-

ronment, the results shows that the autoencoder architecture can achieve results com-

parable to supervised techniques. [Kathareios et al., 2017] developed an encryption

aware A-NIDS which aims to reduce the number of samples that have to be examined

by an expert. Packets sent by a common source, i.e. flows, are grouped into fixed

and non-overlapping time intervals. A multivariate time series is collected by comput-

ing different statistics on each time interval. Only the information available at layer-2

to layer-4 in packets’ header and metrics computed using network flows themselves

(e.g., packets per second rate) is used. Anomaly detection is performed in three steps:

a) an autoencoder is trained to reconstruct each point in the multivariate time series;

b) points with high reconstruction error are collected in a set of potential anomalies,

called A, and a sub-sample of that set is classified by an expert. c) The neighbors of

each anomaly point in A are searched among the samples labeled by the expert. d) If

the number of threat in the neighborhood region of an anomaly point is over a threshold

C, then the point is classified as an anomaly. Good results are achieved but a labeled
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validation set is still needed to tune the anomaly threshold C. The authors of [Mirsky

et al., 2018] proposed a lightweight distributed NIDS, called Kitsune, which aims to

operate on devices subject to performance constraints like routers. A multivariate time

series with 110 channels, each representing a network metric, is computed online and

a correlation matrix is kept updated while the traffic flows through the network. The

correlation matrix is used to identify small subsets, each of size K, of highly correlated

channels from the entire features set. A first set of simple three-layer autoencoders

is trained to take as input a subset of features at time step t and to minimize the re-

construction error. Then, another three layer autoencoder is used to reconstruct the

root mean square error (RMSE) computed for each autoencoder at the previous step.

The autoencoder in the second layer is used to enhance the missed correlations among

different sets of features instead of using the sum of individual reconstruction errors.

Using multiple autoencoders, each one reconstructing a set of highly correlating fea-

tures, helped the authors to keep the complexity low and the system able to process a

maximum of 5400 packets per second on a low-powered devices (i.e. Raspberry Pi).

Even if Kitsune achieves good results without any labeled data, we suggest that tak-

ing into account the temporal nature of network traffic data can undercover malicious

patterns that can’t be discovered using a point-wise anomaly detection technique. To

overcome this problem, [Mirza et al., 2018] used an LSTM [Hochreiter and Schmidhu-

ber, 1997] based encoder-decoder architecture to reconstruct the hexadecimal values

in the packets’ payload. Once again, a threshold over the reconstruction error is used

to detect and report anomalies. Even if [Mirza et al., 2018] take into account the se-

quential nature of network data and traffic monitoring, they don’t take into account

encrypted traffic which nowadays makes up most of the network traffic. The authors

of [Ergen et al., 2019] tried to improve the mechanism for selecting the threshold above

which model errors are considered anomalies. Driven by the fact that using artificial

neural models to detect anomalies by learning how a time series behaves and output

an anomaly score as a function of the prediction error leads to the use of probabilistic

models and a user-defined threshold [Malhotra et al., 2015], they experimented the use

of LSTMs and GRUs [Cho et al., 2014] together with SVDD [Tax and Duin, 2004]
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and OC-SVM [Schölkopf et al., 2001]. The hidden states produced by the LSTM are

encoded in fixed length vector using mean-pooling, then they are used as input for an

SVDD or OC-SVM model. The system is trained end-to-end with SGD or quadratic

programming-based approaches. Their approach seems very promising, however they

lack a large scale test on realistic network data. Another technique commonly used to

solve network anomaly detection involves the use of auto regressive models, such as

an auto-regressive integrated moving average (ARIMA) [Zhou et al., 2005], or models

that accounts for seasonality, such as Holt-Winters [Pena et al., 2013]. Typically, these

techniques allow to define an upper and lower uncertainty interval on the model predic-

tions which can be used to detect anomalies whenever samples do not fall in the range

predicted by the model. Besides the high speed performance that can be reached using

such techniques, they are unable to generalize the knowledge acquired to previously

unseen hosts. To make an example, if we aim to detect anomalies generated by a host,

we need clean network traffic collected previously for that host. Having clean network

traffic for an infected or strangely behaving host is unfeasible in many scenarios and,

as shown in our experiments, can be avoided using machine learning based methods.

We propose a time and encryption aware unsupervised model based on triplet loss

minimization, with minor modifications to the one proposed by [Schroff et al., 2015].

The use of such objective function enables us to avoid a threshold tuning phase over la-

beled data as done previously for other techniques such as autoencoders. We tested our

model on the data provided in the CIC-IDS2017 dataset [CIC, 2017] and compared our

results to existing methods: sequence to sequence autoencoder, Kitsune and Prophet,

the newest seasonality based forecasting model promoted by Facebook [Taylor and

Letham, 2018]. We describe implementation details of each of them in subsection 4.1,

4.2, 4.3. For both triple loss and autoencoders we took advantage of the latent repre-

sentation given by the model to visualize the behavior of each device over time and to

cluster similar events, thus resulting in new ways of monitoring network traffic.
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1.3 Motivation

Almost all anomaly detection systems in literature and for commercial use do not inte-

grate knowledge of network activity between different devices. They are mainly based

on mathematical models, such as ARIMA, which are fitted on the device at hand and

don’t extract general knowledge about what has to be considered normal network ac-

tivity behavior. This work aims to study a new setting in which the model has to learn

how a group of devices D behaves by integrating the knowledge extracted from each

device. The knowledge acquired is used to detect anomalies generated by a previously

unseen device. We have explored ways of achieving this goal using unsupervised tech-

niques which we believe are the best choice in the field of network monitoring where

labeled data is, at the present time, scarce. Moreover, we think that the temporal na-

ture of network activity is crucial to detect some scenarios and underestimated by the

current technology [Kwitt et al., 2007], thus we build our solution using time-aware

models. In the conclusion of this paper (section 6) we detail how this new setting can

lead to overcome the current difficulties posed by the scarcity of the data and often

unrealistic scenarios found in the modern datasets.

To integrate the knowledge about different devices our work aims to create digital

fingerprints of network activities which unambiguously identifies devices and their

behavior over time. Fingerprints are aggregated into clusters of similar events and

anomalies are detected as drastic changes between near in time fingerprints. We argue

that the next step towards better network monitoring is to further group information as

done previously in history. Packets have been grouped into network flows to prevent

administrators from being overwhelmed by information which, in turns, leads to bad

network monitoring. We aim to group time series describing network behavior into

a fingerprint of the host being monitored in such a way that it can be visualized and

compared to other hosts. We argue that an alert should be raised whenever a change

in the behavior signature is discovered while monitoring a device. Network adminis-

trators should then proceed in further investigation using the signature which identifies

the anomalous behavior to find similar activity in other parts of the network or in the

historical data. More granular information, like flows or packets, can then be used to
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investigate the causes.

In our work we are not addressing effective attacks pattern recognition, which can’t be

generalized to unknown attacks. We are addressing anomaly detection which include

attacks but also misconfigurations, people habit changes and all other anomalies which

can be detected by looking only at time series generated by network monitoring tools.

We believe machine learning is able to achieve this goal.

2 Methods

2.1 Solution architecture

We define an anomaly according to [Ergen et al., 2019], i.e. an unexpected event that

cannot be predicted from the data observed in the recent past. Our study concerns

network monitoring, thus, we focus either in detecting attacks (floods, DDoS incom-

ing or outgoing), misconfigurations (firewall, DNS) or changes in user habits both in

timetables or in network usage (DNS replaced with DoH).

Given a device, we monitor its network activity by means of a set of metrics collected

over time using ntopng [ntop, 2017], a popular flow-based network monitoring tool.

Bytes sent and received or the number of active flows (figure 1) are good examples

of the metrics collected. Further details are given in subsection 3.1. We have chosen

ntopng because it is able to provide us with a rich multivariate time series that can

deeply describe the behavior of a host. Furthermore, ntopng is able to process multi-

gigabit connections which are often used in public and private environments, thus it

does not set us constraints on the kind of environment we aim to target.
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Figure 1: Left: number of active flows as server during a bruteforce attack; Right:

bytes sent and reveived during normal activity

We are addressing the problem of multivariate time series anomaly detection, where

each time series contains network statistics computed for a single host. Given a mul-

tivariate time series, we solve the problem by creating a fingerprint of the device be-

haviour for successive time windows and then by reporting an anomaly if the finger-

prints computed are significantly different than expected. That is, our main objective

isn’t to learn how to discriminate between known good and bad traffic, which wouldn’t

generalize to previously unknown attack vectors different from the one seen in training
1. Instead, we aim to create a model which, given an unknown device, will return us a

latent representation which fully describes how the device is behaving right now and

how it may evolve its behavior in the recent future. If the future behavior doesn’t match

the expectation, we raise an anomaly alert. Thus, we want to introduce the concept of

network behavior similarity and, eventually, allow administrators to find all the devices

that exhibit a common behavior, which may eventually be flagged as anomalous or not.

In our settings, at training time the system is provided with a dataset Dtr = {S1, ...,SN}

containing N multivariate time series, each generated by monitoring the network activ-

ity of one host for a continuous period of time. It is important to note that Dtr contains

the time series generated by multiple hosts and even the same host but at different

times as shown in figure 2. What matters is that each time series has been generated

by monitoring a single host for a continuous amount of time.

1A system trained to discriminate between incoming DoS and normal traffic will struggle to detect

outgoing DoS made by the device being monitored
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Figure 2: The dataset contains time series of network activity features computed with

ntopng for multiple devices, eventually from different networks.

Each multivariate time series, Sd =< X1, ...,Xkd >, contains kd samples, each with

c channels representing the network metrics extracted by ntopng. An artificial neu-

ral model is trained to learn the normal behavior of devices by trying to cluster time

series samples in a latent space. To this end we used a modified triplet loss whose

discussion is postponed to section 2.2. When the model has learnt how to discriminate

the time series of different devices in the latent space, it is used to create the latent

representation of previously unseen devices. The latter are monitored by computing

the latent representation of a rolling window of the multivariate time series generated

by ntopng. If the latent representation doesn’t evolve as expected an alert is generated

and the most similar events are returned together with an anomaly score generated by

comparing fingerprints from the recent past with the last fingerprint computed. Figure

3 shows how our architecture is meant to be used at deploy time.
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Figure 3: When deployed, the model encodes time series samples into a latent rep-

resentation (fingerprint). The system uses the fingerprint to return an anomaly score

together with similar events

We aim to create a model able to combine the information collected from different

hosts into a latent representation containing general knowledge about usual network

activity. Once this knowledge is acquired it can be used to detect if a device is not

behaving as expected. Thus, our model is not meant to be limited only to the extent of

the network or device being monitored as usually happens in commercial A-NIDS.

Because of our learning framework, methods like ARIMA and Prophet can’t be used

at all. Indeed, using such models doesn’t allow us to combine effectively information

coming from different sources (i.e. devices), moreover we may completely lack normal

traffic for the device outside of the training set. Thus, applying Prophet to the unknown

devices’ traffic would result in a poor anomaly detection score because the traffic we

would train on may contain both normal activity and attacks.

2.2 Clustering in the latent space

At the end of the data extraction and preprocessing step we are provided with a mul-

tivariate time series for each host in the network similar to the ones shown in figure

1 (right). Inspired by the work of [Franceschi et al., 2019] which applied triplet loss

to time series data, and [Banville et al., 2019] which takes advantage of time series

ordering and time distance to introduce a self supervised loss function, we looked for
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unsupervised techniques to address network anomaly detection. From now on we will

refer to a 20 minutes multivariate time-series sample of a target host as context window

and an activity as a 10 minute sub-sample of it. We designed our training objective,

based on the following intuitions: a) A host won’t change radically its behavior in a

short time. Indeed, we expect that each host shows a peculiar but standard behavior

over time. If all time series were random, we would not be able to define what is normal

for a given host. In other words: ”without a normal behavior we cannot detect anoma-

lies”. b) Learning normality is different from learning to discriminate between known

good and known bad traffic. The aim of learning the concept of normal with as broad

a connotation as possible requires an unsupervised or self-supervised technique. Thus,

we may use frameworks like autoencoders or next-step-ahead predictors, however all

this technique requires the model to learn every single detail in the time series in ques-

tion. We argue that this fine-grained objective is a too difficult task in the framework of

network monitoring and may results in additional, unnecessary, complexity. Therefore

we propose that we should only know if what we sample at a given moment in time is

coherent with respect to what has been learnt from the device behavior and what just

happened in the near past. c) The traffic should be coherent: the latent representation

of activities near in time should be similar. Furthermore, the latent representation of an

activity should give information about its context. d) An anomaly is something that is

not expected to happen. Thus, to detect anomalies we aim to check if two successive

activities are coherent or not.

To address this intuitions we used a modified triplet loss. Throughout the following

paragraphs we will mark in bold matrices representing multivariate time series. Given

c ∈ RT,m a context window with m channels and T equal to 20 minutes, we randomly

sampled a 10 minute activity s ∈ Rt,m from c. Then, given femb an encoder module,

able to take as input a multivariate time series and give as output a fixed size represen-

tation of it, we defined a first loss term, Lctx, to enforce the latent representation of s to

be closer to the one of the surrounding context c than a margin α1 by minimizing:

Lctx(s,c) = ReLu(|| femb(s)− femb(c)||22−α1) (1)
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To address intuition a and avoid the embedding space to collapse into one point we

trained the model to project the latent representation of an activity coming from a

different host, namely an, at a distance greater than a second margin α2, thus resulting

in a second loss term Lcoh:

Lcoh(s,an) = ReLu(|| femb(s)− femb(an)||22 +α2) with host(s) 6= host(an)

(2)

Due to the fact that the probability of picking an at random and having the distance

between the latent representation of s and an closer than the margin α2 is very low,

we picked an to be the closest example to s in the batch [Schroff et al., 2015]. This is

typically referred to as hard triplet sampling.

The sum of Lctx with Lcoh results in a modified triplet loss function which in our case

prevented the latent space to collapse:

L(s,c,an) = Lctx(s,c)+Lcoh(s,an) (3)

To detect anomalies we applied density based clustering in the latent space and as-

sumed that most of the traffic is benign, thus classifying everything that does not belong

to the largest cluster as anomalous. We suggest that the triplet loss leads to another,

simpler and faster way to detect anomalies. Indeed, it should be noted that, by defini-

tion, successive activities are driven by the objective function to be at a distance less

than two times α1. It is straightforward to derive an anomaly score by normalizing the

distance between two successive activities within the margin [2∗α1,α2]. This leads to

an anomaly detection methodology which doesn’t look for the single outlier point in a

time series but to smooth qualitative changes within it. However this prevents us from

comparing our framework with existing tools, thus we have discarded it.

3 Validation

3.1 Data extraction and preprocessing

Most of the models proposed in literature are trained with features given by the dataset

used, which often provides basic network information such as the network flows length
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and packets specific metrics. We employed ntopng to collect a rich multivariate time

series for each host in the network. Using powerful tools such as ntopng has the major

advantage of providing the model with high level features which go far beyond basic

statistics computed on the packets flowing through the network. The number of flows

that do not meet the expected TCP behaviour (misbehaving flows), the number of times

a host failed to communicate with a remote server/client (host unreachable flows) and

the number of DNS queries failed (dns qry sent rsp rcvd:replies error packets) are

good examples of what can be extracted using ntopng. Among the many, ntopng pro-

vides also deep packet inspection (dpi) features to collect L7 categorized traffic infor-

mation for each host in the network. Thus, we may also have taken advantage of a mul-

tivariate time series containing data coming from L7 applications ranging from Skype,

Whatsapp to Telnet. However, we have chosen to avoid the use of dpi data because the

dataset we used in our experiments is entirely focused on detecting network attacks,

thus this kind of information is superfluous. We think that a future work which takes

into account people’s habits changes will take advantage also of these very important

ndpi-features that are worth mentioning. Ntopng provides also data coming from alerts

generated by user-defined thresholds. We decided not to use user-dependent metrics

because they may bias the model towards bad decisions and, even more important,

prevent us from having an unbiased performance test due to the possible tweaking of

user-defined thresholds to achieve better results.

Aimed by the fact that our experiments cover mostly network volumetric attacks (due

to the dataset at hand, section 3.2), we have chosen a subset of all the features provided

by ntopng to maximize our attack detection capabilities. The choice has been made by

looking at which features are the most influenced while a network attack occurs. We

have left the testing of the entire feature set as future work with the hope that a new,

larger and more complex dataset will be realised in the future. Table 3 reports the

feature set used in all our experiments.
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metric name description

active flows

flows as client
Number of active flows

with the host as client

flows as server
Number of active flows

with the host as server

misbehaving flows1

flows as client

Total number of

misbehaving flows

with the host as client

flows as server

Total number of

misbehaving flows

with the host as server

unreachable flows

flows as client

Total number of ICMP

Port Unreachable flows

with the host as client

flows as server

Total number of ICMP

Port Unreachable flows

with the host as server

tcp tx stats

retransmission packets

Total number of

outgoing packets that

have been retransmitted

out of order packets

Total number of

outgoing packets that

have been sent

out-of-order

lost packets

Total number of

outgoing packets that

have been lost

1A misbehaving flow is defined as flow that do not meet the expected TCP behavior.
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metric name description

contacts
num as client

Total number of

contacts with the host

as client

num as server

Total number of

contacts with the host

as server

Table 3: Feature set used in our experiments

To extracts the data produced by ntopng we developed a software module, named

data generator.py, which queries directly the back-end database used by ntopng, i.e.

InfluxDB [InfluxData, 2013], while the traffic flows through the network. Figure 4

shows the architecture used to collect the time series data.

Figure 4: Multivariate time series are extracted from InfluxDB as the traffic flows

through the network

Ntopng offers a maximum resolution of one sample every 10 seconds containing a

total of 108 metrics from which the subset in table 3 is extracted. To avoid missing
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values while extracting data from InfluxDB we aggregated2 samples into windows of

15 seconds length so that at least point is surely captured in each time window. After

the data has been extracted from InfluxDB, it needs preprocessing before usage. NaN

values caused by time windowing 3 are filled with a rolling mean window of length 3.

The data has non-stationary (non decreasing) features, like traffic:bytes sent in fig. 1.

We computed the difference between successive values to have a stationary time series.

Furthermore we encoded the time of the day using one-hot encoding thus adding four

different features: morning, afternoon, evening, night. We may have also used features

describing if the data has been sampled on peculiar days like weekend or holidays,

however the dataset used provides only midweek days.

3.2 Dataset

We conducted experiments on the CICIDS2017 [CIC, 2017] dataset. The dataset con-

tains the traffic captured in a network composed of fifteen hosts, servers and PCs,

having as operating system one among Linux (Ubuntu), Windows (Vista, 7 Pro, 8.1)

or Mac OS X. The data contains one day, Monday, of normal activity for every device

in the network and four days, Tuesday to Friday, of labeled traffic containing attacks

coming from an external network and executed against specific machines. The attacks

are comprehensive of: Brute Force against FTP and SSH, DDoS (e.g. LOIT), DoS (e.g.

slowloris, hulk) and port scanning. Detailed information about the attacks contained in

CICIDS2017 can be found in the paper associated with the dataset: [Sharafaldin et al.,

2018]. CICIDS2017 data is provided either by raw network traffic captures, i.e. pcap

files, or by features extracted from each network flow using CICFlowMeter [Draper-

Gil et al., 2016]. Thus, it has been necessary to generate the time series data using

the architecture shown in figure 4, paragraph 3.1. We deployed ntopng to monitor a

Linux dummy interface where the traffic has been injected using tcpreplay [tcp, 2017].

Tcpreplay has been essential because it allows to replay the dataset’s traffic pcaps in

2We computed the mean value
3The collector queries data every 10 minutes, then the samples are aggregated in windows of 15

seconds. Depending on the time range length which can be subject to computations delays, empty

micro-windows of few seconds may be returned by InfluxDB
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real-time as if the machine from which we run the experiments was sniffing from the

original environment. So it was possible to use ntopng as if it was deployed in the

same network where the dataset was created. We used ntopng v4.1 (CE) to generate

for each day and host a multivariate time series as described in section 3.1. A simpli-

fied representation of the dataset resulting from the data extraction process is reported

in figure 5.

Figure 5: Graphical representation of the time series extracted from CICIDS2017.

Only three of the fifteen hosts have been reported

In figure 6 we reported a more detailed example of the data extracted from ntopng

for the server with IP address 192.168.10.50 before and after the preprocessing step.

We have also reported, in image 7, the server network activity during two high-impact

attacks (DoS and Bruteforce) to highlight a problem that we faced while analyzing the

dataset. As shown in the time-series plots, the attacks labels given by the dataset don’t

match exactly with the attack effects on the time series. Because of the risk involved

in shifting the labels of few minutes and altering the time-series, we left the labels

untouched and suggest that any model that works well using this kind of labels will

have better performance in real case scenario where we lack a reference label.
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Figure 6: a. Network traffic time series generated by ntopng while monitoring the

server 192.168.10.50 during normal activity. b. The multivariate time series after the

preprocessing step

Figure 7: Time series generated by ntopng during two high-impact attacks: DoS

slowloris and Bruteforce FTP-patator.

To follow the settings proposed in section 1.3 and because of the fact that our loss

function is highly influenced by anomalous traffic which, by definition, is expected to

be project far away from the device normal traffic in the latent space, we decided to

have: a) a training set (Dtr) composed of time series containing points sampled only

during normal activity. The training set is used to let the model learn how normal de-

vices behave. b) A test set (Dm), containing normal activity never seen before. The
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loss is tested on Dm at the end of the training phase. c) A detection set (Ddt) containing

both normal and anomalous time series generated from the network activity of previ-

ously unseen devices. Anomaly detection capabilities are tested on Ddt .

To achieve the dataset subdivision into Dtr, Dm and Ddt , we separated all the time

series generated for the server with IP address 192.168.10.50 from the time series gen-

erated for the rest of the network and use them as Ddt . We selected the server with

IP 192.168.10.50 because it is the main target for most of the attacks in the original

dataset. Monday data, the one containing normal traffic only, has been used to test

the model performance (Dm). Tuesday to Friday clean data, i.e. without time-series

containing attack traffic, has been used to train the model and let it learn normal de-

vices behavior (Dtr). Figure 8 summarizes the final split into Dtr, Dm and Ddt . Table

4 describes the main features of each partition.

days samples attacks % attacks hosts

Dtr tue-fry 23172 0% - All except 192.168.10.50

Dm mon 6297 0% - All except 192.168.10.50

Ddt tue-fry 2087 0.127% Brute Force (Patator)

against FTP and

SSH, DDoS LOIT,

DoS GoldenEye,

DoS Hulk, DoS

Slowhttptest, DoS

slowloris, Nmap and

Portscan, brute force

and XSS web attacks

192.168.10.50

Table 4: Dataset partitions with respective sizes
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Figure 8: The training set (Dtr) contains Tuesday to Friday data without attacks. The

validation set (Dm) contains Monday data only. The traffic coming from 192.168.10.50

has been used to test the detection capabilities of our system. For seek of simplicity

we reported only three of the fourteen hosts in both Dtr and Dm

After the data has been split into Dtr, Dm and Ddt , it has been preprocessed as

described in section 3.1: NaN values have been filled in and differentiation has been

applied to non-stationary data. After the preprocessing step, the data has been prepared

to be used by our model. Each time series has been windowed in context windows

of length 80, i.e. 20 minutes with 4 sample per minute. We overlapped the context

windows by a factor of 95%. From now on we will take for granted that each dataset’s

partition contains context windows. At each time-step the model receives in input a

batch of context windows from within which activities of 10 minutes (40 samples) are

extracted at random. Further details are given in section 4.1.

Our training, validation and testing pipeline can be summarized into: 1. we used 5-

Fold Cross validation to train and validate our models over Dtr; 2. we trained the best

configuration, i.e. the one that achieved minimum loss, on the whole Dtr and tested it

over Dm; 3. finally, we tested the detection capabilities of our model on the previously
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unseen device 192.168.10.50 (Ddt) by computing metrics such as ROC area under the

curve, precision and recall. Kitsune and Prophet have been trained on Dtr using the

of-the-shelf fit functions provided by the authors with only minor modifications. More

details are given in subsection 4.3.

4 Implementation details

4.1 Triplet loss

To minimize our modified triplet loss we designed a very simple architecture composed

of a GRU followed by a last pooling layer and two fully connected layers. We used

the fully connected layers’ output as latent representation. At each gradient step the

model is provided with a batch of context windows coming from different hosts. We

extracted randomly an activity s from within each context c. Then, for each activity,

the negative anchor an is chosen as the activity in the batch closest (using L2 norm)

to s in the latent space but coming from a different host, as shown in figure 9. After

having computed the latent representation for the host activity (es), the anchor positive

(ec) and the anchor negative sample (ean), the three latent representations are used to

compute the triplet loss and propagate the gradient backwards. In all experiment we

have chosen Adam [Kingma and Ba, 2014] optimizer and set the loss margins α1 and

α2 respectively to 0.01 and 0.1. That is, the distance between the activity s and its con-

text c should be less than or equal to 0.01 and the distance between s and the anchor

negative an should be further away than 0.1 in L2 terms. Both α1 and α2 values were

chosen arbitrarily.
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Figure 9: The model takes as input a batch of contexts at each gradient step. For each

context c, after a fixed latent representation for activity s within c has been computed

using last pooling, the negative anchor can be found in the batch. We used the letter

n to refer to the variable sequence length: 40 samples (20 minutes) for contexts; 20

samples (10 minutes) for activities.

To compare our methods with point-wise existing ones, like Prophet, we computed

a latent representation for each point in the multivariate time series of Ddt . We used

a rolling window of length 40 (i.e. an activity) moving from point to point and for-

warding each activity in input to the model. To detect anomalous points we assumed

that most of the traffic has been generated by normal activities and used density based

clustering, DB-SCAN [Ester et al., 1996], to classified each point not belonging to the

largest cluster as anomalous. We compared the results achieved using two different

strategies for applying DB-SCAN. First, we tuned DB-SCAN to get the best look-

ing clustering over the output of the t-SNE [Maaten and Hinton, 2008] dimensionality

reduction technique applied over the latent representation of Ddt . This resulted in look-
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ing for a kinky point in the k-th nearest neighbor sorted distance plot, with k fixed a

priori to 6. Fig 10 lead us to choice of ε = 5. We refer to this technique as T Lt−SNE .

It is necessary to specify that we have chosen to use t-SNE as an intermediate step

because it let us visualize the results and find the best clustering in a straightforward

way without significantly affecting the results.

Figure 10: Distance between each point returned by the t-SNE applied to the triple loss

latent representation and its 6-th nearest neighbor. We reported ε in red.

The results achieved by applying DB-SCAN to the output of t-SNE are shown in

figure 15c. By comparing the clustering achieved with figure 14b it can be noted that

the clustering allows us to distinguish quite accurately the normal activity from attacks’

samples.

As a second alternative technique, we took advantage of the properties of the triplet

loss to choose the hyper-parameters ε and min-pts. Indeed, ε and min-pts allow us to

specify the density that we are looking for inside each cluster. Thus, we know a priori

the density of the clusters in the latent space, or at least the one containing normal

traffic. We have chosen min-pts to be the length of a context, i.e. 80 samples, and ε to

be a value inside the range [α1,α2]. For seek of simplicity we have chosen:

ε =
α1 +α2

2

We refer to this last technique as T Llatent . The clustering results are shown in figure

15c. It is important to note that this approach have led us to a ”parameter free” unsuper-

vised network anomaly detection technique which doesn’t require an external labeled

set to be tuned. Further discussion on the results achieved can be found in section 3.
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4.2 Sequence to sequence autoencoder

Among the others we have chosen to compare our triplet loss based methodology with

a sequence to sequence autoencoder. To this end we used a very simple architec-

ture composed of two single layer GRUs which act as encoder and decoder module

and a third two layer fully connect network which reconstruct the original multivari-

ate sample from the decoder’s output at each time step. The encoder’s hidden state

is initialized with an empty full-zero vector. The encoder’s output is used to create a

fixed-size latent representation using mean or last pooling. The latent representation

is then used to initialize the decoder module hidden state, whereas the decoder first

input is always a predefined token: [INIT]. We trained the autoencoder to reconstruct

the original input signal by minimizing the mean squared error over each time series.

In each experiment we have chosen to use Adam optimizer and context windows of

length 15 (nearly 3 minutes) with overlapping of 0.95%. The training framework is

identical to the one shown in figure 9, except for the reduced context length and the

fact that the model takes as input a full context X and gives in output a reconstructed

context X̂. Both are then used to compute the mean squared error at each step. We

validated our models with different percentages of teacher forcing and chosen the con-

figuration that achieved minimum reconstruction error. Figure 11 briefly summarizes

the architecture used as sequence to sequence autoencoder.
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Figure 11: The autoencoder receives in input a batch of multivariate time series and

encodes them into a latent, fixed size representation. The latent representation is used

as hidden state for a decoder module.

To detect anomalous points we applied DB-SCAN as for the triple loss case. We com-

puted the latent representation for each point in the time series using a sliding window

of length 15 moving from point to point. We applied t-SNE algorithm to the latent

representation of each time series, then we set a priori the min-samples DB-SCAN’s

hyperparameter to 5 and chosen ε by looking at the sorted distances plot between each

point and its 5-th nearest neighbor, figure 12, which led us to the choice of ε = 5. We

assumed that most of the traffic is benign, thus we classified as anomalous all the points

not belonging to the largest cluster in the t-SNE space. We may have also chosen to

use DB-SCAN in the latent space without applying a dimensional reduction technique,

however we found much more controllable and straightforward to tune DB-SCAN and

detect anomalies using such technique. Furthermore no significant changes in the de-

tection capabilities has been noted. The results achieved are shown in figure 15a-b.
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Figure 12: Distance between each point returned by the t-SNE applied to the autoen-

coder latent representation and its 5-th nearest neighbor. We reported ε in red.

4.3 Kitsune and Prophet

We used the official off-the-shelf implementation of Kitsune [ymirsky, 2018] to test

its detection capabilities. No significant changes have been made except the imple-

mentation of the detection threshold according to the original paper [Mirsky et al.,

2018], which can be summarized in: when a new instance arrives, raise an alert if the

computed root mean square reconstruction error exceeds the maximum training error

weighted by a sensitivity parameter β . We tuned β on Ddt to achieve the maximum

performance using a grid search.

Due to the fact that Prophet doesn’t support multi-output predictions, we trained mul-

tiple instances of Prophet for each channel in the time series of Dtr independently,

giving to each all the rest of the channels to learn from. Assume that Dtr contains a

single multivariate time series C = {c1, ...,ck}, with k channels. We trained k instances

of Prophet, each one to target a single channel. For channel i we trained the Prophet

instance Pi using the channels set Ci = {c j| j ∈ [1, ..,k]∧ j 6= i}. After having trained

P1, ...,Pk we applied each instance to predict the values of the corresponding channel

ci using the values in Ci. For each point in Ddt we raised an anomaly if at least half

of the Prophet predictors were wrong, i.e. out of the upper or lower boundary. A last

detail needs to be clarified. At each timestamp, Prophet requires a single value for each

channel, i.e. a single time series generated by a single source. Instead, in Dtr, for each
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sample in time we have multiple values for each channel, specifically one for each host.

That is, we have m multivariate time series, with m being the number of hosts. Due

to the fact that we only have four days and thus our data has at most daily seasonality

features, we shifted the time series generated for each host to different years. This let

Prophet learn from Dtr as if it were a single multivariate time series generated for four

days of different years, with each year containing the traffic of a specific host in the

network. Figure 13 shows how Dtr has been changed to match Prophet expected input.

Figure 13: To match Prophet input format we shifted the time series of different devices

to different years.
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5 Results

We executed a grid search over Dtr to tune the main parameters of our triplet loss

based model (TL): learning rate (lr); fully connected input and output number of neu-

rons (latent size); number of recurrent layers (rnn layers); GRU’s number of neurons

(rnn size). We fixed the batch size for the triplet loss at 4096 context windows. We

also experimented different configurations for the autoencoder (AE) by tuning: learn-

ing rate; batch size; pooling (mean or last); teacher forcing ratio; GRU’s hidden layer

and fully connect layers’ size (latent size). For every configuration we used the opti-

mizer Adam and applied 5-Fold cross validation to compute the mean validation loss

(mean vl). At each step we used early stopping on the loss value computed over a vali-

dation partition (0.2%) of the training set fold at hand. Table 5 and 6 reports the result

achieved. With the best hyper parameter configuration (marked in bold), we trained

both AE and TL on the full training set, Dtr, and tested the detection capabilities on

Ddt . For each technique we computed: precision (prec.), recall (rec.), accuracy (acc.),

ROC area under the curve (roc auc) and computed the whole confusion matrix. We

reported the results achieved in table 7 together with the results achieved by Kitsune,

also trained on Dtr. We tuned Kitsune sensitivity hyperparameter, β in the original

paper, the maximum size of any autoencoder in the ensemble layer, m in the authors’

code, and reported the configuration which achieved the best detection performance.

We specified the technique used to fit DB-SCAN using the subscript: T Lt−SNE , mean-

ing that DB-SCAN has been fit on the output of t-SNE; T Llatent , meaning DB-SCAN

has been fit over the latent space using a priori knowledge resulting from the use of the

triplet loss itself, as described in section 4.1. The results attained by Prophet have not

been reported because, according to our predictions in section 1.3, the tool achieved a

very poor detection performance (ROC = 0.5). We argue that this is due to the fact that

Prophet is not able to combine the information coming from time-series generated by

different hosts and apply it to previously unseen ones if these are significantly different.
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lr latent size rnn layers rnn size mean vl

0.0005 128 3 128 0.0820

0.0005 128 3 64 0.0822

0.0005 64 3 128 0.0841

0.0001 64 3 128 0.0849

0.0001 64 3 64 0.0852

Table 5: Grid search results achieved with 5-Fold cross validation on Dtr using triplet

loss based architecture with context length of 80 (20 minutes), overlapping of 0.95 and

last pool.

batch size lr latent size teacher forcing ratio mean vl

64 0.0001 128 0.7 1151.5249

128 0.0001 128 1. 1152.8282

64 0.0001 32 1. 1161.3983

128 0.0001 32 1. 1174.2008

64 0.0001 64 1. 1193.9202

Table 6: Grid search results achieved with 5-Fold cross validation on Dtr using se-

quence to sequence autoencoder based architecture with context length of 15 (3 min-

utes), overlapping of 0.95. Pooling has been omitted because mean pool has always

led to better results.

roc auc prec. rec. acc. f1 tn fp fn tp

AE 0.868 0.72 0.792 0.921 0.754 0.801 0.046 0.031 0.12

T Lt−SNE 0.82 0.846 0.663 0.929 0.744 0.827 0.018 0.051 0.102

T Llatent 0.839 0.695 0.738 0.909 0.716 0.796 0.049 0.04 0.113

Kitsune 0.638 0.556 0.322 0.858 0.408 0.81 0.038 0.102 0.048

Table 7: Detection capabilities of different approaches tested on Ddt .
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Besides the fact that the best scores are achieved by the sequence to sequence

autoencoder architecture, we point out that by using a priori knowledge given by the

triplet loss to fix the DB-SCAN hyperparameters (T Llatent) has led to similar results.

Kitsune achieves some results but it is not comparable with time-aware methods. This

is probably due to the considerable noise caused by the chaotic nature of the network

data when analysed point by point.

We explored the latent space by examining the scatter plot generated by applying

t-SNE on the latent representation of each sample in Ddt . Figure 14 shows the input

space without having applied any learning algorithm, the latent space resulting from

the minimization of the triplet loss, the latent representation generated by sequence to

sequence autoencoders.
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Figure 14: All the plots have been generated using data from Ddt . a. t-SNE applied to

the raw input samples. b. t-SNE applied over the latent representation resulting from

the minimization of the triplet loss. c. t-SNE applied on the latent representation built

by the sequence to sequence autoencoder.

We highly suspect that the noise within the t-SNE clusters of figure 14 and a degraded

performance is caused by the time shift described in section 3.1, which consists of

having labels wrongly shifted from network effects of the attacks.

We also reported, in figure 15, the clusters used to detect anomalies (recall that we

considered as anomalous each point not belonging to the largest cluster, see section

4.1 and 4.2). We point out: a) the clusters contain similar attacks, meaning anomalies

that have similar effects on the time series end up being near in the latent space; b)
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Our a priori hyperparameter choice for DB-SCAN over the latent representation of TL

gives us a very good choice for detecting anomalies.

Figure 15: Plots generated using the data from Ddt . a. t-SNE applied on the latent

representation built by the sequence to sequence autoencoder. b. DB-SCAN applied

to the t-SNE output of the latent representation generated by sequence to sequence

autoencoder; c. focus on the cluster with label ”3”.

We have also plotted the output from the t-SNE reduction applied to the latent

representation of Dm. From our experiments the latent representation of similar device

cluster together both for autoencoders and triplet loss, as shown in figure 16. Figure

16 has also given us an insight about an unexpected device not reported by the authors

of the dataset, with IP 192.168.10.1, which forms a well separated cluster labeled
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”unknown device class”.

Figure 16: Plots generated using the data from Dm. a. t-SNE applied to the raw input

samples. b. t-SNE applied on the latent representation resulting from the minimization

of the triplet loss. c. t-SNE applied on the latent representation built by the sequence

to sequence autoencoder.

As a last experiment we merged Dm with a subset of the IoT23 dataset, presented in

[Parmisano et al., 2020] and containing internet of things (IoT) benign and malicious

traffic. The scenarios of IoT23 that we used are: normal traffic captured from an

Amazon Echo device and a Soomfy IoT doorlock; Mirai botnet [jgamblin, 2017]

malicious traffic and a Trojan attack (scenario 8 in the dataset authors repository).
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Both the attacks have been executed against a RaspberryPI for which the authors

didn’t provide benign traffic. Figure 17 shows the results achieved by applying

t-SNE to the latent representation of our triplet loss based model pretrained on Dtr.

Similar but less good results were achieved using the pretrained sequence to sequence

autoencoder. The data available is not sufficient to outline a typical IoT behavior in

the latent space and consequently discern benign traffic from malicious one. However

it is possible to see that the model has generalized well and the latent space is much

more structured than the raw data and able to fully characterize the traffic captured

from two previously unseen IoT devices: the Amazon Echo and the Smoofy doorlock.

Figure 17: Plots generated using the data from Dm merged with IoT23 data. Left:

t-SNE applied to the raw input samples. Right: t-SNE applied on the latent represen-

tation resulting from the minimization of the triplet loss.

6 Conclusion

In our work we highlighted the use of the feature space latent representation to improve

network monitoring. Through the use of unsupervised learning and dimensionality re-

duction techniques we were able to visualize the network activity generated by differ-

ent devices and introduce the concept of network behavior similarity among different

hosts. Using prior knowledge on the latent space density resulting from the use of a
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triplet loss objective function led us to a threshold-free unsupervised anomaly detec-

tion system which achieves performance comparable to sequence to sequence autoen-

coders, one of the most popular techniques. From our experiments, whose source code

has been publicly released [Sabella, 2021], we found that time-aware methods achieve

better performance than point-wise techniques like the one proposed by [Mirsky et al.,

2018]. We argue that this is due to the inherent noise in network activity. We proved

that simpler techniques like auto-regressors are unable to combine the knowledge ac-

quired from different hosts. Therefore, we suggest that they are not suitable for a

scenario that includes learning from many captures from multiple uninfected devices

and detecting anomalies for previously unseen hosts.

From our results both sequence to sequence autoencoders and triplet loss are to be

considered worth of further study. The former because of their performance, the latter

because of the deeper understanding and better control over the latent representation.

Further experiments are also needed to asses the performance of the latent representa-

tion achieved by multi step ahead neural network objectives.

With our work we point out, as done previously by [Hindy et al., 2020], that the mod-

ern datasets are not sufficient to implement a reliable anomaly detection system. We

proposed an unsupervised learning framework which consists of training on raw traf-

fic captured from different and diverse devices and testing detection performance on a

small dataset containing malicious traffic captured from few devices. If future studies

will prove that it is possible to build a strong latent representation using unsupervised

models even with anomalous traffic in the training dataset, it may be possible to collect

a training set containing enough information in terms of volume and diversity able to

enhanced the results achieved by our experiments.

The models proposed are far from being perfect, still many questions and problems

remain open.
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