
UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

Laurea Triennale in Informatica

Analysis of network traffic on the public
network through a honeypot

Relatore:

Prof: Luca Deri

Prof: Fabrizio Baiardi

Candidato:

Sergio Garrido de Castro

ANNO ACCADEMICO 2022/2023

Acknowledgments

First and foremost, I want to express my gratitude to my parents, who have provided
me with their effort and sacrifice, giving me the opportunity to receive a quality
education and become a Computer Engineer.

To my friends from Medina del Campo, my lifelong companions, who have been
there with me from the beginning until this point in my life.

To my friends from Colegio Mayor Belardes, who have accompanied me through
the best and worst times and have helped shape me into the person I am today
throughout all these years.

To my friends from Computer Engineering, without whom these years of study
would not have been the same. They have proven to be extraordinary travel com-
panions, sharing experiences, memories, and knowledge.

To all of them, I am grateful for their support, the moments we have shared, the
invaluable help they have provided, and the life lessons they have taught me. I am
proud of them, and I couldn’t be more thankful.

Abstract

The objective of this project is to investigate honeypots with the intention of con-
figuring and developing new functionality in order to monitor network traffic and
determine the distribution of traffic in the network and the presence of malicious
activity in such traffic.

The project has research undertones. A honeypot is a security tool that can be
dangerous if used incorrectly or unethically. The honeypot used will be employed
in a controlled environment with all possible precautions to try to ensure its proper
functioning."

Contents

Acknowledgments 3

Abstract 5

1 Introduction 13
1.1 Objectives and Expected Results . 13

2 Theoretical Foundations of a Honeypot 15
2.1 Definition . 15
2.2 Types of Honeypots . 16
2.3 Operation of a Honeypot . 19
2.4 Advantages . 20
2.5 Disadvantages . 21

3 Criteria for Selecting the Right Honeypot 23
3.1 Taxonomy for Classification . 23
3.2 Architecture . 24
3.3 Degree of Interactivity . 25
3.4 Emulation Level . 26
3.5 Programming Language . 26
3.6 Objectives . 27
3.7 Open Source Honeypots . 27
3.8 Table for Honeypot Classification . 35
3.9 Chosen Honeypot . 35

4 Analysis and Design of Honeytrap Software 39
4.1 Analysis I. Use Cases . 39
4.2 Analysis II. Domain Model . 40

4.2.1 Domain Objects. Data Structures 41
4.2.2 Relations . 43

4.3 Design . 44
4.3.1 Approach . 44
4.3.2 Design Patterns . 46

CONTENTS 8

5 Configuration of the Chosen Honeypot 49
5.1 Plugin providing support for HTTP 49
5.2 Plugin providing support for DNS . 50
5.3 Plugin providing support for SSH, SCP, and SFTP 51
5.4 Configuration File . 52
5.5 Configuration of Vulnerable Services 57

6 Deployment in the Public Network 63

7 Analysis of Collected Data 67
7.1 Log file analysis. Connection distribution 67
7.2 Binary file analysis . 78

7.2.1 Analysis in Virustotal . 87
7.3 Attackers distribution . 88
7.4 Duration of the attacks. Techniques used 96

8 Conclusions 101
8.1 Future Work . 102

Appendix I 105
8.2 Virustotal . 108

Appendix II 109
8.3 htm_httpDownload.c . 109

8.3.1 Function is_https() . 109
8.3.2 Modification on cmd_parse_for_http_url() 109

8.4 htm_dnsDetection.c . 111
8.4.1 Function is_dns_query() . 111
8.4.2 Function cmd_parse_for_dns_query() 112

8.5 htm_sshDownload.c . 114
8.5.1 Function cmd_parse_for_ssh() 114
8.5.2 Function get_sshcmd . 115
8.5.3 Function get_ssh_resource 117
8.5.4 Function get_ssh_resource_by_sftp 118
8.5.5 Function get_ssh_resource_by_scp 120

Bibliography 127

List of Figures

2.1 Honeypot Architecture . 16

4.1 Use Case Diagram . 40
4.2 Data Structure Diagram . 41

7.1 Proportion of Connections Graph - First Log 77
7.2 Suspected Malicious File . 79
7.3 Virustotal analysis results . 87
7.4 Hexadecimal to string . 98

8.1 LaTeX File Organization . 105

List of Tables

2.1 Advantages and disadvantages of physical and virtual honeypots . . . 17

3.1 Taxonomy to choose the right honeypot 36

6.1 Regla de salida . 64
6.2 Table of inbound rules in the instance 65

Chapter 1

Introduction

1.1 Objectives and Expected Results

The main objective of this project is to collect data from a public network using a
selected honeypot based on certain criteria. The collected data will be related to
the connections made within that public network.

Once the data is collected, it will be analyzed using analysis techniques and ap-
propriate tools to distinguish the types of connections made and the protocols used
(such as SSH, DNS, or TFTP). Furthermore, the analysis will take into account
whether there were any downloads during the connection, the remote IP address,
and the port, in order to identify any suspicious activity.

The connections in a public network will be monitored over a specific period of
time, typically between 20 and 30 days, to obtain a significant and representative
sample of the network’s activity. The collected data will be stored in a log file, and
the corresponding analysis techniques will be applied to that log file. The expected
results in the log files will be the detected connections based on the predefined
configuration of the honeypot. If the honeypot is configured to detect only specific
protocols, then the log file will contain only the connections that were detected using
those protocols. The results will also depend on the configuration and usage mode
of the honeypot. Different honeypots may yield different results due to variations
in their level of interaction and network emulation.

In summary, the results collected in the log file after monitoring a public network
over a period of time will consist of incoming connections that meet the predefined
configuration conditions of the honeypot. Once these connections are collected,
they will be analyzed and classified. It is expected that the detected connections
will primarily involve common protocols, such as HTTP, HTTPS, and DNS, which
should represent a significant portion of the monitored connections. File transfer
protocols, such as TFTP or FTP, are also expected to contribute to a significant

1.1. OBJECTIVES AND EXPECTED RESULTS 14

portion of the traffic. Protocols involving remote connections, like SSH, are expected
to be less prevalent in proportion. Traffic related to SQL database protocols is not
anticipated since there are no plans to implement any databases.

Chapter 2

Theoretical Foundations of a
Honeypot

A honeypot is a software that serves as a security tool deployed within a network with
the purpose of being the target of a potential cyber-attack, enabling its detection
and gathering information about the attacker and the attack itself.

Its main and most notable characteristic is that honeypots are not only designed to
defend against attacks, but they also act as invisible decoys, allowing the detection of
potential attacks before they can impact other critical systems. However, honeypots
can be designed for various objectives, such as alerting the presence of an attack,
gathering information about an attack without interfering with it, or slowing down
the attack to protect the rest of the system. Based on this, honeypots have different
use cases, but their primary purpose is to distract potential attackers from more
important information and machines within the actual internal network. They also
serve to learn about the types of attacks that can be encountered and examine those
attacks during and after the exploitation of the honeypot tool.

2.1 Definition

The term "honeypot" refers to a software tool that, literally translated from En-
glish, means "honey jar." However, in the context we are interested in, this word
has a different connotation, alluding to a "honey trap." This definition originated in
the field of espionage, where it describes how spies, like Mata Hari, used romantic
relationships to obtain secrets, thus setting up a "honey trap." Enemy spies often
fell into these traps and were then blackmailed into revealing all the information
they possessed.
In the field of computer science, an analogy is drawn with this concept, as a honey-
pot, as known today, operates similarly by luring attackers into a trap. According
to this definition, a honeypot is a computer system specifically designed to act as
a decoy, sacrificing itself to attract cyber-attacks. In summary, a honeypot is a

2.2. TYPES OF HONEYPOTS 16

monitored computer resource used to test its ability to resist or be compromised by
cyber-attacks. Figure 2.1 illustrates a system with a honeypot in place.

Figure 2.1: Honeypot Architecture

2.2 Types of Honeypots

Within honeypots, there are several classifications [1] to distinguish them. The first
classification we can offer is based on the type of implementation:

• Physical: This refers to a real machine with its own IP and MAC addresses.
The machine simulates system behaviors. Implementing physical honeypots
can be costly as it requires acquiring new machines and configuring specific
hardware.

• Virtual: A virtual honeypot [2] is a simulated machine with emulated behaviors,
including the ability to respond to network traffic. Multiple virtual honeypots
can be simulated on a single system. This type allows for the installation and
hosting of various operating systems within the network. To convince attackers
that a virtual honeypot is running a specific operating system, it is necessary to
simulate the target operating system’s TCP/IP stack in order to deceive them.
Another machine is responsible for responding to network traffic directed at
the virtual honeypot.

Table 2.1 provides a breakdown of the advantages and disadvantages of these two
types:

2.2. TYPES OF HONEYPOTS 17

Physical Honeypot Virtual Honeypot
Advantages Easy deployment of multiple honeypots

Scalability and low-maintenance costs
Inexpensive
Quick and simple implementation
Ideal for low-interaction honeypots

Real machine on the network
More realistic
Harder to identify as a
honeypot
Ideal for high-interaction
honeypots

DisadvantagesMore easily detectable by attackers
Difficulty in simulating complex
systems
Collects less data

Expensive
Impractical for systems with many
IP addresses

Table 2.1: Advantages and disadvantages of physical and
virtual honeypots

Honeypots can also be distinguished based on their purpose:

• Research Honeypots: These honeypots are designed to gather information
about the specific methods and techniques used by attackers and to detect
vulnerabilities in the network and assets. They are usually more complex than
production honeypots. They are often used by organizations to better under-
stand security risks, analyze network traffic, and assess the risks present in
the network. This knowledge allows them to propose and design appropri-
ate security strategies. Research honeypots are used by corporations, private
companies, and individuals.

• Production Honeypots: These are the most common type and are used to
gather information and intelligence about cyber-attacks within the production
network. The collected data includes IP addresses, date and time of intrusion
attempts, traffic volume, and other attributes that may vary depending on the
tool used and its configuration. Production honeypots are relatively simple to
design and implement but are less sophisticated than research honeypots in
terms of the intelligence gathered.

Types of honeypots can also be classified based on design criteria [3]:

• Pure Honeypots: These are complete production systems. The attacker’s activ-
ities are controlled using a bug tap, which is installed on the honeypot’s network
link. No additional software installation is required for operation. Pure hon-
eypots are useful, but the stealth of their defense mechanisms can be ensured
with a more controlled mechanism.

• High-Interaction Honeypots: These honeypots are designed to engage attack-
ers for extended periods by simulating the activities of a production system

2.2. TYPES OF HONEYPOTS 18

hosting a variety of services and presenting a network of targets such as dif-
ferent databases. The extended engagement time allows for the collection of
a larger amount of data, providing greater insights into attack methods, tech-
niques, and even the identity of the attacker. They consume more resources
but also provide more relevant and higher-quality data. A honeypot perime-
ter or honeywall should be configured around the high-interaction honeypot,
offering a single entry and exit point to monitor and manage all network traf-
fic, preventing lateral movements from the decoy system to the real system.
High-interaction honeypots offer more security but are also more difficult to
detect. Multiple honeypots can be hosted on a single physical machine using
virtualization, allowing for quick restoration if a honeypot is compromised. If
virtual machines are not available, a separate physical machine must be used
for each honeypot, which can be cost-prohibitive.

• Low-Interaction Honeypots: These honeypots use minimal resources and collect
basic information from attackers. They are easy to configure and maintain
but are less effective. They only simulate the specific services requested by
attackers. Due to their low resource consumption, several virtual machines can
be hosted on a single physical system without difficulty. Virtual systems have
short response times and require less code, reducing complexity. As mentioned
earlier, most production honeypots are low-interaction honeypots.

• Sugarcane Honeypots: This type of honeypot masquerades as an open proxy.
It can take the form of a server designed to resemble a misconfigured HTTP
proxy.

• Deception Honeypots: This is a proactive cybersecurity measure based on artifi-
cial intelligence, machine learning, and other advanced technologies to enhance
and automate data collection and analysis.

There is also a final classification type based on the type of activity detected:

• Email or Spam: The honeypot implements a fictional email address in a hid-
den field that can only be detected by an automated address harvester or site
crawler. Since the address is not visible to regular users, all correspondence sent
to that inbox can be categorized as spam. The organization can then block the
sender’s IP address as well as any message matching the blocked message’s
content.

• Databases: The honeypot decoy is intentionally designed to appear as a vulner-
able and fictitious dataset. This decoy helps companies monitor software vul-
nerabilities, internal attackers, and security architecture. The decoy database
collects data on SQL injections, credential hijacking, and privilege escalations
used by attackers, which can be integrated into defense mechanisms and the
security policy designed for the respective company.

2.3. OPERATION OF A HONEYPOT 19

• Malware: A malware honeypot simulates a software application or an Appli-
cation Programming Interface (API) to generate malware attacks in a more
controlled environment. This allows for the analysis of attack techniques and
the development of new solutions to prevent malware or improve existing solu-
tions that can address system vulnerabilities and potential threats.

• Spider Honeypots: The operation is similar to that of a spam honeypot,

but in this case, the spider honeypot is designed to trap web crawlers or spiders
by creating fake web pages and links.

It is also important to mention the concept of a honeynet [4][5]. A honeynet is
the most complex type of honeypot, as it is a complete network composed of various
systems that are ready to be attacked. Honeynets are high-interaction honeypots
that act as an entire network specially designed to be attacked and collect more
information about potential attackers. They use real equipment with real operating
systems and running real applications. A honeynet can contain any existing net-
work components, such as routers, switches, or any other element, allowing for the
replication of any organization’s network, no matter how complex it may be. This,
combined with the use of real systems with real services and typical configurations,
ensures that the risks and vulnerabilities encountered are exactly the same as those
of the replicated organization’s exposed systems.

2.3 Operation of a Honeypot

The operation of a honeypot involves several key stages, as its objective is to attract
attackers and divert them from a real system. The main stages of this process are
as follows:

• Honeypot Configuration: In this initial stage, the honeypot is configured to
establish a controlled environment that simulates an attractive target with
vulnerabilities to lure attackers. Realistic environments should be created with
information and services that may be appealing to attackers. During this stage,
the type of honeypot to be used should be defined, considering its level of
interaction, and the desired characteristics to be simulated.

• Attractive Design: The honeypot must be designed in a way that is appealing
and valuable to attackers while resembling the target of the network being
protected. This involves deliberately implementing known vulnerabilities that
are not obvious, so that attackers are enticed and actively engage with the
honeypot, aiming to deceive them and reveal clues about the techniques they
employ.

• Monitoring and Logging Activities: Once deployed in the controlled environ-
ment and operational, the honeypot starts recording all activities and events

2.4. ADVANTAGES 20

that occur against it. Access attempts, types of attacks, methods used, and
any information that attackers try to obtain are monitored. The generated logs
are crucial for identifying attack patterns, detecting new threats, and designing
security measures against them.

• Analysis and Response: The collected data is analyzed to understand the tech-
niques used by the attackers. This analysis allows for improvements in security
measures by identifying the exploited vulnerabilities.

To truly understand how a honeypot works, the stage of monitoring and logging
is particularly important. Therefore, let’s delve a little deeper into it. A honeypot
primarily records events that occur in its surrounding environment. These events
include port scans, vulnerability exploitation attempts, access attempts, service re-
quests, and any actions performed by the attacker. These data are logged along with
the attacker’s IP address, attack type, attack duration, and the involved data. Net-
work packets exchanged between the attacker and the honeypot are also captured
to extract additional relevant data, such as the protocol or port used. In addition
to event logging, the honeypot can also log the commands and actions executed by
the attacker within the simulated environment, such as shell commands, file trans-
fer requests, or database queries. If the honeypot simulates a file system, changes
within it, such as file creation, modification, and deletion, can be logged as well.

2.4 Advantages

Honeypots offer several advantages [6], which include:

• Value of Data: One challenge faced by companies is extracting valuable data
from the vast amount of collected information. Large companies generate mas-
sive amounts of data daily, including firewall logs, system logs, and intrusion
detection alerts. This data overload makes it difficult to obtain valuable in-
sights. Honeypots, on the other hand, collect a small amount of data but of
significant value. This greatly reduces the noise level, going from collecting
gigabytes of data daily to just a few megabytes or even less. Honeypots mainly
capture scans, probes, and attacks, which are highly valuable data. A honeypot
can provide the required information precisely in a fast and easily understand-
able format. Due to the limited data collected, it becomes easier to correlate
and identify trends that most organizations would overlook.

• Resource Efficiency: Security mechanisms often face limitations and resource
depletion. This occurs when a security mechanism can no longer function prop-
erly because its resources are overwhelmed due to high demand. A honeypot
captures only the activities directed at itself, unlike a firewall or an IDS sen-
sor that processes all network traffic. These mechanisms consume a significant
amount of resources, and the speed and volume of traffic can be too high to

2.5. DISADVANTAGES 21

analyze every packet on the network. This may result in the omission of po-
tential attacks. A honeypot avoids this issue by focusing only on the specific
traffic directed at it. Another advantage of honeypots in terms of resources is
that they do not require cutting-edge technology, high amounts of RAM, fast
chip speeds, or large disk capacity for proper functioning.

• Simplicity: The advantage of simplicity in honeypots refers to the fact that
complex algorithms, signature databases, and rule sets do not need to be de-
signed, developed, and maintained. The procedure is the same even for research
honeypots, which may be more complex. For all honeypots, all that is needed
is to configure them, deploy them in the network, and wait for them to collect
data. The simpler the operation, the more reliable it is, as increasing complex-
ity can introduce potential errors.

• Return on Investment: Companies may start to believe that their investment
is no longer profitable because threats are no longer being detected. Most
security tools are costly investments that eventually become victims of their
own success. By mitigating and eliminating a significant portion of existing
threats, they may seem unprofitable. However, honeypots quickly and repeat-
edly demonstrate their value. Each time a honeypot is attacked, the existence
of malicious activity is confirmed. By capturing unauthorized activity, honey-
pots can be used to justify not only their own value but also investments in
other security resources. When a company’s management perceives no threats,
honeypots can effectively demonstrate the high level of risk that still exists.

2.5 Disadvantages

However, like any security tool, honeypots are not infallible and have their disad-
vantages [6]. Some of the drawbacks of honeypots are as follows:

• Narrow Field of View: A honeypot only detects activity explicitly directed
at it. If an attacker enters the network and targets a system other than the
honeypot, the honeypot will not be aware of it unless it is directly attacked.
If it becomes apparent that a system is a honeypot, attackers may attempt to
avoid it and infiltrate the network undetected. A honeypot acts as a microscope
on the collected data, focusing on data value and the organization’s security
while excluding events happening outside its scope. This can be considered the
biggest disadvantage of honeypots.

• Fingerprinting: Another disadvantage of honeypots, especially commercial ones,
is fingerprinting. Fingerprinting refers to the traces left on the Internet that
can reveal the nature of a system. In the context of honeypots, it refers to
an attacker deducing that a system is a honeypot based on expected behaviors
or common characteristics. For example, in a honeypot simulating an HTTP

2.5. DISADVANTAGES 22

server, if an attacker connects to this service and receives an HTML response
with an error, they may deduce that it is a honeypot. An incorrectly imple-
mented honeypot can even detect itself. Fingerprinting can be an even greater
risk in research honeypots, as a system specifically designed for intelligence
gathering can be in a precarious situation if detected. An attacker who has
identified such a honeypot could provide it with misleading information, lead-
ing to erroneous conclusions. In most cases, companies do not want honeypots
to be detected, although there are instances where a honeypot may identify
itself in an attempt to deter the attacker.

• Risk: The third known disadvantage of honeypots is the risk they pose to
the rest of the network. When we talk about risk in a honeypot, it means
that an attacked honeypot represents a significant risk to the network in which
it is deployed. Attackers can use the compromised honeypot as a stepping
stone to target, infiltrate, or harm other systems and organizations. Some
honeypots introduce very little risk, while others provide entire platforms from
which new attacks can be launched. The simplicity of the honeypot is inversely
proportional to the risk it poses. Risk levels vary between different honeypots,
depending on their configuration and deployment.

Having examined these disadvantages, it can be concluded that honeypots cannot
replace other security tools such as firewalls and intrusion detection systems (IDS).
Honeypots should be used as a complementary tool alongside these other defense
mechanisms.

Chapter 3

Criteria for Selecting the Right
Honeypot

To choose the right honeypot, we need to consider the protocols that are relevant
to the network we want to monitor. The typical protocols to consider in a public
network are as follows:

• HTTP and HTTPS

• FTP and TFP

• DNS

• SMTP

• SSH

• Telnet

• SQL

Taking into account these protocols, I will now present a series of honeypots that
support the monitoring of all or several of the mentioned protocols. But first, it
is necessary to establish a taxonomy to explain the process of selecting the most
suitable honeypot for the project.

3.1 Taxonomy for Classification

To classify the list of honeypots proposed for this project, we need a set of criteria
that will be followed and compared against the objectives to be achieved. The
classification criteria to consider in developing the honeypot taxonomy are as follows:

• Architecture

3.2. ARCHITECTURE 24

• Degree of interactivity

• Level of emulation

• Programming language used

• Objective

3.2 Architecture

When we talk about the architecture of a honeypot, we refer to how it is designed and
built, including its components, their interaction, and how they are connected. It
depends on the type of honeypot, its objectives, and the network in which it is being
implemented. A typical average architecture includes the following components:

• Host: It is the hardware and operating system responsible for hosting the
honeypot. It can be a physical or virtual machine, always configured in isolation
to prevent attackers from accessing other network resources.

• Honeypot software: It is the specific software installed on the host to emulate
the desired service or protocol to be protected. It can be customized or pre-
configured and is used to attract attackers to interact with the honeypot.

• Honeypot network: It can consist of multiple honeypots interconnected to pro-
vide a more comprehensive view of attacker activity in a network. The hon-
eypots in a network can be of different types and are configured to attract
different types of attackers.

• Analysis tools: These are the tools used to analyze the collected data and
generate reports on attacker activity. These tools may include network traffic
analysis software, log file analysis, and malware analysis.

• Event Logging: This component is used to record and store the events of in-
teraction between attackers and the honeypot. The log may include data such
as attackers’ IP addresses, attack techniques used, and the outcomes of the
attack.

• Monitoring and Alerting: This component is used to monitor the honeypot
and issue an alert if suspicious activity is detected or there are attempted
attacks. It can be configured to notify security administrators in real-time or
on a scheduled basis.

There are different types of honeypot architectures, some more specific and others
more general. Here are the most common ones:

3.3. DEGREE OF INTERACTIVITY 25

• Single System Honeypot: This is the simplest type of architecture. It consists of
a single system running the honeypot software and is used to attract attackers.
However, it can be easily evaded by attackers.

• High-Interaction Honeypot: This type is more complex and is used to emulate
a real system. It offers a more comprehensive view of the techniques used by
attackers as it allows full interaction with the emulated system. It requires
more effort and maintenance than the previous type.

• Honeynet: It is a network of interconnected honeypots that aims to emulate
a real network. It is used to attract attackers and provide a broader view of
their attack techniques. It is very effective for security research but requires
significant time and effort to implement and maintain.

• Low-Interaction Honeypot: It emulates a specific service or protocol. Unlike
high-interaction honeypots, this type does not allow full interaction with the
emulated system. This allows for simpler implementation and maintenance,
but it is less effective in detecting more complex techniques.

• Cloud-based Honeypot: It runs in a cloud environment and is typically used to
detect malicious activities in such environments. They are easy to deploy and
have good scalability, but their interaction is limited by the cloud environment
itself.

These are the most common types of architectures. There are other more specific
architectures depending on the use case of the honeypot. Examples include modular
or plugin-based architecture, web server-based architecture, host-based architecture,
etc.

3.3 Degree of Interactivity

This refers to the level of interaction allowed with attackers. Honeypots can be
classified as high-interaction, low-interaction, or somewhere in between.

• High-Interaction: These honeypots allow full interaction with the emulated
system. Attackers can execute commands and perform activities similar to
those in a real system. This provides greater visibility and understanding of
attackers’ tactics and techniques, but it also carries a higher risk as attackers
could potentially use the honeypot as a point of entry to other systems in the
network.

• Low-Interaction: These honeypots emulate only a specific part of the system,
such as a protocol or service. They do not allow full interaction with the
system. They are easier to implement and maintain and pose less risk to the
network. The main drawback is that they may be less effective in detecting
more advanced attacker tactics and techniques.

3.4. EMULATION LEVEL 26

• Intermediate: These honeypots provide an intermediate level of interaction
with attackers. They may emulate a part of the system, allowing more limited
interaction than high-interaction honeypots. They are more effective than low-
interaction honeypots but also more complicated to implement and maintain.

3.4 Emulation Level

The emulation level refers to the degree to which a honeypot emulates the service
or protocol it aims to protect.

In a high-emulation honeypot, a real service is imitated with great precision.
It can be more effective in attracting attackers as it provides a more realistic user
experience and may lead attackers to believe they are interacting with a real system.
The major disadvantage is that its configuration and maintenance costs are high due
to the complexity of the simulation offered.

On the other hand, a low-emulation honeypot provides a less realistic simulation.
Its main advantage is that it has lower maintenance and configuration costs. How-
ever, a significant drawback is that attackers may detect that they are interacting
with a honeypot instead of a real system.

The choice of emulation level should depend on the objectives of using a honeypot.
If the goal is simply to collect data on attackers’ activity in a network, a low-
emulation honeypot may be sufficient. However, if the goal is to analyze attackers’
behavior, a high-emulation honeypot should be used.

3.5 Programming Language

Another criterion to consider in selecting the best honeypot for this project is the
programming language in which it is developed. The choice of programming lan-
guage for honeypot development depends on factors such as the type of honeypot,
system resources, available network analysis tools, and the developer’s preference
and experience. Here are some common programming languages used in honeypot
development:

• C/C++: It is used for its efficiency and low-level capabilities for system re-
source access.

• Python: It is popular due to its ease of use and a wide range of available
libraries for network analysis tasks.

• Java: It is used for its portability and a broad selection of libraries for network-
related tasks.

3.6. OBJECTIVES 27

• Ruby: It is chosen for its ease of use and its ability to interact with databases.

• Bash/Shell: It is used for creating script-based honeypots as it is simple to use
for task automation and file/directory manipulation.

Ultimately, the choice of programming language depends on the developer’s expe-
rience. It would be more advantageous to choose languages that you have previous
experience with.

3.6 Objectives

There are various objectives for which a honeypot can be used in a network. The
following objectives can be considered:

• Threat detection: Honeypots are used to detect attacks and threats in real time.
By emulating real-time applications and services, attackers can be attracted,
and information about their tactics and tools can be collected.

• Information gathering: Honeypots are used to gather information about the
techniques and tactics used by attackers. The collected data can be used to
improve network security, identify attackers, and provide assistance in legal
processes.

• Deception of attackers: Honeypots can be used to make attackers believe they
have gained access to a valuable system. This can serve as a deterrent and
reduce the chances of attackers targeting a real system.

• Research in the field of cybersecurity: Honeypots can be used in research to
assess current security measures in the system, propose improvements to these
measures, and develop new security tools.

• Training and education: Honeypots can be used to educate and train cyber-
security professionals in the techniques and tools used by attackers, enabling
them to develop their skills in threat detection and response.

3.7 Open Source Honeypots

The following is a list of honeypots that I have considered to have some interesting
features for the objectives sought in this project. These honeypots are all open-
source, which means they can be modified to add additional functionality that may
be of interest. All of these honeypots can be found in GitHub repositories.

3.7. OPEN SOURCE HONEYPOTS 28

Dionaea

Dionaea [7] is an open-source honeypot developed by DinoTools. It is a low-
interaction honeypot that captures data on attacks and malware. It incorporates
Python as its main programming language, but it also has modules programmed in
C, offering a modular architecture. It uses libemu to detect shellcodes and libudns
for DNS resolution, which is a non-blocking DNS resolution library. Additionally,
it uses libev to be notified when it can use a socket for reading or writing. Dionaea
offers network services via TCP/IP and TLS for both IPv4 and IPv6, and it can
apply rate limits and accounting per connection to TCP and TLS connections if
needed.

According to the official documentation, Dionaea’s intention is to trap malware
that exploits vulnerabilities exposed by services offered in a network, and its ultimate
goal is to obtain a copy of the employed malware.

The software offers network services that may be exploitable. To minimize poten-
tial vulnerabilities, Dionaea can remove privileges and chroot. To execute actions
that require elevated permissions after privileges have been removed, Dionaea cre-
ates a child process to perform those actions. This is a way to prevent obtaining
root access to the system from an unprivileged user in a chroot environment.

Since it is software that offers network services, I/O (input and output) is crucial.
All network I/O is handled within the main process in a non-blocking manner, using
pipes so that when input data arrives, output data is written as long as the pipe is
not full.

T-Pot

T-Pot [8] is a high-interaction honeypot based on a docker service emulation frame-
work. T-Pot allows attackers to interact with simulated full operating systems,
applications, and services to appear real, providing a higher level of realism.

Docker is used as the container platform for running the emulated systems and
services, providing a secure and isolated environment that enables easier configu-
ration and management of honeypots. T-Pot consists of various emulated services
deployed in Docker, configured with known vulnerabilities to more easily attract
attackers.

When an attacker interacts with the honeypot, all executed commands are recorded.
It captures network packets, logs, and any other relevant information generated by
the attacker. All stored data is subsequently analyzed to obtain information about

3.7. OPEN SOURCE HONEYPOTS 29

the techniques used by the attackers. T-Pot combines security detection and analy-
sis services to monitor and analyze the generated traffic, helping to identify potential
threats and attack patterns in real time.

ADBHoney

ADBHoney [9] is a low-interaction honeypot designed for Android Debug Bridge
(ADB) over TCP/IP. Its goal is to trap any malware introduced by attackers tar-
geting devices with the exposed port 5555. ADBHoney is developed in Python.

Android Debug Bridge (ADB) is a protocol designed for tracking real or emu-
lated phones, TVs, and DVRs connected to a specific host. It implements various
commands such as "adb push" or "adb pull" to assist developers in debugging and
sending content to the device via a USB cable, with authentication and protection
mechanisms. However, by executing a command like "adb tcpip <port>", the device
is forced to expose its ADB services on port 5555. Once the services are exposed,
one can connect to the device using the command "adb connect <ip>:<port>".
TCP protocol lacks authentication mechanisms compared to USB, leaving the sys-
tem vulnerable to attacks such as "adb shell <shell command>", which allows the
developer to execute shell commands on the connected device, and "adb push <local
file> <remote destination>", which enables the developer to upload binary files to
the connected device. These two commands, along with the API, grant full con-
trol over the device as long as the port is exposed to the internet. The objective
of ADBHoney is to capture malware being loaded through this exposed port on
devices.

Ciscoasa

Ciscoasa [10] is a low-interaction honeypot used for the CISCO ASA component
capable of detecting the CVE-2018-0101 vulnerability [11]. It is developed by the
Massachusetts Institute of Technology (MIT) and released under a license for com-
munity use. It is primarily developed in JavaScript and Python.

CISCO ASA (Adaptive Security Appliance) are network security devices devel-
oped by the American company Cisco Systems. These devices provide a wide range
of network services, from firewalls to VPNs and intrusion detection systems. They
are commonly used in small and medium-sized enterprises to protect the internal
network against external threats and enable communication with remote sites. Cisco
ASA features include a firewall for controlling inbound and outbound network traffic,
establishment of secure VPN connections for both site-to-site and client-to-site sce-
narios, intrusion prevention, application control, content filtering, high availability,
and centralized management.

3.7. OPEN SOURCE HONEYPOTS 30

CVE-2018-0101, also known as Cisco ASA Remote Code Execution Vulnerability,
is a vulnerability that allows an attacker to execute remote code or cause a denial-
of-service (DoS) on a vulnerable device. This vulnerability is due to an error in the
SSL (Secure Sockets Layer) or TLS (Transport Layer Security) packet processing
on CISCO ASA devices with SSL/TLS VPN activated. Cisco discovered this vul-
nerability in January 2018 and provided software updates to address it. Therefore,
this vulnerability is no longer exploitable, rendering the honeypot’s purpose of de-
tecting malware and malicious packets that trigger a DoS through this vulnerability
obsolete.

Honeyd

Honeyd [12] is a low-interaction honeypot that offers a high level of emulation. Its
goal is to detect and analyze intrusion attempts by attackers on a system. It consists
of multiple hosts that can emulate various operating systems and services, creating
a virtual network. It is programmed in Python.

According to the official documentation of this tool, Honeyd is a daemon that cre-
ates a network of virtual hosts, configurable to run arbitrary services and adaptable
to appear as different operating systems. It allows a single host to claim multiple
addresses, up to 65536 tested addresses, on a LAN to simulate a network. It dis-
courages attackers by hiding real systems among virtual systems. It is possible to
ping and trace route to the virtual machines. Any type of service can be simulated
using a simple configuration file. It is also possible to proxy to another machine.

These brief insights into the functioning of Honeyd reveal that the tool can be
used for both virtual network creation and general monitoring. The tool supports
topology to create a virtual network, including routers, and can add latency and
packet loss to add more realism to the simulation.

Kippo

Kippo [13] is a medium-interaction SSH honeypot designed to log brute-force at-
tacks and all shell command interactions performed by the attacker during an SSH
connection. It is developed in Python and inspired by, but not based on, Kojoney.
It offers several interesting features, including:

• Fake filesystem with the ability to add and delete files. It resembles a Debian
5.0 installation.

• Ability to add fake contents for the attacker to view using commands like "cat".

• Minimal files like "/etc/passwd" are included.

• Session logs stored in a UML-compatible format.

3.7. OPEN SOURCE HONEYPOTS 31

• Saves files downloaded with wget for further analysis.

• SSH pretends to connect somewhere, but "exit" doesn’t actually terminate the
SSH session.

Cowrie

Cowrie [14] is a medium to high-interaction SSH and Telnet honeypot designed
to capture brute-force attacks and the shell command interactions made by the at-
tacker. When running in medium-interaction mode, it emulates a UNIX-like system,
while in high-interaction mode, it acts as an SSH and Telnet proxy to observe the
attacker’s behavior towards another system.

In the default medium-interaction mode, Cowrie features include a fake filesystem
based on Debian 5.0 where files can be added and deleted, saving files downloaded
with wget, curl, or uploaded with SFTP for later analysis, and the ability to create
fake files. The high-interaction mode, the SSH and Telnet proxy, allows running
as a pure proxy or letting Cowrie manage a group of emulated QEMU servers.
Both modes offer UML-compatible session logs, support for SCP and SFTP file
uploads, SSH commands, logging of direct TCP connection attempts, JSON logs,
and forwarding of SMTP connections to an SMTP honeypot.

Amun

Amun [15] is a low-interaction honeypot developed in Python and based on the
concepts proposed by Nepenthes but with more sophisticated emulation and easier
maintenance. It follows a modular architecture.

Amun focuses on emulating typical services such as web, email, and file servers.
These services are configured to appear as real systems with visible vulnerabilities to
make them more attractive to attackers. Lures are generated to attract attackers and
increase interaction with the honeypot. Lures are emails, URLs, or files designed to
look real. When interacting with these lures, malicious files and suspicious activities
are captured for future analysis. It has an advanced emulation capability that can
interpret and execute malicious code contained in the captured files, which is useful
for conducting more thorough analysis. It is easy to configure and maintain.

Glastopf

Glastopf [16] is a web honeypot primarily developed in Python that emulates a
vulnerable server hosting a variety of virtual machines and web pages with thousands
of vulnerabilities.

3.7. OPEN SOURCE HONEYPOTS 32

Web application vulnerabilities, database vulnerabilities, and malicious scripts
present an attack surface that can be exploited for spamming, turning websites into
bots, and drive-by-download attacks. It employs vulnerability type emulation rather
than vulnerability emulation. Once the vulnerability type is emulated, the tool can
handle unknown attacks, but this can make the implementation more complex.

It features a modular architecture where new logging capabilities or attack type
handlers can be added. The emulation of attack types is already implemented. Since
attackers often use search engines, the honeypot uses keywords to attract attackers
and extracts these keywords from incoming requests, automatically expanding its
attack surface. Thus, the honeypot becomes more attractive to attackers with each
new attack attempted against it.

Thug

Thug [17] is a low-interaction honeypot that mimics the behavior of a web browser
capable of detecting and emulating malicious content. It is developed in Python and
JavaScript and features a modular architecture.

It is implemented as a web browser emulator and runs in a controlled environment
such as a virtual machine. Emulation techniques are used to interact with malicious
websites and malware, allowing them to exploit vulnerabilities in the emulator. By
behaving like a real web browser, it can detect techniques used by attackers, such
as exploits, phishing, and malicious file downloads.

Thug is capable of executing JavaScript code found on webpages and downloaded
files, allowing for the analysis of evasion techniques used by attackers. The tool
extracts useful information such as server IP addresses, communication patterns,
and obfuscation techniques.

Honeytrap

Honeytrap [18] is a low-interaction honeypot that aims to capture and analyze net-
work traffic. It can be deployed on a single server as a standalone system or as a
network of honeypots supporting complex architectures. Depending on the chosen
deployment mode, it can listen on all ports to detect threats and gather information
or listen on specific pre-defined ports and provide a specific response. Honeytrap
supports various operating systems, with notable support for Linux, Windows, and
macOS. This is beneficial for creating a virtual machine to deploy the honeypot. It
features a modular architecture and is developed in C.

Honeytrap collects network packets sent to and from the honeypot, records source
and destination IP addresses, ports, protocols used, and transmitted data. It logs
commands and requests made by the attacker, such as port scanning, login attempts,

3.7. OPEN SOURCE HONEYPOTS 33

or database queries. It also logs files downloaded by the attacker from the honeypot
for later analysis to determine their nature and potential associated threats.

It analyzes the behavioral patterns of attackers, determining the frequency of ac-
cess attempts, the most targeted protocols and services, and the attack methods
employed, providing a clearer understanding of attacker behavior. It also logs in-
formation about the attacker that can aid in tracking, with the IP address being
particularly notable.

Conpot

Conpot [19] is an ICS (Industrial Control Systems) honeypot developed in Python.
Its goal is to gather information about the methods used by attackers against in-
dustrial control software employed in electric, oil, gas, and other industries that rely
on automation systems.

Conpot can be implemented on various operating systems. It is installed and
configured to act as a service, simulating a real industrial control system. This
involves utilizing typical protocols used in these systems, such as Modbus, DNP3,
SNMP, and OPC. These systems have known vulnerabilities and inherently weak
defense configurations, making them attractive targets for attackers.

When an attacker interacts with Conpot, all commands and actions they per-
form are logged. It can also interact with other honeypots and security tools to
create more detailed reports and provide adaptability to different scenarios it may
encounter.

Snare

Snare [20] is a low-interaction web honeypot focused on real-time event monitoring
in Windows environments. It captures and logs events generated in real time. It is
developed in C and C++.

Snare has an architecture based on an agent installed on a Windows system that
collects events generated by the Windows system, such as login attempts or file
changes. These events are sent over the network to a central server, where they
are analyzed based on specific rules, allowing for the monitoring of all Windows
systems that interact with it. This analysis helps detect anomalous patterns that
may indicate intrusion attempts, security breaches, or malicious behavior in general.

Shockpot

Shockpot [21] is a web honeypot developed in Python, intended to find and detect
attackers exploiting the remote code vulnerability in Bash known as CVE-2014-6271.

3.7. OPEN SOURCE HONEYPOTS 34

CVE-2014-6271 [11], also known as Shellshock, is a highly impactful and easily
exploitable vulnerability that affects the Bash command interpreter on Unix systems.
The Bash command interpreter interprets certain environment variables that contain
user-defined functions as commands to be executed. Attackers can exploit this
by injecting malicious code into these environment variables to remotely execute
commands, escalate privileges, and gain access to sensitive data.

This vulnerability was patched shortly after its discovery, so the honeypot used
to detect attackers exploiting it is no longer useful and is obsolete.

Honeycomb

Honeycomb [22] is an extension of Honeyd that inspects network traffic. It is recom-
mended to use both tools together, Honeycomb and Honeyd, to simulate network
services and attract attackers.

Honeycomb is developed in Python, has a high level of interaction, and is de-
signed to generate authentication signatures for network intrusion detection sys-
tems (NIDS). It can also detect spam and worms. In conjunction with Honeyd,
Honeycomb utilizes libcap (a C library) to detect the most relevant packets, avoid-
ing duplication of efforts and allowing Honeycomb to focus on its functions. For
example, with this combination, it is possible to determine the exact start and end
of each connection.

Medusa

Medusa [23] is a low-interaction host-based honeypot used to gather information
about attacks on Unix systems. It is developed in Python.

Medusa is deployed in a controlled environment, such as a virtual machine, that
simulates a Unix operating system. When an attacker interacts with the honeypot,
it logs the requests and techniques used. It can be configured in various ways to be
adaptable to different scenarios and make it more enticing to attackers.

InetSim

InetSim [24] is a high-interaction honeypot developed in Python that simulates
multiple services and aims to capture malicious activity that interacts with it.

It runs as a standalone application that emulates the following network services:
HTTP, SMTP, DNS, and FTP. It uses emulation and redirection techniques to inter-
cept attackers’ requests and provide simulated responses. The captured information
is then analyzed for early threat detection and understanding of attackers’ tech-
niques. InetSim is customizable and capable of adjusting its services to simulate
specific scenarios and adapt to the needs of the situation.

3.8. TABLE FOR HONEYPOT CLASSIFICATION 35

3.8 Table for Honeypot Classification

Below, we will present all the previously discussed honeypots in a table 3.1 that
allows for a combined, more direct, and visual selection criteria, making it easier to
choose the most suitable honeypot.

3.9 Chosen Honeypot

Taking into account that the objective of the project is to collect data on a public
network to demonstrate evidence of suspicious access to the network, it is reasonable
to assume that we need a honeypot that provides a low level of interaction and
preferably a high level of emulation, although this requirement is not as important
in my opinion. Regarding programming languages, although I have experience in
Python, I have more experience in C and C++, so it would be preferable to use
either of the latter two programming languages.

After reviewing the honeypots presented in the table, I believe that the most suit-
able one, considering all the specified conditions, is Honeytrap, followed by Honeyid
and, finally, Honeycomb.

All three meet the requirement of simulating network services to gather data
about attackers. They all have a high level of emulation. However, only Honeyid
and Honeytrap have a low level of interaction, while Honeycomb has a high level.

The honeypot that best fits the requirements of this project among the ones
previously mentioned is Honeytrap.

However, Honeytrap needs to be modified to add functionality to record activity
on the SSH, DNS, and HTTPS protocols since it only supports HTTP, FTP, and
TFTP. As it is an open-source honeypot, new modules or plugins will be developed
for the new protocols, opening the possibility of adding more protocols in the future.
Once the design and development process is complete, it will be configured and
deployed in a controlled environment to collect data.

It works from the code and documentation present in the Github repository
https://github.com/armedpot/honeytrap/tree/master ??. Based on this code I
have added the modifications that can be seen in the chapter 5 in the sections
5.1, 5.2 and 5.3. These modifications add functionality for HTTPS, SSH, and DNS
as well as support for SCP and SFTP downloads using an SSH connection. The
repository where you can see the changes in the code in the following https:
//github.com/SergioGarridoDeCastro/honeypot_TFG/tree/main, also you can
see these changes in Appendix II [8.2]

It is necessary to comment so far the original contribution with respect to the
original code. The files htm_sshDownload.c and htm_dnsDetection.c as well as
their respective header files (htm_sshDownload.h and htm_dnsDetection.h) have
been added. These files are located in the src/modules directory.

https://github.com/SergioGarridoDeCastro/honeypot_TFG/tree/main
https://github.com/SergioGarridoDeCastro/honeypot_TFG/tree/main

3.9. CHOSEN HONEYPOT 36

Honeypot Architecture Interaction
Level

Emulation
Level

Programming
Language

Objectives

Dionaea Modular,
plugin-based

High High Python Capture mal-
ware and attack
tools.

T-Pot Various network
services

High High Python Collect informa-
tion about at-
tackers’ tactics.

ADBHoney Raspberry
Pi-based

Low High Python Collect mal-
ware targeting
Android.

Ciscoasa Virtual
machine-based

Medium High JS and Python Gather attack
information
on Cisco ASA
devices.

Honeyd Virtualized op-
erating system

Low High C Detect and ana-
lyze network ser-
vice attacks.

Kippo File system-
based

High Medium Python Gather attack
information on
SSH servers.

Cowrie Virtualized op-
erating system

Medium Low Python Collect informa-
tion and identify
threats.

Amun Modular archi-
tecture

Low Medium Python Detect and ana-
lyze malware.

Glastopf Web server-
based

Low Medium Python Detect and ana-
lyze web attacks.

Thug Web browser-
based

Low High Python Analyze mal-
ware through
web browsing
simulation.

Honeytrap Plugin-based,
various network
services

Low High C++ Collect and an-
alyze malicious
network traffic.

Conpot ICS protocol
emulation

High High Python Emulate ICS
and record
attack attempts.

Snare Windows system
emulation

Medium High C++ Emulate Win-
dows systems
and capture
malware.

Shockpot Vulnerable web
server emulation

High High Python Record attack
attempts on web
servers.

Honeycomb Plugin-based High High Python Simulate net-
work services
to monitor
attackers.

Medusa Host-based High Low Python Detect and
gather attack
information in
UNIX systems.

InetSim Network-based Low High Python Gather
attack in-
formation
on network
services.

Table 3.1: Taxonomy to choose the right honeypot

3.9. CHOSEN HONEYPOT 37

The htm_httpDownload.c file has also been modified in the same directory to add
the HTTPS functionality already mentioned.
In the src directory the files attack.c and attack.h have been modified to add a
new struct to store the DNS queries. We have also modified ctrl.c, sock.h, sock.c,
pcapmon.c, nfqmon.c, connectmon.c and dynsrv.c to correct several errors that have
been appearing, mainly of obsolete code. The same has been done in /src/modules
with the htm_ClamAV.c and htm_ClamAV.h files.
In the etc directory, the templates of the configuration files, honeytrap.conf.dist,
and the port configuration file, port.conf.dist, have been modified in order to make
the configuration easier once the application has been installed in the controlled
environment where it will be deployed.

Chapter 4

Analysis and Design of
Honeytrap Software

This chapter details the analysis and design phases of the software to be used in the
project. When using existing software, the analysis methodology changes slightly
from the conventional approach. The Unified Modeling Language (UML) is used for
visual modeling and designing of software during the analysis and design phase.

Honeytrap is an open-source software, which means that the software can be freely
modified and distributed. However, analyzing it becomes more complicated due to
two reasons. The first reason is that it is existing software without documentation
regarding existing use cases, their respective sequences, class diagrams, and entity-
relationship diagrams that justify the domain model on which the software is based.
There is also no information available about the design patterns being followed.
We don’t have the typical component, deployment, and sequence diagrams of the
software design phase.

The second problem is that the software is developed in C. It is well-known that
C is not an object-oriented language but a structured language. The traditional
conception of software design teaches us that it is more common to work with an
object-oriented approach.

4.1 Analysis I. Use Cases

Since Honeytrap is existing software, the detailed use cases may be imprecise, in-
accurate, and somewhat detached from reality. They are assumptions based on
observations of how the software functions.

The diagram 4.1 is a proposal based on the observed behavior of the software
during testing, which depicts the most suitable use cases according to the original
proposal, which is not provided in the technical documentation. Two actors that

4.2. ANALYSIS II. DOMAIN MODEL 40

Figure 4.1: Use Case Diagram

interact with the Honeytrap system have been considered: User and Attacker. The
first actor, User, interacts with the application to start it and check the logs. The
"Start Honeytrap" use case extends to the "Traffic Capture" use case. Within the
"Capture Traffic" use case, there are two included use cases: "Log Attacks" and
"Log Downloads". The second actor, Attacker, interacts with the application to
request a connection. If the connection is accepted, the attacker executes a payload.
The "Execute Payload" use case extends to the "File Downloads" use case.

It is important to understand the concepts of "extend" and "include" in the use
case diagram. The "«include»" relationship represents the inclusion of one use case
within another. This means that the defined behavior of a use case is included
within the main flow of another use case. In other words, an included use case is
a functionality shared and reused by other use cases. The "«extend»" relationship
represents a conditional or optional extension of a base use case. This means that
the base use case can be extended with additional functionality without modifying
the main flow, given certain conditions are met.

4.2 Analysis II. Domain Model

As mentioned before, Honeytrap is developed in C. Since C is a structured language
and not object-oriented, the methodology for creating the domain model changes
slightly. Instead of entities like in databases or objects in object-oriented languages,

4.2. ANALYSIS II. DOMAIN MODEL 41

the key concepts in the domain are the data structures or structs. These data
structures can also have associated functions that act on the data structures to
perform operations and manipulations within the domain.

4.2.1 Domain Objects. Data Structures

The diagram 4.2 proposes the domain objects as data structures with their own oper-
ations, attributes, and relationships, detailing the cardinalities. The data structures

Figure 4.2: Data Structure Diagram

have been chosen by inspecting the existing structs in the header files (.h). Not
all structures are included; only those considered as domain objects are included.
There are data structures that do not represent any notable domain elements at a
logical level but aid in coding and project development. According to the diagram,
the following data structures have been proposed:

• Controller: Acts as the application controller. It is responsible for creating
child processes, running the application as a daemon, generating a PID file,
clearing the console output, and starting the application. This entity has no
attributes as it is a controller of the application.

4.2. ANALYSIS II. DOMAIN MODEL 42

• ConnectionMonitor: Represents a connection monitor and is responsible for
monitoring incoming connections. It has only one operation, start_connection
_monitor, which initializes the connection monitor.

• Event: Represents an event. It includes operations related to event manage-
ment (storing in a queue, removing from the queue, and executing) and at-
tributes such as the timestamp, handler, and a pointer to the next event.

• Connection: Represents a connection with attributes that define a connection,
such as local and remote addresses and ports, as well as the protocol and
associated payload.

• Attack: Represents an attack carried out by an attacker on the honeypot. This
is perhaps one of the most important entities in the entire domain due to the
number of operations and attributes it has. The attributes of this data structure
include the name, operation mode, start and end dates, addresses and ports,
number of downloads and download attempts, as well as a vector that stores all
the performed downloads. It stores the same data as the executed DNS queries,
i.e., the query counter, attempt counter, and a vector that stores each executed
DNS query. The operations defined for this data structure encompass all the
actions an attack can perform: creating a new attack, creating a new virtual
attack, deleting an attack from the vector, processing payload data, adding and
reassigning both downloads and DNS queries to their respective vectors.

• Payload: Represents the payload used during an attack. It has no associated
operations.

• Download: Represents a file download from the system. It has no associated
operations and includes attributes related to a connection and the download
itself (username, password, downloaded file name, and URI).

• QueryDNS: Represents a DNS request to the server. It includes attributes for
all the fields of such requests, including the date, time, client IP address and
port, domain name, class name, type name, status, and server name.

• Queue: Represents the queue that stores events. It has attributes such as size,
the element at the head and tail of the queue. The defined operations are
typical queue operations, such as creating a new queue, freeing its contents,
inserting an element, removing an element from the queue, merging elements,
and deleting the first or last element.

• Qelem: Represents each element of a queue. It only has attributes for the
data of the element itself and two pointers that point to the previous and next
elements.

4.2. ANALYSIS II. DOMAIN MODEL 43

• Plugin: Another important data structure in Honeytrap. Represents the struc-
ture of a plugin, which are modules that provide different and crucial functional-
ity for the proper functioning of the application. Since each plugin has different
functionality, this data structure defines the basic skeleton of a plugin, includ-
ing attributes such as the name, version, executable file name, plugin handler,
and the next plugin. It includes operations for loading, unloading, configuring,
and initializing the plugin in the main program.

• DefaultResponse: Represents the default response executed by each plugin
when an event occurs. It includes attributes such as the protocol used for the
response, the port to send the response through, the network packet size, the
response content, and a pointer to the next response. The operations defined
are loading and unloading the default responses (the responses are stored in
text or HTML files within the project), preparing these responses, and sending
them.

• ConfigNode: Represents a configuration tree used to store configuration infor-
mation. It includes attributes such as the key associated with the node, the
value of the node, the child node, and the first leaf of the tree. The opera-
tions include typical tree operations, such as freeing a child node, configuring a
subtree, printing the tree’s contents, checking and adding new keys for a node.

• PortConfiguration: Represents the configuration of a port, including the re-
sponse sent through that port and the proxy target to which the traffic is
redirected.

• PortInfo: Represents information related to a port. The attributes include the
port number, the listening protocol, and the mode in which the port is set.

• ProxyDest: Represents a proxy destination to which incoming traffic is redi-
rected. The attributes include the port for traffic redirection, the protocol to
be used, and the host address to which it will be redirected.

This is a proposal for the data structures and operations that can be performed.
There are more operations in the code and more data structures, but they don’t
seem to affect the domain logic. Regarding the different modules, I have considered
that by following a modular architecture, it was sufficient to explain the concept of
a plugin in the domain, as their function within the domain is the same even though
their functionality may change from one plugin to another. These data structures,
along with the supported operations, are divided into source code files.

4.2.2 Relations

The first consideration in this model is to avoid the appearance of loops between
the relationships of the elements within the domain model itself. There are more

4.3. DESIGN 44

relationships that could be apparent, but the diagram shows the simplest relation-
ships following the principles of simplicity and transitivity, allowing entities to be
related to each other transitively.

The controller is only related to the connection monitor, with only one connection
monitor per controller. The events, queue, plugins, and configuration nodes are
related to this connection monitor. There can only be one queue for each connection
monitor, but there can be one or more plugins, events, and nodes related to a
connection monitor. Each event represents a single connection. Within a connection,
there can be one or multiple attacks. Each attack has a unique associated payload,
but they can execute as many downloads and DNS queries as desired. The queue can
have one or multiple elements. A node is associated with a unique port configuration,
which in turn is associated with a unique PortInformation and a unique ProxyDest.

4.3 Design

This section will address the design of the application. After exploring the possible
use cases, the data structures with their operations, and how they relate to each
other, we will now discuss the approach used by Honeytrap in its design and the
design patterns it is based on. As mentioned earlier, Honeytrap is an existing
software, and we don’t have technical documentation about these stages of software
development. Therefore, the following assumptions are based on inspecting the code
and understanding how the application works.

4.3.1 Approach

Honeytrap primarily adopts a modular approach. This can be inferred from the use
of plugins in the application. A plugin allows for independent and loosely coupled
extension of the system’s functionality. Each plugin is developed and maintained
independently, facilitating scalability, code reuse, and system evolution.

The modular approach is based on dividing a system into smaller, cohesive com-
ponents or modules that interact with each other through a well-defined interface
or core. In this case, plugins are used, where each plugin represents a module that
encapsulates a specific and well-defined functionality. These plugins can be attached
to or detached from the application’s core without affecting its proper functioning.
The plugins merely extend the system’s functionality.

The modular approach provides several benefits over other approaches, such as
ease of adding new functionalities without modifying existing code, the ability to
reuse code and modules depending on the context, improved maintainability, and
reduced coupling between different components of the system.

4.3. DESIGN 45

Based on this approach, we can consider the proposed core as the central part
of the system. The core supports the basic functionality of the system, while the
modules that add system functionality are the plugins. As mentioned earlier, the
analysis defined the plugin data structure with its skeleton and basic functions,
but couldn’t provide details about the functionality of each plugin, as they follow a
modular approach. The current system consists of 19 different modules with distinct
functionalities. Here are the modules present:

• htm_baseDecode: This module is responsible for decoding strings that are
encoded in base64.

• htm_ClamAV: This module detects malware using the ClamAV virus scanning
engine.

• htm_cpuEmu: It implements CPU emulation. It provides functions to ex-
ecute shell commands, create processes, and perform CPU emulation-related
operations.

• htm_deUnicode: This module decodes strings that are encoded in Unicode.

• htm_dnsDetection: This module is designed to detect DNS queries. It pro-
vides functions to analyze network packets and determine if they contain DNS
queries.

• htm_ftpDownload: It is designed to detect FTP connections and handles re-
source downloads via the FTP protocol. It provides functions to analyze FTP
commands, establish FTP connections, and download resources via FTP.

• htm_httpDownload: This module is related to downloading resources via the
HTTP and HTTPS protocols. It provides functions to analyze both HTTP
and HTTPS URLs and perform corresponding download operations.

• htm_logAttacker: This module is responsible for logging attacks to a log file. It
logs the attributes defined in the Attack and Payload structures of the domain
model.

• htm_logJSON: This module logs attacks to a JSON file. Its functionality is
very similar to the previous module, but it changes the file type and format of
the generated log. The logged data remains the same.

• htm_magicPE: This module is responsible for detecting Portable Executable
(PE) files.

• htm_SaveFile: As the name suggests, this module is responsible for saving
data to a file. It provides functions to process configuration options and save
the content of an attack object to a specified file.

4.3. DESIGN 46

• htm_SpamSum: This module implements the SpamSum algorithm to calculate
a fingerprint of a message. It provides functions to calculate the fingerprint of
an attack and perform operations related to the SpamSum algorithm.

• htm_sshDownload: This module is related to downloading resources via the
SSH, SFTP, and SCP protocols. It provides functions to analyze SSH com-
mands, establish SSH connections, and download resources via SCP and/or
SFTP over an SSH connection.

• htm_submitMWserv: It sends information to a malware monitoring and anal-
ysis service. It provides functions to send attack data to the corresponding
service.

• htm_submitNebula: It sends information to a Nebula service. It provides
functions to send attack data to the Nebula service.

• htm_submitPostgres: It sends data to a PostgreSQL database. It provides
functions to establish a connection to the database, process configuration op-
tions, and send attack data to the database.

• htm_tftpDownload: This module is related to downloading resources via the
TFTP protocol. It provides functions to analyze TFTP commands, establish
TFTP connections, and download resources via TFTP.

• htm_vncDownload: It is related to downloading resources via the VNC proto-
col. It provides functions to analyze VNC commands and download resources
via SSH.

• htm_xmatch: This module provides the functionality of comparing patterns in
received attack data. Its main purpose is to find matches between predefined
patterns and attack data for decryption and decoding operations. If matches
are found, the module performs additional processing of the attacks, such as
analyzing decoded attacks and assigning possible downloads to the original
attack.

4.3.2 Design Patterns

It is difficult to determine with certainty which design patterns have been followed
during the design stage without documentation. However, by observing the project’s
code, certain common characteristics can be identified that suggest the following
design patterns have been used in the code:

• Composite: According to the structure of the ConfigNode data, it has a "chil-
dren" attribute that is a vector of child nodes. This suggests the use of the
Composite pattern to represent a hierarchical tree structure, where a node can
have child nodes.

4.3. DESIGN 47

The Composite pattern is used to represent objects, or in our case, data struc-
tures, in a hierarchical manner. It follows the principle of composing these
objects in a tree-like structure and allows treating individual objects and ob-
ject groups uniformly using a common interface. It consists of two main ele-
ments: the component and the composite. The component defines the common
interface for all objects in the structure, while the composite is a concrete imple-
mentation of the component that can contain a collection of child components.
This allows creating hierarchical structures of objects where both individual
objects and groups of objects can be treated in the same way.

• Observer: The ConnectionMonitor structure is capable of monitoring connec-
tions, which may imply the use of the Observer design pattern, where the
connection monitor acts as the subject, and the connections are the observers
that receive updates when changes occur.
The Observer pattern is used when there is a one-to-many relationship between
objects, so that when one object changes its state, all dependent objects are
notified and updated automatically. The Observer pattern is based on the prin-
ciple of separating the update logic of observer objects from the logic of the
observed objects. In this pattern, there are two types of objects: the subject
or observable and the observers. The subject maintains a list of registered ob-
servers and provides methods for observers to register or unregister themselves.
When the subject changes its state, it automatically notifies all observers by
calling an update method defined in the observer’s interface.

• Command: The Attack data structure is used to represent specific commands
or actions, suggesting the use of the Command pattern, where commands are
encapsulated and executed flexibly.
The Command pattern is used to encapsulate a request as an object, allow-
ing clients to be parameterized with different requests, queue or log requests,
and support undoable operations. This pattern is based on the principle of
encapsulating a request as a separate object, which allows treating requests as
first-class entities. It has four main components: the command, the receiver,
the invoker, and the client. The command encapsulates a request as a concrete
object and has a reference to the receiver, which is responsible for carrying
out the action associated with the request. The invoker takes the command
and executes it when required. The client creates the command and sets its
receiver.

It should be noted that in our case, the application is programmed in C, which
is not an object-oriented language. Therefore, the objects mentioned in the design
pattern definitions actually refer to data structures, which in our case are defined
in the domain model. With that clarification, it can be said that the Composite
pattern can be implemented in C using a structure that acts as the base component
and pointers to other components or subcomponents of the same data type. The

4.3. DESIGN 48

Observer pattern can be implemented in C using a structure that represents the
observed subject and a list of function pointers (observers) to be called when an
event occurs. The Command pattern can be implemented in C using a command
structure that encapsulates a request and a function pointer to be executed when
the command is invoked.

Although there is not as clear evidence in the code as for the previous patterns,
it can also be considered that the following design patterns have been used due to
the system’s modular approach.

• Strategy: It is a pattern used when different interchangeable algorithms and
strategies are desired. In the case of a modular application with plugins, it
is recommended to use this pattern to implement a strategy for selecting the
appropriate plugin based on needs.

• Factory: This pattern is used for object creation. In the context of an appli-
cation that uses plugins, it is interesting to consider implementing a factory to
dynamically create instances of plugins, allowing the incorporation and loading
of new plugins at runtime.

Chapter 5

Configuration of the Chosen
Honeypot

After explaining how the honeypot software is designed, this chapter will cover
the configuration used during the application’s execution. It will also discuss the
modifications made to the application’s code to add new functionality with new
plugins.

As mentioned in Section 3.7 of Chapter 3, Honeytrap is a low-interaction honey-
pot designed to capture and analyze network traffic. It follows a modular approach
with a set of plugins that provide different functionalities. According to the original
application, it offered support for monitoring TFTP, HTTP, VNC, and FTP traffic,
as well as features for algorithms, log file handling, data forwarding to different ser-
vices, pattern matching, emulation, and decoding. Based on the protocols deemed
interesting to monitor and comparing them with the supported protocols in Hon-
eytrap, it was decided to modify an existing plugin to add support for the HTTPS
protocol and create new plugins to support DNS, SSH, SCP, and SFTP protocols.

5.1 Plugin providing support for HTTP

This module only provided functions to analyze HTTP URLs and perform resource
downloads through the HTTP protocol. However, the HTTP protocol is not secure
because data is transmitted in plain text. This means that anyone intercepting the
communication can easily read and understand the exchanged information. This
poses a problem when exchanging sensitive data such as login information or personal
data. To address this, an updated version of the protocol was introduced to add
an additional layer of security called SSL/TLS (Secure Sockets Layer/Transport
Layer Security) to encrypt data during transfer. This ensures that the data is only
comprehensible to the server and client participating in the communication, making
it more difficult for third parties to intercept and read the data.

5.2. PLUGIN PROVIDING SUPPORT FOR DNS 50

For this reason, it was considered appropriate to incorporate functionality for
the HTTPS protocol as well. It all starts with a function called int is_https(char
*request) 8.3.1 that can detect if the URL’s header is "https://" or "http://".

In the module, there is a function called int cmd_parse_for_http_url(Attack
*attack); 8.3.2 that searches for URLs in an attack string. If found, it initiates
a download using the ‘wget‘ program and executes a command to download the
file. To add functionality for HTTPS, this code block has been added within the
function.

As you can see, it is a small modification that allows us to add functionality
for HTTPS and further expand the range of capabilities offered by Honeytrap. It
was decided to modify this module instead of creating a new one due to the close
relationship between the two protocols, as one is the evolution of the other, and this
way we also avoid excessive code repetition.

5.2 Plugin providing support for DNS

Although the code related to the handling of a plugin by the main core of the
application will be repeated, it is necessary to create a new module to support the
DNS protocol, as it is a completely different protocol.

DNS translates domain names into IP addresses through a series of queries and
responses between DNS servers to enable effective communication between comput-
ers on the Internet. When working with a honeypot, the received communications
are incoming, so the logic tells us that we should focus mainly on DNS requests.
That’s why code has been implemented only to handle a DNS request.

We will omit all the code related to handling a plugin to focus exclusively on
the functionality related to detecting and handling incoming DNS requests. The
function int is_dns_query(char* packet) 8.4.1 receives a packet and checks if it has
the minimum size that a DNS packet should have. If it meets the size requirement,
it determines whether it is a response or a request by checking the value of the
query/response bit.

The function int cmd_parse_for_dns_query(Attack *attack, struct dns_query
*query) 8.4.2 is responsible for parsing the content of the DNS packet to find the
data for the fields specific to a DNS request and add them to the log. Accord-
ing to the typical format of a DNS request, which is as follows: <dd-mmm-YYYY
HH:MM:SS.uuu> <client IP><port> query: <query_Domain name> <class name>
<type name> <- or +>[SETDC] <(name server IP)>, the data sought in the string
are the date, time, client IP and ports, domain name, class, type, and server.

5.3. PLUGIN PROVIDING SUPPORT FOR SSH, SCP, AND SFTP 51

5.3 Plugin providing support for SSH, SCP, and
SFTP

In this case, it is also important to create a new plugin as it will provide functionality
for handling connections using the SSH protocol and SCP and SFTP downloads.
SSH is a network protocol that allows secure and encrypted communication between
two devices. It is primarily used for secure remote access and administration of
systems. It provides authentication, confidentiality, and integrity of transmitted
data. SCP and SFTP are two protocols for remote file transfer. SCP allows secure
file transfer between a client and a remote server. It uses SSH for authentication and
encryption. SFTP is an advanced version of SCP that supports secure and encrypted
file transfer, as well as synchronization and the ability to set file permissions and
attributes. It also uses SSH infrastructure to secure transmissions, ensuring the
confidentiality and integrity of transferred data.

The function int cmd_parse_for_ssh (Attack * attack) 8.5.1 is responsible for
parsing the attack string passed to it to find evidence of an SSH command. If found,
it calls the ‘get_sshcmd‘ function.

The function int get_sshcmd(char *attack_string, uint32_t string_size, Attack
*attack) 8.5.2 continues parsing the attack string once evidence of an SSH command
is found. It parses the string to save each element of an SSH command according
to the standard format: ssh [options] [user@]host [command]

The function int get_ssh_resource (const char * user , const char * host , const
char * remote_path , const char * local_path , 2 Attack * attack , const char
* conn_type , const char * filename) 8.5.3 is responsible for downloading the re-
quested resource based on the arguments passed in the SSH command, once the
SSH command is identified.

The function int get_ssh_ resource_by_sftp (const char * user , const char
* host , const char * remote_path , const char * local_path , Attack * attack ,
ssh_session ssh) 8.5.4 handles resource downloads using the SFTP protocol, by
establishing an SFTP connection using an existing SSH session. It then opens a
remote file in read mode, creates and opens a local file in binary write mode. It
reads the contents of the remote file in fragments and writes them to the local file.
Finally, it closes both files, disconnects the SSH session and logs the connection in
an Attack object. Returns 0 on success and -1 on error.

The function int get_ssh_ resource_by_scp (const char * user , const char * host
, const char * remote_path , const char * local_path , Attack * attack , ssh_session
ssh) 8.5.5 handles resource downloads using the SCP protocol. In this function a
download of a remote file is performed via SSH using the SCP protocol. Opens an

5.4. CONFIGURATION FILE 52

SCP session, initializes the session, opens the remote file in read mode, creates and
opens the local file in binary write mode, reads the contents of the remote file and
writes it to the local file in 1024-byte chunks, closes both files, disconnects the SSH
session and adds a connection record to the Attack object. Returns 0 on success
and -1 on error.

5.4 Configuration File

Once these modifications have been developed, the program is configured, compiled,
and installed using the following command, which allows us to configure the ap-
plication with the logattacker, logjson, clamAV, xmatch, cpuEmu, spamsum, and
magicPE plugins. The chosen method for network traffic monitoring is nfq or packet
capture.

./configure --with-stream-mon=nfq --with-logattacker --with
-logjson --with-clamAV --with-xmatch --with-cpuEmu --with-spamsum
--with-magicpe && make && sudo make install

Honeytrap has three monitoring modes that can be configured in the application, and
the functionality changes based on the installed method. There are preprocessing
options in the code for each monitoring method. The available modes are:

• NFQ: Uses the libnetfilter_queue library for monitoring. It is compatible only
with Linux. The libnetfilter_queue library allows capturing and manipulating
network packets through the netfilter queuing interface. It provides a high level
of control and flexibility for connection monitoring.

• IPQ: This option uses netfilter/iptables’ ip_queue for monitoring. It is also
compatible only with Linux. Netfilter/iptables is a packet filtering infrastruc-
ture built into the Linux kernel. Using ip_queue allows capturing and exam-
ining packets using iptables rules before filtering decisions are made.

• PCAP: Uses a PCAP-based sniffer for monitoring. PCAP is a library used to
capture and analyze network packets. This monitoring method is independent
of the operating system and can be used on different platforms.

However, before running the program, it is necessary to modify its configura-
tion file to enable proper monitoring. The initial configuration to be used during
execution is as follows:

1 // log to this file
2 logfile = "/usr/local/etc/honeytrap/honeytrap.log"
3

4 // store process ID in this file
5 pidfile = "/var/run/honeytrap.pid"

5.4. CONFIGURATION FILE 53

6

7 /* where to look for default responses
8 * these are sent for connections handled in "normal mode" */
9 response_dir = "/usr/local/etc/honeytrap/responses"

10

11 // replace rfc1918 IP addresses with attacking IP address
12 replace_private_ips = "no"
13

14 // bind dynamic servers to a specific address
15 // bind_address = "127.0.0.1"
16

17 /* put network interface into promiscuous mode
18 * (only available when compiled with --with -stream -mon=pcap)

*/
19 // promisc = "on"
20

21 /* the user and group under which honeytrap should run
22 * should be set to non -root */
23 user = "user_Sergio"
24 group = "group_tfg"
25

26 // do not read more than 20 MB - used to prevent DoS attacks
27 read_limit = "20971520"
28

29

30 /* ----- plugin stuff below ----- */
31

32 /* where to look for plugins
33 needs to be set before loading plugins */
34 plugin_dir = "/usr/local/etc/honeytrap/plugins"
35

36

37 // include a plugin via plugin -[ModuleName] = ""
38

39 plugin -magicPE = ""
40 plugin -ftpDownload = ""
41 plugin -tftpDownload = ""
42 plugin -b64Decode = ""
43 plugin -deUnicode = ""
44 plugin -vncDownload = ""
45 plugin -dnsDetection = ""
46 plugin -sshDownload = ""
47

48

49 // store attacks on disk
50 plugin -SaveFile = {
51 attacks_dir = "/opt/honeytrap/var/honeytrap/

attacks"
52 downloads_dir = "/opt/honeytrap/var/honeytrap/

downloads"
53 }
54

5.4. CONFIGURATION FILE 54

55

56 // plugin for shellcode detection and emulation
57

58 plugin -cpuEmu = {
59 execute_shellcode = "no"
60 createprocess_cmd = "/bin/sh -c \"cd /opt/honeytrap -

libemu /.wine/drive_c/windows/system32; WINEPREFIX =’/opt/
honeytrap -libemu /.wine/’ WINEDEBUG=’-all ’ wine ’c:\\ windows
\\ system32 \\ cmd_orig.exe ’\""

61 }
62

63

64

65

66 // scan downloaded samples with ClamAV engine
67 /*
68 plugin -ClamAV = {
69 temp_dir = "/tmp"
70 clamdb_path = "/var/lib/clamav"
71 }
72 */
73

74

75 // calculate locality sensitive hashes
76

77 plugin -SpamSum = {
78 md5sum_sigfile = "/opt/honeytrap/md5sum.sigs"
79 spamsum_sigfile = "/opt/honeytrap/spamsum.sigs"
80 }
81

82

83

84 // store attacks in PostgeSQL database
85 /*
86 plugin -SavePostgres = {
87 db_host = "localhost"
88 db_name = "some_db"
89 db_user = "some_user"
90 db_pass = "some_pass"
91 // db_port = "some_port" // defaults to 5432/ tcp if not

set
92 }
93 */
94

95

96 // invoke an external program (f.e. wget) to download files
via http

97

98 plugin -httpDownload = {
99 http_program = "/usr/bin/wget"

100 http_options = "-q -t1 -T1 -O-"
101 }

5.4. CONFIGURATION FILE 55

102

103

104

105 // submit downloaded malware samples to the mwcollect alliance
106 /*
107 plugin -submitMWserv = {
108 mwserv_url = "https :// submission -url/"
109 guid = "your -guid"
110 maintainer = "your -maintainer"
111 secret = "your -secret"
112 timeout = "120"
113 }
114 */
115

116 // log attacker connection information to a separate file , one
entry per line

117

118 plugin -logAttacker = {
119 logfile = "/opt/honeytrap/attackers.log"
120 }
121

122

123 // log attack details in JSON format
124

125 plugin -logJSON = {
126 logfile = "/opt/honeytrap/attackers.json"
127 }
128 /* ----- port mode configuration below ----- */
129

130 // default port configuration (ignore , normal or mirror)
131 // ignore: just ignore connection attempts
132 // normal: send a default response
133 // mirror: mirror connections back to the initiator (use

with caution !)
134 portconf_default = "normal"
135

136 // explicit port configuration
137

138 portconf = {
139 ignore = {
140 protocol = "tcp"
141 port = ["25", "1433"]
142 }
143 normal = {
144 protocol = ["tcp", "udp"]
145 port = ["53"]
146 }
147 mirror = {
148 protocol = ["tcp", "udp"]
149 port = ["23", "80", "8080" , "69",

"22", "5353" , "443", "8443"]
150 }

5.4. CONFIGURATION FILE 56

151 proxy = {
152 proxy -http = {
153 protocol = []
154 port = []
155

156 target_host = ""
157 target_protocol = ""
158 target_port = ""
159 }
160 proxy -tftp = {
161 protocol = []
162 port = []
163

164 target_host = ""
165 target_protocol = ""
166 target_port = ""
167 }
168

169 proxy -ssh = {
170 protocol = []
171 port = []
172

173 target_host = ""
174 target_protocol = ""
175 target_port = ""
176 }
177

178 proxy -dns = {
179 protocol = []
180 port = []
181

182 target_host = ""
183 target_protocol = ""
184 target_port = ""
185 }
186

187 proxy -https = {
188 protocol = []
189 port = []
190

191 target_host = ""
192 target_protocol = ""
193 target_port = ""
194 }
195 }
196 }

In this configuration file, the directory where the main log of Honeytrap activity
will be stored is defined. It also specifies the file that stores the PIDs of the parent
process and child processes, and the directory where the responses are stored when

5.5. CONFIGURATION OF VULNERABLE SERVICES 57

there are connections on the ports configured in normal mode. The user and group
with permissions to execute are set. It is established that promiscuous mode will
not be used, and the IP addresses of attackers will not be replaced with fake IP
addresses because our goal is traffic analysis on the network. The dynamic servers
are not bound to a specific address (127.0.0.1), and the read limit is set to 20 MB
to avoid possible DoS (Denial of Service) attacks.

It is configured to enable the plugins mentioned above, while the rest of the plu-
gins are commented out. The directory where the plugin executables are located
for loading them is /usr/local/etc/honeytrap/plugins. The directories where inter-
cepted attacks and downloads are stored, the commands executed in CPU emulation,
and the HTTP downloads are defined. There are also files where hashes and log
data for intercepted data are stored.

Finally, an explicit port configuration is provided. Port 22 is ignored, port 53 is
set to normal mode, and no proxy is configured for any port. The remaining ports
are set to mirror mode, which includes ports: 23, 80, 8080, 69, 22, 5353, 443, 8443.

Mirror mode implies that connections are sent back to the attacker. In normal
mode, default responses are sent to the attacker, and ignore mode simply ignores
connection attempts.

5.5 Configuration of Vulnerable Services

After analyzing the collected data in the initial phase, it was concluded that the
honeypot was not attractive enough to attackers. Therefore, the decision was made
to install and configure vulnerable services for each port that the honeypot listens
on:

• Port 20 and 21 (FTP): An anonymous and weakly credentialed FTP server has
been installed and configured to allow unauthorized access.

1 # Install an FTP server
2 sudo apt -get install vsftpd
3

4 # Configure the FTP server to be vulnerable
5 sudo vi /etc/vsftpd.conf
6

7 # Add configuration settings that introduce
vulnerabilities allowing anonymous access and file
writing.

8 anonymous_enable=YES
9 write_enable=YES

10 # ...
11

5.5. CONFIGURATION OF VULNERABLE SERVICES 58

12 # Restart the FTP server to apply the changes
13 sudo service vsftpd restart
14

15

• Port 22 (SSH): The SSH service is configured to allow less secure access or use
a vulnerable version of OpenSSH.

1 # Configure less secure SSH access
2 sudo vi /etc/ssh/sshd_config
3

4 # Allow root access and disable public key
authentication

5 PermitRootLogin yes
6 PubkeyAuthentication no
7

8 # Restart the SSH service to apply the changes
9 sudo service ssh restart

10

11

• Port 23 (Telnet): A Telnet server with vulnerabilities has been configured.

1 # Install the Telnet server
2 sudo apt -get install telnetd
3

4 # Configure the Telnet server to be vulnerable
5 sudo vi /etc/inetd.conf
6

7 # Comment out the line for regular Telnet and
uncomment the line for vulnerable Telnet

8 telnet stream tcp nowait telnetd /usr/sbin/tcpd
in.telnetd # Comment out

9 telnet stream tcp nowait root /bin/echo
echo vulnerable; /bin/bash # Uncomment

10

11 # Restart the inetd service to apply the changes
12 sudo service inetutils -inetd restart
13

14

• Port 53 (DNS): BIND, an open-source DNS server, has been installed with a
vulnerable version. The following steps were taken for the installation.

1 # Install BIND

5.5. CONFIGURATION OF VULNERABLE SERVICES 59

2 sudo apt -get install bind9
3

4 # Configure BIND to be vulnerable
5 sudo /etc/bind/named.conf.options
6

7 # Add configurations that introduce vulnerabilities
, allowing recursive queries from any IP address.

8 options {
9 recursion yes;

10 allow -recursion { any; };
11 // ...
12 }
13

14 # Restart BIND to apply the changes
15 sudo service bind9 restart
16

• Port 69 (TFTP): A vulnerable TFTP server has been installed and configured.

1 # Install a TFTP server
2 sudo apt -get install tftpd -hpa
3

4 # Configure the TFTP server to be vulnerable
5 sudo nano /etc/default/tftpd -hpa
6

7 # Modify the configuration to introduce
vulnerabilities allowing file writing.

8 TFTP_OPTIONS="--secure --create"
9

10 # Restart the TFTP server to apply the changes
11 sudo service tftpd -hpa restart
12

13

• Port 80 (HTTP): Apache has been installed and configured with a vulnerable
version.

1 # Install Apache
2 sudo apt -get install apache2
3

4 # Configure Apache
5

6 to be vulnerable
7 sudo vi /etc/apache2/apache2.conf
8

9 # Add configurations that introduce vulnerabilities
, allowing script execution in all directories.

10 <Directory /var/www/html >

5.5. CONFIGURATION OF VULNERABLE SERVICES 60

11 Options +ExecCGI
12 AddHandler cgi -script .cgi .pl
13 </Directory >
14

15 # Restart Apache to apply the changes
16 sudo service apache2 restart
17

18

• Port 8080 (Alternative HTTP): An alternative web server, Apache Tomcat, has
been installed and configured with a vulnerable version.

1 # Install Apache Tomcat
2 sudo apt -get install tomcat9
3

4 # Configure Apache Tomcat to be vulnerable
5 sudo nano /etc/tomcat9/server.xml
6

7 # Modify the configuration to introduce
vulnerabilities , allowing access without authentication.

8 <!-- Define a new HTTP connector on port 8080 -->
9 <Connector protocol ="HTTP /1.1" port ="8080"

connectionTimeout ="20000" redirectPort ="8443" />
10

11 # Restart Apache Tomcat to apply the changes
12 sudo service tomcat9 restart
13

14

• Ports 443 and 8443 (HTTPS): The same Apache server as before has been
configured, but this time with vulnerabilities for HTTPS.

1 # Configure Apache to be vulnerable on ports 8443
and 443

2 sudo vi /etc/apache2/sites -available/default -ssl.
conf

3

4 # Add a VirtualHost with SSL
5 <VirtualHost *:8443 >
6 SSLEngine on
7 SSLCertificateFile /home/ubuntu/vulnerable.crt
8 SSLCertificateKeyFile /home/ubuntu/vulnerable.

key
9 # ...

10 </VirtualHost >
11

12 # Create vulnerable.key and vulnerable.crt

5.5. CONFIGURATION OF VULNERABLE SERVICES 61

13

14 # Enable the VirtualHost and SSL
15 sudo a2ensite default -ssl
16 sudo a2enmod ssl
17

18 # Restart Apache to apply the changes
19 sudo service apache2 restart
20

21

Chapter 6

Deployment in the Public
Network

In this chapter, we will explain the deployment and execution process in a controlled
environment.
Since Honeytrap requires an Ubuntu operating system or similar Linux/UNIX dis-
tributions and it is a security tool, it is advisable to use a virtualized environment
to avoid potential unwanted intrusions on a personal computer or server. It is also
worth mentioning that the execution will take place for an extended period, so it
is not recommended to set up a virtualized environment on a personal computer.
Therefore, the most recommended option is to use a virtualized environment on a
cloud hosting platform.

After comparing various hosting service providers, I have decided to use AWS
(Amazon Web Services). There are three main reasons behind this decision. The
first and primary reason is the cost of hosting a project of this size. Since it is
an application deployed on a virtual machine that generates log files, significant
resources are not required. AWS is cheaper than its competitors and offers a free tier
for the first year, subject to certain usage conditions. The second reason is that AWS
provides a wide variety of tools that can complement the virtualized environment.
The third reason, which is related to the previous one, is the abundance of technical
documentation and forums available to address any potential issues.

The most relevant AWS tool for creating a virtualized environment to host the
honeypot is EC2 (Amazon Elastic Compute Cloud). An EC2 instance has been
created to host the honeypot with the following specifications:

• Operating system based on Linux/UNIX. The chosen distribution is Ubuntu,
as it is the most stable distribution with a larger community to provide support
and documentation.

• It is an instance of type t2.micro.

64

• 1 virtual CPU.

• 8 GB of internal storage.

• 1 GB of RAM.

• HVM virtualization type.

• Custom high-frequency Intel Xeon processors with adjustable scale and Intel
AVX-512 instructions.

• Public IPv4 address: 35.180.174.253

• Public IPv4 DNS: ec2-35-180-174-253.eu-west-3.compute.amazonaws.com

• Private IP address: 172.31.43.196.

• Private IP DNS name (IPv4 only): ip-172-31-43-196.eu-west-3.compute.internal

• Root device name: /dev/sda1.

• Root device type: EBS.

• Existence of a subnet with 4089 available IPv4 addresses, automatic assignment
of the public IPv4 address. Its subnet ID is subnet-0a58a0e1a7abba58c, and its
subnet ARN is arn:aws:ec2:eu-west-3:670690652774:subnet/subnet-0a58a0e1a7abba58c.

• Existence of a VPC (Virtual Private Cloud) with ID vpc-0831080668b25f3db.
VPC is an AWS service that allows the creation and configuration of an isolated
virtual network in the cloud. Its IPv4 CIDR is 172.31.0.0/16. DNS hostnames
and DNS resolution are enabled.

The following inbound rules have been configured in the security group as detailed
in Table 6.1 and 6.2. Additionally, an outbound rule has been configured as follows:

Security Group Rule ID IP Version Type Protocol Port
Range

Source

sgr-0840162eb193c2090
IPv4 All traf-

fic
All All 0.0.0.0/0

Table 6.1: Regla de salida

After setting up these rules, we connect to the instance using the following SSH
command:

ssh -i "mvTFG.pem" ubuntu@ec2-35-180-174-253.eu-west-3.compute.
amazonaws.com

65

Se
cu

ri
ty

G
ro

up
R

ul
e

ID
IP

V
er

si
on

T
yp

e
P

ro
to

co
l

P
or

t
R

an
ge

So
ur

ce

sg
r-

0a
6f

ab
60

4b
67

f2
2c

5
IP

v4
C

us
to

m
U

D
P

U
D

P
69

0.
0.

0.
0/

0

sg
r-

00
63

2b
b4

35
9a

ffb
d2

IP
v4

SS
H

T
C

P
22

0.
0.

0.
0/

0

sg
r-

04
7b

08
68

e7
b3

d5
03

8
IP

v4
C

us
to

m
T

C
P

T
C

P
84

43
0.

0.
0.

0/
0

sg
r-

06
16

1c
e2

dd
c7

1e
bc

d
IP

v4
H

T
T

P
S

T
C

P
44

3
0.

0.
0.

0/
0

sg
r-

02
5d

e5
14

a8
18

83
d2

0
IP

v4
C

us
to

m
T

C
P

T
C

P
22

22
0.

0.
0.

0/
0

sg
r-

01
16

88
45

33
2d

c1
72

f
IP

v4
C

us
to

m
T

C
P

T
C

P
80

80
0.

0.
0.

0/
0

sg
r-

0a
23

2f
e4

22
0f

e7
48

d
IP

v4
H

T
T

P
T

C
P

80
0.

0.
0.

0/
0

sg
r-

06
8b

6e
f9

82
e5

e9
ae

0
IP

v4
C

us
to

m
U

D
P

U
D

P
53

53
0.

0.
0.

0/
0

sg
r-

0c
8d

28
60

5d
aa

31
11

3
IP

v4
SM

T
P

T
C

P
25

0.
0.

0.
0/

0

sg
r-

0b
dd

3e
75

a7
0c

a2
37

a
IP

v4
M

SS
Q

L
T

C
P

14
33

0.
0.

0.
0/

0

sg
r-

00
eb

12
99

f3
aa

a6
94

2
IP

v4
D

N
S

(U
D

P
)

U
D

P
53

0.
0.

0.
0/

0

sg
r-

0f
9e

25
c6

07
d0

9e
cf

9
IP

v4
C

us
to

m
T

C
P

T
C

P
23

0.
0.

0.
0/

0

Ta
bl

e
6.

2:
Ta

bl
e

of
in

bo
un

d
ru

le
s

in
th

e
in

st
an

ce

66

First, the project needs to be transferred as a compressed zip file using scp:

scp -i "mvTFG.pem" honeytrap.zip ubuntu@ec2-35-180-174-253.eu-west
-3.compute.amazonaws.com:honeytrap.zip

After configuring, compiling, and installing as mentioned in section 5.4 of chapter
5, Honeytrap is then executed using the following command:

sudo /usr/local/sbin/honeytrap i eth0 -t 3
-C /usr/local/etc/honeytrap/honeytrap.conf

To this command, superuser permissions are granted so that it can create files and
write to files that have special permissions either by themselves or in the directories
where they are located. /usr/local/sbin/honeytrap is the path to the Honeytrap
executable, eth is the interface from which the traffic should be listened to, -t 3
indicates the level of detail in the log, which is the normal or default level (e.g.,
debug is -t 6), and -C /usr/local/etc/honeytrap/honeytrap.conf is the configuration
file for Honeytrap. Once it is executed and if there are no errors, it is daemonized and
the instance can be used for other functions, although it is not entirely recommended
as detecting SSH traffic can clutter the honeypot’s activity log by detecting our own
connections. A daemon, in the context of operating systems, is a computer process
that runs in the background without direct interaction with users. These processes
are started during system boot and continue to run persistently, providing specific
services or functionalities.

Chapter 7

Analysis of Collected Data

In this chapter, we will discuss the analysis of the data collected during the execution
of Honeytrap. To analyze the data, we need to look at the log files located at /us-
r/local/etc/honeytrap/honeytrap.log, /opt/honeytrap/attackers.json, /opt/honey-
trap/attackers.log, as well as the attacks and downloads stored in the directories
/opt/honeytrap/var/honeytrap/attacks and /opt/honeytrap/var/honeytrap/-
downloads.

The initial data capture period was 6 days, then it was stopped to include modifi-
cations and re-run for 20 days. In total, the data capture period was 26 days. Apart
from these capture days, it has been executed many times to perform debugging
actions.

7.1 Log file analysis. Connection distribution

Observing the activity log or the main log of the honeypot initially does not show
any activity with the NFQ execution mode:

honeytrap v1.1.0
[2023-06-01 19:08:29] Initializing plugins.
[2023-06-01 19:08:29] ---- Trapping attacks via NFQ. ----
[2023-06-02 10:09:36] ---- honeytrap stopped ----

This is due to an incorrect configuration of the NFQ queue and the input rules
within the instance itself. Therefore, the following rules have been configured in
iptables:

1 ubuntu@ip -172 -31 -43 -196:~$ sudo iptables -L
2 Chain INPUT (policy ACCEPT)
3 target prot opt source destination
4 ACCEPT tcp -- anywhere anywhere

tcp dpt:smtp

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 68

5 ACCEPT tcp -- anywhere anywhere
tcp dpt:telnet

6 ACCEPT tcp -- anywhere anywhere
tcp dpt:ms-sql -s

7 ACCEPT tcp -- anywhere anywhere
tcp dpt:domain

8 ACCEPT tcp -- anywhere anywhere
tcp dpt:http

9 ACCEPT tcp -- anywhere anywhere
tcp dpt:http -alt

10 ACCEPT udp -- anywhere anywhere
udp dpt:tftp

11 ACCEPT udp -- anywhere anywhere
udp dpt:mdns

12 ACCEPT tcp -- anywhere anywhere
tcp dpt :8443

13 ACCEPT tcp -- anywhere anywhere
tcp dpt :2222

14

15 Chain FORWARD (policy ACCEPT)
16 target prot opt source destination
17

18 Chain OUTPUT (policy ACCEPT)
19 target prot opt source destination
20 ACCEPT all -- anywhere anywhere

The application has also been reinstalled, this time configured with the PCAP
listening mode. The IPQ listening mode is not recommended as the libipq library
is deprecated, and the libnetfilter-queue library is now used instead. Now, incoming
activity is detected and logged correctly. However, we quickly notice recurring in-
correct activity being detected. A warning is detected during execution, and there
is also a frequent error. There is also activity that is correct or at least does not
generate errors.

[2023-06-02 11:12:59] ---- Trapping attacks on device ’eth0’ via PCAP. ----
[2023-06-02 11:13:03] Warning - Process 938 exited on failure.
[2023-06-02 11:13:03] Warning - Process 937 exited on failure.
[2023-06-02 11:13:03] Warning - Process 936 exited on failure.
[2023-06-02 11:13:03] Warning - Process 939 exited on failure.
[2023-06-02 11:13:04] Warning - Process 944 exited on failure.
..
[2023-06-02 11:13:14] Error - Protocol 183 is not supported.
[2023-06-02 11:13:14] Error - Protocol 154 is not supported.
[2023-06-02 11:13:15] Error - Protocol 17 is not supported.
[2023-06-02 11:13:15] Error - Protocol 17 is not supported.
...

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 69

The "Protocol not supported" error indicates that the connection uses a protocol
that is not supported by the application. According to IANA (Internet Assigned
Numbers Authority) [25], the protocol codes that are marked as unsupported are
as follows: 17 = UDP, 154 and 183 are marked as Unassigned. It’s strange because
Honeytrap only supports three protocols: TCP, ICMP, and UDP. This "Error -
Protocol 17 is not supported" error is due to the fact that the code in pcapmon.c
did not have an option to support UDP in this particular snippet:

1 ip = (struct ip_header *) (packet + pcap_offset);
2 if (ip->ip_p == TCP) {
3 tcp = (struct tcp_header *) ((u_char *) ip + (4 * ip->

ip_hlen));
4 sport = ntohs(tcp ->th_sport);
5 dport = ntohs(tcp ->th_dport);
6 port_mode = port_flags_tcp[sport] ? port_flags_tcp[sport

]->mode : 0;
7 } else if (ip->ip_p == ICMP) {
8 if ((ip = (struct ip_header *) icmp_dissect(ip)) == NULL)

return;
9 udp = (struct udp_header *) ((u_char *) ip + (4 * ip->

ip_hlen));
10 sport = ntohs(udp ->uh_sport);
11 dport = ntohs(udp ->uh_dport);
12 port_mode = port_flags_udp[dport] ? port_flags_udp[dport

]->mode : 0;
13 }
14 else {
15 logmsg(LOG_ERR , 1, "Error - Protocol %u is not supported .\

n", ip->ip_p);
16 return;
17 }

After discovering this error in the application code, in a file that I hadn’t modified
until then, I added the following code snippet:

1

2 else if (ip->ip_p == UDP) {
3 udp = (struct udp_header *) ((u_char *) ip + (4 * ip->

ip_hlen));
4 sport = ntohs(udp ->uh_sport);
5 dport = ntohs(udp ->uh_dport);
6 port_mode = port_flags_udp[dport] ? port_flags_udp[dport

]->mode : 0;
7 }

Once this was added, the virtual machine instance was restarted, the application
was recompiled, and it was run again. With the collected data, no more UDP errors

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 70

were encountered. The other two protocols still appear occasionally, but in this
case, it indicates that the application is functioning correctly because it does not
allow connections under protocols other than TCP, ICMP, and UDP, and from what
we have seen, these are unassigned protocol numbers, therefore not recognized by
Honeytrap.

However, a large number of "Warning - Process [pid] exited on failure" are still
being detected. This poses a significant problem in data analysis, as 12.3% of the
log entries are of this type. These child processes that are executed end up in the
EXIT_FAILURE state. To find the cause, I have decided to run the program again
with debug-level logging enabled, meaning that debug messages are shown in the
log. After doing this, I looked at the log again and found the following:

1 [2023 -06 -15 23:20:28] 493452 79.52.201.77:55192 requesting tcp
connection on 172.31.43.196:22.

2 [2023 -06 -15 23:20:28] 493452 Port 22/tcp is configured to be
handled in mirror mode.

3 [2023 -06 -15 23:20:28] 493452 Calling plugins before dynamic
server setup.

4 [2023 -06 -15 23:20:28] 493452 172.31.43.196:22 requesting tcp
connection on 79.52.201.77:55192.

5 [2023 -06 -15 23:20:28] 493452 Port 55192/ tcp has no explicit
configuration.

6 [2023 -06 -15 23:20:28] 493452 Calling plugins before dynamic
server setup.

7 [2023 -06 -15 23:20:28] 493455 Requesting tcp socket.
8 [2023 -06 -15 23:20:28] 493455 Socket created , file descriptor

is 13.
9 [2023 -06 -15 23:20:28] 493455 Server is now running with user

id 1001 and group id 1001.
10 [2023 -06 -15 23:20:28] 493455 Listening on port 55192/ tcp.
11 [2023 -06 -15 23:20:28] 493455 Value of sigpipe [0]: 0
12 [2023 -06 -15 23:20:28] 493455 Value of listen_fd: 13
13 [2023 -06 -15 23:20:28] 493455 MAX(sigpipe [0], listen_fd): 13
14 [2023 -06 -15 23:20:28] 493454 Requesting tcp socket.
15 [2023 -06 -15 23:20:28] 493454 Unable to bind to port 22/tcp:

Address already in use.
16 [2023 -06 -15 23:20:28] 493452 Process 493452 received signal 17

on pipe.
17 [2023 -06 -15 23:20:28] 493452 SIGCHILD received.
18 [2023 -06 -15 23:20:28] 493452 Process 493454 terminated.
19 [2023 -06 -15 23:20:28] 493452 Warning - Process 493454 exited

on failure.

In the log, it can be observed that a TCP connection request arrives at the virtual
machine instance on port 22, which is configured as a mirror port. It’s important
to note that this is an SSH connection, which is bidirectional. According to the
log, a handler is also launched for the remote port when sending packets to the

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 71

client. Plugins are called before creating the dynamic server. A socket is created
with fd = 13, and the dynamic server is executed with the same user and group
ID, which is 1001. It listens on port 55192, which is the port being used by the
client. An attempt is made to listen on port 22, but the socket binding fails with
the error "Unable to bind to port 22/tcp: Address already in use." The process then
receives signal 17 on the pipe, which is the SIGCHLD signal indicating that the child
process has terminated. Immediately after that, the warning we are investigating is
generated.

Based on this log sequence, it can be inferred that whenever a port is found to be
occupied, this warning is generated. In the case you showed, it could be deduced
that this warning is generated because you are connected to the instance via SSH,
which is the connection being detected. However, this deduction is not entirely
correct, as I have tested collecting data and closing the SSH session to ensure that
this connection does not interfere. In this new log fragment, the following can be
observed:

1 [2023 -06 -22 09:45:47] 67324 85.209.134.96:55343 requesting
tcp connection on 172.31.43.196:23.

2 [2023 -06 -22 09:45:47] 67324 Port 23/tcp is configured to be
handled in mirror mode.

3 [2023 -06 -22 09:45:47] 67324 Calling start_dynamic_server.
4 [2023 -06 -22 09:45:47] 67324 Enter on start_dynamic_server.
5 [2023 -06 -22 09:45:47] 67324 Calling plugins before dynamic

server setup.
6 [2023 -06 -22 09:45:47] 67324 Enter on endless loop in

start_pcap_mon ().
7 [2023 -06 -22 09:45:47] 67324 Value of sigpipe [0]: 0
8 [2023 -06 -22 09:45:47] 67324 Value of pcap_fd: 12
9 [2023 -06 -22 09:45:47] 67324 MAX(sigpipe [0], pcap_fd): 12

10 [2023 -06 -22 09:45:47] 78847 Requesting tcp socket.
11 [2023 -06 -22 09:45:47] 78847 Socket created , file descriptor

is 13.
12 [2023 -06 -22 09:45:47] 78847 Server is now running with user

id 1001 and group id 1001.
13 [2023 -06 -22 09:45:47] 78847 Listening on port 23/tcp.
14 ..
15 [2023 -06 -22 09:47:47] 78847 Case 0: Timeout.
16 [2023 -06 -22 09:47:47] 78847 -> 23/tcp No incoming

connection for 120 seconds - server terminated.
17 [2023 -06 -22 09:47:47] 78846 Case 0: Timeout.
18 [2023 -06 -22 09:47:47] 78846 -> 55343/ tcp No incoming

connection for 120 seconds - server terminated.
19 ..
20 [2023 -06 -22 09:48:28] 67324 24.237.22.79:21017 requesting tcp

connection on 172.31.43.196:23.
21 [2023 -06 -22 09:48:28] 67324 Port 23/tcp is configured to be

handled in mirror mode.

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 72

22 [2023 -06 -22 09:48:28] 67324 Calling start_dynamic_server.
23 [2023 -06 -22 09:48:28] 67324 Enter on start_dynamic_server.
24 [2023 -06 -22 09:48:28] 67324 Calling plugins before dynamic

server setup.
25 [2023 -06 -22 09:48:28] 67324 Enter on endless loop in

start_pcap_mon ().
26 [2023 -06 -22 09:48:28] 67324 Value of sigpipe [0]: 0
27 [2023 -06 -22 09:48:28] 67324 Value of pcap_fd: 12
28 [2023 -06 -22 09:48:28] 67324 MAX(sigpipe [0], pcap_fd): 12
29 [2023 -06 -22 09:48:28] 85744 Requesting tcp socket.
30 [2023 -06 -22 09:48:28] 85744 Unable to bind to port 23/tcp:

Address already in use.
31 [2023 -06 -22 09:48:28] 67324 Case -1. Error en select ().
32 [2023 -06 -22 09:48:28] 67324 Process 67324 received signal 17

on pipe.
33 [2023 -06 -22 09:48:28] 67324 SIGCHILD received.
34 [2023 -06 -22 09:48:28] 67324 Process 85744 terminated.
35 [2023 -06 -22 09:48:28] 67324 Warning - Process 85744 exited on

failure.
36 ..
37 24.237.22.79:21017 requesting tcp connection on

172.31.43.196:23.
38 [2023 -06 -22 09:48:36] 67324 Port 23/tcp is configured to be

handled in mirror mode.
39 [2023 -06 -22 09:48:36] 67324 Calling start_dynamic_server.
40 [2023 -06 -22 09:48:36] 67324 Enter on start_dynamic_server.
41 [2023 -06 -22 09:48:36] 67324 Calling plugins before dynamic

server setup.
42 [2023 -06 -22 09:48:36] 67324 Enter on endless loop in

start_pcap_mon ().
43 [2023 -06 -22 09:48:36] 67324 Value of sigpipe [0]: 0
44 [2023 -06 -22 09:48:36] 67324 Value of pcap_fd: 12
45 [2023 -06 -22 09:48:36] 67324 MAX(sigpipe [0], pcap_fd): 12
46 [2023 -06 -22 09:48:36] 85757 Requesting tcp socket.
47 [2023 -06 -22 09:48:36] 85757 Unable to bind to port 23/tcp:

Address already in use.
48 [2023 -06 -22 09:48:36] 67324 Case -1. Error en select ().
49 [2023 -06 -22 09:48:36] 67324 Process 67324 received signal 17

on pipe.
50 [2023 -06 -22 09:48:36] 67324 SIGCHILD received.
51 [2023 -06 -22 09:48:36] 67324 Process 85757 terminated.
52 [2023 -06 -22 09:48:36] 67324 Warning - Process 85757 exited on

failure.

Based on the provided analysis, it seems that the error occurs in most cases
because there is an active SSH connection and the port cannot be bound because it
is already bound to another address. In the second case, a connection is initiated,
a socket is created, successfully bound, and listened to. After 120 seconds pass
without any packets arriving through the socket, the dynamic server terminates.
Here, the error arises that prevents subsequent connections from binding the socket

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 73

to the same port. This is because when the dynamic server is closed, the socket
is not closed, resulting in a "dead" socket remaining. Therefore, the socket should
be closed and changed every time there is an error in connection handling by the
dynamic server. The modification would be as follows:

1 switch (select(MAX(connection_fd , sigpipe
[0]) + 1, &rfds , NULL , NULL , &r_timeout)) {

2 case -1:
3 if (errno == EINTR) {
4 if (check_sigpipe () == -1)

exit(EXIT_FAILURE);
5 break;
6 }
7 logmsg(LOG_ERR , 1, " %s Error -

select () failed: %m.\n", portstr);
8 close(connection_fd);
9 return(process_data(attack_string ,

total_bytes , NULL , 0, attack ->a_conn.l_port , attack));
10 case 0:
11 /* no data available , select () timed

out */
12 disconnect ++;
13 if (disconnect > 10) {
14 /* close timeout ’d connection

and process attack string */
15 logmsg(LOG_INFO , 1, " %s

Timeout expired , closing connection .\n", portstr);
16 close(connection_fd);
17 return(process_data
18 (attack_string ,

total_bytes , NULL , 0, attack ->a_conn.l_port , attack));
19 } else {
20 if ((send_default_response(

connection_fd , port , proto , read_timeout)) != -1) {
21 logmsg(LOG_ERR , 1,
22 " %s Error -

Sending response failed: %m.\n", portstr);
23 close(connection_fd);
24 return(process_data
25 (attack_string

, total_bytes , NULL , 0, attack ->a_conn.l_port , attack));
26 }
27 }
28 break;
29 default:

The addition of the ‘close(connection_fd)‘ line in the switch blocks is a step in
the right direction to close the socket. However, the application’s handling of child
processes does not seem appropriate. When a connection is received, it is handled

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 74

to create the socket, bind it to the corresponding port, and wait for it to listen.

Additionally, it would be advisable not to open a socket for the remote port in the
server’s responses. This refers to the situation where an SSH connection is received
from a personal computer, for example, from port 57092 to 172.31.43.196:22. When
an incoming connection is received, a socket is opened for port 22, which is already in
use, resulting in an error. However, when the virtual machine instance sends packets
to the personal computer, it opens a socket for the remote port. This behavior does
not make sense, so the proposed modification is that if the requesting address is the
local or instance address, no socket should be opened.

Regarding the successfully collected connections, in the log of the first execution,
we can see that there are 34,245,649 entries in the log. The log records all the activity
generated by the honeypot. The initial entries indicate the program initialization
and mention that packet trapping is set up on the eth0 interface using PCAP:

1 [2023 -06 -02 11:12:59] Initializing plugins.
2 [2023 -06 -02 11:12:59] Warning - No device given , trying to use

default device.
3 [2023 -06 -02 11:12:59] ---- Trapping attacks on device ’eth0 ’

via PCAP. ----

‘
These entries provide information about the setup and indicate that the program

is ready to capture packets on the eth0 interface using PCAP.

It should be noted that the honeypot executions were recorded over different days,
in addition to the times it was executed with debug messages to gather information
on the possible cause of the error and warning mentioned earlier. Taking this into
account, a total of 645,610 connection attempts were collected over a period of
20 days of monitoring. We will now provide a breakdown of how these connections
were distributed. It is worth noting that SSH, SCP, and SFTP connections are not
captured correctly, as mentioned before, because if I connect to the virtual machine
via SSH, the port 22 will be occupied and any connection attempt will be rejected.

For the HTTP protocol, port 80/tcp is used, and alternatively, port 8080/tcp is
used. For the HTTPS protocol, ports 443/tcp and 8443/tcp are used in the same
way. In both cases, the first port is the main port, and the second port is an auxiliary
port used in web servers.

• On port 80/tcp, 343 connections were established, and none were from local-
host. This represents 0.01% of the total connections.

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 75

• On port 8080/tcp, 187,983 connections were established, representing 6.02%
of the total. It is observed that 185,785 of these connections came from the
IP address 127.0.0.1, i.e., from the localhost address. These connections from
localhost indicate that a forwarding or proxy mechanism is being used to redi-
rect connections from localhost to port 8080. In each line, it shows that a
TCP connection request from 127.0.0.1 (localhost) to 172.31.43.196 on port
8080 is being handled, followed by the line "== 8080/tcp Proxy connection to
127.0.0.1:8080 established," indicating that a proxy connection to localhost on
port 8080 has been established. This is unusual and suggests that the proxy
mode is misconfigured.
These connections from localhost are listening to the received packets, which
all have a similar size and content, as indicated in the attackers.json file. The
content is the default response, and the connection does not carry any payload.
The content is as follows:

HTTP/1.1 200 OK
Connection: close
Date: Sun, 27 Nov 2005 13:07:34 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
X-AspNet-Version: 2.0.50727
Accept-Ranges: bytes
Content-Length: 30
Cache-Control: private
Content-Type: text/html; charset=utf-8

Connections to port 8080/tcp account for 6.02% of the total, with only real
connections (i.e., from a different address than localhost) representing 1.17%
or, in other words, 2,198 connections from an IP address other than localhost
(127.0.0.1).

• There are 469 connections received on port 443. No connections are received
from localhost. These represent 0.02% of the total.

• On port 8443, all captured packets are proxy responses to connections on port
443. Out of the 17,195 detected connections (0.55% of the total), 99.98% of
them come from the address 127.0.0.1, indicating that the proxy is being used
on this port. Therefore, only 20 connections contain useful information.

Originally, the configuration of these ports was set to proxy mode. Since it has
been observed that the proxy option for ports is misconfigured, it has been decided
to change all the ports to mirror mode, as indicated in Section 5.4 of Chapter 5.

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 76

This distribution of HTTP and HTTPS connections indicates that almost all
of them are received from localhost, specifically on ports 8080 and 8443. Out of
the 205,990 HTTP or HTTPS connections received, 98.53% of them come from
localhost. In other words, around 3,030 connections, representing 1.47%, are from
other devices. It is observed that out of the 17,664 HTTPS connections, 97.34% of
them are directed to port 8443. The remaining 188,326 connections (91.43%) are
HTTP connections, and 99.82% of them are directed to port 8080.

This breakdown of results tells us that HTTP traffic is more frequent than HTTPS,
and the interaction with the honeypot is mostly as if it were a web server since ports
8443 and 8080 are commonly used for HTTPS and HTTP servers, respectively.

Regarding incoming connections on port 23 (Telnet), 441,974 connections are
established, accounting for 14.17% of the total connections. This represents over two-
thirds of the incoming connections. It is significant because it is the only port that
was initially set to mirror mode, allowing us to observe this type of traffic without
interference from the proxy sending connection requests. The message "23/tcp Error
- Sending response failed: Connection Refused" appears in the log a total of 5,159
times. This means that in 1.17% of cases, the response is not sent correctly from
the honeypot. Generally, this indicates that either there is no service running on
that port or the server is configured to not accept connections on that port. In
436,573 cases, or 98.78%, the server functions correctly, accepts the connection, and
sends the response. The content sent is the default response because no content is
detected in the incoming packets. In the attackers.log file, the recorded connection
that is labeled as an attack does not have an associated payload.

Regarding connections on ports 25/tcp (SMTP) and 1433/tcp (ms-sql-s), they are
ignored, and therefore, no packet captures for connections directed to those ports
are captured because there are no implemented modules to handle those protocols.
It remains to check incoming connections for 69/udp, 53/udp, and 5353/udp.

• 240,945 connections have been established on port 53/udp (DNS), accounting
for 7.72% of the total connections. Out of these connections, 225,661 failed to
send the response to the client, which is 93.65% of the connections to that port.
Out of these failures, 225,370 fail because there is no child process to handle the
response, while the remaining failed responses are rejected by the client. The
rest of the connections were successful. This port is in normal mode, behaving
like a regular DNS server without forwarding a response to each connection.
The failure is once again due to a flawed handling of child processes within the
application itself.

• 653 connections have been established on port 5353/udp (multicast DNS), rep-
resenting 0.02% of the total connections. In 100% of the connections, the

7.1. LOG FILE ANALYSIS. CONNECTION DISTRIBUTION 77

Figure 7.1: Proportion of Connections Graph - First Log

following error is recorded: "5353/udp Error - select() call failed: Bad file de-
scriptor." This error indicates that there are errors in the socket handling by
the application.

• 2,230,232 connections have been established on port 69/udp (TFTP), account-
ing for 71.49% of the total connections. Since it is configured in proxy mode,
1,009 of these connections come from localhost, while the rest are successful
but do not receive any payload.

• No connections have been established on port 20/tcp (FTP) and 21/tcp (FTP)
because there is no explicit configuration for those ports.

Taking into account all this data, the graph 7.1 is created with the proportion of
incoming connections relative to the listening port.

In one of the instances when the application was executed, it was observed in
the running processes table that there were zombie processes, as can be seen in this
table of open processes marked as "<defunct>".

1 user_Se+ 35062 17324 0 21:11 ? 00:00:00 /usr/local
/sbin/honeytrap i eth0 -t 3 -C /usr/local/etc/honeytrap/
honeytrap.conf

2 ubuntu 35163 35159 0 21:11 ? 00:00:00 scp -f /
usr/local/etc/honeytrap/honeytrap.log

3 root 35346 17324 0 21:11 ? 00:00:00 [honeytrap
] <defunct >

4 root 35347 17324 0 21:11 ? 00:00:00 [honeytrap
] <defunct >

5 root 35348 17324 0 21:11 ? 00:00:00 [honeytrap
] <defunct >

6 root 35349 17324 0 21:11 ? 00:00:00 [honeytrap
] <defunct >

7 root 35350 17324 0 21:11 ? 00:00:00 [
honeytrap] <defunct >

7.2. BINARY FILE ANALYSIS 78

8 root 35351 17324 0 21:11 ? 00:00:00 [honeytrap
] <defunct >

9 root 35352 17324 0 21:11 ? 00:00:00 [honeytrap
] <defunct >

10 user_Se+ 37010 17324 0 21:11 ? 00:00:00 /usr/local
/sbin/honeytrap i eth0 -t 3 -C /usr/local/etc/honeytrap/
honeytrap.conf

11 ubuntu 43638 37722 0 21:11 pts/0 00:00:00 grep --
color=auto honeytrap

A zombie process is one that has finished execution but still has an entry in the
operating system’s process table because its parent process has not yet received its
exit status. These "honeytrap" processes have finished execution but have not been
fully cleaned up by their parent process. Zombie processes do not consume system
resources but can accumulate if not handled properly.

This indicates that the application does not handle the termination of child pro-
cesses well by the parent process.

7.2 Binary file analysis

Checking the attackers.json file, it can be seen that all registered connections do not
have an associated payload, as the length field is marked as 0 and there is no data
included in the data_hex field. This is an example entry from the file.

1 { "is_virtual ": false , "@timestamp ": "2023 -06 -23 T14 :21:21Z", "
start_time ": "2023 -06 -23 T14 :21:21Z", "end_time ":
"2023 -06 -23 T14 :21:21Z", "attack_connection ": { "protocol ":
"tcp", "remote_ip ": "172.31.43.196" , "remote_port ": 60708,
"local_ip ": "169.254.169.254" , "local_port ": 80, "payload ":
{ "md5_hash ": "d41d8cd98f00b204e9800998ecf8427e",

2 "sha512_hash ": "
cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36

3 ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927

4 da3e", "length ": 0, "data_hex ": "" } }, "proxy_connection ": {
"protocol ": "ip", "remote_ip ": "172.31.43.196" , "
remote_port ": 20480, "local_ip ": "0.0.0.0" , "local_port ":
0, "payload ": { "md5_hash ": "
d41d8cd98f00b204e9800998ecf8427e",

5 "sha512_hash ": "
cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36

6 ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927

7 3da3e", "length ": 0, "data_hex ": "" } }, "operation_mode ": 4,
"download_count ": 0, "download_tries ": 0, "downloads ": { }
}

7.2. BINARY FILE ANALYSIS 79

I have three possible theories as to why no payload content is being recorded.
One is that the PCAP capture mode is not functioning correctly. Another is that it
may be due to a misconfiguration in the port settings. And the last option is that
they could be payload-less connections.
After further examining the honeypot configuration and the source addresses, it is
concluded that they are attempts of payload-less connections, such as port scanning.
In this case, the attacker may be sending connection request packets without pro-
viding additional data. As a result, the length and data fields are empty in the log.
In the honeypot instance, there were no vulnerable services that would draw the at-
tacker’s attention. By definition, a honeypot only records traffic that interacts with
it, so if there is no payload, it can be deduced that the connection is most likely a
port scan. Since the attacker doesn’t see anything that catches their attention, they
don’t launch any payload to exploit vulnerabilities. Therefore, vulnerable services
will be configured for each listening port. This is detailed in Chapter 5, Section 5.5.

It has been executed again a second time, setting all ports to normal mode because
they support well-known protocols to show real behavior to the attacker, and thus
test the installed vulnerable services. In a short period of time, 507 incoming SSH
connections have been detected. Upon further inspection, the child process fails to
send a response to the client initiating the connection with our virtual machine, and
for all connections, 12 incoming bytes are detected per incoming packet. This leads
us to understand that, in terms of an SSH connection, it could be what is known as
a handshake, which is the process by which a client and a server establish a secure
SSH connection. During the handshake, security parameters are negotiated, and the
client and server mutually authenticate each other. Only incoming packets from the
client are detected, as it throws the error mentioned earlier.

Inspecting the directory /opt/honeytrap/var/honeytrap/attacks, it can be seen
that its contents are the same as those in the file. The files included in this directory
represent each registered attack, but they only contain the default response provided
by Honeytrap itself. This occurs for each connection made to localhost when the
ports are configured in proxy mode. No files are saved for the rest of the connections
because each connection does not have an associated payload, so they cannot be
classified as attacks. This can be verified in the file /opt/honeytrap/attackers.json.

In the directory /opt/honeytrap/var/honeytrap/downloads, only one file repre-
senting a downloaded file in a connection was found. This file is shown in Figure
7.2.

Figure 7.2: Suspected Malicious File

7.2. BINARY FILE ANALYSIS 80

This file is an .elf file, which is a standard file format that is common for exe-
cutable files, object code, shared libraries, and core dumps. Being an executable file
and being located in such a directory, it can be considered a malicious file.

To determine its nature and whether it is a malicious file, a static analysis is
performed using the following commands.

1 ubuntu@ip -172 -31 -43 -196:~$ file /opt/honeytrap/var/
honeytrap/downloads/db6f024d54b8551261213d0d1224c2a6 -
jklmips

2 /opt/honeytrap/var/honeytrap/downloads/
db6f024d54b8551261213d0d1224c2a6 -jklmips: ELF 32-bit MSB
executable , MIPS , MIPS -I version 1 (SYSV), statically
linked , stripped

The "file" command shows that the file is a 32-bit executable (ELF 32-bit) in the
MIPS format (Microprocessor without Interlocked Pipeline Stages). It is statically
linked and has been stripped of debugging symbols. This indicates that it is a binary
designed to run on devices or embedded systems that use this processor architecture.

1 ubuntu@ip -172 -31 -43 -196:~$ strings /opt/honeytrap/var/
honeytrap/downloads/db6f024d54b8551261213d0d1224c2a6 -
jklmips

2 !$
3 !$
4 !$
5 [...]
6 (self
7 /proc/
8 /cmdline
9 /proc

10 !"#$%&’()$%&’()*+,-/dev/watchdog
11 /dev/misc/watchdog
12 /usr/bin
13 ogin
14 enter
15 assword
16 ^\L@\L^
17 R_VJ
18 UJ_MO
19 RUW_I
20 JK[R@[W
21 ST_YN_^YRSTQ
22 ^YIXSVRPQBI@Y
23 SVSL_UT[
24 YVUO^
25]UIR
26 NR[N

7.2. BINARY FILE ANALYSIS 81

27 YRST_I_
28 \[WSVC
29 UNR_H
30 N[XV_
31 IOH_
32 niUOHY_
33 T]ST_
34 kO_HC
35 JHUY
36 YW^VST_
37 _T[XV_
38 ICIN_W
39 IR_VV
40 XOICXUB
41 xunt
42 TYUHH_YN
43 JHUY
44 M]_N
45 N\NJ
46 YOHV
47 H_XUUN
48 V@H^
49 ^[HQ
50 \XR@
51 WSQ[
52 YY{~
53 \\[^
54 WSJI
55 WJIV
56 TSTP[
57 PO ^
58 NIOQOXST
59 ^LHr_VJ_H
60 lRLkj@
61 M_OYSX
62 XOS
63 ^_V_N_^
64 xunt
65 [JJV_N
66 \UOT^
67 /proc/net/tcp
68 /maps
69 /dev/null
70 .shstrtab
71 .init
72 .text
73 .fini
74 .rodata
75 .ctors
76 .dtors
77 .jcr
78 .data.rel.ro

7.2. BINARY FILE ANALYSIS 82

79 .data
80 .got
81 .sbss
82 .bss
83 .mdebug.abi32

The "strings" command returns readable text strings from the binary file. The
output of the command has been summarized due to its extensive length.

1 ubuntu@ip -172 -31 -43 -196:~$ objdump -x /opt/honeytrap/var/
honeytrap/downloads/db6f024d54b8551261213d0d1224c2a6 -
jklmips

2

3 /opt/honeytrap/var/honeytrap/downloads/
db6f024d54b8551261213d0d1224c2a6 -jklmips: file format
elf32 -big

4 /opt/honeytrap/var/honeytrap/downloads/
db6f024d54b8551261213d0d1224c2a6 -jklmips

5 architecture: UNKNOWN!, flags 0x00000102:
6 EXEC_P , D_PAGED
7 start address 0x00400260
8

9 Program Header:
10 LOAD off 0x00000000 vaddr 0x00400000 paddr 0x00400000

align 2**16
11 filesz 0x00010d10 memsz 0x00010d10 flags r-x
12 LOAD off 0x00011000 vaddr 0x00451000 paddr 0x00451000

align 2**16
13 filesz 0x000005a0 memsz 0x000008f8 flags rw-
14 STACK off 0x00000000 vaddr 0x00000000 paddr 0x00000000

align 2**2
15 filesz 0x00000000 memsz 0x00000000 flags rwx
16

17 Sections:
18 Idx Name Size VMA LMA File off Algn
19 0 .init 0000008c 00400094 00400094 00000094 2**2
20 CONTENTS , ALLOC , LOAD , READONLY , CODE
21 1 .text 00010340 00400120 00400120 00000120 2**4
22 CONTENTS , ALLOC , LOAD , READONLY , CODE
23 2 .fini 0000005c 00410460 00410460 00010460 2**2
24 CONTENTS , ALLOC , LOAD , READONLY , CODE
25 3 .rodata 00000850 004104 c0 004104 c0 000104 c0 2**4
26 CONTENTS , ALLOC , LOAD , READONLY , DATA
27 4 .ctors 00000008 00451000 00451000 00011000 2**2
28 CONTENTS , ALLOC , LOAD , DATA
29 5 .dtors 00000008 00451008 00451008 00011008 2**2
30 CONTENTS , ALLOC , LOAD , DATA
31 6 .jcr 00000004 00451010 00451010 00011010 2**2
32 CONTENTS , ALLOC , LOAD , DATA
33 7 .data.rel.ro 0000000c 00451014 00451014 00011014 2**2

7.2. BINARY FILE ANALYSIS 83

34 CONTENTS , ALLOC , LOAD , DATA
35 8 .data 000001 d0 00451020 00451020 00011020 2**4
36 CONTENTS , ALLOC , LOAD , DATA
37 9 .got 000003 b0 004511 f0 004511 f0 000111 f0 2**4
38 CONTENTS , ALLOC , LOAD , DATA
39 10 .sbss 0000001c 004515 a0 004515 a0 000115 a0 2**2
40 ALLOC
41 11 .bss 00000338 004515 c0 004515 c0 000115 a0 2**4
42 ALLOC
43 12 .mdebug.abi32 00000000 0000072c 0000072c 000115 a0 2**0
44 CONTENTS , READONLY
45 SYMBOL TABLE:
46 no symbols

The command ’objdump’ provides detailed information about the binary file.
Here is the analysis of the output you provided:

• File format: The file has a 32-bit ELF format with big-endian byte order.

• Architecture: The architecture of the file is unknown, as the command could
not determine it.

• Start address: The program’s start address is 0x00400260.

• Program Header: The file has two load segments (LOAD). The first segment
has executable and read-only permissions (flags r-x), while the second segment
has read and write permissions (flags rw-).

• Sections: The file has several sections that contain different types of data and
code. Some notable sections are: .init, .text, .fini, .rodata, .data, .got, .sbss, and
.bss. These sections contain executable instructions, read-only data, modifiable
data, and uninitialized data.

• Symbol Table: No symbols have been found in the file’s symbol table. This
means that no information is provided about the functions or variables defined
in the binary.

In conclusion, the file has typical sections of an executable and is intended to be
executed on an unknown architecture.

1 ubuntu@ip -172 -31 -43 -196:~$ readelf -a /opt/honeytrap/var/
honeytrap/downloads/db6f024d54b8551261213d0d1224c2a6 -
jklmips

2 ELF Header:
3 Magic: 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00
4 Class: ELF32
5 Data: 2’s complement , big

endian

7.2. BINARY FILE ANALYSIS 84

6 Version: 1 (current)
7 OS/ABI: UNIX - System V
8 ABI Version: 0
9 Type: EXEC (Executable file)

10 Machine: MIPS R3000
11 Version: 0x1
12 Entry point address: 0x400260
13 Start of program headers: 52 (bytes into file)
14 Start of section headers: 71180 (bytes into file)
15 Flags: 0x1007 , noreorder , pic ,

cpic , o32 , mips1
16 Size of this header: 52 (bytes)
17 Size of program headers: 32 (bytes)
18 Number of program headers: 3
19 Size of section headers: 40 (bytes)
20 Number of section headers: 15
21 Section header string table index: 14
22

23 Section Headers:
24 [Nr] Name Type Addr Off Size

ES Flg Lk Inf Al
25 [0] NULL 00000000 000000

000000 00 0 0 0
26 [1] .init PROGBITS 00400094 000094 00008

c 00 AX 0 0 4
27 [2] .text PROGBITS 00400120 000120

010340 00 AX 0 0 16
28 [3] .fini PROGBITS 00410460 010460 00005

c 00 AX 0 0 4
29 [4] .rodata PROGBITS 004104 c0 0104c0

000850 00 A 0 0 16
30 [5] .ctors PROGBITS 00451000 011000

000008 00 WA 0 0 4
31 [6] .dtors PROGBITS 00451008 011008

000008 00 WA 0 0 4
32 [7] .jcr PROGBITS 00451010 011010

000004 00 WA 0 0 4
33 [8] .data.rel.ro PROGBITS 00451014 011014 00000

c 00 WA 0 0 4
34 [9] .data PROGBITS 00451020 011020 0001

d0 00 WA 0 0 16
35 [10] .got PROGBITS 004511 f0 0111f0 0003

b0 04 WAp 0 0 16
36 [11] .sbss NOBITS 004515 a0 0115a0 00001

c 00 WAp 0 0 4
37 [12] .bss NOBITS 004515 c0 0115a0

000338 00 WA 0 0 16
38 [13] .mdebug.abi32 PROGBITS 0000072c 0115a0

000000 00 0 0 1
39 [14] .shstrtab STRTAB 00000000 0115a0

000069 00 0 0 1
40 Key to Flags:

7.2. BINARY FILE ANALYSIS 85

41 W (write), A (alloc), X (execute), M (merge), S (strings), I
(info),

42 L (link order), O (extra OS processing required), G (group),
T (TLS),

43 C (compressed), x (unknown), o (OS specific), E (exclude),
44 D (mbind), p (processor specific)
45

46 There are no section groups in this file.
47

48 Program Headers:
49 Type Offset VirtAddr PhysAddr FileSiz MemSiz

Flg Align
50 LOAD 0x000000 0x00400000 0x00400000 0x10d10 0

x10d10 R E 0x10000
51 LOAD 0x011000 0x00451000 0x00451000 0x005a0 0

x008f8 RW 0x10000
52 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0

x00000 RWE 0x4
53

54 Section to Segment mapping:
55 Segment Sections ...
56 00 .init .text .fini .rodata
57 01 .ctors .dtors .jcr .data.rel.ro .data .got .sbss .

bss
58 02
59

60 There is no dynamic section in this file.
61

62 There are no relocations in this file.
63

64 The decoding of unwind sections for machine type MIPS R3000 is
not currently supported.

65

66 No version information found in this file.
67

68 Static GOT:
69 Canonical gp value: 004591 e0
70

71 Reserved entries:
72 Address Access Value
73 004511 f0 -32752(gp) 00000000
74 004511 f4 -32748(gp) 80000000
75

76 Local entries:
77 Address Access Value
78 004511 f8 -32744(gp) 00450000
79 004511 fc -32740(gp) 00410000
80 00451200 -32736(gp) 00400000
81 00451204 -32732(gp) 0040 cb50
82 [..........................]
83 00451590 -31824(gp) 0040 c13c
84 00451594 -31820(gp) 0040 ca80

7.2. BINARY FILE ANALYSIS 86

85 00451598 -31816(gp) 004515 a4
86 0045159c -31812(gp) 004511 c8

The command "readelf" displays information about the internal structure of the
ELF file. The output of the command has been summarized, especially in the Local
Entries section, as it was very extensive.

• The "ELF Header" section provides general information about the executable
file: its class (ELF32), data type (2’s complement, big endian), file version,
target machine (MIPS R3000), entry point, etc.

• The "Section Headers" section shows information about the sections present
in the executable file: name, type, virtual address, file offset, size, permissions,
alignment, etc. Each section has an associated identification number (Nr).

• The "Program Headers" section displays information about the segments present
in the executable file. Segments are logical units of an executable file that con-
tain specific information necessary for executing the program. The "LOAD"
segment indicates which sections are loaded into memory and their permissions.

• The "Section to Segment mapping" section shows how sections are mapped to
segments.

• No dynamic section is found in this file, indicating that dynamic linking is not
used. This means that static linking has been performed.

• There are no relocations in this file, which means that no changes have been
made to the originally assigned memory addresses.

• Information about the symbol table, local entries, and reserved entries provides
details about the symbols defined in the executable file and their associated
memory addresses.

1 ubuntu@ip -172 -31 -43 -196:~$ sudo strace /opt/honeytrap/var/
honeytrap/downloads/db6f024d54b8551261213d0d1224c2a6 -
jklmips

2 execve ("/ opt/honeytrap/var/honeytrap/downloads/
db6f024d54b8551261213d0d1224c2a6 -jklmips", ["/opt/honeytrap
/var/honeytrap/dow"...], 0x7fffae599a00 /* 13 vars */) = -1
EACCES (Permission denied)

3 strace: exec: Permission denied
4 +++ exited with 1 +++
5 ubuntu@ip -172 -31 -43 -196:~$ ltrace /opt/honeytrap/var/honeytrap

/downloads/db6f024d54b8551261213d0d1224c2a6 -jklmips
6 "/opt/honeytrap/var/honeytrap/downloads/

db6f024d54b8551261213d0d1224c2a6 -jklmips" is ELF from
incompatible architecture

7.2. BINARY FILE ANALYSIS 87

After performing static analysis, a dynamic analysis is executed on the file. I
obtain as a result of this analysis using the strace and ltrace commands that dynamic
analysis is not allowed because the file has been statically linked. Therefore, other
tools will be used to analyze it and verify if it is indeed a malicious file. By using
Radare2, the file’s structure is examined, confirming that it is an ELF file, has
read and execute permissions, and is an executable file. While there are more
characteristics, the most relevant ones are the ones mentioned. Based on these
details, it can be deduced that it is a potential malicious file, justifying the use of a
honeypot.

7.2.1 Analysis in Virustotal

In order to obtain a more comprehensive analysis, I have scanned this ELF file on
the VirusTotal website [26], which is an online platform that provides a free file
and URL scanning service to detect malware and other types of threats using a
wide variety of antivirus engines and malware detection tools, and I obtained the
following results:

Figure 7.3: Virustotal analysis results

It can be seen in the figure 7.3 that according to several search engines, namely
20 of them, this file has been identified as a known threat. Other engines have not
been able to detect any threat and several others have not been able to process such
a file. Some relevant aspects of the results are detailed below:

• Popular threat label: The label "trojan.mirai/linux" indicates that the scanned
file has been identified as a Trojan of the Mirai family designed specifically for
Linux operating systems. Trojans are a type of malware that masquerades as
legitimate software but performs malicious actions on the affected system.

7.3. ATTACKERS DISTRIBUTION 88

• Threat categories: The "trojan" category confirms that the file has been clas-
sified as a Trojan. Trojans [27] are known to infiltrate a system and allow
unauthorized access to attackers, who can use it for various malicious purposes,
such as stealing sensitive information or performing additional attacks.

• Family tags: The presence of the tags "mirai" and "linux" indicates that the
file is part of the Mirai malware family and specifically targets Linux operating
systems. Mirai [28] is a malware family associated with botnet attacks, which
primarily target IoT (Internet of Things) devices. These compromised devices
are used to carry out massive distributed attacks, which can result in significant
disruptions to online infrastructure.

• Security vendor analysis: Analysis results from multiple security vendors show
different detections and classifications for the file. Some vendors have specifi-
cally identified the file as a variant of Mirai malware or as a Mirai Linux Trojan.

This indicates that the ELF (Executable and Linkable Format) file has been identi-
fied as a Mirai Trojan targeting Linux operating systems. The Mirai Trojan, among
its various ways of compromising the Linux system, according to the analysis uses
the creation of a backdoor to exploit the system. It can install a backdoor on the
compromised system, allowing attackers to remotely access and control the system,
providing persistent and continuous access to the system even after the original
Trojan file has been removed.

7.3 Attackers distribution

I have developed a Python script 8.5.5 that simplifies the /opt/honeytrap/attack-
ers.json file by taking the remote_ip field and storing them in another JSON file.
This other file serves as the basis for another script 8.5.5 that will use a free API
that allows you to send a request with an IP address and receive geographic in-
formation related to that address. In the case of the new remote_ips.json file has
many IP addresses, the geolocation script developed on this file is executed. From
this execution we find the following results:

1 {
2 "ip": {
3 "220.133.62.88": 6,
4 "85.209.134.96": 32,
5 "12.230.138.115": 10,
6 "195.8.40.172": 10,
7 "196.191.162.184": 1,
8 "113.118.19.47": 10,
9 "194.180.48.128": 17,

10 "162.216.150.216": 1,
11 "43.154.128.189": 4,
12 "122.199.120.87": 10,

7.3. ATTACKERS DISTRIBUTION 89

13 "42.234.162.44": 10,
14 "18.236.135.177": 14,
15 "209.97.152.248": 1,
16 "178.54.137.92": 10,
17 "117.222.235.221": 10,
18 "118.163.113.53": 1,
19 "59.126.205.141": 10,
20 "117.207.119.227": 10,
21 "38.166.146.251": 10,
22 "1.29.113.238": 10,
23 "78.142.18.220": 1,
24 "41.77.208.249": 1,
25 "106.41.51.128": 1,
26 "64.139.246.176": 2,
27 "106.41.138.67": 1,
28 "91.175.197.35": 1,
29 "200.119.227.253": 1,
30 "41.86.19.141": 1,
31 "117.209.72.28": 1,
32 "125.141.72.204": 1,
33 "176.97.210.59": 1,
34 "121.176.85.158": 1,
35 "211.22.185.1": 10,
36 "47.37.67.20": 20,
37 "41.86.21.11": 20,
38 "103.70.83.25": 10,
39 "187.71.161.181": 10,
40 "12.172.117.103": 1,
41 "66.189.122.244": 28,
42 "47.116.139.172": 4,
43 "120.57.122.21": 2,
44 "103.91.180.11": 5,
45 "14.167.108.177": 10,
46 "91.130.38.170": 6,
47 "14.48.241.157": 1,
48 "132.247.233.226": 1,
49 "190.123.90.180": 1,
50 "119.160.197.178": 1,
51 "122.179.159.82": 1,
52 "133.18.211.209": 1,
53 "120.224.118.147": 1,
54 "103.110.8.34": 1
55 },
56 "country ": {
57 "Taiwan ": 27,
58 "United States ": 126,
59 "Ukraine ": 20,
60 "Ethiopia ": 1,
61 "China": 37,
62 "Hong Kong": 4,
63 "South Korea": 13,
64 "India": 40,

7.3. ATTACKERS DISTRIBUTION 90

65 "Venezuela ": 10,
66 "Bulgaria ": 1,
67 "Cameroon ": 1,
68 "France ": 1,
69 "Chile": 1,
70 "Liberia ": 21,
71 "Germany ": 1,
72 "Brazil ": 10,
73 "Vietnam ": 10,
74 "Sweden ": 6,
75 "Mexico ": 1,
76 "Argentina ": 1,
77 "Japan": 1,
78 "Indonesia ": 1
79 },
80 "continent_code ": {
81 "AS": 133,
82 "NA": 127,
83 "EU": 29,
84 "AF": 23,
85 "SA": 22
86 },
87 "city": {
88 "Taichung ": 6,
89 "Ashburn ": 49,
90 "Greenwood ": 10,
91 "Kyiv": 10,
92 "Addis Ababa": 1,
93 "Shenzhen ": 10,
94 "North Charleston ": 1,
95 "Central ": 4,
96 "Gumi": 10,
97 "Anyang ": 10,
98 "Boardman ": 14,
99 "Clifton ": 1,

100 "Bila Tserkva ": 10,
101 "Ambala ": 10,
102 "New Taipei ": 1,
103 "Andong ": 10,
104 "Dharmavaram ": 10,
105 "Maracaibo ": 10,
106 "Hohhot ": 10,
107 "Dobrich ": 1,
108 "Yaound\u00e9": 1,
109 "Jilin City": 2,
110 "Statesboro ": 2,
111 "Calais ": 1,
112 "Puente Alto": 1,
113 "Buchanan ": 1,
114 "Tezpur ": 1,
115 "Siheung -si": 1,
116 "Frankfurt am Main": 1,

7.3. ATTACKERS DISTRIBUTION 91

117 "Namhae -gun": 1,
118 "Tainan City": 10,
119 "North Richland Hills": 20,
120 "Paynesville ": 20,
121 "Delhi": 12,
122 "Porto Alegre ": 10,
123 "Bardstown ": 1,
124 "Dudley ": 28,
125 "Shanghai ": 4,
126 "Bengaluru ": 5,
127 "Hanoi": 10,
128 "Norsborg ": 6,
129 "Jeju City": 1,
130 "Alvaro Obregon ": 1,
131 "C\u00f3rdoba ": 1,
132 "Rajkot ": 1,
133 "Mumbai ": 1,
134 "Osaka": 1,
135 "": 1,
136 "Ancol Timur": 1
137 },
138 "region ": {
139 "Taichung City": 6,
140 "Virginia ": 49,
141 "Mississippi ": 10,
142 "Kyiv City": 10,
143 "Addis Ababa": 1,
144 "Guangdong ": 10,
145 "South Carolina ": 1,
146 "Central and Western District ": 4,
147 "Gyeongsangbuk -do": 10,
148 "Henan": 10,
149 "Oregon ": 14,
150 "New Jersey ": 1,
151 "Kyiv Oblast ": 10,
152 "Haryana ": 10,
153 "New Taipei ": 1,
154 "Changhua ": 10,
155 "Andhra Pradesh ": 10,
156 "Zulia": 10,
157 "Inner Mongolia Autonomous Region ": 10,
158 "Dobrich ": 1,
159 "Centre ": 1,
160 "Jilin": 2,
161 "Georgia ": 2,
162 "Hauts -de-France ": 1,
163 "Santiago Metropolitan ": 1,
164 "Grand Bassa County ": 1,
165 "Assam": 1,
166 "Gyeonggi -do": 1,
167 "Hesse": 1,
168 "Gyeongsangnam -do": 1,

7.3. ATTACKERS DISTRIBUTION 92

169 "Tainan ": 10,
170 "Texas": 20,
171 "Montserrado County ": 20,
172 "National Capital Territory of Delhi": 12,
173 "Rio Grande do Sul": 10,
174 "Kentucky ": 1,
175 "Massachusetts ": 28,
176 "Shanghai ": 4,
177 "Karnataka ": 5,
178 "Hanoi": 10,
179 "Stockholm County ": 6,
180 "Jeju -do": 1,
181 "Mexico City": 1,
182 "Cordoba ": 1,
183 "Gujarat ": 1,
184 "Maharashtra ": 1,
185 "\ u014csaka ": 1,
186 "Shandong ": 1,
187 "West Java": 1
188 },
189 "latitude ": {
190 "24.144": 6,
191 "39.0019": 32,
192 "33.5153": 10,
193 "50.458": 10,
194 "9.026": 1,
195 "22.5559": 10,
196 "39.0814": 17,
197 "32.8608": 1,
198 "22.2908": 4,
199 "36.1129": 10,
200 "36.096": 10,
201 "45.8234": 14,
202 "40.8364": 1,
203 "49.8008": 10,
204 "30.3557": 10,
205 "24.9466": 1,
206 "24.0454": 10,
207 "14.4109": 10,
208 "10.6666": 10,
209 "40.812": 10,
210 "43.5606": 1,
211 "3.8661": 1,
212 "43.8506": 2,
213 "32.4413": 2,
214 "50.952": 1,
215 " -33.6141": 1,
216 "5.8797": 1,
217 "26.6351": 1,
218 "37.3947": 1,
219 "50.1103": 1,
220 "34.8043": 1,

7.3. ATTACKERS DISTRIBUTION 93

221 "22.9917": 10,
222 "32.8404": 20,
223 "6.275": 20,
224 "28.6542": 12,
225 " -30.0273": 10,
226 "37.8065": 1,
227 "42.0491": 28,
228 "31.2222": 4,
229 "12.9634": 5,
230 "21.0292": 10,
231 "59.2539": 6,
232 "33.5109": 1,
233 "19.3624": 1,
234 " -31.429": 1,
235 "22.2904": 1,
236 "19.0748": 1,
237 "34.6946": 1,
238 "36.1155": 1,
239 " -6.9344": 1
240 },
241 "longitude ": {
242 "120.6844": 6,
243 " -77.4556": 32,
244 " -90.168": 10,
245 "30.5303": 10,
246 "38.7439": 1,
247 "114.0577": 10,
248 " -77.6443": 17,
249 " -79.9746": 1,
250 "114.1501": 4,
251 "128.3433": 10,
252 "114.3828": 10,
253 " -119.7257": 14,
254 " -74.1403": 1,
255 "30.0983": 10,
256 "76.8019": 10,
257 "121.586": 1,
258 "120.5072": 10,
259 "77.7267": 10,
260 " -71.6124": 10,
261 "111.6455": 10,
262 "27.8299": 1,
263 "11.5154": 1,
264 "126.5568": 2,
265 " -81.7711": 2,
266 "1.8526": 1,
267 " -70.5893": 1,
268 " -10.0547": 1,
269 "92.803": 1,
270 "126.7814": 1,
271 "8.7147": 1,
272 "127.9271": 1,

7.3. ATTACKERS DISTRIBUTION 94

273 "120.2148": 10,
274 " -97.2285": 20,
275 " -10.7202": 20,
276 "77.2373": 12,
277 " -51.2353": 10,
278 " -85.4592": 1,
279 " -71.8944": 28,
280 "121.4581": 4,
281 "77.5855": 5,
282 "105.8526": 10,
283 "17.7853": 6,
284 "126.5264": 1,
285 " -99.2074": 1,
286 " -64.1756": 1,
287 "70.7915": 1,
288 "72.8856": 1,
289 "135.5021": 1,
290 "120.3024": 1,
291 "107.6153": 1
292 },
293 "accuracy ": {
294 "200": 62,
295 "20": 98,
296 "10": 51,
297 "50": 33,
298 "5": 36,
299 "500": 14,
300 "1000": 16,
301 "100": 24
302 },
303 "organization ": {
304 "AS3462 Data Communication Business Group": 27,
305 "AS211252 Delis LLC": 49,
306 "AS7018 ATT -INTERNET4 ": 10,
307 "AS48650 Anton Tytiuk ": 10,
308 "AS24757 Ethiopian Telecommunication Corporation ": 1,
309 "AS4134 Chinanet ": 12,
310 "AS396982 GOOGLE -CLOUD -PLATFORM ": 1,
311 "AS132203 Tencent Building , Kejizhongyi Avenue ": 4,
312 "AS9981 Saero Network Service LTD": 10,
313 "AS4837 CHINA UNICOM China169 Backbone ": 20,
314 "AS16509 AMAZON -02": 14,
315 "AS14061 DIGITALOCEAN -ASN": 1,
316 "AS48437 PP Merezha ": 10,
317 "AS9829 National Internet Backbone ": 21,
318 "AS61461 Airtek Solutions C.A.": 10,
319 "AS208046 ColocationX Ltd.": 1,
320 "AS64512 Unknown ": 1,
321 "AS19108 SUDDENLINK -COMMUNICATIONS ": 2,
322 "AS12322 Free SAS": 1,
323 "AS18822 Manquehuenet ": 1,
324 "AS37203 LIBTELCO ": 21,

7.3. ATTACKERS DISTRIBUTION 95

325 "AS4766 Korea Telecom ": 3,
326 "AS49581 Tube -Hosting ": 1,
327 "AS20115 CHARTER -20115": 48,
328 "AS132116 Ani Network Pvt Ltd": 10,
329 "AS22085 Claro SA": 10,
330 "AS27202 CBK -AS": 1,
331 "AS37963 Hangzhou Alibaba Advertising Co.,Ltd.": 4,
332 "AS17813 Mahanagar Telephone Nigam Limited ": 2,
333 "AS55947 Bangalore Broadband Network Pvt Ltd": 5,
334 "AS45899 VNPT Corp": 10,
335 "AS1257 Tele2 SWIPnet ": 6,
336 "AS278 Universidad Nacional Autonoma de Mexico ": 1,
337 "AS52444 Pogliotti & Pogliotti Construcciones S.A.":

1,
338 "AS45117 Ishans Network ": 1,
339 "AS24560 Bharti Airtel Ltd., Telemedia Services ": 1,
340 "AS24282 KAGOYA JAPAN Inc.": 1,
341 "AS24444 Shandong Mobile Communication Company Limited

": 1,
342 "AS131717 PT Citra Jelajah Informatika ": 1
343 }
344 }

Looking at the geolocation data stored in this JSON, we can conclude that most of
the attacks come from the United States (126) and Asian countries such as India(40)
or China(37). This shows that connections and attacks are made from anywhere in
the world, although they are usually associated with developed countries. As for the
distribution by continent, there are more attacks from Asia (139) and from North
America (127). With respect to Europe, Africa and South America, a similar number
of attacks are observed, with around twenty. Regarding the cities, the distribution
is more diversified, with only Ashburn standing out. The same can be said of the
regions. Checking the most repeated coordinates, it was found that

• 24.144, 120.6844 is located in a pond in Taiwan, Taichung, North District.

• 39°00’06.8 "N 77°27’20.2 "W is located in the middle of a pond in Ashburn,
Virginia, USA.

• 33.5153, -90.168 is located in a residential neighborhood in Greenwood, Missis-
sippi, USA.

• 6°16’30.0 "N 10°43’12.7 "W is located in an open field near Monrovia, Liberia.

• 32°50’25.4 "N 97°13’42.6 "W is located in a park across from a residential
neighborhood in North Richland Hills, Texas, USA.

By selecting just a few examples, we can see that there are coordinates that point
to residential areas, while other locations seem to have no apparent relevance. It
is important to note that the coordinates do not accurately indicate the geographic

7.4. DURATION OF THE ATTACKS. TECHNIQUES USED 96

location from which the attacks originated, and should not be considered conclusive
evidence. Several factors can influence the inaccuracy of the coordinates, such as the
allocation and distribution of IP addresses in different regions, the use of technologies
such as virtual private networks (VPNs) that mask the real location of the attackers,
among others.

In addition, it is important to keep in mind that the precision of the exact co-
ordinates can vary from 20 to 1000 meters. Generally, coordinates associated with
residential areas in developed countries can indicate the actual location with some
accuracy, as the organization associated with each IP address provides information
about the registered owner or Internet Service Provider (ISP) of that IP. However,
there have also been documented cases where the location indicates that the attack
originated in a geographic area where there is nothing relevant, which may indicate
that the attacker has used proxies, virtual private networks (VPNs) or other meth-
ods to mask their actual location and make it appear that the attack originated
from a different location.

7.4 Duration of the attacks. Techniques used

According to the fields end_time and start_time in the file, calculating with a script
8.5.5 the difference between both fields it is possible to verify that the attacks have a
duration of only a couple of seconds, highlighting a series of attacks that take a few
seconds more take between 7 and 8 seconds to complete, in particular are a total of
10 times. This difference is striking. In relation to the above, this short duration and
the absence of payloads reinforce the idea that this is an attempt at a reconnaissance
or exploration attack. In this type of tactic, the attacker seeks to gather informa-
tion about the target without necessarily performing a destructive or compromising
action, in which the attacker is exploring the availability of a particular service or
protocol on the target system. This type of scanning or reconnaissance can be the
first step in a series of more sophisticated attacks. Attackers often perform these
scans to identify potential entry points or vulnerabilities that can be exploited later.
It is therefore seen that the majority of recorded attacks are reconnaissance attacks
using a port scan.

However, 10 more interesting attacks have been detected, and looking for them in
the file /opt/honeytrap/attackers.json one thing is striking and it is the following:

{ "is_virtual": false, "@timestamp": "2023-06-14T15:35:48Z",
"start_time": "2023-06-14T15:35:48Z", "end_time": "2023-06-14T15:35:56Z",
"attack_connection": { "protocol": "tcp", "remote_ip": "12.230.138.115",
"remote_port": 47770, "local_ip": "172.31.43.196", "local_port": 23,
"payload": { "md5_hash": "d41d8cd98f00b204e9800998ecf8427e",
"sha512_hash": "cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d

7.4. DURATION OF THE ATTACKS. TECHNIQUES USED 97

36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da
3e", "length": 0, "data_hex": "" } }, "proxy_connection": { "protocol":
"ip", "remote_ip": "112.5.181.249", "remote_port": 5888, "local_ip":
"0.0.0.0", "local_port": 0, "payload": { "md5_hash": "9278d276a344eff0
18539a51b1b62875",
"sha512_hash": "281250c9463c24b75e7f8b6aeb3dbfb7298bc95c4a5bc39a6ebc7fe
301d586ee5b79a2c555594c809b75d4bdedda86c01bc3f2a49b82f4220dc107512e9484
07", "length": 442, "data_hex": "fffd18fffd20fffb03fffd01fffd1ffffb05ff
fb010d0a2
a2a
2a2a2a2a2a2a2a2a2a2a2a0d0a2a20436f707972696768742028632920323030342d323
031352048616e677a686f752048334320546563682e20436f2e2c204c74642e20416c6c
207269676874732072657365727665642e20202a0d0a2a20576974686f7574207468652
06f776e65722773207072696f72207772697474656e20636f6e73656e742c2020202020
202a0d0a2a206e6f2
06465636f6d70696c696e67206f7220726576657273652d656e67696e656572696e6720
7368616c6c20626520616c6c6f7765642e2020202020202020202020202020202020202
0202a0d0a2a
2a2
a2a2a2a2a2a2a2a2a2a2a2a0d0a0d0a4c6f67696e206661696c65642e0d000d0a" } },
"operation_mode": 4, "download_count": 0, "download_tries": 0,
"downloads": { } }

It serves as an example of a single entry in the example JSON file, as the other
9 are identical. What is striking is that in attack_connection there is no payload
associated with the connection, the hashes md5 and sha256 are those of an empty
string and could lead us to think that it is another connection that is an attempt
to scan. But in the proxy_connection section there is a payload associated. It may
seem an incongruence but it does not have to be. Looking specifically we can see
the following tactics and techniques that may have been used in this attack, and
therefore in the next 9 attacks of the same type:

• Tactic: Remote service exploitation.

– Technique: The attacker connects to remote port 23 (Telnet protocol) at
local IP address "172.31.43.196" from remote IP address "12.230.138.115"
and remote port 47770.

• Tactic: Use of a proxy.

– Technique: The attacker establishes a connection from remote IP address
"112.5.181.249" to remote port 5888, using the IP protocol as a proxy.

• Tactic: Unauthorized access attempt.

7.4. DURATION OF THE ATTACKS. TECHNIQUES USED 98

– Technique: The attacker sends a payload to the Telnet service on remote
port 23. The payload is empty, i.e. its length is 0 and it does not contain
hexadecimal data.

• Tactic: Use of special characters and control sequences.

– Technique: The payload sent by the attacker contains a control sequence
and special characters encoded in hexadecimal ("fffd18fffd20fffb03fffd01fffd1f...").
These characters may be intended to evade security filters and perform un-
wanted actions on the target system.

• Tactic: Command injection attempt.

– Technique: The attacker attempts to inject commands into the Telnet ser-
vice by sending a hexadecimal encoded text string ("2a20436f7079797269676
8742028632920323030..."). This text string contains "CopyRight (c) 2004-
2015 Hangzhou H3C Tech. Co., Ltd. all rights reserved." followed by other
commands or substrings that are unreadable.

The content of the payload string has been translated from hexadecimal to text
string and the following content has been obtained: Attention is drawn to the first

Figure 7.4: Hexadecimal to string

characters that are not readable, this is because the initial value of the string "fffd"
represents the Unicode character U+FFFD, which is used to replace invalid or un-
readable characters in Unicode. The frequent presence of "fffd" in the hexadecimal
code suggests that the data may be corrupted or that some kind of error has oc-
curred during encoding. But there is also another possible option as to why the data
is not readable because it has been deliberately obfuscated by encoding the data in
a non-standard format, in order to hide possible malicious activity.

Turning to the rest of the content and to summarize we see that an attacker
has presumably made a connection from the United States from an IP address
(12.230.138.115), which according to Virustotal already has a history of malicious
activity, to port 23 to exploit vulnerabilities in the Telnet protocol, which is an
old and vulnerable protocol. We know that the attacker has used a proxy to hide

7.4. DURATION OF THE ATTACKS. TECHNIQUES USED 99

his trail, the IP address of that proxy and the content of the payload associated
with the proxy indicate that the attack actually took place in China. The use of a
proxy indicates that the attacker has tried to hide his trail. The absence of payload
in the attack connection but the presence of the payload in the proxy connection
indicates that the attacker has used tunneling [?], which is a technique in which
malicious traffic or payload is hidden inside another protocol or legitimate traffic
to avoid detection, thus making it difficult to detect such traffic. This may explain
the presence of malware in the system as we have seen above that was not detected
during the execution of the honeypot.

Once we have seen these striking attacks, we can summarize that most attacks
do not use a proxy nor do they have an associated payload. This may indicate that
either there are errors in the packet capture, which seems to be the case according
to my checks, or that some of the following techniques are being used:

• Port scanning attacks: Port scanning attacks are attempts to identify open
ports on a system or network. Attackers perform scans by sending requests to
different ports to determine which services or applications are available. These
attacks usually do not have an associated payload, as their main objective is
to identify potential entry points or vulnerabilities.

• Brute-force or dictionary attacks: In these attacks, attackers attempt to guess
passwords or keys by trying different combinations of words or characters. No
specific payload is needed, as attackers send multiple authentication attempts
using common or automatically generated password combinations. This may
be occurring in attacks on port 22 and port 23.

• Denial of Service (DoS) or flooding attacks: In these attacks, the goal is to
saturate a system or network with a large amount of malicious requests or
traffic to cause resources to be exhausted and the system to become inaccessible.
These attacks do not require an associated payload, as they rely on the volume
or intensity of malicious requests to achieve their goal.

• Probes or vulnerability scans: Attackers can perform automated scans for sys-
tems or applications with known vulnerabilities. These attacks involve search-
ing for known weaknesses in systems or applications without the need for a
specific payload.

Regarding the problems mentioned in the data capture are still present after many
tests, it is due to an incorrect management of the events that arrive as new connec-
tions. In the case of TCP, when the connection is established, packets are sent with
the data to be sent through the connection. From what I have seen while debugging
these new packets are often treated as a new connection. This is a serious error be-
cause it prevents to read from the socket that was initially associated to the address
that initiated the connection.

Chapter 8

Conclusions

In this last chapter we will discuss the conclusions drawn from the work as well
as the ideas to improve this project in the future. But before beginning to expose
the conclusions it is necessary to comment that the chapters 1, 4, 5 and 6 are
totally original, as well as the code that has been commented in the section. The
chapters 2 and 3 have been taken bibliographical references, as well as in the first
annex. Regarding the code, it has been previously discussed in the 3.9 section of the
chapter 3. And in the last chapter the data analysis is original, taking bibliographic
references for the explanations of some terms.

After reviewing the log files and mentioned directories, several conclusions can be
drawn. The first and, in my opinion, most important conclusion is that I have been
working with an outdated and obsolete tool, with several code errors that hinder
its proper functioning. On paper, Honeytrap seemed like a suitable tool for the
reasons stated, but when executing the honeypot, it became evident that it is an
outdated application with a handling of child processes that affects performance,
proper execution, packet content capture, and clear analysis of the results. This is
my fault for incorrectly calibrating the choice of the correct honeypot.

The second conclusion I draw is regarding the distribution of connections on the
listened ports. Attackers tend to establish connections to ports that support less
secure protocols and have fewer security mechanisms to protect the connections,
making it easier to exploit systems. This explains why protocols like Telnet, TFTP,
or HTTP dominate the majority of connections compared to similarly functional
but more secure protocols such as SSH, FTP, or HTTPS.

Regarding the presence of many connection attempts that are accepted but do
not transmit payload, I interpret this as the attacker performing port scanning
with a tool like nmap to check the status of the ports. The virtual machine then
responds, but if the port in the honeypot is not configured as normal and reflects the
entire connection as in mirror mode or forwards the connections to a proxy server in

8.1. FUTURE WORK 102

proxy mode, it may give the attacker the impression that a honeypot exists on the
virtual machine when encountering behavior that may seem unusual in well-known
protocols, and they may decide not to interact with the honeypot. Therefore, the
optimal configuration mode for the ports is normal mode to make the existence of
the honeypot unnoticed.

A honeypot deployed in an environment that has no apparent vulnerabilities and
operates unusually in certain protocols is an unappealing target for exploitation.
For a honeypot to be attractive and record malicious activity, it requires an opti-
mal configuration in the behavior of the ports and having known but not evident
vulnerabilities.

By definition, every connection to a honeypot is suspicious since only direct inter-
actions with it are recorded. Therefore, if there is evidence of suspicious connections,
even though there is little evidence that these are malicious interactions.

Once we have seen the probable techniques that have been used, we can conclude
that the most commonly used technique is port scanning, there is evidence that
tunneling has been used to exploit vulnerabilities and there are also suspicions of
brute force attacks using dictionaries. This indicates that attacks on the environment
where honeypot is deployed try to be as stealthy as possible to leave no trace by
hiding the origin of the attack with the use of a proxy and to hide the potential
presence of malware in the connections by obfuscating the data. Other attackers
only investigate the system for vulnerabilities and try to brute force access to it.

The expected results regarding the presence of malicious activities have not been
obtained. However, a distribution of observed traffic similar to the original predic-
tion has been obtained.

8.1 Future Work

In this section, some ideas and proposals to improve Honeytrap, as it is open source,
will be detailed.

The first future line of work to consider is maintaining the code to keep it up to
date and offer functionality that is currently obsolete and causing errors, such as
the NFQ and IPQ listening modes.

A modification of the htm_dnsDetection module is also proposed to add relative
functionality so that the Honeytrap application can detect DNS responses in an in-
tercepted network packet, providing a more comprehensive and clear understanding
of the DNS communication that can be intercepted in network traffic.

8.1. FUTURE WORK 103

Other proposals to improve and add functionality to this application include
adding modules that provide functionality for the STMP and MySQL protocols,
as the ports associated with these protocols are considered in the "Ignore" section
of the configuration file. It would also be interesting to improve the code for SSH,
SFTP, and SCP.

One last modification for the future and perhaps the most important for the
correct functioning of the application of all is to modify the management of incoming
events when a TCP connection is received and packets are received again within that
connection.

Appendix I

Tools and Technologies Used in the Project

Overleaf

Overleaf was used to write the project’s report. It is a collaborative online LaTeX
editor based on the cloud, used for creating, editing, and publishing scientific and
academic documents in real time.

A template with the main structure of a thesis was used to write the report.
For better organization of the content, it was divided into several .tex files, each
corresponding to a chapter of the thesis. Various LaTeX packages were also used to
improve the writing and presentation of the report.

Figure 8.1 shows the organization of the files to create the LaTeX document.

Figure 8.1: LaTeX File Organization

8.1. FUTURE WORK 106

AWS

AWS or Amazon Web Services [29] is the chosen hosting platform for deploying the
honeypot in the network. AWS is a cloud services platform developed by Amazon
that provides a wide range of hosting, management, and scalability services for
online applications and services.

AWS offers the following features:

• Scalability and flexibility: It allows scaling hosting resources according to the
project’s needs. Storage, processing power, and other resources can be dynam-
ically increased or decreased.

• Wide range of services such as virtual servers (EC2), cloud storage (S3), databases
(RDS), networking services (VPC), load balancers, among others.

• Reliability and availability: AWS has a robust and highly available architec-
ture across multiple geographical regions. This ensures that applications and
resources are available even in the event of hardware failures or other issues in
specific regions.

• Security: It provides advanced security measures to protect data and applica-
tions hosted on the platform. It offers encryption options, access management
tools, firewalls, and other security measures to ensure data availability and
integrity.

• Ease of use: It offers a web-based management interface, a command-line in-
terface, and various SDKs to facilitate resource management.

Amazon Elastic Compute Cloud (EC2)

Amazon Elastic Compute Cloud [30] is the AWS service that provides scalable ca-
pacity and flexibility in the cloud. It allows users to obtain and configure virtual
computing capacity in the cloud.

EC2 offers the following key features:

• Virtual machine instances: It allows users to create, configure, and launch vir-
tual machine instances based on a variety of operating systems such as macOS,
Windows, or Linux. Instances are scalable and can be configured with different
resource sizes.

• Instance type selection: A wide range of instance types is available, each opti-
mized for specific use cases and different workloads.

• Automatic scalability: It enables automatic scaling of the number of instances
using Autoscaling, which can decrease or increase the number of instances based
on predefined policies and various metrics.

8.1. FUTURE WORK 107

• Flexible storage: EC2 offers various storage options, allowing users to adapt to
different storage requirements depending on the application or use case.

• Security and management: It provides robust security policies such as the use
of key pairs for instance access, the use of security groups to control network
traffic, and integration with AWS Identity and Access Management (IAM) to
manage access control permissions.

• Integration with other AWS services: EC2 integrates with many other services
provided by AWS, allowing users to leverage a wide range of tools and capabil-
ities.

In summary, by using EC2, users can easily create, configure, and manage virtual
machine instances to run applications and services, adapting to their performance,
scalability, and storage requirements as needed.

Elastic Load Balancer (ELB)

Elastic Load Balancer (ELB) [31] is a load balancing service provided by AWS that
automatically distributes traffic across multiple AWS instances. Its main objective
is to improve the availability and scalability of web services. Some of its key features
include:

• Load distribution: ELB distributes incoming traffic among multiple EC2 in-
stances within the same region. It balances the workload across instances,
preventing a single instance from being overwhelmed, thereby improving per-
formance and availability.

• Intelligent load balancing: It uses load balancing algorithms to distribute traffic
more intelligently. It can utilize load-based balancing, taking into account the
current load on instances, or a more traditional round-robin approach.

• SSL/TLS: ELB allows the configuration of SSL/TLS encryption to protect the
traffic between clients and EC2 instances. It ensures secure communication and
the privacy and integrity of transmitted data.

• Integration with other AWS services: ELB integrates with many other ser-
vices provided by AWS, enabling users to leverage a wide range of tools and
capabilities.

By utilizing ELB, users can achieve improved performance, scalability, and availabil-
ity for their web services by effectively distributing traffic across multiple instances.

Visual Studio Code

The code editor used to add and implement the required functionalities was Visual
Studio Code [32]. It is a code editor developed by Microsoft and offers the following
features [33]:

8.2. VIRUSTOTAL 108

• Lightweight and fast: It supports a wide range of programming languages and
allows for easy code creation, editing, and debugging with various tools readily
available. This makes it perfect for daily use.

• Customizable: There is a wide variety of easily installable extensions and inte-
grations that can be used within the code editor.

• Robust architecture: Visual Studio Code combines the best of web technolo-
gies, native apps, and specific programming languages. By using Electron,
it combines web technologies like JavaScript and Node.js with the speed and
flexibility of native apps.

• Cross-platform: It is available on different platforms such as macOS, Linux,
and Windows.

Astah

Astah is the software that has been used for the design phase, specifically when
working with the domain model. It allows for quick visualization of diagrams to
better understand the analysis and design stages of software development.

Astah Professional enables the modeling of UML diagrams such as entity-relationship
(E/R) diagrams, class diagrams, flowcharts, mind maps, and more. The interface
is user-friendly and has a relatively easy learning curve. It features lightweight
technology that allows for the quick creation of these diagrams.

8.2 Virustotal

Virustotal [26] is a free online service that provides a scan of files and URLs for
potential malware threats. It was developed by Hispasec Sistemas, a computer
security company based in Spain.

Virustotal’s platform allows users to upload files or enter URLs for scanning using
a wide range of antivirus engines and malware detection tools. Currently, Virustotal
has more than 70 antivirus engines in its suite, which includes commercial solutions
and open source antivirus engines.

Once a file or URL is submitted to Virustotal, a thorough scan is performed using
the available antivirus engines. The result of the scan is presented in the form
of a report, which shows the results of each antivirus engine used and any threat
detections found. This can help users determine whether a specific file or URL is
malicious or potentially dangerous.

Appendix II

8.3 htm_httpDownload.c

8.3.1 Function is_https()

1 int is_https(char *request){
2 if(strcmp(request , "https ://")){
3 return 1; // is HTTPS
4 }
5 else if(strcmp(request , "http ://")){
6 return 0; // is HTTPS
7 }
8 else{
9 return -1; // not valid request

10 }
11 }

8.3.2 Modification on cmd_parse_for_http_url()

1 //for https
2 else if((attack ->a_conn.payload.size -i >= 8) && (memcmp(

string_for_processing + i, "https ://", 8) == 0)){
3 is_https = 1;
4 start = string_for_processing+i;
5

6 /* 0-terminate URL */
7 for (end = start , j=0; j<strlen(start) && end [0]; end =

&start[j++]) {
8 if (isspace(end [0])) end[0] = 0;
9 else if (! isprint(end [0])) end[0] = 0;

10 }
11 if (isspace(end [0])) end[0] = 0;
12

13 logmsg(LOG_DEBUG , 1, "HTTPS download - URL found: ’%s’\n
", start);

14

15 // increase number of download tries

8.3. HTM_HTTPDOWNLOAD.C 110

16 attack ->dl_tries ++;
17

18 /* assemble wget download command and execute it */
19 if (asprintf (&cmd , "%s %s %s -q", https_program ,

https_options , start) == -1) {
20 logmsg(LOG_ERR , 1, "HTTP download error - Unable to

allocate memory: %s.\n", strerror(errno));
21 free(string_for_processing);
22 free(cmd);
23 return (-1);
24 }
25 logmsg(LOG_DEBUG , 1, "HTTPS download - Calling ’%s ’.\n",

cmd);
26 if ((f = popen(cmd , "r")) == NULL) {
27 logmsg(LOG_ERR , 1, "HTTPS download error - Cannot call

download command: %m.\n");
28 free(string_for_processing);
29 free(cmd);
30 return (0);
31 }
32

33 total_bytes = 0;
34 do {
35 if ((binary_stream = realloc(binary_stream ,

total_bytes + BUFSIZ)) == NULL) {
36 logmsg(LOG_ERR , 1, "HTTPS download error - Unable to

allocate memory: %s.\n", strerror(errno));
37 pclose(f);
38 free(string_for_processing);
39 free(cmd);
40 free(binary_stream);
41 return (-1);
42 }
43 new_bytes = fread(binary_stream + total_bytes , 1,

BUFSIZ , f);
44 total_bytes += new_bytes;
45 } while (!feof(f));
46

47 if (ferror(f)) {
48 logmsg(LOG_ERR , 1, "HTTP download error - Unable to

allocate memory: %s.\n", strerror(errno));
49 pclose(f);
50 free(string_for_processing);
51 free(cmd);
52 free(binary_stream);
53 return (-1);
54 }
55

56 // add download to attack record
57 if (total_bytes) {
58 logmsg(LOG_DEBUG , 1, "HTTPS download - Adding download

to attack record .\n");

8.4. HTM_DNSDETECTION.C 111

59

60 add_download("https", TCP , 0, 0, NULL , NULL , strrchr(
start , ’/’)+1, start , binary_stream , total_bytes , attack);

61

62 logmsg(LOG_INFO , 1, "HTTPS download - %s successfully
downloaded and attached to attack record .\n", start);

63 } else logmsg(LOG_INFO , 1, "HTTPS download - No data
received .\n");

64

65 pclose(f);
66 free(cmd);
67 free(binary_stream);
68

69 i += strlen(start);
70 }

8.4 htm_dnsDetection.c

8.4.1 Function is_dns_query()

1 /**
2

3 This function checks whether a given packet is a valid DNS
query or response.

4

5 It first checks if the packet has the minimum size required to
be a valid DNS packet.

6

7 Then it checks the value of the query/response bit to
determine if it’s a query or a response.

8

9 @param packet A pointer to the packet data.
10

11 @return -1 if the packet size is invalid , 1 if it’s a query , 0
if it’s a response.

12 */
13 int is_dns_query(char packet){
14 //Check if the packet has the minimum size to be a valid DNS

packet
15 if(packet [2] < 0x01 || packet [2] > 0xff || packet [3] < 0x01

|| packet [3] > 0xff){
16 return -1;
17 }
18

19 // Extract the length of the question section from the
packet

20 int questionLength = (packet [2] << 8) | packet [3];
21

22 // Check if the packet size is at least equal to the

8.4. HTM_DNSDETECTION.C 112

length of the question section
23 if (questionLength > 0 && questionLength <= (packetSize -

HEADER_SIZE)) {
24 // Check the value of the query/response bit
25 if ((packet [2] & 0x80) == 0x00) {
26 return 1; // It’s a query
27 } else {
28 return 0; // It’s a response
29 }
30 }
31 }

8.4.2 Function cmd_parse_for_dns_query()

1 int cmd_parse_for_dns_query(Attack *attack , struct dns_query *
query){

2 /*
3 Format of DNS query:
4 <dd-mmm -YYYY HH:MM:SS.uuu > <client IP >#<port > query: <

query_Domain name > <class name > <type name > <- or +>[SETDC]
5 <(name server ip)>
6 */
7

8 char *date = NULL , *hour = NULL , *client_ip = NULL , *port
= NULL , *query_str = NULL , *domain_name = NULL ,

9 *class_name = NULL , *type_name = NULL , *status = NULL
, *name_server_ip = NULL;

10

11 // Provisionales
12 FILE *f = NULL;
13 char *start = NULL , *end = NULL , *cmd = NULL;
14 u_char *binary_stream = NULL;
15

16 char *payload = attack ->a_conn.payload.data;
17 size_t payload_size = attack ->a_conn.payload.size;
18

19 /* no data - nothing todo */
20 if ((attack ->a_conn.payload.size == 0) || (attack ->a_conn.

payload.data == NULL)) {
21 logmsg(LOG_DEBUG , 1, "DNS connection - No data received .\n

");
22 return (0);
23 }
24

25 logmsg(LOG_DEBUG ,1, "DNS connection - Parsing attacking
string (%d bytes) for DNS querys", attack ->a_conn.payload.
size);

26

27 string_for_processing = (char *) malloc(attack ->a_conn.

8.4. HTM_DNSDETECTION.C 113

payload.size + 1);
28 memcpy(string_for_processing , attack ->a_conn.payload.data ,

attack ->a_conn.payload.size);
29 string_for_processing[attack ->a_conn.payload.size] = 0;
30

31 /*for(int i = 0; i < attack.a_conn.payload.size; i++){
32 parse_string = attack_string +1;
33 *token = strtok(string_for_processing , " ");
34 if(token[i])
35 }*/
36

37 // extract user and host tokens
38 token = strtok(string_for_proccesing , " ");
39

40 if (token != NULL) {
41 date = token;
42 token = strtok(NULL , " ");
43 if (token != NULL) {
44 hour = token;
45 // extract command token
46 token = strtok(NULL , "");
47 if (token != NULL) {
48 client_ip = token;
49 port = strtok(client_ip , "#");
50 }
51 }
52 }
53

54 token = strtok(NULL , " ");
55 if(token != NULL){
56 query_str = token;
57 }
58

59 token = strtok(NULL , " ");
60 if(token != NULL){
61 domain_name = token;
62 }
63

64 token = strtok(NULL , " ");
65 if(token != NULL){
66 class_name = token;
67 }
68

69 token = strtok(NULL , " ");
70 if(token != NULL){
71 type_name = token;
72 }
73

74 token = strtok(NULL , " ");
75 if(token != NULL){
76 status = token;
77 }

8.5. HTM_SSHDOWNLOAD.C 114

78

79 token = strtok(NULL , " ");
80 if(token != NULL){
81 name_server_ip = token;
82 }
83

84 free(string_for_processing);
85

86 /* add dns connection to attack record */
87 if (total_bytes) {
88 logmsg(LOG_DEBUG , 1, "DNS connection - Adding connection

to attack record .\n");
89 add_query(date , hour , client_ip , port , domain_name ,

class_name , type_name , status , name_server_ip , attack);
90

91 logmsg(LOG_NOTICE , 1, "DNS connection - %s attached to
attack record .\n", save_file);

92 } else {
93 logmsg(LOG_NOISY , 1, "DNS connection - No data received .\n

");
94 }
95

96 return 0;
97 }

8.5 htm_sshDownload.c

8.5.1 Function cmd_parse_for_ssh()

1 int cmd_parse_for_ssh(Attack *attack){
2 int i=0;
3 char *string_for_proccessing;
4 char ssh_str [] = "ssh";
5 struct in_addr *addr = NULL;
6

7 uint32_t size_payload = attack ->a_conn.payload.size;
8

9 /* no data - nothing todo */
10 if((size_payload == 0) || (attack ->a_conn.payload.data ==

NULL)){
11 logmsg(LOG_DEBUG , 1, "SSH download - No data received ,

nothing to download .\n");
12 return (0);
13 }
14 logmsg(LOG_DEBUG , 1, "SSH download - Parsing attack string

(%d bytes) for ssh commands .\n", size_payload);
15

16 string_for_proccessing = (char*) malloc(size_payload + 1);
17 memcpy(string_for_proccessing , attack ->a_conn.payload.data ,

8.5. HTM_SSHDOWNLOAD.C 115

size_payload + 1);
18 string_for_proccessing[size_payload] = 0;
19

20 for(i = 0; i < size_payload; i++){
21 if((size_payload - i >= sizeof(ssh_str)) && (memcmp(

string_for_proccessing + i, ssh_str , sizeof(ssh_str)) == 0)
){

22 logmsg(LOG_DEBUG , 1, "SSH download - SSH command found.\
n");

23

24 /* do ssh download */
25 addr = (struct in_addr *) &(attack ->a_conn.l_addr);
26 get_sshcmd(string_for_proccessing , size_payload , attack)

;
27 return (1); // Command ssh found
28 }
29 }
30 logmsg(LOG_DEBUG , 1, "SSH download - No ssh command found.\n

");
31

32 free(string_for_proccessing);
33

34 return (0); // Command ssh not found
35 }

8.5.2 Function get_sshcmd

1 int get_sshcmd(char *attack_string , uint32_t string_size ,
Attack *attack){

2 /*An ssh command looks like this:
3 ssh [options] [user@]host [command]
4 */
5

6 char *token , *rest = attack_string , *user = NULL , *host =
NULL , *command = NULL , *r_addr = NULL , *r_port = NULL;

7 // format of remote_path = user@host :/path/to/file
8 // format of local_path = /path/to/file
9 char *remote_path = NULL , *local_path = NULL , *conn_type =

NULL;
10

11 // skip the ’ssh’ command token
12 strtok(rest , " ");
13

14

15

16 // extract user and host tokens
17 token = strtok(rest , "@");
18 if (token != NULL) {
19 user = token;

8.5. HTM_SSHDOWNLOAD.C 116

20 token = strtok(NULL , " ");
21 if (token != NULL) {
22 host = token;
23

24 //get host IP address
25 struct hostent *he;
26 struct in_addr ** address_list;
27

28 if((he = gethostbyname(host)) == NULL){
29 logmsg(LOG_ERR , 1, "Error: could not resolve host %s\n

", host);
30 return -1;
31 }
32 else{
33 address_list = (struct in_addr **) he->h_addr_list;
34 if(address_list [0] != NULL){
35 r_addr = address_list [0]->s_addr;
36 }
37 }
38 }
39 }
40

41 // extract command token
42 token = strtok(NULL , "");
43 if (token != NULL) {
44 command = token;
45 // extract remote and local paths , if present
46 char *remote_delim = strstr(command , ":");
47 char *local_delim = strrchr(command , ’/’);
48

49 if (remote_delim != NULL) {
50 remote_path = remote_delim + 1;
51 }
52 if (local_delim != NULL) {
53 local_path = local_delim + 1;
54 }
55 }
56

57 char *filename = NULL;
58

59 if(command != NULL){
60 // check if command is scp or sftp
61 if (strstr(command , "scp") != NULL){
62 conn_type = "scp";
63 char *c = strstr(command , " ");
64 if(c!=NULL){
65 c++;
66 filename = strrchr(c, ’/’);
67 if(filename != NULL){
68 filename ++;
69 }
70 else{

8.5. HTM_SSHDOWNLOAD.C 117

71 filename = p;
72 }
73 }
74 }
75 else if(strstr(command , "sftp") != NULL) {
76 conn_type = "sftp";
77 char *c = strstr(command , " ");
78 if(c!=NULL){
79 c++;
80 filename = strrchr(c, ’/’);
81 if(filename != NULL){
82 filename ++;
83 }
84 else{
85 filename = p;
86 }
87 }
88 }
89 }
90

91 /* add ssh connection to attack record */
92 logmsg(LOG_DEBUG , 1, "SSS connection - Adding connection

to attack record .\n");
93 add_download("SSH", 6, r_addr , r_port , user , NULL ,

filename , remote_path , NULL , NULL a);
94 logmsg(LOG_NOTICE , 1, "SSH connection - %s attached to

attack record .\n", save_file);
95

96 return get(get_ssh_resource(user , host , remote_path ,
local_path , a, conn_type , filename));

97 }

8.5.3 Function get_ssh_resource

1 int get_ssh_resource(const char* user , const char* host , const
char* remote_path , const char* local_path ,

2 Attack* attack , const char* conn_type , const char* filename)
{

3 ssh_session ssh = ssh_new ();
4

5 if(ssh == NULL){
6 logmsg(LOG_ERR , 1, "SSH download error - Session cannot be

established. \n");
7 return -1;
8 }
9

10 ssh_options_set(ssh , SSH_OPTIONS_HOST , host); // establece
el host al que se va a conectar

11 ssh_options_set(ssh , SSH_OPTIONS_USER , user); //

8.5. HTM_SSHDOWNLOAD.C 118

establece el usuario con el que se va a conectar
12

13 int status = ssh_connect(ssh); // realiza la c o n e x i n
SSH

14 if (status != SSH_OK) {
15 logmsg(LOG_ERR , 1, "SSH download error - Connection

error with server SSH.\n");
16 ssh_free(ssh);
17 return -1;
18 }
19

20 status = ssh_userauth_publickey_auto(ssh , NULL , NULL); //
autentica la c o n e x i n SSH utilizando las claves p b l i c a s
del usuario

21 if (status != SSH_AUTH_SUCCESS) {
22 logmsg(LOG_ERR , 1, "SSH download error -

Authentication error.\n");
23 ssh_disconnect(ssh);
24 ssh_free(ssh);
25 return -1;
26 }
27

28 if (conn_type != NULL && strcmp(conn_type , "SFTP") == 0) {
29 get_ssh_resources_by_sftp(user , host , remote_path ,

local_path , a, ssh , filename);
30 } else if (conn_type != NULL && strcmp(conn_type , "SCP") ==

0) {
31 get_ssh_resources_by_scp(user , host , remote_path ,

local_path , a, ssh , filename);
32 } else {
33 logmsg(LOG_ERR , 1, "Error: unknown connection type %s\n",

conn_type);
34 return -1;
35 }
36

37 return 1;
38 }

8.5.4 Function get_ssh_resource_by_sftp

1 int get_ssh_resource_by_sftp(const char* user , const char*
host , const char* remote_path , const char* local_path ,
Attack* attack , ssh_session ssh){

2 sftp_session sftp = sftp_new(ssh);
3 if (sftp == NULL) {
4 logmsg(LOG_ERR , 1, "SSH download error - SFTP session

cannot be created .\n");
5 ssh_disconnect(ssh);
6 ssh_free(ssh);

8.5. HTM_SSHDOWNLOAD.C 119

7 return -1;
8 }
9

10 status = sftp_init(sftp); // inicializa la s e s i n SFTP
11 if (status != SSH_OK) {
12 logmsg(LOG_ERR , 1, "SSH download error - Error

initializing SFTP session .\n");
13 sftp_free(sftp);
14 ssh_disconnect(ssh);
15 ssh_free(ssh);
16 return -1;
17 }
18

19 sftp_file file = sftp_open(sftp , remote_path , O_RDONLY , 0)
; // abre el archivo remoto en modo lectura

20 if (file == NULL) {
21 logmsg(LOG_ERR , 1, "SSH download error - Error opening

remote file.\n");
22 sftp_free(sftp);
23 ssh_disconnect(ssh);
24 ssh_free(ssh);
25 return -1;
26 }
27

28 FILE* f = fopen(local_path , "wb"); // abre el archivo local
en modo escritura binaria

29 if (f == NULL) {
30 logmsg(LOG_ERR , 1, "SSH download error - Error openng

local file.\n");
31 sftp_close(file);
32 sftp_free(sftp);
33 ssh_disconnect(ssh);
34 ssh_free(ssh);
35 return -1;
36 }
37

38 char buffer [1024];
39 char *data = NULL;
40 int nbytes= 0, data -size = 0;
41 do {
42 nbytes = sftp_read(file , buffer , sizeof(buffer));
43 if (nbytes > 0) {
44 data_size += nbytes;
45 data = realloc(data , data_size);
46 memcpy(data + total_bytes_read , buffer , nbytes);
47 if (fwrite(buffer , 1, nbytes , fp) != nbytes) {
48 logmsg(LOG_ERR , 1, "SSH download error - Error

writing local file.\n");
49 fclose(fp);
50 sftp_close(file);
51 ssh_disconnect(session);
52 ssh_free(session);

8.5. HTM_SSHDOWNLOAD.C 120

53 return -1;
54 }
55 } else if (nbytes < 0) {
56 logmsg(LOG_ERR , 1, "SSH download error - Error

reading remote file.\n");
57 fclose(fp);
58 sftp_close(file);
59 ssh_disconnect(session);
60 ssh_free(session);
61 return -1;
62 }
63 } while (nbytes > 0);
64

65

66

67 // close local file and remote file
68 fclose(fp);
69 sftp_close(file);
70

71 // disconnect ssh session and free memory
72 ssh_disconnect(session);
73 ssh_free(session);
74

75 /* add ssh connection to attack record */
76 logmsg(LOG_DEBUG , 1, "SSH connection - Adding connection

to attack record .\n");
77 int status = add_download("SSH", 6, r_addr , r_port , user ,

NULL , filename , remote_path , NULL , nbytes a);
78 if(status != 0){
79 logmsg(LOG_ERR , 1, "SSH download error - Error adding

download to attack record .\n");
80 }
81 logmsg(LOG_NOTICE , 1, "SSH connection - %s attached to

attack record .\n", save_file);
82

83 logmsg(LOG_NOTICE , 1, "SSH download - File succesfully
download .\n");

84 return 0;
85 }

8.5.5 Function get_ssh_resource_by_scp

1 int get_ssh_resource_by_scp(const char* user , const char* host
, const char* remote_path , const char* local_path , Attack*
attack , ssh_session ssh){

2 scp_session scp = scp_new(ssh , SCP_READ , remote_path);
3 if (scp == NULL) {
4 logmsg(LOG_ERR , 1, "SSH download error - SFTP session

cannot be created .\n");

8.5. HTM_SSHDOWNLOAD.C 121

5 ssh_disconnect(ssh);
6 ssh_free(ssh);
7 return -1;
8 }
9

10 status = scp_init(scp); // inicializa la s e s i n SCP
11 if (status != SSH_OK) {
12 logmsg(LOG_ERR , 1, "SSH download error - Error

initializing SFTP session .\n");
13 scp_free(scp);
14 ssh_disconnect(ssh);
15 ssh_free(ssh);
16 return -1;
17 }
18

19 sftp_file file = scp_open(scp , remote_path , O_RDONLY , 0);
// abre el archivo remoto en modo lectura

20 if (file == NULL) {
21 logmsg(LOG_ERR , 1, "SSH download error - Error opening

remote file.\n");
22 scp_free(scp);
23 ssh_disconnect(ssh);
24 ssh_free(ssh);
25 return -1;
26 }
27

28 FILE* f = fopen(local_path , "wb"); // abre el archivo local
en modo escritura binaria

29 if (f == NULL) {
30 logmsg(LOG_ERR , 1, "SSH download error - Error openng

local file.\n");
31 scp_close(file);
32 scp_free(scp);
33 ssh_disconnect(ssh);
34 ssh_free(ssh);
35 return -1;
36 }
37

38 char buffer [1024];
39 char *data = NULL;
40 int = 0, data -size = 0;
41 do {
42 nbytes = scp_read(file , buffer , sizeof(buffer));
43 if (nbytes > 0) {
44 data_size += nbytes;
45 data = realloc(data , data_size);
46 memcpy(data + total_bytes_read , buffer , nbytes);
47 if (fwrite(buffer , 1, nbytes , fp) != nbytes) {
48 logmsg(LOG_ERR , 1, "SSH download error - Error

writing local file.\n");
49 fclose(fp);
50 scp_close(file);

8.5. HTM_SSHDOWNLOAD.C 122

51 ssh_disconnect(session);
52 ssh_free(session);
53 return -1;
54 }
55 } else if (nbytes < 0) {
56 logmsg(LOG_ERR , 1, "SSH download error - Error

reading remote file.\n");
57 fclose(fp);
58 scp_close(file);
59 ssh_disconnect(session);
60 ssh_free(session);
61 return -1;
62 }
63 } while (nbytes > 0);
64

65

66

67 // close local file and remote file
68 fclose(fp);
69 scp_close(file);
70

71 // disconnect ssh session and free memory
72 ssh_disconnect(session);
73 ssh_free(session);
74

75 /* add ssh connection to attack record */
76 logmsg(LOG_DEBUG , 1, "SSS connection - Adding connection

to attack record .\n");
77 int status = add_download("SSH", 6, r_addr , r_port , user ,

NULL , filename , remote_path , NULL , nbytes a);
78 if(status != 0){
79 logmsg(LOG_ERR , 1, "SSH download error - Error adding

download to attack record .\n");
80 }
81 logmsg(LOG_NOTICE , 1, "SSH connection - %s attached to

attack record .\n", save_file);
82

83 logmsg(LOG_NOTICE , 1, "SSH download - File succesfully
download .\n");

84 return 0;
85 }

JSON simplification script

1 import json
2

3 # Ruta al archivo JSON de entrada
4 json_file = ’C:\\ Users\\ Lenovo \\ Downloads \\ attackers.json’
5

8.5. HTM_SSHDOWNLOAD.C 123

6 # Ruta al archivo JSON de salida
7 output_file = ’C:\\ Users\\ Lenovo \\ Downloads \\ remote_ips.json’
8

9 # Lista para almacenar los valores de remote_ip
10 remote_ips = []
11

12 # Leer el archivo JSON l n e a por l n e a
13 with open(json_file) as file:
14 for line in file:
15 try:
16 # Cargar cada l n e a del archivo JSON
17 data = json.loads(line)
18

19 # Extraer el valor del campo "remote_ip"
20 remote_ip = data[’attack_connection ’][’remote_ip ’]
21 remote_ips.append(remote_ip)
22 except json.JSONDecodeError:
23 continue
24

25 # Crear un diccionario con la lista de remote_ips
26 output_data = {’remote_ips ’: remote_ips}
27

28 # Escribir el diccionario en el archivo JSON de salida
29 with open(output_file , ’w’) as outfile:
30 json.dump(output_data , outfile)
31

32 print("Los valores de remote_ip se han guardado en el archivo
remote_ips.json.")

IP Address Geolocation Script

1 import json
2 import requests
3 import urllib3
4 urllib3.disable_warnings(urllib3.exceptions.

InsecureRequestWarning)
5

6

7 # URL de la API GeoJS
8 url = "https ://get.geojs.io/v1/ip/geo/{ip}.json"
9

10 # Cargar las direcciones IP desde el archivo remote_ips.json
11 with open("C:\\ Users\\ Lenovo \\ Downloads \\ remote_ips.json") as

file:
12 remote_ips = json.load(file)
13

14 # Diccionario para almacenar los datos de geolocalizaci n y
frecuencia

15 geolocations = {

8.5. HTM_SSHDOWNLOAD.C 124

16 "ip": {},
17 "country": {},
18 "country_code": {},
19 "country_code3": {},
20 "continent_code": {},
21 "city": {},
22 "region": {},
23 "latitude": {},
24 "longitude": {},
25 "accuracy": {},
26 "timezone": {},
27 "organization_name": {},
28 "asn": {},
29 "organization": {}
30 }
31

32 # Iterar sobre cada d i r e c c i n IP y obtener la i n f o r m a c i n de
geolocalizaci n

33 for ip_address in remote_ips:
34 response = requests.get(url.format(ip=ip_address), verify=

False)
35 if response.status_code == 200:
36 data = response.json()
37

38 ip = data.get("ip", "")
39 country = data.get("country", "")
40 country_code = data.get("country_code", "")
41 country_code3 = data.get("country_code3", "")
42 continent_code = data.get("continent_code", "")
43 city = data.get("city", "")
44 region = data.get("region", "")
45 latitude = data.get("latitude", "")
46 longitude = data.get("longitude", "")
47 accuracy = data.get("accuracy", 0)
48 timezone = data.get("timezone", "")
49 organization_name = data.get("organization_name", "")
50 asn = data.get("asn", "")
51 organization = data.get("organization", "")
52

53 # Actualizar la frecuencia de cada valor en los campos
correspondientes

54 geolocations["ip"][ip] = geolocations["ip"].get(ip, 0)
+ 1

55 geolocations["country"][country] = geolocations["
country"].get(country , 0) + 1

56 geolocations["country_code"][country_code] =
geolocations["country_code"].get(country_code , 0) + 1

57 geolocations["country_code3"][country_code3] =
geolocations["country_code3"].get(country_code3 , 0) + 1

58 geolocations["continent_code"][continent_code] =
geolocations["continent_code"].get(continent_code , 0) + 1

59 geolocations["city"][city] = geolocations["city"].get(

8.5. HTM_SSHDOWNLOAD.C 125

city , 0) + 1
60 geolocations["region"][region] = geolocations["region"

].get(region , 0) + 1
61 geolocations["latitude"][latitude] = geolocations["

latitude"].get(latitude , 0) + 1
62 geolocations["longitude"][longitude] = geolocations["

longitude"].get(longitude , 0) + 1
63 geolocations["accuracy"][accuracy] = geolocations["

accuracy"].get(accuracy , 0) + 1
64 geolocations["timezone"][timezone] = geolocations["

timezone"].get(timezone , 0) + 1
65 geolocations["organization_name"][organization_name] =

geolocations["organization_name"].get(organization_name ,
0) + 1

66 geolocations["asn"][asn] = geolocations["asn"].get(asn
, 0) + 1

67 geolocations["organization"][organization] =
geolocations["organization"].get(organization , 0) + 1

68

69 # Guardar los datos de geolocalizaci n y frecuencia en el
archivo geolocations.json

70 with open("geolocations.json", "w") as file:
71 json.dump(geolocations , file , indent =4)

Time difference calculation script

1 import json
2 from datetime import datetime
3

4 # Ruta al archivo JSON de entrada
5 json_file = ’C:\\ Users\\ Lenovo \\ Downloads \\times.json’
6

7 # Ruta al archivo JSON de salida para las diferencias y la
media

8 output_file = ’C:\\ Users\\ Lenovo \\ Downloads \\ differences.json’
9

10 # Lista para almacenar las diferencias entre end_time y
start_time

11 differences = []
12

13 # Leer el archivo JSON de tiempos
14 with open(json_file) as file:
15 data = json.load(file)
16

17 # Calcular las diferencias y almacenarlas en la lista
differences

18 for item in data:
19 start_time = datetime.fromisoformat(item[’start_time ’

])

8.5. HTM_SSHDOWNLOAD.C 126

20 end_time = datetime.fromisoformat(item[’end_time ’])
21 difference = (end_time - start_time).total_seconds ()
22 differences.append(difference)
23

24 # Calcular la media de las diferencias
25 if differences:
26 mean = sum(differences) / len(differences)
27 else:
28 mean = 0
29

30 # Crear un diccionario con las diferencias y la media
31 output_data = {’differences ’: differences , ’mean’: mean}
32

33 # Escribir el diccionario en el archivo JSON de salida
34 with open(output_file , ’w’) as outfile:
35 json.dump(output_data , outfile)
36

37 print("Las diferencias y la media se han guardado en el
archivo differences.json.")

Bibliography

[1] B. Santander. ¿qué es un honeypot y para qué sirven? [Online]. Available:
https://www.bancosantander.es/glosario/honeypot

[2] N. Provos. A virtual honeypot framework. [Online]. Avail-
able: https://www.usenix.org/legacy/publications/library/proceedings/sec04/
tech/full_papers/provos/provos_html/honeyd.html

[3] I. S. N. C. Institute), “Industrial honeypot implementation guide,” vol. 1, p. 45,
October 2019.

[4] J. E. L. d. V. Eduardo Gallego, “Honeynet: Aprendiendo del atacante,” vol. 1,
p. 10, October 2019.

[5] F. J. M. Coll, “Ped: Red de equipos trampa de rediris,” vol. 1, p. 10, October
2019.

[6] L. Spitzner, “Honeypots: Tracking hackers,” Addison Wesley, vol. 1, p. 480,
September 2002.

[7] DinoTools. Dionaea. [Online]. Available: https://dionaea.readthedocs.io/en/
latest/introduction.html

[8] telekom security. T-pot. [Online]. Available: https://github.com/
telekom-security/tpotce

[9] huuck. Adbhoney. [Online]. Available: https://github.com/huuck/ADBHoney

[10] CISCO. Cisco secure firewall asa. [Online]. Available: https://www.cisco.com/
c/en/us/products/security/adaptive-security-appliance-asa-software/index.
html

[11] CVE. Vulnerabilidad cve-2018-0101. [Online]. Available: https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2018-0101

[12] N. Provos. Honeyd. [Online]. Available: https://www.honeyd.org/general/

[13] T. H. Project. Kippo. [Online]. Available: https://www.honeynet.org/projects/
old/kippo/

https://www.bancosantander.es/glosario/honeypot
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/provos/provos_html/honeyd.html
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/provos/provos_html/honeyd.html
https://dionaea.readthedocs.io/en/latest/introduction.html
https://dionaea.readthedocs.io/en/latest/introduction.html
https://github.com/telekom-security/tpotce
https://github.com/telekom-security/tpotce
https://github.com/huuck/ADBHoney
https://www.cisco.com/c/en/us/products/security/adaptive-security-appliance-asa-software/index.html
https://www.cisco.com/c/en/us/products/security/adaptive-security-appliance-asa-software/index.html
https://www.cisco.com/c/en/us/products/security/adaptive-security-appliance-asa-software/index.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0101
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0101
https://www.honeyd.org/general/
https://www.honeynet.org/projects/old/kippo/
https://www.honeynet.org/projects/old/kippo/

BIBLIOGRAPHY 128

[14] M. Oosterhof. Cowrie. [Online]. Available: https://cowrie.readthedocs.io/en/
latest/README.html#what-is-cowrie

[15] zeroq. Amun. [Online]. Available: https://github.com/zeroq/amun

[16] mushorg. Glastopf. [Online]. Available: https://github.com/mushorg/glastopf

[17] buffer. Thug. [Online]. Available: https://thug-honeyclient.readthedocs.io/en/
latest/intro.html

[18] armedpot. Honeytrap. [Online]. Available: https://github.com/armedpot/
honeytrap

[19] mushorg. Conpot. [Online]. Available: https://conpot.readthedocs.io/en/
latest/faq.html

[20] T. H. Project. Snare. [Online]. Available: https://www.honeynet.org/projects/
active/snare-and-tanner/

[21] pwnlandia. Shockpot. [Online]. Available: https://github.com/pwnlandia/
shockpot

[22] Cymmetria. Honeycomb. [Online]. Available: http://honeycomb.cymmetria.
com/en/latest/cli.html

[23] evilsocket. Medusa. [Online]. Available: https://github.com/evilsocket/medusa

[24] T. H. . M. Eckert. Inetsim: Internet services simulation suite. [Online].
Available: https://www.inetsim.org/

[25] I. I. A. N. Authority. Protocol numbers. [Online]. Available: https:
//www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

[26] Virustotal. Virustotal. [Online]. Available: https://support.virustotal.com/hc/
en-us/articles/115002126889-How-it-works

[27] Kaspersky. Troyanos. [Online]. Available: https://www.kaspersky.es/
resource-center/threats/trojans

[28] I. I. N. de Ciberseguridad. Mirai. [Online]. Available: https://www.incibe.es/
ciudadania/servicio-antibotnet/info/mirai

[29] A. W. Services. Introducción a aws. [Online]. Available: https://aws.amazon.
com/es/getting-started/

[30] ——. What is amazon ec2? [Online]. Available: https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/concepts.html

https://cowrie.readthedocs.io/en/latest/README.html#what-is-cowrie
https://cowrie.readthedocs.io/en/latest/README.html#what-is-cowrie
https://github.com/zeroq/amun
https://github.com/mushorg/glastopf
https://thug-honeyclient.readthedocs.io/en/latest/intro.html
https://thug-honeyclient.readthedocs.io/en/latest/intro.html
https://github.com/armedpot/honeytrap
https://github.com/armedpot/honeytrap
https://conpot.readthedocs.io/en/latest/faq.html
https://conpot.readthedocs.io/en/latest/faq.html
https://www.honeynet.org/projects/active/snare-and-tanner/
https://www.honeynet.org/projects/active/snare-and-tanner/
https://github.com/pwnlandia/shockpot
https://github.com/pwnlandia/shockpot
http://honeycomb.cymmetria.com/en/latest/cli.html
http://honeycomb.cymmetria.com/en/latest/cli.html
https://github.com/evilsocket/medusa
https://www.inetsim.org/
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://www.kaspersky.es/resource-center/threats/trojans
https://www.kaspersky.es/resource-center/threats/trojans
https://www.incibe.es/ciudadania/servicio-antibotnet/info/mirai
https://www.incibe.es/ciudadania/servicio-antibotnet/info/mirai
https://aws.amazon.com/es/getting-started/
https://aws.amazon.com/es/getting-started/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

BIBLIOGRAPHY 129

[31] ——. What is elastic load balancing? [Online]. Avail-
able: https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
what-is-load-balancing.html

[32] Microsoft. Visual studio code. [Online]. Available: https://www.
bancosantander.es/glosario/honeypot

[33] ——. Why did we build visual studio code? [Online]. Available:
https://code.visualstudio.com/docs/editor/whyvscode

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/what-is-load-balancing.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/what-is-load-balancing.html
https://www.bancosantander.es/glosario/honeypot
https://www.bancosantander.es/glosario/honeypot
https://code.visualstudio.com/docs/editor/whyvscode

	Acknowledgments
	Abstract
	Introduction
	Objectives and Expected Results

	Theoretical Foundations of a Honeypot
	Definition
	Types of Honeypots
	Operation of a Honeypot
	Advantages
	Disadvantages

	Criteria for Selecting the Right Honeypot
	Taxonomy for Classification
	Architecture
	Degree of Interactivity
	Emulation Level
	Programming Language
	Objectives
	Open Source Honeypots
	Table for Honeypot Classification
	Chosen Honeypot

	Analysis and Design of Honeytrap Software
	Analysis I. Use Cases
	Analysis II. Domain Model
	Domain Objects. Data Structures
	Relations

	Design
	Approach
	Design Patterns

	Configuration of the Chosen Honeypot
	Plugin providing support for HTTP
	Plugin providing support for DNS
	Plugin providing support for SSH, SCP, and SFTP
	Configuration File
	Configuration of Vulnerable Services

	Deployment in the Public Network
	Analysis of Collected Data
	Log file analysis. Connection distribution
	Binary file analysis
	Analysis in Virustotal

	Attackers distribution
	Duration of the attacks. Techniques used

	Conclusions
	Future Work

	Appendix I
	Virustotal

	Appendix II
	htm_httpDownload.c
	Function is_https()
	Modification on cmd_parse_for_http_url()

	htm_dnsDetection.c
	Function is_dns_query()
	Function cmd_parse_for_dns_query()

	htm_sshDownload.c
	Function cmd_parse_for_ssh()
	Function get_sshcmd
	Function get_ssh_resource
	Function get_ssh_resource_by_sftp
	Function get_ssh_resource_by_scp

	Bibliography

