UNIVERSITY OF PISA AND SCUOLA SUPERIORE
SANT’ANNA

Master Degree in Computer Science and Networking

v,

=D,

g
«m;-;k?" rsi’é‘ Z

BRA
i"gaji -

DPI over commodity hardware:
implementation of a scalable
framework using FastFlow

CANDIDATE SUPERVISORS

Daniele De Sensi Prof. Marco Danelutto
Dr. Luca Deri

AcaDpEMIC YEAR 2011/2012

Alla mia famiglia

“Breathe, breathe in the air
Don’t be afraid to care”

PNk FLOYD

Ringraziamenti

A pochi giorni dalla fine di questo percorso, non posso fare a meno di pensare
a tutte le persone che mi sono state accanto in questi anni e che mi hanno
aiutato, ognuno a suo modo, a raggiungere questo traguardo.

Innanzitutto esprimo la mia profonda gratitudine al Prof. Marco Dane-
lutto per la disponibilita e la fiducia che mi ha sempre dimostrato. Il suo
supporto, formativo e morale, mi ha permesso di svolgere al meglio il mio
lavoro di tesi.

Ringrazio inoltre il Dott. Luca Deri e il Dott. Massimo Torquati per
I’aiuto fornitomi durante lo svolgimento della tesi e per essere sempre stati
disponibili a risolvere i miei dubbi.

Vorrei poi ringraziare LIST S.p.A., per avermi dato la possibilita di ap-
profondire le mie conoscenze, grazie alla borsa di studio sul tema “Nuove
architetture hardware-software ad alte prestazioni”, conferitami durante il
periodo compreso tra Febbraio e Luglio 2012.

Il ringraziamento piu sentito lo rivolgo a mio padre, mia madre, Fabri e
Davide. Senza la loro guida tutto questo non sarebbe stato possibile. Il loro
supporto e la loro pazienza mi hanno sempre accompagnato in tutti questi
anni. Inoltre ringrazio gli zii, i nonni, i cugini e tutti coloro che mi hanno
sempre fatto sentire la loro vicinanza anche se a chilometri di distanza.

Un ringraziamento speciale va a Mari, che mi e stata accanto sin da
quando ho iniziato questo cammino. La sua presenza e il suo appoggio sono
stati per me di fondamentale importanza.

Ringrazio poi Andre, Cica e Picci, che hanno condiviso con me questi
mesi di tesi. Tra una battuta e ’altra ci siamo sorretti a vicenda e siamo
riusciti a sorridere anche di fronte a situazioni sfavorevoli.

Un affettuoso ringraziamento a coloro che ho conosciuto in questi ultimi
due anni e con i quali ho passato alcuni dei momenti piu piacevoli di questo
percorso universitario: Alessio, Bob, Davide, Ema, FraPac, Frenci, Gian,
Luigi, Simo, Sina, Tixi e Tudor.

Grazie a Bice, Francesca, Nicola, Roberta, Simone e Stefano, per le serate

passate insieme e per 'affetto che mi hanno sempre dimostrato.
Un pensiero sentito va infine a Maria e Gianluca per la loro sincera ami-
cizia.

A loro tutti va il mio sincero ringraziamento.

Daniele

a89bc677dab3e61abf3153299ecb935a

Contents

Introduction

1 Thesis context, related work and tools

3

1.1

1.2

1.3

Protocol classification
1.1.1 Relatedwork

1.1.1.1 Hardware based solutions

1.1.1.2 Software based solutions
Structured parallel programming
1.2.1 Pipeline
1.22 Farm
1.2.3 Considerations about average values
1.24 Relatedwork

1241 Muesli

1.24.2 SkeTo
1.24.3 SkePu
FastFlow

Architectural design

2.1 Framework design
2.2 Parallel structure design
Implementation
3.1 Application interface oL
3.2 Network and transport headers processing
3.2.1 IP fragmentation support
3.3 Flow data management
3.3.1 Hash functions analysis
3.4 Protocol identification

3.5

3.4.1 TCP stream management
3.4.2 Protocols inspectors
Callbacks mechanisms

CONTENTS

3.6 Demo application 48
3.7 Parallel structure oo 49
3.7.1 Interface with the application 49

3.7.2 Implementation details o1

4 Experimental results 54
4.1 Hash functions analysis 56
4.2 Analysis of Move To Front technique 60
4.3 Comparison of L3 farm scheduling strategies 61
4.4 Speedup 63
4.4.1 Protocol identification 63

4.4.2 Processing of extracted data 64

4.4.3 Application speedup 66

4.5 Assessment 66
4.5.1 Comparison with other sequential software solutions . 67

4.5.2 Comparison with hardware solutions 71

5 Conclusions 74

References i

List of acronyms

IP Internet Protocol

UuDP User Datagram Protocol

TCP Transmission Control Protocol
p2p Peer to Peer

VoIP Voice over IP

ISP Internet Service Providers

DPI Deep Packet Inspection

NI Network Intelligence

MTU Maximum Transmission Unit
FPGA Field Programmable Gate Array
CAM Content Addressable Memories
IPS Intrusion Prevention System
IDS Intrusion Detection System
SPSC Single Producer Single Consumer
NIC Network Interface Controller
FIFO First In First Out

OSI Open Systems Interconnection
URL Uniform Resource Locator

GPU Graphics Processing Unit

MPI Message Parsing Interface
OpenMP Open Multiprocessing

CUDA Compute Unified Device Architecture
OpenCL Open Computing Language

STL Standard Template Library

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2

2.3

3.1
3.2
3.3
3.4
3.5
3.6

3.7

4.1

4.2

4.3

4.4

Example of a pattern split between two TCP segment 4
Pipeline skeleton o L 9
Farm skeleton o 11
FastFlow architecture (taken from [1]) 15
Examples of computational graphs (taken from [1]) 17
Flow diagram of the framework 20
Structure of the framework with flow table partitioned among

the set of workers (collector not shown) 23
Structure of the framework when the emitter is a bottleneck

(the collector of the second farm is not shown) 25
Stateful interaction. oL 29
Stateless interaction L 30
IP fragmentation process 33
List of IPv4 fragments 34
List of IPv4 fragmented datagrams 35
Hash table containing the [Pv4 sources which have outstand-

ing fragmented datagrams. For sake of simplicity, the list of
outstanding fragmented datagrams is not shown 35
Interaction between the application and the parallel framework 50

Hash functions uniformity over the flows contained in CAIDA

dataset 57
Hash functions execution times over the flows contained in
CAIDA dataset 58

Comparison of the impact of the different hash functions over
the framework bandwidth (in millions of packets per second) 59
Analysis, using Sigcomm dataset, of the impact of MTF strat-
egy over the global bandwidth of the framework varying the
average load factor of the table 61

LIST OF FIGURES

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Comparison of the impact of the different scheduling strategies

fortherd3 farm, 62
Comparison of the speedup for protocol identification using
different datasets L. 63
Comparison of the speedup when packet processing capabili-
ties are required 65
Comparison of the speedup of the HTTP payload pattern match-
ing application L 66

Comparison of the bandwidth (in millions of packets per sec-
ond) of our framework with respect to nDPI over different
datasets 68
Comparison of the bandwidth (in millions of packets per sec-
ond) of nDPI with respect to our framework varying the num-
ber of workers of the farm 69
Bandwidth of the HTTP payload pattern matching application 72

LIST OF FIGURES

Introduction

In the last years we assisted to a large increase of the number of applications
running on top of IP networks. Consequently has increased the need to
implement very efficient network monitoring solutions that can manage these
high data rates.

Network administrators always deal with the problem of classifying and
analyzing the type of traffic is traveling on their networks. This can be
functional to multiple purposes, like:

Network security We assisted recently to an increase in the complexity of
the applications which run on top of IP networks. Consequently, we
have seen a shift from so-called “network-level” attacks, which target
the network the data is transported on (e.g. Denial of Service), to
content-based threats which exploit applications vulnerabilities and re-
quire sophisticated levels of intelligence to be detected. Many of these
threats are designed to bypass traditional firewalls systems and often
they cannot be detected by antivirus scanners [2]. Accordingly, it is no
more sufficient to have only a software solution on the client side but
we also need to run some controls on the network itself. These types
of controls needs to identify the application protocol carried inside the
packet and possibly to analyze its content in order to detect a potential
threat.

Quality of Service and Traffic shaping Another situation in which pro-
tocol classification may be useful is when network administrators may
want to limit the transmission of packets that might degrade over-
all network performance [3, 4]. For example, the streaming of large
amounts of data for an extended period of time (like the one performed
by Peer to Peer applications) may degrade the other users’ experience
on the network. Consequently, to improve the quality of service, traf-
fic classification engines may identify the problematic applications and
then reduce their priority level. Alternatively, it could be used in the

ii INTRODUCTION

opposite way, ensuring an higher priority to sensitive applications like
Voice Over IP (VoIP) or video streaming.

Data leak prevention The analysis of the data traveling over an enterprise
network may be useful to detect potential data breach or ex-filtration
transmissions and to prevent and block them. In data leakage inci-
dents, sensitive data is disclosed to unauthorized personnel either by
malicious intent or inadvertent mistake. These data may include: pri-
vate or company information, intellectual property, financial or patient
information, credit-card data, and other information depending on the
business and the industry [5]. This is a very felt issue since the leakage
of sensitive data can lead an organization to face with criminal lawsuits
[6] which could then cause the bankrupt of the company or takeovers
by larger companies. Moreover, leakage of personal data may involve
every citizen, since their data are stored electronically by hospitals,
universities and other public organizations.

Network access control Traffic classification and inspection mechanisms
may be used by network administrators or Internet Service Providers
(ISPs) to ensure that their acceptable use policy is enforced, allowing
the access to the network only to some kind of traffic. This can be
used, for example, for parental control [7] or to limit the access to the
network in order to improve employees productivity [8].

For all these tasks, identification of the application protocol (e.g. HTTP,
SMTP, SKYPE, etc. ..) is required and, in some cases, extraction and process-
ing of the information contained in its payload is needed.

However, in order to be able to identify the protocol, is no more sufficient
to only look at TCP /UDP ports because protocols often run on ports different
from the assigned ones.

To tackle these problems, in the recent years, Deep Packet Inspection
(DPI) technology has emerged. Differently from classic monitoring solutions
9] that classify traffic and collect information only based on the <SoURrck IP,
DESTINATION IP, SOURCE PORT, DESTINATION PORT, L4 PROTOCOL> tuple,
DPI inspects the entire payload to identify the exact application protocol.

In most cases, protocol identification is mainly achieved by comparing the
packet payload with some well-known protocols patterns or, if the protocol is
encrypted and we accept to have a reduction in the accuracy, by using some
statistical knowledge about the protocol [10, 11, 12].

However, considering the current networks rates, this kind of processing
is not suitable for offline analysis, which would require to store the packets
traces for further elaboration. Therefore, we need to manage the incoming

il

packets as soon they arrive, without relying on the possibility to store the
packets that we are not able to manage for later processing.

Moreover, some protocols like HTTP are so extensively used [13] that we
may want to analyze the carried content to classify it in more sub protocols
(e.g. Facebook, Gmail, Netflix and others can all be viewed as HTTP sub
protocols). Furthermore, as we anticipated, some network management tasks
require to extract protocol content and metadata. For this reason, Network
Intelligence (NT) technology has been recently proposed [14]. This kind of
analysis is built on DPI concepts and capabilities and extends them with
the possibility to extract and process content and metadata carried by the
protocol.

However, since the network could reorder the messages, to correctly ex-
tract the data carried by the protocol, some applications may require to the
NI engine to manage the expensive task of IP defragmentation and TCP
stream reordering and reassembly. In general, this is not an easy task and
needs to be carefully designed since it may be vulnerable to some exploits
(15, 16].

For these reasons, and considering the high bandwidth of the current
networks, we need highly efficient solutions capable of processing millions of
packets per second.

This kind of processing is in many cases implemented, at least in part,
through dedicated hardware [17, 18, 19]. However, full software solutions
may often be more appealing because they are typically more economical
and have, in general, the capability to react faster to protocols evolution and
changes.

Furthermore, with the shift from single core to multicore processing el-
ements, it should be possible, in principle, to implement high speed DPI
on non-dedicated hardware and, at the same time, to provide performances
comparable to those of special purpose solutions.

However, common existing DPI software solutions [20, 21, 22, 23] don’t
take advantage of the underlying multicore architecture, providing only the
possibility to process the packets sequentially. Therefore, when multicores
have to be exploited, they demand to the application programmer the com-
plicated and error-prone task of parallelization and fine tuning of the applica-
tion. Furthermore, many DPI research works that can be found in literature
[24, 25, 26, 27| and which exploit multicore architectures are often character-
ized by a poor scalability, due to the overhead required for synchronization
or to the load unbalance among the used cores.

Moreover, in order to be able to manage high data rates, some of these
solutions don’t inspect the entire payload, using “lightweight” approaches
which analyze only few bytes of the packet and are, in general, less accurate

iv INTRODUCTION

than solutions which adopt full packet inspection. Furthermore, these solu-
tions are limited to protocol identification, without providing any mechanism
to locate, extract and process the data and metadata contained inside the
packets, which are basic requirements for a NI engine.

The target of this thesis is to explore the possibility to apply
structured parallel programming theory to support the implemen-
tation of an high bandwidth streaming application as the one
just described. Using these concepts, we would like to design, re-
alize and validate a DPI and NI framework capable of managing
current networks rates using commodity multicore hardware.

Accordingly we will possibly analyze the entire payload in order to reach
an high accuracy when identifying the protocol and, at the same time, to
give to the application programmer the possibility to specify which protocol
metadata to extract and how to process them. However, considering that
in general the processing of the extracted data may be computationally ex-
pensive, we need to design our framework in such a way that is possible to
distribute it over the available processing elements.

We will show that, using structured parallel programming con-
cepts and with an accurate design, we are able to do stateful
packet inspection over current network rates using commodity
hardware and to achieve a good speedup and results comparable
to those obtained by dedicated hardware.

In order to be able to reach our goals, we implemented our framework
using the FastFlow library [28, 1] which, thanks to its low latency com-
munication mechanisms, allowed us to write an efficient and scalable DPI
framework.

Our proof-of-concept framework supports at the moment some of the
most common protocols (such as HTTP, POP3, IMAP, DHCP, DNS, MDNS and
few others). Moreover, the framework has been designed in such a way that
it could be easily extended with new protocols with limited changes in the
code.

The rest of the thesis is structured in this way:

e In Chapter 1 we will analyze the context in which this thesis is located,
briefly describing some of the techniques commonly used to perform
DPI and showing why our work differs from already existing works.
Moreover, we will give the definition of structured parallel programming,
exposing the main features provided by FastFlow, the library we used
to implement these concepts.

e We will then describe in Chapter 2 the global design of the framework
and how, using the concepts introduced in Chapter 1, it efficiently
exploits the underlying multicore architecture.

e In Chapter 3 we will discuss the main features of the framework, its
internal structure and a sketch of the API offered to the user. We
will then describe how we split its parts among the different execution
modules, avoiding any type of unnecessary synchronization mechanism
in such a way that they can be completely independent from each other.

Moreover, to validate the framework, we present an application imple-
mented on top of it, which scans all the HTTP messages traveling on
the network searching for some specified patterns.

e In Chapter 4 some experimental results will be presented and analyzed,
validating our framework and showing that it allows to write scalable
DPI applications exploiting the processing power providing by the un-
derlying multiprocessor architecture.

e In Chapter 5 conclusions will be drawn and the limits of the framework
will be analyzed. Moreover, we will propose some ideas for possible
features which could be added in future to our work.

vi

INTRODUCTION

Chapter 1

Thesis context, related work
and tools

In this chapter we will introduce the context of this thesis, analyzing the
related work and introducing the concept of structured parallel programming,
which characterizes our thesis with respect to other existing works. We will
then describe FastFlow, the library we used to apply these concepts inside
the framework.

1.1 Protocol classification

The increasing number of applications running on top of IP networks is mak-
ing more and more urgent the need to implement very efficient tools for an
accurate protocol classification. The ability to identify and classify the pack-
ets according to the protocol they carry may be useful for different purposes.

As an example, as far as network security is concerned, in the recent years
we have seen a shift from so-called “network-level” attacks, which target the
network they are transported on (e.g. Denial of Service), to content-based
threats which exploit applications vulnerabilities and require sophisticated
levels of intelligence to be detected. For some of these threats, it is no more
sufficient to have only a software solution on the client side but we also need
to run some controls on the network itself [2]. These types of controls needs
to identify the application protocol carried inside the packet and possibly to
analyze its content in order to detect a potential threat.

For this kind of applications, the accuracy is extremely important, as
wrong assumptions on what is happening on the network could lead to nasty
effects.

Traffic classification solutions may be roughly divided into two main cat-

2 CHAPTER 1. THESIS CONTEXT, RELATED WORK AND TOOLS

egories:

Flow based In this case the packets are grouped in flows. A flow is defined
as a set of packets with the same <SOURCE IP ADDRESS, DESTINATION
IP ADDRESS, SOURCE PORT, DESTINATION PORT, TRANSPORT PROTOCOL
IDENTIFIER>. These flows are bidirectional, therefore packets with the
key: <w.X.Y.Z, A.B.C.D, R, S, T> belong to the same flow of the packets
with key: <A.B.C.D, W.X.Y.Z, S, R, T>.

The recognition of the packet is done by using both the information
carried by the current packet and the accumulated information about
the flow. However this requires to store some kind of data about the
previous packets received for the flow (e.g. received bytes, state of the
TCP connection and others).

Packet based In this case each packet is analyzed independently from the
others and there is no need to store any information inside the classifi-
cation engine.

Moreover, traffic classification could also be divided according to the type
of mechanisms used to identify the protocol carried inside the packets.

Port based This is one of the simplest and most used techniques. It simply
tries to classify the protocol according to the ports used by the applica-
tion. However, this approach exhibits a low accuracy [29, 30]. Indeed,
many applications often use ports different from the standard ones or
they use dynamic ports which are not known in advance.

Statistical The solutions based on this technique try to identify the pro-
tocol using statistical knowledge about the distribution of the packet
length or by analyzing the packets interarrival times. Some of these so-
lutions use machine learning techniques to train the engine with previ-
ously captured and classified traffic traces to characterize the statistical
properties of the specific protocol.

The advantage of this approach is that it doesn’t need to look the packet
payload at all. Despite this can be very useful in presence of encrypted
protocols, it may not be the best solution for non encrypted protocols
since it provides a lower accuracy with respect to that provided by
payload based techniques.

Payload based This class of solutions try to identify the protocol by search-
ing inside the payload for well known protocol signatures or by ana-
lyzing its content and correlating it with that of the other packets

1.1. PROTOCOL CLASSIFICATION 3

belonging to the same flow. Accordingly, in some cases we may need to
maintain some information between successive received packets of the
flow.

Protocol signatures may be both generated by hand or by using ma-
chine learning techniques [31], which automatically extract application
signatures from IP traffic payload content.

Since payload based technique can analyze the entire payload, it is the
most accurate technique and the only one which allows the extraction
and processing of the content and metadata carried by the protocol.
However, when metadata extraction is performed or if a very high ac-
curacy is needed, TCP/IP normalization may be required by the ap-
plication. TCP/IP normalization aims at solving the problems relative
to IP fragmentation (i.e. when an IP datagram is larger than the Max-
imum Transmission Unit (MTU) of the outgoing link and hence it is
divided in two or more fragments) and TCP reassembly (e.g. when an
application message doesn’t fit in a single IP datagram and hence it is
split across different TCP segments) [32].

Moreover, in some cases IP fragmentation and TCP segmentation may
be used by an attacker to evade the DPI engine [33, 34]. As an efficient
alternative to TCP/IP normalization, some existing works [35, 36] try
to identify this kind of misbehaving situations and to divert them to a
slow path engine, which reassemble such flows. Conversely, the other
segmented flows are managed using faster techniques which can match
the signatures also in presence of fragmentation or segmentation. How-
ever, these techniques are not sufficient when the application explicitly
requires to process the data contained inside the protocol payload in
the same order they are sent.

1.1.1 Related work

We will now describe some of the existing works in the field of protocol
classification, analyzing both hardware and software solutions and presenting
their peculiar characteristics.

1.1.1.1 Hardware based solutions

Many hardware solutions exist which perform, at least in part, the steps
required for protocol classification.

One of the most common cases, is to use dedicated hardware to search for
patterns inside the packets both by using Field Programmable Gate Arrays

4 CHAPTER 1. THESIS CONTEXT, RELATED WORK AND TOOLS

(FPGAs) [17, 37, 38] or by using Content Addressable Memories (CAMs)
(39, 18, 19, 40]. These solution may both use exact matching approaches or
accept a certain rate of false positive matching by using, for example, bloom
filters.

The patterns searched inside the packet may both be application signa-
tures used to identify the application protocol, or may be patterns identifying
security threats, similarly to what is done by Intrusion Detection/Prevention
Systems (IPS/IDS) [41, 42].

However, these solutions only perform stateless pattern matching, without
any knowledge of the structure of the packet or of the relationship between
them. This kind of knowledge should be provided in a real environment,
since its absence could lead to the impossibility to find these patterns.

Let us consider for example the scenario depicted in figure 1.1, where the
string DIVISIONBELL is split in two different TCP segment.

[]] e DIVIS | IONBELL............

HTTP PAYLOAD PAYLOAD PAYLOAD
HEADER SEGMENT 1 SEGMENT 2 SEGMENT 3

Figure 1.1: Example of a pattern split between two TCP segment

In that case, if TCP analysis and normalization is not provided, the two
segments would be analyzed separately and thus the string would not be
found by the pattern matching engine. Moreover, this could also happen
when these solutions are used to identify the application protocol by signature
matching, thus leading to the impossibility to identify some application lows.
This is the reason why pattern matching alone is not sufficient and some kind
of process and knowledge about the characteristics of the flow is required.

1.1.1.2 Software based solutions

nDPI This is a well known, open source DPI library which supports more
than 100 protocols [23]. It has been forked from OpenDPI [20] and op-
timizes and extends it with new protocols. An inspector is associated to
each supported protocol and each of them analyzes the entire packet payload
searching for characteristics or signatures which allows it to identify the car-
ried protocol. However, it lacks of support for IP and TCP normalization

1.1. PROTOCOL CLASSIFICATION bt

and doesn’t provide any possibility to specify which data to extract once that
the protocol has been identified. Moreover, it doesn’t have any support for
multiprocessor architectures, demanding to the application programmer the
difficult and error prone task of parallelizing his application.

Libprotoident In this work the concept of “Lightweight Packet Inspection”
(LPI) is proposed [22]. Instead of analyzing the entire payload, LPT tries to
identify the application protocol by simply looking to the first four bytes
of the payload. However, many applications use HTTP to carry their data
and they in principle could be classified by looking to the Content-Type or
User-Agent fields. Consequently, the lack of the remaining part of the pay-
load makes impossible to analyze the HTTP header contents and sub classify
HTTP traffic accordingly. Therefore, when such level of traffic classification
is required, this approach is not sufficient. Moreover, also in this case, the
library provides only the possibility to process the packets sequentially.

L7-filter This is a packet classifier which use regular expression matching
on the application layer data to determine what protocols are being used [21].
However, also in this case, it doesn’t provide any way to specify how to extract
and process the data carried by the protocol once that the packet has been
classified. Moreover, as shown in [43, 44|, due to simple regular expression
matching, its accuracy is lower with respect to more precise approaches as
the one adopted by nDPI and libprotoident.

Solutions with multicore support Software solutions which exploit net-
work processors or commodity multicore architectures can be found in litera-
ture. We will now describe some of them together with the choices that have
been taken for their parallelization.

e In [24] a software solution which exploit a Cavium network processor
is proposed. The main idea behind this solution is to distribute the
packets among different threads by means of a shared queue. However,
the access to the queue is protected by lock mechanisms and, as also
stated by their developers, this is the reason why they are not able to
achieve a good scalability.

e In [27] the different steps performed by the DPI engine are profiled and
then distributed among the available cores, trying to keep the work
balanced. However this is not a general approach and, if executed on
different machine, it would require to do again from scratch profiling,
design and implementation of, possibly, a different partitioning among

6 CHAPTER 1. THESIS CONTEXT, RELATED WORK AND TOOLS

the activity. Moreover, despite lock free data structures are used, also
in this case scalability problems are experienced, even using a relatively
low number of cores. In this particular case, this is due to the unbal-
ancing between the parts of the application executed by the different
cores.

e In [25] different strategies to schedule the packets among threads are
analyzed. These strategies take into account factors like cache affin-
ity and load balancing. Anyway, also considered the best proposed
strategy, this solution still suffers a limited scalability.

e Also in [26] a distribution of the work among different threads running
on separate cores is proposed. However, also this solution is charac-
terized by serious scalability problems caused by the overhead due to
synchronization among the threads.

1.2 Structured parallel programming

As discussed above, existing software solutions often do not provide mecha-
nisms to efficiently exploit the current multiprocessor architectures and, when
such possibility is provided, they suffer from scalability problems. Indeed,
writing an efficient parallel application is not only matter of adding some
threads and force the correctness through mutual exclusion mechanisms, but
it needs an accurate design in order to achieve the required efficiency.

For example, according to libprotoident creators': “Determined that adding
threading to libprotoident was completely not beneficial - in fact, it ended
up running much slower than before. This seems to be mainly due to the
rules being so simple. There was no performance gain to compensate for
the overhead of locking mutexes and synching threads that was introduced.”.
Moreover, this is something that have also been experienced by other soft-
ware solutions [24, 27, 25, 26]. As we will see in section 4.4.3, in some cases
this implies a low scalability also when a relatively low number of cores is
used. Besides the overhead due to synchronization, this can often be caused
by poor design choices which will lead to load unbalancing among the used
cores.

Moreover, these solutions provide only the possibility to identify the ap-
plication protocol, without offering any facility to extract and process the
data carried by the protocol once that it has been identified.

"http:/ /www.wand.net.nz/content /weekly-report-21102011

1.2. STRUCTURED PARALLEL PROGRAMMING 7

For this reason in this thesis we would like to propose and implement
a novel approach which, thanks to an accurate design, can take advantage
from the underlying architecture and, at the same time, doesn’t renounce to
the precision of a stateful payload based classification approach. Moreover,
differently from existing solutions, we would like to provide to the application
programmer the possibility to specify the data to be extracted from the
packet once that the protocol has been identified.

In order to reach this target, we applied to our work the concepts of
structured parallel programming methodology [45].

Any application can, in general, be viewed as a set of concurrent activities
cooperating to reach a common objective. However, developing an efficient
parallel application is often a difficult task. Indeed, the user doesn’t have
only to deal with the algorithm details, but he needs to also take care of the
setup of the concurrent modules in which the application is divided, to map
and schedule them on the architecture on which the application will run and
to implement correct and efficient techniques to let them communicate. All
these activities require a big and error prone programming effort.

When structured parallel programming methodology is used, it’s possible
to hide a part of this complexity and to let it be managed by the library
or the programming language used to describe the application [46, 47]. In
general, starting from the sequential description of the application, the user
can individuate a graph of activities which models it and which can express
the same application as a composition of parallel modules.

Considered that the same concurrent application can, in principle, be
modeled by many parallel modules compositions, different performance met-
rics can be used to evaluate a specific graph of activities and to compare it
with alternative solutions. In our specific case, where the application works
on a stream of packets, we are interested in the following performance met-
rics:

Bandwidth B Defined as the average number of packets per second that
the DPI framework is able to process.

Service Time T Defined as the average time interval between the begin-
ning of the executions of two consecutive stream elements. It is the
inverse of the bandwidth, therefore it can be expressed as Tg = %.

Latency L Defined as the average time needed to complete the processing
over a single packet. In our case this metric is particularly important
when, before forwarding the packet, the application needs to wait for
the result of its processing to decide, for example, if it matches or
not the filtering rules. Indeed, if an high latency is required by the

8 CHAPTER 1. THESIS CONTEXT, RELATED WORK AND TOOLS

processing of the packet, we could introduce a not acceptable delay in
the forwarding of the packet over the network.

However, to avoid this problem, the packet could be passed to the
framework and then immediately forwarded without waiting for the
result. In this way, also if the first packets of the flow are forwarded
independently from the processing result, the filtering would be still
applied to the remaining part of the flow. Anyway, also in this case,
we would like to have a low latency in such a way that the decision is
taken before the termination of the flow.

Nevertheless, in all the other cases, the only metric to be take into
consideration should be the bandwidth (and then the service time).

Furthermore, we are interested in the average Interarrival Time of the
packets to the application T4. This quantity is the inverse of the rate of
packets arriving to the framework. If we are able to structure the framework
so that it has a service time Tg < T4, then the framework will be able to
process all the received packets.

Another important metric we are interested in is the Speedup. For a
computation composed by n modules it is defined as

seq
Bn
where B, is the bandwidth of the sequential framework while B, is the
bandwidth of the parallel framework when n modules are activated. Ideally,
we should have B,, = % and then Speedup(n) = n. However this is different
for what will really happen because, in the parallel solution we will have,
in addition to the latencies of the sequential version, some other latencies
caused by factors like communication latencies and memory contentions.

For these reasons, in general we will have Speedup(n) < n. However,

Speedup(n) =

as we will see in Chapter 4, there are some cases in which we could have
Speedup(n) > n. This could happen when, for example, the solution com-
posed by n modules exploits a better spatial cache locality as a consequence
of the reduction of the size of the working set.

Among all the possible graphs that can be used to represent an applica-
tion, many real application can be described using some recurrent schemes
called skeletons [45, 48]. Skeletons are programming patterns which allow
to model typical forms of parallelism exploitation, expressed in parametric
form. They have a precise semantic and are characterized by a specific cost
model, which can be used to evaluate their performance metrics. Moreover,
they can be composed and nested together to represent more complicated
parallelism forms.

1.2. STRUCTURED PARALLEL PROGRAMMING 9

Skeletons can work over single data elements or over a so called “stream” of
tasks. A stream is a possibly infinite sequence of values of the same type. For
example, in our case, we can consider each packet arriving to the framework
as an element of the stream.

Depending on the type of parallelism modelled, we can classify them in
the following categories:

Stream parallel These skeletons exploit the parallelism among computa-
tions relative to independent tasks appearing on the input stream of
the program.

Data parallel Are those exploiting parallelism in the computation of dif-
ferent sub tasks derived from the same input task.

As we will show in Chapter 2, for our framework we are interested in two
particular stream parallel skeletons: farm and pipeline.

1.2.1 Pipeline

This skeleton can be used when the application computes a function F'(z)
which can be expressed as a composition of n functions:

F(J]) = FN(FN—I(- .. FQ(Fl(ZE)) ..))

where x is the received task. In this case, the corresponding graph of activities
(shown in figure 1.2) is made by one module (in this case called stage) for
each computed function.

Figure 1.2: Pipeline skeleton

If the function computed by the i-th stage has latency L;, then the service
time of the pipeline will be

Ts = lmgz;%([,z + Leom,) (1.1)

where L.y, is the time spent by the i-th stage to read the task from
the input channel and to send it over the output channel. In general, if an

10 CHAPTER 1. THESIS CONTEXT, RELATED WORK AND TOOLS

appropriate support is present, L., could be overlapped with the compu-
tation latency L;. However, this is not our case because the framework we
used doesn’t have any support for this kind of overlapping and only allows
to execute the communications sequentially with the computation. For this
reason, from now on we will always consider that the communication will
never overlap with the computation.

The pipeline latency instead is:

L- i (Li+ Leom,) (1.2)

Therefore, since the sequential application is characterized by:

N
L=Ts=Y L (1.3)
=1

in general, using the pipeline, we decrease the service time of the appli-
cation while the latency is increased.

1.2.2 Farm

Is a paradigm based on functional replication, and which can be represented
by the graph depicted in figure 1.3. It is composed by: a function replicated
into a set of modules {Wy, Wy, W3... , Wy} called workers, an emitter E
which schedules the tasks to the workers and a collector C' which collects the
produced results. Therefore, in general, the function will be applied at the
same time by different workers over different tasks of the input stream.

Different scheduling strategies may be used by the emitter. The most
common are:

On-demand Using this strategy is possible to maintain a good balancing
among the different workers. It could be implemented, for example, by
allowing each worker to communicate to the emitter when it finished
to process the task and is thus ready to accept a new one.

Round robin This is a simple strategy which sends the task circularly to
the available workers. Often it is implemented in such a way that, if
the communication channel towards a worker is full, the task is sent to
the first worker with at least one available slot in the channel.

However, any other scheduling function different from the proposed ones
can be used. We will compare the effect of these different strategies in Chap-
ter 4.

1.2. STRUCTURED PARALLEL PROGRAMMING 11

Figure 1.3: Farm skeleton

As we can see from the figure, the farm could be viewed as a 3-stage
pipeline. Therefore, if the load of the workers is balanced (i.e. the probability
that an input stream element is sent to any worker is %), the service time of
the farm will be:

LW + Lcom

Ts =max(Lg + Leom, N

s Lo+ Leom) (1.4)
with Lg latency of the emitter, Ly, the latency of a generic worker and
L¢ the latency of the collector.
The latency of the farm instead is:

L=Lg+Lwy+Lc+ (3% Leom) (1.5)

Accordingly, also in this case the service time may be reduced while the
latency is increased.

Eventually, we would like to find the optimal parallelism degree, i.e. the
number of workers n such that, if this number of workers is used, the farm
has a service time equal to the interarrival time T4 and it is therefore able
to manage the whole incoming bandwidth.

12 CHAPTER 1. THESIS CONTEXT, RELATED WORK AND TOOLS

Using equation 1.4 we have that n, the optimal number of workers to be
used in the farm, is equal to:

_ LW + Lcom
max(TA, LE + Lcoma LC + Lcom)

However, according to structured parallel programming concepts, if N is
the number of available computational nodes (i.e. of machine’s cores in our
case) and if n > N, then we need to restructure the computational graph
such that it is composed by a number of nodes equal to N. Indeed, using
this methodology, a reduction in the number of the modules is more effective
than a multiprogrammed execution of more of them on a single physical node.

This is always true in our case because the modules are running for all
the application lifetime processing data received from the input channels.
For example, considering the case in which the modules are threads executed
over multicore architecture. In this case, if more of them run on the same
core, they would interfere and invalidate cache data between each other. The
only exception to this may be when a core has more than a single context
(i.e. the so-called hardware multithreading. However, also in that case, the
effectiveness of running multiple threads over different context of the same
core depends from the specific case.

Accordingly, if the optimal number of workers is 7 > N, we need to reduce
them to n = N -2, because 2 cores are reserved to emitter and collector nodes.

In general, if a composition of more skeletons is used, we can use an
heuristic [49] and reduce the parallelism degree of each of them multiplying
their degree by a factor

N —ps

Ny — Ps

where NN is the number of available physical nodes, ny, is the amount of

nodes of the graph before the reduction and ps is the number of “service
module” (i.e. emitters and collectors).

We will see in Chapter 2 how these concepts have been applied to this
thesis in order to efficiently structure the framework accordingly to the in-
coming bandwidth and to the number of nodes provided by the underlying
multicores architecture.

(1.7)

o =

1.2.3 Considerations about average values

When referred to our specific case, it is very difficult to consider average
execution times. Indeed, the time spent to process a network packet can be
influenced by many different factors like:

1.2. STRUCTURED PARALLEL PROGRAMMING 13

e Presence of IP tunneling.
e [P fragmentation.
e Specific transport protocol.

e Packet belonging or not to a flow for which we already identified the
application protocol.

e Flow length.

e Out of order TCP segments.
e Specific application protocol.
e Payload length.

e Variance in the execution times of the callbacks specified by the user.

The same reasoning can also be applied considering the average interar-
rival times. Indeed, in a real network, the utilized bandwidth changes many
times during the day. Therefore, if the framework is dimensioned for an aver-
age value of the bandwidth, sometimes it will be overdimensioned while other
times it will be underdimensioned and, consequently, not able to manage all
the traffic passing over the network.

Accordingly, we can still try to compute an average and accepting that in
some cases it could be very different from the real situation. Otherwise, we
could consider all the latencies as upper bounds on real latencies and thus
dimensioning the framework to always be able to manage all the network
traffic. In this case however, we have to accept that there will be moments
when the resources will be underutilized.

Alternatively, our framework could be modified in such a way that it can
adapt, time by time, to the real situation of the network, thus dynamically
adding or removing computational nodes to avoid resources underutilization.
This is considered as possible “future work”, however.

1.2.4 Related work

Many libraries and programming languages which implement the concepts of
structured parallel programming over shared memory or distributed memory
architectures exist. Since it was a prerequisite of the thesis, in our framework
we used FastFlow [28, 1], which we will describe in detail in section 1.3.

We now present some of the most recent works in this field, describing
their main characteristics and showing the reasons FastFlow is more appro-
priate for this kind of high bandwidth applications.

14 CHAPTER 1. THESIS CONTEXT, RELATED WORK AND TOOLS

1.2.4.1 Muesli

Muesli [50, 51] is a C++ skeleton library which uses OpenMP [52] and MPI
[53] to target shared and distributed memory architectures and combinations
of the two. It implements the most commonly used task parallel and data
parallel skeletons as C++ template classes. Furthermore, Muesli offers the
possibility to nest these skeletons to create more complex execution graphs
by using the two tier model introduced by the Pisa Parallel Programming
Language (P3L) [47]. Basically, the computation can be structured using
task parallel skeletons where each node of the skeleton can internally be im-
plemented as a data parallel skeleton. Concerning the data parallel skeletons,
Muesli provides distributed data structures for arrays, matrices and sparse
matrices and it has been recently extended to support Graphics Processing
Unit (GPU) clusters [54].

However it would not be suitable for our framework since, as shown in
[55, 56], OpenMP does not perform as well as FastFlow for fine grained
streaming application

1.2.4.2 SkeTo

SkeTo [57] is a parallel skeleton library written in C4++ with MPI. Although
in some intermediate versions it supported also stream parallel skeletons, it
mainly provides data parallel skeletons which can operate on data structures
like arrays, matrices, sparse matrices and binary trees. For each data struc-
ture, the library consists of two C++ classes; one provides the definition of
parallel data structure, and the other provides the parallel skeletons. Differ-
ently from most frameworks, where the application is entirely build around
skeletons, SkeTo provides the possibility to to use their skeletons by means
of library calls performed by the sequential program. Currently, except the
one provided by MPI, it provides no explicit support for multicore architec-
tures. Additional work have been done over domain specific strategies [58]
and optimizations for the construction of data structures [59].

Since we designed our framework to use stream parallel skeletons (section
2.2), SkeTo would not be suitable for our purposes because it provides only
data parallel skeletons.

1.2.4.3 SkePu

SkePU [60] is a C++ template library which provides a simple interface for
mainly specifying data parallel skeletons computations over GPUs architec-
tures using CUDA [61] and OpenCL [62]. However, the interface is general
enough and SkePU provides also an OpenMP based implementation for all

1.3. FASTFLOW 15

the proposed skeletons. In addition to the skeleton templates, SkePU also
includes an implementation of a vector with an interface similar to the one
of the C++ Standard Template Library (STL) and which hides the complex-
ity of GPU memory management. The skeletons in SkePU are represented
by objects and contain member functions representing each of the different
implementations, CUDA, OpenCL and OpenMP. If the skeleton is called
with operator (), the library decides which one to use depending on what is
available.

However, since its multicore support is built on top of OpenMP, it would
not be suitable to manage the fine grained computations performed by our
framework.

1.3 FastFlow

The framework we used to implement structured parallel programming con-
cepts inside our framework is FastFlow [28, 1]. FastFlow is a C++ framework
targeting both shared memory and distributed memory architectures and
which we already shown in a previous work [63] to be capable to manage
similar kind of monitoring applications.

Efficient applications for multicore and manycore

Applications Smith-Waterman, N-queens, ...
) Autonomic Simulation Dataflow
Pm%m Sotving behavioural Montecaria, Automatic
mAronment ; y e
skeletons Gillespie parallalization
) Streaming networks patterns
High-level i)
programming Skelatons: Fipsling, far_m. D&C, Dynamic
programming, ... L)
Low-lavel Arbitrary streaming networks
programming Lock-free SPSC, SPMC, MPSC, MPMG queuss

Simple streaming networks
Lock-free SPSC queuss and general threading model
[e.q. Pthread)

ARun-time
support

Multicore and manycore
Hardware cc-UMA or cc-NUMA featuring

sequential or weak consistency

Figure 1.4: FastFlow architecture (taken from [1])

© oo ~ (=] ot £ w [V =

10

11

12

13

14

15

16 CHAPTER 1. THESIS CONTEXT, RELATED WORK AND TOOLS

It is composed by several layers which abstract the underlying architec-
ture. The abstraction provided by these layers (figure 1.4) is twofold: to
simplify the programming process offering high-level constructs for data par-
allel and stream parallel skeletons creation and, at the same time, to give
the possibility to fine tune the applications using the mechanisms provided
by the lower layers.

At the very base level we found both bounded [64] and unbounded [65]
single producer, single consumer (SPSC) queues which can be used as com-
munication channels between threads. These queues are characterized by the
total absence of lock mechanisms and have been realized taking inspiration
from wait-free protocols described by Lamport in [66] and from FastForward
queues outlined in [67].

Furthermore, FastFlow gives the possibility to define the code to be exe-
cuted in the different computational module. This can be done by defining a
class which extend ff::ff_node and implementing the virtual function svc.
In example 1.1 we can see the definition of a simple module which takes an
integer from the input channel, increments it and sends it on the output
channel.

These nodes can then be easily linked together using the SPSC queues
as communication channels in order to create arbitrary computation graphs
similar to those depicted 1.5.

Listing 1.1: Node creation

#include <ff/node.hpp>
using namespace ff;

class ComputationalNode: public ff_node {
public:
ComputationalNode (int max_task) :ntask(max_task){};

void* svc(void* task){
int* real_task=(int*) task;
++(*real_task) ;
return (voidx) real_task;
}
private:
int ntask;

};

Alternatively, is possible to directly use some implemented and optimized
stream parallel and data parallel skeletons or nesting among them. In this
case the user simply specify the nodes and the skeleton to be used and the

1.3. FASTFLOW 17

= Q=0 Q=E=E “@%

Lock-free Simple @7 @_P@ @_‘.@

SPSC gueus producer consumer Thee stage pipaline Arbitrary netwaork fe.g. sysiolic nelwork]

Figure 1.5: Examples of computational graphs (taken from [1])

library will link the nodes together to form the requested computation graph.

Furthermore, FastFlow provides some ways to customize the behaviour of
these skeletons, for example by specifying the strategy to be used to distribute
tasks in the emitter of the farm. Anyway, if this should still not be sufficient
for a specific purpose, the user can use mechanisms provided by the lower
layers or can easily extend the library by defining new skeletons.

In listing 1.2 we can see how, using few lines of code, it is possible to
parallelize an already existing application. In this example, we define the
application as a pipeline composed by two stages. The first of these stages
(lines 6-12) reads the packets from the network (line 9) and send them over
the communication channel towards the second stage (line 10). On the other
hand, the second stage (lines 14-21) process the packets received from the
channel (line 18) and indicates to FastFlow that it is ready to receive another
task (line 19).

However, instead of processing the packets sequentially, we can decide to
process them in parallel by using a farm with four workers (lines 29-32). In
this way, the received packets will be transparently scheduled by FastFlow
to the different workers. Eventually, we start the execution (line 37) and we
wait for its end (line 39).

Although this is a small example, we can already see the advantages of
this approach over classic techniques as pthread calls, which would require
the user to deal with the additional and error prone task of threads synchro-
nization.

Listing 1.2: Definition of the structure of the application

#include <ff/farm.hpp>
#define NWORKERS 4

using namespace ff;

class PacketsReader: public ff_node{
public:

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

18 CHAPTER 1. THESIS CONTEXT, RELATED WORK AND TOOLS

void* svc(void* task){
char* packet=read_packet (network_interface);
return (voidx) packet;

class PacketsAnalyzer: public ff_node{
public:
void* svc(void* task){
char* packet=(char*) task;
//Process packet
return GO_ON;

};

int main(){
PacketsReader reader;
std: :vector<ff_nodex> w;
ff_farm<> farm;
ff_pipeline pipeline;

for(int i=0; i<NWORKERS; ++i){
w.push_back(new PacketsAnalyzer) ;

3

farm.add_workers (w) ;

pipeline.add_stage(&reader);
pipeline.add_stage(&farm);

pipeline.run();
//Do something else
pipeline.wait();
return 1;

We will see in Chapter 2 how the theory presented in this chapter will be
used in the design of our framework and how the tools we introduced will be
used to implement it in Chapter 3.

Chapter 2

Architectural design

In this chapter we will see how we designed our work in order to reach our
the goals stated in the introduction.

2.1 Framework design

First of all, we assume that the application is able to provide to the framework
a stream of IPv4/IPv6 datagrams. This decision has been taken in order to
be completely independent from the specific technology that the application
uses to capture the packets from the network, thus allowing the framework
to be used with different kinds of networks or packets reading mechanisms.

This decision have been taken because current networks are often char-
acterized by a bandwidth in the order of tens of Gigabits per second and,
by using traditional communication subsystems, this packets rate will not
be completely delivered to the applications [68, 69]. This is mainly due to
heavy kernel involvement and extra data copies in the communication path,
which increase the latency needed to read a packet from the network. Con-
sequently, leaving to the application programmer the choice of the way in
which the packets will be captured, we can exploit possibly available dedi-
cated technologies.

For example, during the past years, different solutions have been proposed
and implemented to solve these problems both using specialized Network
Interface Controllers (NICs) as Infiniband [70] and Myrinet [71] or by using
standard NICs with an appropriate software support [72, 73].

In both cases, zero copy and kernel bypass techniques [74, 75| are used
to reduce the latency of the data transfers from the NIC to the application
memory and to deliver the whole network bandwidth to the application [76,
77).

19

20

CHAPTER 2. ARCHITECTURAL DESIGN

In order to provide a sketch of the framework structure, we will now
describe the operations that should be performed when a TCP segment is
received! and which are depicted in the flow diagram in figure 2.1.

Start
Receive Return the
packet identified [
from the -

protocol to
user the user

v

Update flow

Parse L3 header

Isa

Datagram

rebuilt? No

—— No

protocol

*

Yes

Protocol

- No fragment? No identified?
Yes
v Process the data
with the
Manage IP inspectors
fragmentation *
$ Yes

Was the
segment in
order?

Yes TCP stream
* management
P Parse L4 header T
No
] Protocol
F{etne\ée tthe flow > already
ata identified?

Execute the user
callback over the
extracted data

T

Execute the specific
protocol inspector to
extract required data

\

Yes

Was the
segment in
order?

— No

TCP stream
management

/}

Yes

There are
callbacks for this
protocol?

Yes No

Figure 2.1: Flow diagram of the framework

When a packet containing a TCP segment is passed to the framework, it

needs to:

1. Parse the network header and extract the real source and destination

!For UDP datagrams the process is the same except for TCP stream management.

2.1. FRAMEWORK DESIGN 21

addresses if IP-in-IP tunnels are present. Then, if the received data-
gram is a fragment of a bigger datagram, the framework will store the
fragment for subsequent reassembly (IP normalization).

Hence, after parsing the network header, if we have a non-fragmented
datagram, we parse the transport header in order to get source and
destination transport ports.

Therefore, at this point, we have the entire 5-tuple key (composed by
<SOURCE IP ADDRESS, DESTINATION IP ADDRESS, SOURCE PORT, DESTI-
NATION PORT, TRANSPORT PROTOCOL IDENTIFIER>) which characterizes
the bidirectional flow to which the packet belongs.

2. In order to be able to track the progress of the protocol, we need to
store for each flow some data about the previous packets we received
for that flow. Notice that this doesn’t mean that we need to store
all the previous packets belonging to the flow but only a constant size
structure containing some elements that will be updated when a new
packet arrives (e.g. last TCP sequence number seen or current status
of HTTP parser). The only exception to this is when an out of order
TCP segment arrives. In this case indeed we need to store the entire
segment for future reordering and processing (TCP normalization).

These data are stored into an internal data structure and are main-
tained in it for all the flow lifetime. For the moment, we will just say
that it has been implemented using an hash table with collision lists.
The reasons behind this choice, together with the details about how it
have been designed and implemented can be found in Chapter 3.

When we didn’t receive packets for the flow for a certain amount of
time or when the TCP connection is terminated, these elements will be
deleted.

Therefore, using the flow key, the framework is able to do a lookup and
to retrieve these elements.

3. After we obtained the flow data, if the application protocol has not
yet been identified, the framework needs to manage the TCP stream
and, if the segment is out of order, to store it for future reassembly.
If the segment is in the proper order, the protocols inspectors will be
executed over the application data. Each inspector, using previously
collected elements about the flow and analyzing the current packet will
try to infer if the flow carries data of its specific application protocol.

If, instead, the protocol was already identified and if the application
which uses the framework specified some callbacks for that protocol,

22 CHAPTER 2. ARCHITECTURAL DESIGN

we manage the TCP stream and we execute the specific protocol in-
spector in order to extract the required elements from the payload and
to process them using the callback specified by the application.

Otherwise, if no callbacks for this protocol were defined, we simply
return the previously identified protocol.

2.2 Parallel structure design

In this section we will present some of the possible solutions that could be
adopted, together with the reasons which drove our choice towards the solu-
tion we decided to implement for our framework.

The first possibility we analyzed, is to use a farm where each worker exe-
cutes, over a different received packet, all the steps described in the previous
section. However the workers, for each received packet, should access to the
shared hash table where the flows are stored. Considered that these flows can
be modified, this would require to access the table (or at least each collision
list) in a mutual exclusive way. Consequently, this solution would not scale
with the number of workers. Moreover, we can’t assume that the packets
will be processed by the workers in the same order in which they arrived.
Therefore, also if the TCP segments belonging to a certain TCP stream will
be received in order by the DPI framework, it could be processed out of order
by the workers. As we will show in section 4.3, this can have a not negligible
impact on the overall performances.

However, analyzing the diagram in figure 2.1, we can see that the op-
erations on different application flows are independent and could be then
executed at the same time over distinct flows. Anyway, is in general unfeasi-
ble to have a module of the concurrent graph for each flow. For this reason,
we decided to assign groups of flows to different modules that will process
them in parallel exploiting the multicore hardware available.

Accordingly, we decided to structure the framework as a farm, with the
flow table partitioned among a set of workers, as shown in figure 2.2 (collector
not shown). In this way, the worker ¢ will access only to the flows in the
range [low;, high;[without any need of mutual exclusion mechanisms or
synchronization with any other thread.

Anyhow, we should take care of the way in which the packets are dis-
tributed to the workers. If round robin or on demand scheduling strategies
are used, we must consider that a worker could receive packets that it can’t
manage and which should be forwarded to some other worker. To solve this
problem we could let each worker communicate with all the other workers of
the farm in such a way it can forward the packets not directed to itself to

2.2. PARALLEL STRUCTURE DESIGN 23

WORKER
1

D WORKER
2
D D HIGH_2 == LOW_3

EMITTER 3

- 0 O, (vou

O\ -
o
J

WORKER
N

Figure 2.2: Structure of the framework with flow table partitioned among
the set of workers (collector not shown)

24 CHAPTER 2. ARCHITECTURAL DESIGN

the corresponding worker. However, also in this case we can’t ensure that
the packets belonging to the same flow will be processed in the same order
they arrived.

For these reasons, we decided to provide the emitter with a scheduling
function which distribute to each worker only the packets belonging to the
flows contained in its partition. Consequently, the emitter needs first to
extract the key of the flow and then, as in the sequential case, to determine
the bucket of the table where the flow can be found. Once that the bucket
has been found, the emitter can easily derive the partition to which the it
belongs and, therefore, can forward the packet to the correct worker.

Moreover, since the communication channels are First In First Out (FIFO)
queues, the order of the packets belonging to the same flow is preserved,
avoiding thus to reorder data which arrives already ordered to the framework.

It’s important to point out that, aside from the communication channels,
the different nodes don’t share any data structure among each other, allowing
thus to advance in their execution without any need of synchronization.

Let’s now analyze the service times of the different nodes of the graph.

e The emitter will have a service time
TE = Lread + LL3,L4 + Lhash + Lcom (21>

where L,.qq is the average latency of the reading callback, L3 14 is the
average latency for network and transport headers parsing and Ly, is
the latency of the flow hash function.

e The worker will have a service time
TW = Ltable + LL7 + ch + Lcom (22)

where Ly is the latency required to access the table, L7 is the latency
of the protocols inspectors and L, is the latency of the callbacks that
the user specified over the protocols metadata.

e The collector has a service time
TC = Lproc + Leom (23)
with L, latency of the processing callback.

We should now decide the optimal amount of workers n to activate for a
given interarrival time T)4. Using equation 1.6 we have:

2.2. PARALLEL STRUCTURE DESIGN 25

Ty
7 o= 2.4
" mazx(Ta, T, Tc) (2:4)

Therefore, the entire rate of packets arriving to the framework can be
managed only if TA > mec + Lcom and TA > Lread + LLS,L4 + Lhash + Lcom.

These conditions strongly depend on the specific callbacks specified by
the user. However, even considering L;..q = 0, the emitter could still be a
bottleneck for the application. Indeed, the latency spent to parse the network
and transport headers and to apply the hash function is not negligible and
may often be greater than the interarrival time.

If this case is verified, we need to find a way to reduce the service time
of the emitter. This can be done by replacing the emitter with a farm where
each worker executes the steps that were previously executed by the emitter.
Consequently, the resulting graph is a pipeline where each stage is a farm, as
shown in figure 2.3.

L3 FARM

o0

Figure 2.3: Structure of the framework when the emitter is a bottleneck (the
collector of the second farm is not shown)

From now on, since the first farm of the pipeline take care of the processing
of the network layer (level 3 in the Open Systems Interconnection (OSI)
model) and of the transport layer (lever 4), we will refer to it as L3 farm.
For similar reasons, we will refer to the second farm as L7 farm.

For L3 farm, any scheduling strategy could be used. However, we would
like to have a scheduling strategy which maintains the order of the packets in
such a way that they exit from the L3 farm in the same order they arrived.
In this way, if the packets belonging to the same flow were already ordered,
they will arrive in the same order to L7 farm and thus to the protocols
inspectors. Consequently, the framework can avoid the overhead of TCP

26 CHAPTER 2. ARCHITECTURAL DESIGN

reordering when it is not really needed. In section 3.7 we will see how this
has been implemented and in section 4.3 we will analyze the performance
gain obtained by using an order preserving scheduling strategy.

Using this solution, the different nodes will have the service times shown
in the following table:

NODE SERVICE TIMES

L3 EMITTER Tgs = Lycad + Lcom

L3 WORKER Twsz = Lrs 14+ Lpash + Leom
L3 COLLECTOR | T3 = Leom

L7 EMITTER Te7 = Leom

L7 WORKER Twr7 = Liapie + Lz + Ly + Leom
L7 COLLECTOR | T¢7 = Lproc + Leom

Consequently, defined n; as the optimal number of workers for L3 farm
and 7y the optimal number of workers for L7 farm, we will have:

_ Tws
= 2.5
= max(Ta, Tps, Tes) (2:5)
T;
_ w7 (2.6)

2= max(Ta, Tgr, Ter)

However, also in this case there should be cases in which the ideal service
time could not be reached because an emitter or a collector is a bottleneck.

For example, let’s consider the case in which we have Ty < Tg3 = Lyeqq +
Leom,. In this case, in order to reduce the impact of the communication
latency, we could calculate the optimal communication grain g and thus send
and process the packets in blocks of size g. Accordingly, we need to find the
value g such that g x Ta = (g X Lyead) + Leom-

Therefore, we have:

— Lcom
Ta-Lg
It’s important to notice that this equation is meaningful only when T4 >
Lg. Indeed, in all the other cases the bottleneck cannot be removed by

increasing the communication grain because T4 < Lg and consequently, for
each granularity g:

g (2.7)

g X TA < (g X Lread) + Lcom

2.2. PARALLEL STRUCTURE DESIGN 27

If more than one bottleneck is present, we can evaluate all the values of
g and taking the maximum among them to ensure that these bottlenecks are
removed.

However, we need to take into account that each task that the L7 emitter
receives from the L3 farm can contain packets directed to different L7 workers.
For this reason the emitter of the L7 farm, when a task is received, needs
to redistribute the packets in temporary tasks and, when one of them has
been completely filled, to send it to the corresponding L7 worker. Since the
redistribution introduces an additional latency in the L7 emitter, its service
time becomes: Tgr = Treqistrivute(9) + Leom- Consequently, there are cases
in which the L7 emitter could be a bottleneck. However, as we will see in
Chapter 4, this will happen only in a limited number of cases.

On the other hand, concerning the L3 collector, it will never be a bottle-
neck because its service time will be always be lesser than the service time
of the L3 emitter. Moreover, since the service time of the L3 emitter consists
only in the reading of the packet, it can be consider as a lower bound on the
service time of the framework.

We will see in Chapter 3 how these concepts have been applied for the
implementation of the framework.

Chapter 3

Implementation

We will now describe some of the most important details concerning the

implementation of the framework, relying on the design described in Chapter
2.

Concerning the sequential implementation, we will first analyze the in-
terface provided to the application programmer, describing the choices we
made to make it as much flexible as possible, in order to satisfy different ap-
plication requirements and scenarios. Then we will analyze and motivate the
main choices we made to implement the steps needed to perform a correct
protocol identification. We start describing the processing of the network
and transport headers, analyzing in detail the structures used to perform a
functional and efficient IP defragmentation. After that, we describe how the
management of the flows have been handled by our framework, describing
some alternative solutions which will be then evaluated in Chapter 4. Fur-
thermore, we will present the TCP reordering techniques we used and the
interaction of the framework with the protocol inspectors. Eventually, we
describe the possibility we provide to extract and process specific data and
metadata of the protocol, once it has been identified.

Concerning the parallel structure, we will analyze how the concepts de-
scribed in Chapter 2 have been implemented in this thesis. Also in this case
different solutions have been proposed and then evaluated in Chapter 4. It’s
important to point out that FastFlow allowed us to prototype and test these
different alternative solutions with relatively low programming effort. This
has been possible because FastFlow provides an higher abstraction level with
respect to that provided by directly using pthreads, which otherwise would
have required much more effort due to the complicated and error prone task
of thread synchronizations.

28

3.1. APPLICATION INTERFACE 29

3.1 Application interface

The framework has been written in C and it can be used in two different
ways:

Stateful mode Targeted for applications which don’t have a concept of
“flow” and therefore don’t store any information about the previously
received packets. In this case, the framework will keep an internal table
with the information about each individual application flow.

Stateless mode This mode is designed for applications which already store
some kind of data about the application flows (e.g. packets and bytes
received). In this case, the elements needed by the framework can be
stored into the application table. Therefore, the application should be
modified in order to keep, with its own flow data, also a pointer to
the flow elements created and managed by the library. In this case,
however, the retrieval of the data must be entirely managed by the

application.
1 1
1 1
Packet received | '
. I
|_| dpi_identify_application_protocol(pkt, length, ...) - t
.

| Tk

extract_flow_informations()

Figure 3.1: Stateful interaction

The two interaction modes are depicted in figures 3.1 and 3.2. We can
see that in the stateful interaction the application simply provides to the

30 CHAPTER 3. IMPLEMENTATION

framework the packet and then gets the identified protocol. Conversely, in the
stateless mode, the parsing of the network and transport headers is decoupled
from the identification of the protocol. Indeed, the application needs first
invoke the framework to parse the network and transport headers and to get
the flow key. Then, using this key, retrieves the flow data from its own table.
Using the flow data, it can then call the framework to identify the protocol.

1
1
Packet received |

dpi_parse_L3_L4_headers(pkt, length, ...)

flow_infos=extract_user_flow_informations(user_table)

dpi_get_app_protocol(parsed_informations, flow_infos) >

Identified protocol

Figure 3.2: Stateless interaction

Almost all the calls we provided need an handle to the framework. This
handle can be created with a specific framework call which will take care of
creating and initializing its internal structures. By default, the framework ac-
tivates all the protocols inspectors. Anyway, when is needed, the application
can decide at runtime to activate only some protocols inspectors. This is par-
ticularly useful in firewall-like applications when the set of protocols to which
the application is interested can dynamically change during its execution.

IP fragmentation and TCP reassembly supports are also activated by
default. It is possible to disable them if needed, for example when they are
provided by some other parts of the application or by the specific packet

3.2. NETWORK AND TRANSPORT HEADERS PROCESSING 31

reading technique used!.

The framework has an internal clock that is updated each time a packet
is passed by the application. It is responsibility of the application to pass to
the framework, together with the packet, the time it has been captured (it is
sufficient to have a resolution of one second). In this way, the programmer can
decide which mechanism is more appropriate or feasible for its application.
Indeed, when managing millions of packets per second, adding a timestamp
to each packet using classic calls as gettimeofday or time may result in a
bottleneck.

As an alternative, if available, the application programmer could de-
cide to use hardware timestamping provided by the network card or to use
some other software level mechanisms (for example, to use the clock cycles
counter). Anyway, since this task is left to the programmer, he can use
the more appropriate mechanism with respect to the context in which the
application is running.

3.2 Network and transport headers process-
ing

First of all, the framework checks if the datagram is an IPv4 or an IPv6
datagram. After that, it starts parsing the header and, in case of presence
of tunnels, they are unwrapped and the framework will consider as actual
source and destination of the flow those found in the inner datagram. Up to
now, we implemented the support for 4in4, 4in6, 6in4 and 6in6 tunnels? and
all the combinations among them.

After parsing the network header, in case the transport protocol is TCP
or UDP, the framework extracts the transport ports, finds the offset at which
the application data start and build the flow key.

However, if the packet we received was carrying a fragment of a bigger
datagram, before extracting the transport header elements we need to recon-
struct the original datagram. Let’s now see how this has been implemented
in the framework.

!For example when the application, instead of reading “raw” data, decides to read from
operating system sockets.

2An outer IP header is added before the original IP header. The outer IP addresses
identify the “endpoints” of the tunnel while the inner IP header addresses identify the
original sender and recipient of the datagram [78].

32 CHAPTER 3. IMPLEMENTATION

3.2.1 1IP fragmentation support

We briefly recall that, when an IPv4 datagram is larger than the MTU of
the outgoing link, it will be split in different fragments. After that, an IPv4
header will be attached to each fragment and they will be sent separately
over the network (figure 3.3). However, to be able to reconstruct the original
datagram, all its fragments will be marked with the same identification num-
ber. Moreover, each fragment is characterized by a specific fragment offset,
which represents the point in which this fragment must be put inside the
reconstructed datagram. This means that if a fragment has an offset x and
a length of [bytes (considering only the payload), it carries the bytes that
in the original datagram were in the range [z, z + [3. From now on we will
generically refer to this range as [0ffset, End[range. Eventually, the last
fragment of the datagram can be identified because it is the only one with a
specific flag in the IP header (the MF flag) set to zero.

For IPv6 the fragmentation process is slightly different*. Anyway, as the
reassembly process performed by our framework is similar, we will describe
only the one for IPv4.

To be able to reconstruct the original datagram, we need to store its
fragments into a set and then, when all the fragments have been received,
to put their content together and in the correct order. At this point the
framework can analyze the content of the original datagram as if it has never
been fragmented. Furthermore, for each datagram we are reconstructing, we
need to store also a timer and its original IPv4 header. The timer is needed
as, if the datagram is not reconstructed in a certain amount of time, all the
pending data that we have about the datagram will be removed from the
library [79].

In principle, the fragments will not overlap between each other. However,
an attacker could send overlapping fragments to try to exploit vulnerabilities
in the defragmentation algorithm [15]. This is the reason why, when we insert
a new fragment we need to check that it doesn’t overlap with the fragments
already present in the set and, if overlaps are present, we need to store only
the part of the fragment that we didn’t received yet.

Therefore, when a fragment is received, the framework needs to:

1. Obtain the set of fragments that we already received for this datagram.

3 Actually the offset is expressed in 8-bytes blocks. However, to simplify the exposition,
we will consider the offset as expressing the exact byte where the fragment starts.

4Differently from IPv4 it can be performed only by end nodes, and involves IPv6
optional fragmentation header. Moreover, some of the optional headers present in each
fragment must be copied in the final datagram

3.2. NETWORK AND TRANSPORT HEADERS PROCESSING

I IP PAYLOAD |
I !
| X | X | X Y|
[]]] |
P
HEADER
ID=2921
— ! \ i
I MTU | - i \ \
' I \ \
P : . \
HEADER ! : \
ID=2921 | \ \
I \ :
. - \
MF=1 i \ \
OFFSET=0 - \ .
LENGTH=X Ip \ \
HEADER) \
1D=2921 \ \
\, \
MF=1 \ \
OFFSET=X T \
LENGTH=X HEADER \
ID=2921 \,
\,
MF=1
OFFSET=2¥X
LENGTH=X 1P
HEADER
ID=2921
MF=0
OFFSET=3*X
LENGTH=Y

Figure 3.3: IP fragmentation process

33

34 CHAPTER 3. IMPLEMENTATION

2. Check if the fragment we are inserting overlaps with any existing frag-
ment by comparing the [0ffset, End[ranges.

3. Insert the non overlapping bytes into the set.

To avoid to check all the fragments present in the set, we decided to
implement the set as a linked list, sorted according to the [0ffset, End[
range (figure 3.4). In this way, we will check only the fragments that have
bytes belonging to the [0ffset, End[range of the fragment that we are
inserting.

fragmented datagram Offset: 0, End: 1400 Offset: 2800, End: 4200 Offset: 7000, End: 8400 Offset: 8400, End: 8650
[Fragment Data] [Fragment Data] [Fragment Data] [Fragment Data]
Final IP header (id=9812)

Timer
Fragments List

Figure 3.4: List of IPv4 fragments

Anyway we still didn’t say how, given a datagram, the framework retrieves
the list of its fragments. It’s important to point out that we cannot use for
this purpose the same structure that we use to keep track of the other flow
data. Indeed, at this point, we still don’t know to which flow the packet
belongs because the transport header could have been split in different IP
datagrams.

For this reason, we need a separate data structure. Moreover, we would
like to organize this structure in such a way that we can easily know the
amount of memory that the framework uses for each IPv4 source and, if a
predefined threshold is exceeded, we can delete its oldest outstanding frag-
mented datagrams. Accordingly, for each source, we have a structure con-
taining the sum of its used memory and the list of its fragmented datagrams
(figure 3.5).

Eventually, we need to organize these sources in such a way that when
a datagram is received, we can easily retrieve the fragmented datagrams
generated by that specific IPv4 source. For this purpose, we decided to
store the set of sources into a simple hash table where collisions are resolved
through separate chaining (figure 3.6).

In conclusion, putting all together, when a fragment is received the frame-
work will:

1. Check if there are expired fragmented datagrams.

2. Apply an hash function over the IPv4 source address to get the bucket
of the hash table where the data about this specific source are stored.

3.2. NETWORK AND TRANSPORT HEADERS PROCESSING

IPv4 source

IPv4 address (156.12.95.2)
Used memory
Fragmented datagrams list

%

fragmented datagram Offset: 1523, End: 2732 Offset: 3542, End: 3900
[Fragment Data] [Fragment Data]

Final IP header (id=2315)
Timer
Fragments List

%

35

fragmented datagram Offset: 0, End: 1400 Offset: 2800, End: 4200 Offset: 7000, End: 8400
[Fragment Data] [Fragment Data] [Fragment Data]

Offset: 8400, End: 8650

N [Fragment Data]

Final IP header (id=9812)
Timer
Fragments List

%

fragmented datagram Offset: 0, End: 1400 Offset: 1400, End: 2800 Offset: 3253, End: 4200
[Fragment Data] [Fragment Data] [Fragment Data]

Final IP header (id=7202)
Timer
Fragments List

Figure 3.5: List of IPv4 fragmented datagrams

IPv4 source

IPv4 address (141.123.1.13)
Used memory
Fragmented datagrams list

1Pv4 source

IPv4 address (82.193.13.5)
Used memory
Fragmented datagrams list

IPv4 source

IPv4 address (89.102.23.14)
Used memory
Fragmented datagrams list

IPv4 source

IPv4 address (213.13.132.18)
Used memory
Fragmented datagrams list

IPv4 source

IPv4 address (156.12.95.2)
Used memory
Fragmented datagrams list

IPv4 source

IPv4 address (154.23.9.20)
Used memory
Fragmented datagrams list

Figure 3.6: Hash table containing the IPv4 sources which have outstand-

ing fragmented datagrams.

For sake of simplicity, the list of outstanding

fragmented datagrams is not shown

36 CHAPTER 3. IMPLEMENTATION

3. Scan the collision list to find the IPv4 source.
4. Scan the list of its outstanding datagrams.
5. Scan the fragments list and put the fragment in the correct position.

To implement point 1, and to avoid to check all the datagrams, the frame-
work keeps a list of timers (one per fragmented datagram). When the first
fragment of a datagram is received, we insert a new timer into the head of the
list. In this way, the list is automatically kept sorted from the newest to the
oldest received fragmented datagram. If some datagrams are expired, they
will be located in the last positions of the list. Therefore, when the frame-
work needs to check if there are expired datagrams, it will start checking
from the tail of the list avoiding, in general, to scan the it entirely.

3.3 Flow data management

As we anticipated before, if the framework is used in stateful mode, it is
responsible of storing and retrieving flow data. These data include:

e The application protocol, if already identified.

e Data that the application wants to associate to the flow (we will see in
section 3.5 how this is used).

e TCP tracking information, including the segments that have been re-
ceived out of order.

e Protocol specific tracking data (for example, the state of the HTTP
parser).

The interaction of the framework with these data is depicted by the un-
derlined functions in algorithm 1.

Since this structure should be accessed using the flow key, we decided to
implement it as an hash table. Accordingly, if we have f flows, a table of
size s and we have an uniform hash function, we will have an average search
complexity of O(%)

We decided to manage the collisions using separate chaining by means of
double linked lists. Consequently, the creation of a new flow will always have
O(1) complexity. The same holds true for the deletion of a flow as a result
of a TCP connection termination. In this case indeed it will be done only
after that the flow have already been found.

3.3. FLOW DATA MANAGEMENT 37

Algorithm 1 Flow management in our framework

Require: A packet p belonging to a flow with key k has been received

f <= FInD(k);

if f == NULL then
f < CREATEFLOWDATA(p);

end if

protocol < IDENTIFY APPLICATIONPROTOCOL(p, f);

UPDATE(f, protocol);

if f is a TCP flow and if the connection terminated then
DELETE(f);

end if

We now introduce the mechanism we used to check time by time if there
are expired flows in the table. Each flow, when updated®, is marked with the
timestamp of the last received packet and, when we want to know if a flow
is expired, we simply check that the difference between the current time and
the timestamp of the flow doesn’t exceed a predefined threshold. However,
we would like to avoid to check all the flows each time that a new packet
arrive. Taking into account that the framework clock has a resolution of one
second, this check will be done at most one time per second.

Moreover, we would like to avoid to scan all the flows and to only check
the oldest flows in the table. In order to do this, we keep the collision lists
sorted from the most recently updated to the less recently updated flow. This
can be done by simply moving a flow to the head of its collision list when a
packet for that flow is received. In this way, for each collision list, we start
executing the check from its tail and, being the list sorted, we remove all
the traversed flows, up to the point when the difference between the current
timestamp and the timestamp of the flow that we are analyzing is less than
the inactivity threshold. We will analyze in section 4.2 the impact of this
technique on the overall framework bandwidth.

It’s important to notice that, keeping the collisions lists sorted, we also
have the advantage to have the most active flows in the first positions of the
list, thus reducing the search time for the flows for which we are presumably
receiving more packets.

3.3.1 Hash functions analysis

At this point, we have to find a good hash function, in order to keep an uni-
form distribution of the flows over the table. For this purpose, we proposed,

SFor TCP flows this is done only if the received TCP segment is in order

38 CHAPTER 3. IMPLEMENTATION

implemented and analyzed four different hash functions:

Simple hash This function simply sums together the five fields of the flow
key.

FNV1a-32 hash The “Fowler/Noll/Vo” (or FNV) hash functions are de-
signed to be fast while maintaining a low collision rate. Particularly,
we used the alternate algorithm for 32 bits keys shown in algorithm 2.

Algorithm 2 FNV1A-32 hash function

function FNV(data, data_length)
hash < OFFSET_BASIS
for © =1 to data_length do
hash < hash & data[i]
hash < hash x FNV_PRIME
end for
return hash
end function

More details on how OFFSET_BASIS and FNV_PRIME are chosen are
described in [80].

BKDR hash This hash function comes from Brian Kernighan and Dennis
Ritchie’s book “The C Programming Language” [81] and is described
in algorithm 3.

Algorithm 3 BKDR hash function

function BKDR(data, data_length)

seed < 131

hash < 0

for ¢ =1 to data_length do

hash < (hash x seed) + data[i]
end for
return hash & Ox7FFFFFFF

end function

Murmur3 hash We will not show here its pseudocode because is more com-
plex than the previous functions (details about the algorithm can be
found in [82]). However, it’s important to say that, with respect to
the other presented algorithms, MURMURJ hashes are influenced by a
seed that can be randomly chosen in order to make the function more

3.4. PROTOCOL IDENTIFICATION 39

robust against possible attacks. On the other hand, in FNV and BKDR
the seed can only be chosen from a predefined small set of seeds which
satisfy some particular properties.

In section 4.1 we will do a comparison between these hash functions, com-
paring them according to the uniformity of the distribution, to the execution
time and to the real impact on the DPI framework.

3.4 Protocol identification

After that the framework parsed the packet and retrieved the data about
the previous packets belonging to the same flow, it can proceed and try to
identify the application protocol, if not yet identified.

When a flow is created, it is in the NOT DETERMINED state. When a new
packet for that flow is received, the flow can remain in the NOT DETERMINED
state, it can move to the IDENTIFIED state or it can move to the UNKNOWN
state.

A flow remains in the NOT DETERMINED if the framework still judges
possible to classify the packet in one of two or protocols and it needs more
packets to identify the exact protocol of the flow. To avoid to keep continu-
ously analyzing packets in presence of this kind of ambiguity, the application
can specify the maximum amount of packets to analyze for each flow. When
this amount is exceeded, the framework moves the flow in the UNKNOWN
state and will no more try to identify the protocol.

Alternatively, if after one of more packets the framework identified the
protocol, then the flow is moved in the IDENTIFIED state. In this case, if
no callbacks are present (section 3.5), when a new packet for this flow is
received the framework will simply return the already identified protocol
without executing any additional operation on the packetS.

3.4.1 TCP stream management

TCP is a reliable and stream oriented protocol. For this reason, the appli-
cations that use TCP as transport protocol assume that their data will be
received in the same order in which they are sent. Therefore, considered the
best effort delivery provided by IP networks, if we want to correctly iden-
tify the protocol, we need first to put the data in the same order in which

6 Actually, if the packet belongs to a TCP flow, the framework will still check if the
segment carries the FIN flag in such a way that the connection can be correctly closed and
the data about the flow removed.

40 CHAPTER 3. IMPLEMENTATION

they were sent. It’s important to notice that this is not a problem for UDP
based protocol as, in that case, when reliability and reordering are needed,
they are implemented through application specific mechanisms and so in the
framework they are demanded to the specific protocol inspector.

Accordingly, before executing the protocols inspectors on the packet pay-
load, if the received packet contains a TCP segment, the framework needs
to update the information on the TCP connection of the flow and, if the
segment is out of order, to store it for further reordering.

The connection information stored by the framework includes the ex-
pected sequence numbers in both directions, a list of out of order segments
and information about connection establishment and termination (for exam-
ple, if one of the two endpoints sent the FIN segment).

It’s important to notice that, at this point, these elements are already
available to the framework because they were stored together with the other
flows data that we retrieved in the previous step.

We can distinguish two different types of TCP flows: those who start
while the framework is working and those who already started before the
framework was started.

In the former case is easier to start tracking the connection because the
framework can follow the three-way handshake. Therefore, it knows which
are the sequence numbers that both endpoints will use and, consequently, it
can identify the out of order segments.

The latter case is more complex because, if the first packet received for a
flow isn’t the first segment of the three-way handshake, then the framework
cannot determine if the segment is out of order or not. In this case it needs
more packets in order to be able to evince the current state of the connection.
Basically, the framework will consider all the received segments as out of
order and, instead of storing them for future reordering, it will discard these
packets. When the highest acknowledgment number seen in one direction
of the connection coincides with the expected sequence number in the other
connection direction (and vice versa) the framework knows the current state
of both endpoints and it can start to behave as if he has just seen the three-
way handshake.

From this point, we can start managing the out of order TCP segments,
using techniques similar to those we used for IP defragmentation.

First of all, for each out of order segment we store its content, its sequence
number and its length. Then, the segment is inserted into a linked list con-
taining the other out of order segments, checking for possible overlaps with
those already present and, in case, inserting only the non overlapping bytes.

When a segment is received in order, if it fills an hole in the stream (i.e. if
the first byte of the first out of order segment in the list follows the last byte

3.4. PROTOCOL IDENTIFICATION 41

of the received segment), the framework compacts the segments and passes
them to the inspectors for protocol identification.

3.4.2 Protocols inspectors

After the framework obtained ordered data, it will invoke the protocols in-
spectors on that data, trying to identify the protocol of the flow.

Up to now our prototype framework implementation supports the follow-
ing protocols: HTTP (based on the open source parser in [83]), DNS, MDNS,
DHCP, DHCPV6, SMTP, POP3, BGP and NTP.

Each of these protocols has its own inspector parsing the application
payload to try to understand if the protocol carried by the flow matches.
Each inspector has the following input parameters:

e The handle of the framework, that can be used by the inspector to
get information about the current state of the framework. For exam-
ple, when the application programmer specifies some callbacks to be
executed when specific protocol metadata are found in the packet, the
pointers to these callbacks are stored in the handle of the framework.
Accordingly, when the inspector finds such data, it can call the corre-
sponding callback.

e A pointer to the parsed packet.
e A pointer to the application data.
e The length of the application data.

e Information about the the flow, used by the inspector to keep track of
the current state of the protocol.

When an inspector is called, it can return three different responses: MATCHES,
DOESN’T MATCHES or MORE DATA NEEDED. The latter is returned in case
the inspector needs more data to decide if the protocol matches or not. For
example, consider the case in which the HTTP inspector is analyzing a TCP
flow which started when the framework was still not running. In this case,
it could have started analyzing the flow in the middle of a file transfer and,
consequently, the first packets that it receives for that flow contains HTTP
body segments. Therefore, the inspector can’t determine if the flow carries
HTTP data by simply looking to the first packets of the flow. For this reason
it could return a MORE DATA NEEDED response and wait for other packets
before deciding.

42 CHAPTER 3. IMPLEMENTATION

The responses given by the inspector are in a strict relationship with the
possible states of a flow. For each flow the framework keeps a set of pos-
sible matching protocols. Each time that an inspector returns a DOESN’T
MATCHES response, the corresponding protocol is removed from the set. On
the contrary, if a MATCHES response is returned, then the protocol has been
identified, the flow will pass from the NOT DETERMINED state to the IDEN-
TIFIED state, and no other inspectors will be ever called for this flow. If,
after the maximum number of trials specified by the application, the set still
contains two or more protocols or if it is empty (i.e. if all the inspectors
returned a DOESN’T MATCHES response), then the framework will move the
flow from the NOT DETERMINED state to the UNKNOWN state. This maxi-
mum number of trials can be indicated by a specific call of the framework and
can be changed during its execution. Since this set is maintained for all the
flow lifetime, for the packets successive to the first one, only the inspectors
that returned a MORE DATA NEEDED response will be invoked.

The order in which the inspectors is invoked is not the same for all the
flows. Indeed, if the source or destination port of the flow is a well known
port, the first inspector to be invoked will be the one corresponding to the
protocol which usually runs on that specific port. For example, if one of
the ports of the flow is port 80, then the first inspector to be invoked will
be the HTTP inspector. Then, if it doesn’t return a MATCHES response, the
framework will invoke the other inspectors.

Algorithm 4 DHCP inspector

if (payload_length >= 244 AND
(source_port == 67 AND dest_port == 68) OR
(source_port == 68 AND dest_port == 67)) AND
payload[236] == 0x63 AND
payload[237] == 0x82 AND
payload[238] == 0x53 AND
payload[239] == 0x63 AND
payload[240] == 0x35 AND
payload[241] == 0x01) then
return PROTOCOL_MATCHES
else
return DOESN’T_MATCHES
end if

In algorithm 4 we can see an example of a simple protocol inspector for
the DHCP protocol.
As we can see, it tries to determine if the flow matches by simply looking

3.5. CALLBACKS MECHANISMS 43

to some bytes, in specific positions, of the received packet. In the DHCP case
these bytes will be always the same independently from the DHCP message.
Therefore, after only one packet, the inspector can determine if that packet
belongs to a DHCP flow or not. Anyway, for more complicated protocols the
identification process turn out to be not so simple and could require many
packets to correctly identify the protocol.

The framework can be easily extended with new protocols with few iso-
lated addition to the code. If the programmer wants, he can implement a
new inspector by following these simple steps:

1. Give to the protocol the next available numeric identifier.

2. Create a new inspector, by implementing a C function with the previ-
ously described signature and semantic.

3. If the inspector needs to store information about the application flow,
add an appropriate structure in the flow data description.

4. Add the inspector to the set of inspectors which will be called by the
framework. This can be done by inserting a pointer to the correspond-
ing function into an appropriate array.

5. If the protocol usually run on one or more predefined ports, specify the
association between the ports and the protocol identifier.

6. Recompile the framework.

At this point, when the framework will be executed, it will use this new
inspector as any other inspectors already provided by it.

3.5 Callbacks mechanisms

The last point to describe, is about how the application can specify which
actions the framework should execute on the data or metadata of the packet
once that its protocol has been identified.

For example, let us consider the case in which the application programmer
wants to write a monitoring application which extracts the Host header from
all the HTTP packets and, if it its value is contained in a blacklist, to block
the connection.

For this purpose, the framework provides to the application the possibility
to define protocol and metadata specific callbacks. For the moment this
possibility has been provided only for HTTP protocol and for its different types

44 CHAPTER 3. IMPLEMENTATION

of metadata. Anyway, this can be extended to other protocols extending the
inspector through a process similar to the one described for the creation of
a new inspector.

Let us now see the possibilities provided by the library for the parsing
and processing of HTTP metadata. First of all, the application can specify
the callbacks by using an appropriate function which requires as parameters:

e The handle of the framework.

e A pointer to some data that will be accessible from the callbacks. For
example, considering the HTTP host filtering application, this could be
a pointer to the Uniform Resource Locator (URL) blacklist.

e A data structure containing one or more callbacks. Using this param-
eter the application can specify:

— The callback to be used on the HTTP request-URI.

— The names of the HTTP header fields that the application wants
to inspect, along with a callback for each specified field. Since
the field value could be split in more than one TCP segment,
the framework will store the different parts in which it is divided
and will invoke the callback only when the entire field has been
reconstructed.

— A callback to be called when the HTTP header has been completely
received and processed. This type of callback has been provided
because the HTTP header may be split in more TCP segments.
Therefore, it is needed in order to distinguish the case in which
a specific header field callback has been not called because the
corresponding field was not present, from the case in which it has
not been called because the header is still not completely received
and therefore the field may be present in the successive segments.

— A callback to be called on the body of the HTTP message. Like
the header, also the body could be split in different TCP segment.
Anyway in this case, instead of waiting to receive and store the
entire body, the framework invokes the callback on each body
chunk as soon it arrives. This decision has been taken because in
case of large files transfer it may be not feasible to store the entire
body in main memory before invoking the callback. Moreover, in
some cases the application might take its decision by analyzing
the first bytes of the body or might not be willing to wait for its
entire reception.

3.5. CALLBACKS MECHANISMS 45

The arrival of the last chunk is signaled through an appropriate
callback parameter.

Each callback may have different parameters and must be specified as a C
function. For example, the HTTP body callback has the following parameters,
which are provided by the framework and which can be accessed from the
code specified inside the callback:

e Information about the HTTP message. It can be used, for example, to
check if the message is an HTTP request or response or to know the
http version.

e A pointer to a chunk of the HTTP body.
e The length of the chunk.
e A flag which indicates if this is the last chunk of the HTTP body.

e Information extracted from the network and transport headers of the
packet (e.g. IP addresses and TCP or UDP ports).

e A pointer to some flow application data. This data is stored by the
framework, together with the other data about the flow and can be used
to keep track of accumulated knowledge about the flow between suc-
cessive received packets or between successive invoked callbacks. More-
over, this pointer will be returned by the protocol identification call of
the framework, together with the identified protocol. In this way the
data collected by the callbacks about the flow can be communicated to
the rest of the application.

Furthermore, the application can specify an additional callback to be
invoked by the framework on the flow application data when the flow
expires. Indeed, while the other information about the flow are al-
located, managed and deallocated by the framework, flow application
data is created and managed by the application and thus it should be
the application to decide how to manage this data once the flow is
terminated.

e A pointer to the global HTTP application data. Differently from the
previous parameter, this is a global structures that can be accessed by
any HTTP callback, independently from the specific flow.

In listing 3.1 we can see how the application can specify and provide to
the framework a simple callback which checks if the HTTP flow is carrying a
FLASH video stream.

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

38

39

40

41

42

46 CHAPTER 3. IMPLEMENTATION

Listing 3.1: HTTP callback example

/**
* Definition of the callback function with the parameters
* previously specified.

*x/
#define FLASH_CONTENT_FOUND 0x0O1

void callback(dpi_http_message_information_t* http_info,
const u_char* content_type_string,
u_int32_t content_type_string_length,
dpi_pkt_infos_t* L3_L4_parsed_information,
void*x* app_flow_data,
void* app_data){

if ((xflow_specific_app_data==NULL) &&
(strncmp(content_type_string,
"video/x-flv",
content_type_string length)==0)){
/**
* Simply to indicate to the main a
* match has been found.
*%/
*app_flow_data=FLASH_CONTENT_FOUND;

struct packet_information{
char*x pkt; /** Packet **/
uint len; /** Length **/
uint ts; /** Timestamp **/

};

int main(int argc, char** argv){
dpi_http_header_field_callback* cb[1]={&callback};
/**
* Indicates to the library that the callback
* 15 assoctated to "Content-Type" header field.
*x/
const char* ct[1]={"Content-Type"};

dpi_http_callbacks_t callbacks={

43

44

45

46

47

48

49

50

51

58

59

60

61

62

63

64

65

66

67

68

3.5. CALLBACKS MECHANISMS 47

.header_url_callback=NULL, .header_names=ct,
.num_header_types=1, .header_types_callbacks=cb,
.header_completion_callback=NULL,
.http_body_callback=NULL};

dpi_library_state_t *state=dpi_init_stateful();
dpi_http_activate_callbacks(state, &callbacks, NULL);

struct packet_information packet;
dpi_identification_result_t r;

while(true){
packet=receive_packet();

r=dpi_stateful_identify_application_protocol(
state, packet.pkt, packet.len, packet.ts);

if (r.status>=0 &&
r.protocol==HTTP &&
r.app_flow_data==FLASH_CONTENT_FOUND){
printf("Flash stream found.\n");

dpi_terminate(state);

The struct returned by the protocol identification function contains:

e The status of the processing. When an error occurs (e.g. if the packet
is truncated) it will be less than zero. If it is greater or equal than zero,
the processing succeeded and this field provides additional information
about the processed packet (e.g. if it was a fragment or if it was the
TCP segment which terminated the connection).

e The application protocol if it has been already identified, otherwise
UNKNOWN protocol is returned.

e The application flow data, used by the callbacks to communicate to
the rest of the application the result of the processing over the flow to
which the packet belongs.

48 CHAPTER 3. IMPLEMENTATION

3.6 Demo application

A demo application has been implemented to show the potentialities of the
framework and to test the developed code into a real environment.

The target of this application is to scan all the HTTP traffic and to search
for well known threats signatures, similarly to what is done by Intrusion
Detection and Prevention Systems (IDS/IPS) [41, 42]. As starting point, we
used the open source application available in [84] and, with few changes, we
modified it in order to read packets from a pcap file and to pass them to the
framework. It’s worth noting that, from a functional point of view, reading
the packets from a file or from the network doesn’t make any difference.
Indeed, the framework has been developed in such a way that it can be
independent from the specific technology used to read the packets and it
only requires, for each packet, its length and a pointer to a memory area
containing it.

Actually, to avoid that the packet reading turns out to be a bottleneck for
the application, we first load all the packets in the main memory and then
we pass to the framework, one after the other, the pointers to the packets.
In this way, we can test the application under the highest load conditions
possible on that target architecture.

After that the packets have been loaded, the application reads the set of
virus signatures from a text file and insert them into a trie. The signatures
check is done inside an HTTP callback similar to the one described in listing
3.1. This callback is executed on all the packets which contain a chunk of
an HTTP body and, using a modified version of the Aho/Corasick pattern
matching algorithm [85], searches if any of the viruses signatures loaded in
the trie is present inside the packet. In order to allow a correct recognition
of the signature, the framework must be run with TCP reordering enabled.
Moreover, the algorithm is written in such a way that when the next body
chunk is received, it starts the check from the point where it was left in the
previous chunk.

It’s important to notice that, from the programmer point of view, all
the packet processing, TCP reordering, HTTP parsing and data extraction
comes for free and it only needs few calls to the framework. In this way, the
programmer can focus on what to do with the data instead of how to extract
and manage the needed information from the traffic on the network.

As a further example, by changing a single line in the application code
it could be modified in order to search patterns in other parts of the HTTP
packet. For example, to implement an application which checks if an host
is trying to connect to a blacklisted HTTP URL, the programmer needs to
indicate that the same callback must be executed on the Host field instead

3.7. PARALLEL STRUCTURE 49

of the HTTP body.

This application has been validated by executing it over a pcap file con-
taining the HTTP transfer of an infected file and by checking that it is suc-
cessfully recognized by the application.

3.7 Parallel structure

We will now describe how we modified the framework in order to exploit the
underlying multiprocessor architecture using the concepts introduced in the
previous chapter.

3.7.1 Interface with the application

Differently from the sequential version, in this case the execution control
is completely managed by the framework. Therefore, instead of calling the
packet processing function directly, the application must specify a callback
to let the framework read the packets from the network (reading callback)
and another one to let it process the results of the identification process
(processing callback). Moreover, it can specify a pointer to some callback
data (e.g. a network socket) to be accessed from both the callbacks.

This model of interaction is depicted in figure 3.7, where the dashed boxes
represent the callbacks specified by the application.

The reading callback has in input the callback data and returns to the
framework a structure containing: a pointer to the packet, its length, the
current time and an arbitrary pointer (application pointer). This can be
used to associate some application information to the packet and therefore
to the corresponding result.

For example, if the application reads the packets from multiple network
interfaces, and the actions to take on the processing result changes depending
on the interface from which the packet has been received, it may be used
to associate the interface to the packet. In this way, when the result of the
processing is obtained, the processing callback knows the interface from which
the packet was received and therefore, the specific action to take on it.

It’s important to point out that this pointer was not needed in the se-
quential framework because the model of interaction with the application
was different.

If the returned packet pointer is equal to NULL, then it will be interpreted
as an indication that the processing is finished and that the application wants
to terminate the framework. This could be useful in case the application

20 CHAPTER 3. IMPLEMENTATION

‘ Stop ’

Figure 3.7: Interaction between the application and the parallel framework

|
APPLICATION | FRAMEWORK
|
Start !
:: | po==-ommm=- y
) .} Execute reading |
I " callback "
Y . |
Pass the callbacks I
to the framework |
|
Y } Yes Packet == NULL
Run the .
framework |
! No
Y | *
Application |
actions . Process packet
I
\d |
Wait framework |
termination . rreccecdeccca- N
|) Execute processing |
< ' : callback :
 / | o
I
|

3.7. PARALLEL STRUCTURE 51

received a termination signal from another process and want to provoke a
“gentle termination”.

The processing callback has in input: the callback data, the application
pointer specified by the reading callback and the processing result, contain-
ing the same information’s that were returned by the protocol identification
function of the sequential framework.

After specifying the callbacks, the application can run the framework and,
concurrently, keep doing some other work. For example, if the application
behaves like a firewall, after starting the framework it could wait for changes
in protocols filtering policies and, consequently, invoke over the framework
the functions to enable or disable the corresponding inspectors.

Eventually, when the application has no more actions to do, it can syn-
chronously wait for the framework termination.

3.7.2 Implementation details

From the point of view of the implementation, we used the farm and pipeline
constructs provided by FastFlow to implement the concepts described in
Chapter 2. FastFlow needs that the task that will travel over the compu-
tation graph are void pointers. However, to avoid to dynamically allocate
and deallocate each of these task, we provided a feedback channel from the
collector to the emitter of the farm in such a way that the tasks, when arrive
to the end of the graph, can be sent back to the emitter to be reused again.

Regarding the parallelization of the emitter, one of the problems which
may arise is that, in general, it could change the order of the received packets.
Consequently, we could incur in the cost of TCP normalization also in the
cases in which we originally received an ordered stream. To avoid this, we
provided the possibility to define the L3 farm as an order preserving farm.
This have been implemented by simply changing the scheduling strategy used
by the emitter (using a variant of round robin) and the collection strategy
used by the collector.

Therefore, with this small modification in emitter and collector strategies,
the packets exit from L3 farm in the same order in which they entered.
However, as we will see later, this will not lead in all the cases to an increase
of the overall performances. Indeed, there are cases in which is preferable to
incur in the cost of TCP reordering instead of blocking the L3 emitter or the
L3 collector over the communication channels.

Moreover, we also provided the possibility to apply an on demand schedul-
ing strategy for the L3 farm. We will analyze in section 4.3 the impact of

52 CHAPTER 3. IMPLEMENTATION

these different strategies.

Another important consideration to be done is about the management
of IP defragmentation in the cases in which the processing of the network
and transport headers is managed by the L3 farm. In this case indeed each
worker may receive a fragment and therefore may need to access the table
containing all the outstanding fragmented datagrams. Since it is shared
among the different L3 workers, they need to access it in mutual exclusion.
For this reason, we decided to protect the access to the datagram fragments
table by using spin locks. It’s important to notice that, since the amount of
fragmented traffic is usually below the 1% of the total [86], this would not
considerably harm the final performances of the framework. However, as a
future work, this could be further optimized in order to reduce the critical
section length.

Moreover, we should consider now the way in which the hash table has
been split among the L7 workers. In principle, since each partition is inde-
pendent, we could use n distinct hash tables of size 2, where s is the size of
the global table and n is the number of L7 workers. However, we decided
to have only one table divided among the workers by means of two indexes
for each worker. In this way, the worker ¢ will only access the flows in the
buckets of the table included in the bounds [low;, high;]|.

The reason behind this decision can be found considering some of the
possible future developments for this work. Indeed, having a global and par-
titioned structure it should be possible, in principle, to dynamically change
the sizes of the partitions during the execution of the framework by simply
modifying the bounds of each individual worker. This could be useful for two
main purposes:

Dynamic workers reconfiguration This can be useful when we want to
dynamically change the parallelism degree according to the current in-
put bandwidth. Therefore, if the number of workers is increased or
decreased, we need consequently to split again the table among the
new number of workers.

Dynamic flow distribution This could be used in the cases in which the
workers are unbalanced. Indeed, also if the hash functions we proposed
present a good uniformity of the flow key, not all the flows require
the same processing cost. This can depend from different factors like:
protocol of the flow, its length or the average size of its packets. Accord-
ingly, when the workers are unbalanced, the flows could be redistributed
in a different way to try to mitigate this effect.

The last thing to point out is the way in which the callbacks that the

3.7. PARALLEL STRUCTURE 53

application defines over protocol data and metadata are invoked. Since they
must be called after the extraction of the flow information from the hash
table, they will be invoked by the L7 workers. Such that the packets belonging
to the same flow will be processed sequentially, the data about the flow can
be accessed by the callback without any need of synchronization. However,
if the callback needs to access some data which is common to all the flows,
then the application must consider that it could be accessed concurrently by
multiple threads of the framework.

Chapter 4

Experimental results

In this chapter we assess the design with a complete set of experiments val-
idating the different design choices as well as the overall performance of the
framework. The performances of the framework have first been analyzed
considering the case in which only the identification of the application pro-
tocol is required. After that, we studied the case in which, after that the
application protocol has been identified, the extraction and processing of the
data contained inside the application payload is required, by using the demo
application described in section 3.6.

Unit tests have been developed together with the framework in order to
check the correctness of some features like: parsing of network and transport
headers, IP defragmentation, TCP stream reassembly and protocols inspec-
tors. These tests work by reading network packets from some pcap [87] files
provided with the framework and by comparing the obtained results with the
expected ones.

All the performance related tests, in order to be reproducible, have been
executed over traffic stored in pcap files. Moreover, in order to be able to
test the framework under the maximum load conditions possible, we read the
file containing the traffic directly from the local machine memory instead of
reading them from the network. In this way we are able to avoid possible
bottlenecks due to the specific packet reading technologies and we can isolate
our results from external factors that are not dependent from our work.
Furthermore, we would like to avoid to shift this problem to the one caused
by the bottleneck due to the limited bandwidth of the 1/0 transfers from the
disk. For this reason, when reading the file, we first load the entire pcap in
main memory and then we start analyzing it.

It’s important to point out that this doesn’t affect the validity of our
results and that, modelling the capture of the packets in this way, we are
testing our framework in the worst conditions possible. In a real situation

o4

95

indeed the latency to read a packet will be, in general, higher than the one
that we have in our case where the packet is already present in memory
and we simply need to dereference a pointer. Accordingly, the framework
will have an input bandwidth lower than the one used to execute these tests
that, consequently, can be considered as an analysis of the worst case.

For the different tests we used the following datasets:

CAIDA This dataset [88] contains traffic captured from a monitor located
in a data center in Chicago, and connected to a 10GigE backbone link of
a Tierl ISP between Chicago and Seattle. The dataset has been kindly
provided by CAIDA association [89] and contains about 24 millions of
IPv4 packets distributed in 1428689 IPv4 flows!. The payload of the
packets is not present for privacy reasons. However, this can be used to
compare the proposed hash functions, as in this case we need to have
data only up to the transport protocol header.

Sigcomm This dataset [90] contains a collection of the wireless IP traffic
captured over the entire period of a three day conference. It contains
about 16 millions of IPv4 packets distributed in 298449 1Pv4 flows.
Also in this case the payload has been cut off from the packets. Con-
sequently, also this dataset will be used only to compare the different
hash functions we proposed.

Synthetic This dataset contains 1428043 synthetic IPv4 packets. These
packets are distributed over 13314 HTTP flows, each of which correspond
to a transfer of a large file between two hosts.

Darpa This dataset [91] has been collected by the Cyber Systems and Tech-
nology Group of MIT Lincoln Laboratory and was commonly used to

evaluate intrusion detection systems. It contains 1308081 IPv4 packets
distributed in 38985 IPv4 flows.

Local This dataset contains traffic captured from a laptop connected to an
home network. It contains 524761 IPv4 packets distributed in 17939
IPv4 flows and 34635 IPv6 packets distributed in 1670 IPv6 flows.

All the tests have been executed over a NUMA machine composed by two
INTEL XEON E5-2650 @ 2.00GHZ nodes with 8 hyperthreaded cores on
each of them. Each NUMA node has 16GB of main memory, a shared 20MB
L3 cache and private 256 KB L2 and 32KB L1 caches for each core.

!The dataset contains a low number of IPv6 flows so the analysis is concentrated on
IPv4 flows only.

26 CHAPTER 4. EXPERIMENTAL RESULTS

In all the described experiments, when error bars are present, they rep-
resent the standard deviation from the mean. Error bars will not be shown
for the results characterized by a negligible standard deviation.

4.1 Hash functions analysis

We now compare the hash functions we implemented to access the hash ta-
ble containing the data about the flows. This comparison have been done in
order to verify if more complicated hash functions, which in general are char-
acterized by an higher latency, are also characterized by a better distribution
uniformity with respect to simpler but faster hash functions.

First of all, we compare the distributions of the functions using the metric
described in [92]. This metric evaluates the uniformity of an hash function
using the following formula:

S
s=(n+2m-1)

where b; is the number of items in j —th slot, m is the number of slots,
and n is the total number of items. The more this ratio is close to one, more
the function is close to the uniform hash function.

In figure 4.1 we present the results obtained for the functions provided by
the framework, varying the load factor of the hash table. For this comparison
we used the CAIDA dataset. As we can see, all the four hash functions have
a distribution which is very close to the uniform one.

Furthermore, in figure 4.2, we illustrate the comparison of the execution
times of the parts of the framework directly influenced by the computation of
the hash functions. As we can see, as a consequence of the good uniformity
of all the proposed functions, the average time spent in accessing the collision
lists is the almost the same in all the four cases.

On the other hand, the time spent in computing the function changes and,
as we will see later, also if it may seem negligible with respect to the table
access time, it has a non negligible effect on the bandwidth of the framework.

Similar results have been obtained also using the other datasets. However,
due to space constraints, we will not show them here but we will directly show
their effect on the total bandwidth of the framework (expressed in millions
of packets per second) in figure 4.3.

As expected, the difference in the time spent to compute the hash function
is reflected over the total bandwidth of the framework.

Moreover, from figure 4.3 we can analyze the behaviour of the framework
under different kinds of traffic. As we can see, the dataset which exhibit

4.1. HASH FUNCTIONS ANALYSIS

1.005
1.004
1.003
1.002
RS
= 1.001
€
>
£ 1
kel
c 0.999
)
0.998
0.997
0.996

0.995

Uniformity of the hash functions
over the IPv4 flows contained in CAIDA dataset

T
Average load factor 100
Average load factor: 50
Average load factor: 25
Average load factor: 10
Average load factor: 5
Average load factor: 2
Average load factor: 1
Average load factor: 0.5

> e O mOX X+

Hash function

o
N
\b&

27

Figure 4.1: Hash functions uniformity over the flows contained in CAIDA

dataset

o8 CHAPTER 4. EXPERIMENTAL RESULTS

Average execution times of the hash functions
over the IPv4 flows contained in CAIDA dataset. Average load factor: 10.

350 T T T T R
Average flow search time =
Average hash function computation time &5=x=
300 | DDA T
AN A e N RS
K XN XK AJ \<&X/\>/\<«x>>,\<<«x»
,,,,,,,,,,
SO IG5 A S LN,
- 250 | ,
©
c
Q
[
?
@ 200 i
©
S
£
= 150 y
(0]
(o]
@
o
[]
>
< 100 | B
50 | 1
0
Simple BKDR FNV Murmur3

Hash function

Figure 4.2: Hash functions execution times over the flows contained in

CAIDA dataset

4.1. HASH FUNCTIONS ANALYSIS 29

Effect of the different hash functions over the framework bandwidth
using different datasets.

55 T T

T
Simple hash function Kxx=
BKDR hash function &ezees
FNV hash functiont :: <
Murmur3 hash function

SRR
Qo)

4.5

=z
4

Bandwidth (Mpps)
N
T
2e3 x\/\Q/\/x\/\Q/\/x%Q&x O <>\/\x %

S

2%

3.5

5

QOO

x

TR RN NP

w
T
2

RS

CRAERAE

2.5

Sigcomm Synthetic Local
Dataset

Figure 4.3: Comparison of the impact of the different hash functions over the
framework bandwidth (in millions of packets per second)

60 CHAPTER 4. EXPERIMENTAL RESULTS

the highest bandwidth is the Sigcomm dataset, due to the absence of the
packet payload. Consequently, the protocol inspectors will never be called
for this dataset, while we still execute the operations relative to network and
transport header parsing, flow data retrieval and IP and TCP normalization.

Concerning the Synthetic dataset, it is characterized by flows with a
long duration and thus, as we have described in Chapter 2, we will execute
the inspectors only on the first packets of each flow. Then, once it has been
identified, the inspectors will no more be called for the flow.

Eventually, Local and Darpa datasets require more computational effort
to be processed, since they are characterized by shorter flows and thus the
inspectors will be called more frequently.

In this section we have seen that the simplest and fastest hash function
among the ones proposed present a distribution uniformity comparable to
that of the other functions. Moreover, this has been verified both by analyz-
ing in isolation the parts of the framework which are directly influenced by
the hash function and by considering the impact on the overall bandwidth.

4.2 Analysis of Move To Front technique

As we described in section 3.3, the collision lists are kept sorted from the
most recent to the least recent flow. This should have a twofold advantage:

e From one side it allows, in principle, to keep the most frequently up-
dated flows in the first positions of the collision list, thus reducing the
latency required to find a flow in the hash table.

e On the other hand, when scanning the table to find expired flows, we
can usually avoid to scan each collision list entirely. Indeed, since each
list is sorted, we can start scanning the list from the end up to the
point in which we find a flow which is not expired.

Accordingly, we would like to evaluate if this technique actually increases
the overall bandwidth of the framework with respect to the case in which it
is not used. In order to assess the advantage of this technique, we made our
test over the Sigcomm dataset varying the load factor of the hash table.
Indeed, since the latency required to find a flow increases when the average
length of the collision lists increase, the advantage should be more noticeable
incrementing the load factor.

In figure 4.4 we can see that using MTF we achieve significantly better
results. Moreover, as expected, this improvement increases while increasing
the average load factor of the table.

4.3. COMPARISON OF L3 FARM SCHEDULING STRATEGIES 61

Analysis of the advantage of Move To Front (MTF) on the collision lists
of the hash table over framework bandwidth.

T T T T T
5.0 MTF disabled xxx=
: MTF enabled oz
e .
5 S22 52]
2 25 -
SR 522 szi
5 25 S
% 0% 5750 e
48 | 5 RS S KA a
. 2 O, Qo ol
<2 522 Sed! £
25 255 o £
$2 2% 55 825 573
m % 257 oo o] S
a 4.6 - 36X X \/‘x’yq IS¢l <2 -
o . 255, 2585 = R 5%
=3 5% RS e PR A
s IO R \/\O/\’; O 3"&
= éz\» /vf% :;’xf/o E%@i «,0 \}g
S 44+ 255 2% 5o B 2K i
k] . 9 N 4 155, O
2 R 2%, 5o g@% %
= o K2 O L35 o]
2 S 555 o B o
K K2 & RS 0%
S 42 5 o o 5% e 7
o N <2 o R %
% X Loked [5%3¢] 9% q
55 s 552 e 2
X o o
5% 355 A E”VQ{\Q R
4 9 SR% X 2 o] a
o 2% 0 R 25
5 36X 225 ! SR
LS e Oz y% 2
2 o X K3 o
-) S RO S| 2 E
o8 - - = o o
58 % o X&i o
2% 2255 S5 <0 225
522 o S PR R
3.6 %9 @] essd] s |
’ o X 532 e 58
2 5% 52 RS X
1 3 5 7 10

Average load factor

Figure 4.4: Analysis, using Sigcomm dataset, of the impact of MTF strategy
over the global bandwidth of the framework varying the average load factor
of the table

In this section we have thus validated the implementation choice we made
in section 3.3 by analyzing its impact on the overall bandwidth of the frame-
work.

4.3 Comparison of L3 farm scheduling strate-
gies

As we described in section 2.2, when the emitter is parallelized and replaced
by the L3 farm, we should consider the possibility that it could reorder the
received packets. Therefore, also if they arrive in the correct order to the
framework, they could be received out of order by the L7 worker and, con-
sequently, we could incur in the latency caused by TCP normalization also
when it is not really needed.

To avoid this problem, we proposed a scheduling strategy which preserves
the order of the packets. For this reason in figure 4.5 we compare the two

62 CHAPTER 4. EXPERIMENTAL RESULTS

Comparison of scheduling strategies for L3 farm.

12 , : I .
Ideal speedup
Order preserving round robin ---+---
Round robin ————
On demand -+
10 | |
8 i -
% AN §
-
3 3 R
3 °r _ _-T - =5
Q.] .
? = T
/ //“/"‘/
4 //' |
2 - *,;_///f//’ |
//’/‘
0 1 1 |) |
0 2 4 6 s 10 -

Number of workers

Figure 4.5: Comparison of the impact of the different scheduling strategies
for the L3 farm

non ordering strategies (round robin and on demand), with respect to the
ordering scheduling (ordered round robin).

As we can see, the ordering scheduling strategy provides better results
with respect to the other two solutions. Moreover, when a strategy which
doesn’t preserve the order is used, the results are characterized by a much
higher standard deviation. This happens because in the different runs the
packets could be scheduled in different way and thus incurring in a different
cost due to the TCP normalization. Furthermore, increasing the parallelism
degree (and thus increasing also the number of workers activated for the
L3 farm) we increase also the possible ways in which the packets can be
scheduled and, as we can see from the figure, this is reflected on the standard
deviation.

For these reasons, when TCP normalization is activated, an ordering
strategy should be used to schedule the tasks in L3 farm. Indeed in this
section we have shown that, when scheduling strategies which don’t preserve
the order of the packets are used, we could have a worse speedup due to an
increase in the cost of TCP reordering. Consequently, the framework will

4.4. SPEEDUP 63

have a lower bandwidth with respect to the one we have when using an order
preserving scheduling strategy.

4.4 Speedup

We will now analyze the speedup achieved thanks to the parallelization of the
framework. In the analysis, we will separate the case in which we perform
only the protocol identification, from the case in which Network Intelligence
(NI) capabilities are required and thus all the packets will be processed also
after that the protocol of the corresponding flow has been identified.

4.4.1 Protocol identification

First of all, we will analyze the speedup of the framework when only the
protocol identification is performed.

Comparison of speedup for protocol identification using different datasets.

12 : : . | I
Ideal speedup
Synthetic dataset -+ --
Local dataset ———
DARPA dataset -+
10 |
+
[A T E) i
//// %/ S N
s e LE 5
ey T]
7 L
P
4t e _
oL
o L //+ _
0 1 | | | ,
0 2 4 6 o ” o,

Number of workers

Figure 4.6: Comparison of the speedup for protocol identification using dif-
ferent datasets

Usually, the protocol of an application flow will be identified by inspecting

64 CHAPTER 4. EXPERIMENTAL RESULTS

only the first packets carried by it. For example, considering an HTTP flow,
the framework will usually identify the protocol by inspecting only the first
packets of the flow (which carry the HTTP header). For this reason, for all the
remaining packets of the flow, the cost of the inspection will not be payed
and the framework will incur only in the latency due to the access to the
hash table (which is always needed to check if the flow have been already
identified). This is the reason why, in average, the processing of a packet is
a very fine grained operation. For example, on the architecture used to run
our tests, in many cases it has a latency of O(100) ns. Consequently, as we
can see from figure 4.6, there are cases in which we are not able to achieve
the ideal speedup.

On the other side, there are cases in which the framework achieves a
speedup greater than the ideal one. As we described in section 1.2, this is
due to a better temporal locality exploitation. For example, let’s consider the
hash table that is partitioned among the workers of the L7 farm. In this case,
when more than one node is used, each node will access only to a smaller
part of the table which, hopefully, will fit in the lower levels of the memory
hierarchy.

In this section we have shown that, despite the very low latency of the
protocol identification process, the framework is still able to achieve a good
speedup. However, due to the low latency of the protocol identification pro-
cess, we reach a point where the emitters become bottlenecks and thus the
framework reaches the saturation. Anyway, as we will see in section 4.4.2,
when NI capabilities are required, the latency of the packet processing in-
creases, allowing thus to achieve better results.

4.4.2 Processing of extracted data

We now analyze how the speedup is affected when packet processing capabil-
ities are required, trying to find a lower bound to the processing grain which
allows the framework to achieve a good speedup. In figure 4.7 we compare
the speedup of the framework varying the latency of the processing function
which will be executed for each identified packet.

As we can see, also for very fine grained processing functions, the frame-
work is characterized by a good speedup. Moreover it’s worth noting that, as
we will see in section 4.4.3, “real” processing functions are characterized by
latencies which may also be two order of magnitude greater than the ones we
used to make this analysis. Consequently, as we will see, in real monitoring
environments the framework is able to reach a speedup very close to the ideal
one.

4.4. SPEEDUP 65

Speedup of the framework at different latencies of the processing function.

12 T T T T T
10 | - .
Lk
8 |) .
o
S
o
%)
4 | i
2 F E B
e Ideal speedup
Average processing latency per packet: 0 ns (Protocol classification only) ---—+---
Average processing latency per packet: 150 ns ——+-
0 | | Average processing Iat?ncy per packet: I250 ns -t

0 2 4 6 8 10 12
Number of workers

Figure 4.7: Comparison of the speedup when packet processing capabilities
are required

66 CHAPTER 4. EXPERIMENTAL RESULTS

4.4.3 Application speedup

Eventually, we analyze the capabilities of the framework under a real mon-
itoring environment as the one described in section 3.6. We briefly recall
that the application we built over the developed framework allows to search
patterns inside the HTTP packets traveling over the network by using the
Aho/Corasick algorithm. Our experiments shown that using a database of
1781 patterns with an average length of 274 characters each, in average, this
operation has a latency of O(10) microseconds per packet.

Application speedup

16

Ideal speédup
Real speedup ---+---

12

10 |

Speedup
oo
T

0 1 1 1 1 1 1

Number of workers
Figure 4.8: Comparison of the speedup of the HTTP payload pattern matching
application

As we can see from figure 4.8, the application exhibits a good speedup up
to 14 workers.

4.5 Assessment

In this section, we will evaluate the results we obtained using our framework,
comparing them with the ones obtained with other existing software and
hardware tools.

4.5. ASSESSMENT 67

4.5.1 Comparison with other sequential software solu-
tions

With respect to common and well known existing tools, as shown in Table
4.1, instead of focusing on the number of supported protocols we decided to
characterize this work by providing a support for current multicore hardware
and by providing to the application programmer the possibility to specify
the callback to be used to process specific data and metadata carried by the
protocol.

Our OpenDPI/ | libproto- | 17filter
framework | nDPI ident
IPv4 and IPv6 normal- | Yes No Yes Yes
ization (section 3.2.1)
“Stateful” mode (section | Yes No Yes Yes
3.3)
TCP normalization (sec- | Yes No Yes Yes
tion 3.4.1)
Callbacks (section 3.5) Yes No No No
Multiprocessor support | Yes No No No
(Chapter 2)
Supported protocols 10 117/141 250 112

Table 4.1: Comparison of the features of our framework with respect to well
known DPI libraries

Having illustrated the main contributions of our framework with respect
to popular software tools, we now compare them from the point of view of
the achieved performances.

Concerning nDPI, we made the comparison by using both nDPI and our
framework over the same machine. Moreover, in order to have a fair compar-
ison, we disabled from our framework the features that are not supported by
nDPI and we disabled from nDPI the protocols inspectors not implemented
in this work. Furthermore, since nDPI doesn’t have its own way to store the
flow data, we slightly modified the hash table used by our framework in order
to store the data required by nDPI.

Under these conditions, we tested the two framework over different datasets,
comparing them over both synthetic and real traffic. Moreover analyzing the
code of nDPI we saw that, also if the protocol of the flow has been already
identified, it still try to identify the other packets belonging to the same flow.
Accordingly, we compared our results with two different versions of nDPI,

68 CHAPTER 4. EXPERIMENTAL RESULTS

the native one and the one in which we call the library only if the flow has
not been yet identified, obtaining the results shown in figure 4.9

Comparison of the bandwidth of our framework with the one of nDPI
using different datasets.

6
I I nDPI avelrage bandwidth kxx=
nDPI average bandwidth. Added check on the protocol of the flow
Our framework average bandwidth. IP and TCP normalization enabled
5 Our framework average bandwidth. IP and TCP normalization disabled
4 .
m
Q
o
=3
<
5 9T A
2
©
c
©
m
2+ i
o
it o -
]
<
233
@f\%j
0 B X
Synthetic Local
Dataset

Figure 4.9: Comparison of the bandwidth (in millions of packets per second)
of our framework with respect to nDPI over different datasets

As we can see, our framework exhibits always better results, also when IP
and TCP normalization is enabled. Moreover it’s worth noting that there are
cases in which, enabling the TCP normalization, we get an higher bandwidth
with respect to the cases in which it is disabled. This derives from the fact
that in the former case, when out of order packets are received, we delay the
analysis of the flow up to the point in which the stream is in the right order.
Consequently, we execute the inspectors a lower number of times and over a
longer segment and, since we usually doesn’t need to scan the entire segment
but only the first part, the cost due to the normalization is amortized and
we globally have an higher bandwidth. However, this effect is not present for
the Synthetic dataset since it contains already ordered data.

Furthermore in this comparison we should take into account that, al-
though we disabled not required protocols, since nDPI has been designed
to support more application protocols, its internal data structures (e.g. that
used to store the flows information) are usually bigger than the ones we use in

4.5. ASSESSMENT 69

our framework. Accordingly, we need to consider that this could be one of the
reasons why nDPT exhibits lower performance, since it gains less advantages
from spatial locality.

Comparison of the bandwidth of our framework with the one of nDPI
varying the parallelism degree.

35 T T T

nIIDPI average bancliwidth. R

Our framework average bandwidth. z=37<~v

ST

25 -

20

Bandwidth (Mpps)

N
N
S

|\\\\\\ NN
4 6 8
Number of workers

NN
1S

O ‘
Sequential

Figure 4.10: Comparison of the bandwidth (in millions of packets per second)
of nDPI with respect to our framework varying the number of workers of the
farm

Moreover nDPI provides only the possibility to process the packets se-
quentially and, if multicore support is required, it should be implemented
from scratch. Accordingly, in figure 4.10 we compare the bandwidth man-
ageable by nDPI with that of our framework, varying the number of workers
of the farm.

Concerning the other tools, according to the authors of [22], 17filter and
libprotoident achieve a bandwidth respectively of 2.421 Gbps and 7.752 Gbps.
Under presumably similar hardware and using different kinds of real traffic
dataset, as shown in Table 4.2 our framework has demonstrated to be able
to reach from 5.89 Gbps up to 17.35 Gbps.

However, in this comparison we must consider that these tools support
much more protocols with respect to the ones we implemented in our proto-

type.

70 CHAPTER 4. EXPERIMENTAL RESULTS

Dataset | Bandwidth (Gbps)
Darpa | 5.89
Local 17.35

Table 4.2: Bandwidth achieved by our framework using different real traffic
datasets

Anyway, the qualitative results should still be valid and our approach,
coherently with the considerations done in [22], from the point of view of the
achieved bandwidth, should be located between libprotoident and 17filter. In-
deed, since Libprotoident is a Lightweight Packet Inspection (LPI) approach
and looks only at the first four bytes of the payload, it will probably have
an higher bandwidth. However, from a functional point of view, analyzing
only the first four bytes could be a limitation since they will not be able to
sub classify the protocols or, in general, to extract the data carried by the
application.

Concerning 17filter, it exhibits a significant lower bandwidth, mainly due
to the inefficiency of regular expression matching with respect to fixed string
matching as the one performed in the other cases.

Moreover the main advantage of our approach is that, as shown in sec-
tion 4.4.1, differently from these tools we are able to exploit the underlying
multicore architecture and thus to achieve an higher bandwidth.

Comparison of the speedup with existing software solutions To
evaluate the validity of a structured parallel programming approach, we will
compare the speedup achieved by our framework with that achieved by other
DPI tools present in literature. However, since the source code of the other
tools is not available, we make our consideration over the results found in
the respective works. In Table 4.3 we show the best results obtained for each
work in terms of speedup.

Tool | Number of threads | Speedup
[24] | 16 10

(25] | 14 6.25

26] |5 1.75

27] |3 1.98

Table 4.3: Speedup achieved by tools which provide multicore support

As we can see, the other existing tools suffer from limited speedup, also
for relatively low parallelism degrees. On the other hand our framework,

4.5. ASSESSMENT 71

as shown in section 4.4.1, is able to reach, in the best case a speedup of
8.17 using 8 farm workers when only the protocol identification is required.
Moreover for more complex tasks, as the one described in section 3.6, we are
able to reach a speedup of 12 with 14 farm workers.

Furthermore, as also stated from their developers, these problems are
often related to design choices. Consequently, also if the results presented in
the other works are collected using different machines from the one we used,
we can still reasonably suppose that from a qualitative point of view, the
results would not change significantly.

In this section, we have shown that we are able to often manage higher
bandwidths with respect to the other existing DPI tools and, at the same
time, to provide better results in term of speedup thanks to an accurate de-
sign which exploits the concepts of structured parallel programming theory.
Although in some cases it is difficult to make a fair performance comparison
that takes all the algorithmic, hardware and used datasets details into ac-
count, we clearly shown the efficiency of our approach with respect to those
used in other works.

4.5.2 Comparison with hardware solutions

Many hardware solutions are proposed in literature. In most cases they
perform pattern matching on the packets both by using Field Programmable
Gate Arrays (FPGAs) [17, 37, 38] or by using Content Addressable Memories
(CAMs) [39, 18, 19, 40].

Pattern matching can aim both to search for application signatures or to
search generic patterns inside the payload, similarly to what the application
we described in section 3.6 does.

Some of these solutions reach, in the best case, a bandwidth of 20Gbps
[40]. Anyway, we need to consider that this is the rate in isolation of the pat-
tern matching process and thus doesn’t account the cost of all the processing
related to the parsing of the network and transport headers, hash table lookup
and TCP normalization. However, these are all tasks that should be consid-
ered and implemented in a real environment, since their absence could lead
to the impossibility to find these patterns.

Considering only the protocol classification, we are able to reach the same
rate of the CAM solution [40] (20Gbps) over the Darpa dataset by using only
four workers. Similar results have also been obtained using the other datasets.
However, we have to consider that the algorithms used in the two cases are
different. Our solution indeed has a better knowledge of the protocols and of
the structure of the packet and, consequently, each inspector usually needs
only few byte before deciding if the protocol matches or not. Conversely, the

72 CHAPTER 4. EXPERIMENTAL RESULTS

CAM solution searches for a signature inside all the packet payload and thus
it usually scans it entirely before moving to the next signature.

For these reasons, a more significant comparison can be done by evaluate
the two solutions over a pattern matching application as the one we described
in section 3.6 and which have implemented using the framework developed in
this thesis. In both cases, the results are taken by considering the matching
over a database of 117 patterns with an average length of 67 characters each.

Application bandwidth

14 T : : : I |
Ideal bandwidth —x—
Real bandwidth ———+--
12
10 |
m
S
s 8r
L
il
=
° 6
[
m
4+
2
0 |) | | I |
0 2 4 6 8 10 = ”

Number of workers

Figure 4.11: Bandwidth of the HTTP payload pattern matching application

Under these conditions, as we can see from figure 4.11, we are able to reach
a rate of 11Gbps by using 14 workers. This is a positive result since we are
able to achieve comparable rates to those achieved by dedicated hardware
solutions and, at the same time, to provide the flexibility and ease of use
which characterize software solutions with respect to the ones implemented
through dedicated hardware. Moreover, as we said before, we should consider
that our results also account the additional overhead due to all the other parts
related to the packet processing and not only to pattern matching. From the
point of view of the effectiveness, this allows our work to identify the patterns
independently from the fact that the data are reordered or segmented while,
using only a CAM or FPGA solution, this would not be possible since it

4.5. ASSESSMENT 73

doesn’t have any knowledge about the structure of the packets and simply
search “blindly” in the traffic which travels over the network. Furthermore our
solution allows not only to develop pattern matching applications but also
any other type of traffic management applications which require to access
and process specific parts of the packet payload.

Lastly it’s important to notice that, in principle, nothing prevents our
framework to take advantage of this kind of solutions for some specific parts of
the protocol identification process by offloading them to FPGA or hardware
coprocessors. As an example, considering the demo application described in
section 3.6, the application programmer could decide, if needed, to offload
the pattern search inside the HTTP payload to an hardware coprocessors and
thus to take advantage from dedicated hardware performances.

Chapter 5

Conclusions

The original goal of this thesis was to explore the possibility to apply struc-
tured parallel programming theory to support the implementation of a DPI
framework capable to manage current network rates by exploiting commodity
multicore architectures. To achieve our target, we implemented these con-
cepts using FastFlow, a parallel programming library which provides very
low latency communication mechanisms to support high bandwidth stream-
ing applications.

Our work allows to identify the application protocol carried by the packet
by inspecting its contents up to the application layer and by checking the
bytes situated in some specific locations or, in more complex cases, by im-
plementing a full protocol parser. Since such kind of accurate identification
requires to maintain some state about each application flow, we designed and
implemented efficient data structures to store such data that could be eas-
ily partitioned among different threads when multicore support is required.
Promising results have been obtained for both the sequential and the parallel
version of the framework.

Concerning the sequential framework, we validated the approach by com-
paring the results we obtained with those achieved by well known DPI li-
braries: we are able to achieve comparable, and also better results in term
of number of packets processed per second.

To support an high degree of flexibility so that the framework can be used
for different monitoring applications, we allow the application programmer
to specify which part of the protocol metadata or of the data carried by the
protocol are actually needed and how to process them. To correctly perform
this kind of tasks, it may often be required that the data are processed in the
same way they are sent by the application. Consequently, we implemented IP
and TCP normalization to rearrange and manage fragmented or out of order

74

75

data. Since this is a risky task which could be affected by security threats,
this phase required careful design and implementation choices. We validated
the flexibility and efficiency of our framework by using it to implement an
application which searches some specified patterns inside all the HTTP traffic
travelling over the network, performing thus a task similar to that performed
by common Intrusion Detection/Prevention Systems (IDS/IPS).

In order to reach the target of this thesis and to efficiently exploit the
underlying multicore architecture, the framework has been designed as a
farm and, to avoid any kind of unnecessary synchronization mechanisms, the
flow data have been partitioned among its workers. Since in some cases the
emitter may be a bottleneck, we provided the possibility to parallelize it by
means of another farm, obtaining thus a solution composed by two pipelined
farms. To avoid the reordering of the packets, we proposed and validated an
order preserving strategy for the L3 farm, allowing to prevent unnecessary
costs due to TCP reordering and leading thus to better results.

We then validated our approach by showing that we are able to achieve
a good speedup also when only protocol identification is required. However,
since under certain traffic conditions it could be a very low latency task, we
reach the saturation around 8-10 workers.

Moreover we studied the capabilities of our approach in the cases in which,
after the protocol has been identified, further payload processing is required.
Consequently, we searched the lower bound to the latency of the processing
function which allows the framework to achieve a good speedup, founding
that it can be achieved also by using functions characterized by a latency
two or three order of magnitude lower than that required by real processing
applications. Our results have been further validated by comparing the pat-
tern matching application we developed using our framework, with a similar
one implemented over dedicated hardware. The comparison showed that we
are able to reach around 11 Gbps versus the 20 Gbps reached by the hard-
ware solution. However, the dedicated hardware solution only offers pattern
matching capabilities without any knowledge about the structure of the pack-
ets, thus providing a lower accuracy to the one we provided implementing
also flow management and TCP normalization. Furthermore, our solution
is characterized by the flexibility and ease of use which represent one of the
biggest advantages of software solutions with respect to dedicated hardware
ones. Anyway, nothing prevents our framework to use these hardware solu-
tions to perform some specific tasks.

Our work could still be improved by addressing some problems such as:

76 CHAPTER 5. CONCLUSIONS

Flow unbalancing Even if the hash functions we proposed present a good
distribution of the flow key, the flows themselves could still be unbal-
anced. Accordingly, also if the number of flows managed by the different
workers is equally distributed, we could still have an unbalance from
the point of view of the managed packets. To solve this problem, the
hash table we proposed in our implementation could be modified to
dynamically resize is partitions accordingly to the current load of each
worker of the farm.

Resizing of hash table Despite the hash functions we proposed are char-
acterized by a good uniformity of their distributions, we could still have
cases in which one collision list is particularly unbalanced with respect
to the others. Accordingly, we could need some mechanism to dynam-
ically resize the hash table and to redistribute the flows contained in
it.

Adaptivity As we described in section 1.2.3 it is very difficult to foresee the
average values of the interarrival time or the latencies of the stages of
the processing, since they could be influenced by many different factors.
Accordingly, when an high efficiency is required and under-provisioning
and over-provisioning need to be avoided, our implementation could be
modified in such a way that it can dynamically increase or decrease
the number of activated threads and, possibly, also to change the par-
allelism form. This is one of the reasons why, instead of providing one
distinct hash table for each worker of the farm, we decided to use a
single hash table partitioned among them by means of bounds.

Support for more protocols The provided protocol inspectors may be
improved and extended with data and metadata extraction capabili-
ties. In this work, we provided the possibility to extract and process
data and metadata only for HTTP protocol. However, the framework
has been designed and implemented to support it possibly for all the
implemented protocols. Furthermore, inspectors for other protocols
could be added, either by using payload inspection techniques or by
using statistical approaches.

These problems have not been addressed in this work due to time and
size constraints of the thesis. The starting goal of the thesis has been fully
achieved, proving the validity of a structured parallel programming approach
to solve this kind of applications using commodity hardware.

Bibliography

1]

FastFlow - Website. http://calvados.di.unipi.it/dokuwiki/doku.
php?id=ffnamespace:about, 2012. [Online; accessed 23-December-
2012].

Inc. eSoft. White Paper - Modern Network Security: The Migra-
tion to Deep Packet Inspection. www.esoft.com/content/pdf/dpi-
migration-whitepaper.pdf, 2012. [Online; accessed 23-December-
2012].

Elfiq App Optimizer. http://www.elfiq.com/appoptimizer. [Online;
accessed 14-January-2013].

Meraki - Application QoS. http://www.meraki.com/technologies/
application-qos. [Online; accessed 14-January-2013].

Clifton Phua. Protecting organisations from personal data breaches.
Computer Fraud and Security, 2009(1):13 — 18, 2009.

Martin H. Bosworth. ChoicePoint Settles Data Breach Lawsuit.
http://www.consumeraffairs.com/choicepoint. [Online; accessed
14-January-2013].

US Federal Communications Commission. Children’s Internet Pro-
tection Act. http://www.fcc.gov/guides/childrens-internet-
protection-act, 2012. [Online; accessed 23-December-2012].

Research note - Facebook: Measuring the cost to business of social
notworking. http://nucleusresearch.com/research/notes-and-
reports/facebook-measuring-the-cost-to-business-of-social-
notworking/, 2009. [Online; accessed 23-December-2012].

Cisco I0OS Netflow. http://www.cisco.com/en/US/products/ps6601/
products_ios_protocol_group_home.html, 2012. [Online; accessed
23-December-2012].

7

78

[10]

[11]

[12]

[13]

[14]

[17]

[18]

[19]

BIBLIOGRAPHY

Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N.
Padmanabhan, and Lili Qiu. Statistical identification of encrypted web
browsing traffic. In IEEE Symposium on Security and Privacy. Society
Press, 2002.

Sebastian Zander, Thuy Nguyen, and Grenville Armitage. Automated
traffic classification and application identification using machine learn-
ing. In Proceedings of the The IEEE Conference on Local Computer
Networks 30th Anniversary. IEEE Computer Society, 2005.

Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgar-
elli. Traffic classification through simple statistical fingerprinting. SIG-
COMM Computer Communication Review, 37(1):5-16, January 2007.

Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide,
and Farnam Jahanian. Internet inter-domain tratfic. SIGCOMM Com-
puter Communication Review, 41(4), August 2010.

Qosmos DeepFlow Probes - Ready-to-Use Network Intelligence.
http://www.qosmos.com/new-qosmos-deepflow-probes-deliver-
the-power-of-network-intelligence-in-ready-to-use-formats/.
[Online; accessed 14-January-2013].

G. Ziemba, D. Reed, and P. Traina. RFC 1858 - Security Considerations
for IP Fragment Filtering. http://tools.ietf.org/rfc/rfc1858.txt,
2012. [Online; accessed 23-December-2012].

Sarang Dharmapurikar and Vern Paxson. Robust TCP stream reassem-
bly in the presence of adversaries. In Proceedings of the 14th conference
on USENIX Security Symposium - Volume 14. USENIX Association,
2005.

Monther Aldwairi, Thomas Conte, and Paul Franzon. Config-
urable string matching hardware for speeding up intrusion detection.
SIGARCH Computer Architecture News, 33(1):99-107, March 2005.

Yaron Weinsberg, Shimrit Tzur-david, and Danny Dolev. High per-
formance string matching algorithm for a network intrusion prevention
system (nips). In High Performance Switching and Routing, 2006.

Sherif Yusuf and Wayne Luk. Bitwise optimised CAM for Network In-
trusion Detection Systems. In Proceedings of the 2005 International
Conference on Field Programmable Logic and Applications. IEEE, 2005.

BIBLIOGRAPHY 79

[20]

[21]

22]

23]

[24]

[27]

28]

[29]

OpenDPI - Website. http://www.opendpi.org/, 2012. [Online; ac-
cessed 23-December-2012].

I7filter - Website. http://17-filter.clearfoundation.com/, 2012.
[Online; accessed 23-December-2012].

Shane Alcock and Richard Nelson. Libprotoident: traffic classifica-
tion using Lightweight Packet Inspection. www.wand .net .nz/"salcock/
1pi/lpi.pdf. [Online; accessed 12-February-2013].

nDPI - Website. http://www.ntop.org/products/ndpi/, 2012. [On-
line; accessed 23-December-2012].

Yunchun Li and Xinxin Qiao. A parallel packet processing method on
multi-core systems. In Proceedings of the 2011 10th International Sym-
posium on Distributed Computing and Applications to Business, Engi-
neering and Science. IEEE Computer Society, 2011.

Terry Nelms and Mustaque Ahamad. Packet scheduling for deep
packet inspection on multi-core architectures. In Proceedings of the 6th
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems. ACM, 2010.

Tan Li, Fan Yang, Jie Yang, Yinan Dou, and Huanhao Zou. Research
of dpi optimization on multi-core platform. In Broadband Network and
Multimedia Technology (IC-BNMT), 2010 3rd IEEE International Con-
ference on, 2010.

Junchang Wang, Haipeng Cheng, Bei Hua, and Xinan Tang. Practice of
parallelizing network applications on multi-core architectures. In Pro-
ceedings of the 23rd international conference on Supercomputing. ACM,
2009.

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo
Torquati. FastFlow: high-level and efficient streaming on multi-core.
In Sabri Pllana and Fatos Xhafa, editors, Programming Multi-core and
Many-core Computing Systems, Parallel and Distributed Computing,
chapter 13. Wiley, January 2013.

Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. Quantifying
the accuracy of the ground truth associated with Internet traffic traces.
Computer Networks, 55(5):1158-1167, April 2011.

80

[30]

[31]

[32]

[33]

[36]

[37]

[38]

BIBLIOGRAPHY

Andrew W. Moore and Konstantina Papagiannaki. Toward the accurate
identification of network applications. In PAM, 2005.

Patrick Haffner, Subhabrata Sen, Oliver Spatscheck, and Dongmei
Wang. ACAS: automated construction of application signatures. In
Proceedings of the 2005 ACM SIGCOMM workshop on Mining network
data. ACM, 2005.

James F. Kurose and Keith W. Ross. Computer Networking: A Top-
Down Approach. Addison-Wesley Publishing Company, USA, 5th edi-
tion, 2009.

Mark Handley, Vern Paxson, and Christian Kreibich. Network intru-
sion detection: evasion, traffic normalization, and end-to-end protocol
semantics. In Proceedings of the 10th conference on USENIX Security
Symposium - Volume 10. USENIX Association, 2001.

Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and
denial of service: Eluding network intrusion detection. Technical report,
1998. [Online; accessed 14-January-2013].

Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi,
and Fabio Vitucci. Counting bloom filters for pattern matching and
anti-evasion at the wire speed. IEEE Network, 23(1):30-35, January
20009.

George Varghese, J. Andrew Fingerhut, and Flavio Bonomi. Detecting
evasion attacks at high speeds without reassembly. SIGCOMM Com-
puter Communication Review, 36(4):327-338, August 2006.

Gerald Tripp. A finite-state-machine based string matching system for
intrusion detection on high-speed networks. In FICAR 2005 Conference
Proceedings, 2005.

Tran Ngoc Thinh, Tran Trung Hieu, Van Quoc Dung, and S. Kitti-
tornkun. A FPGA-based deep packet inspection engine for Network In-
trusion Detection System. In 9th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Informa-
tion Technology (ECTI-CON), 2012.

Fang Yu, Randy H. Katz, and T. V. Lakshman. Gigabit rate packet
pattern-matching using TCAM. In Proceedings of the 12th IEEE In-
ternational Conference on Network Protocols. IEEE Computer Society,
2004.

BIBLIOGRAPHY 81

[40]

[48]

[49]

[50]

Mansoor Alicherry, M. Muthuprasanna, and Vijay Kumar. High speed
pattern matching for network IDS/IPS. In Proceedings of the 2006 IEEE
International Conference on Network Protocols. IEEE Computer Soci-
ety, 2006.

Snort - Intrusion Detection and Prevention system. http://www.snort.
org/, 2012. [Online; accessed 23-December-2012].

Martin Roesch. Snort - lightweight intrusion detection for networks. In
Proceedings of the 153th USENIX conference on System administration.
USENIX Association, 1999.

Chaofan Shen and Leijun Huang. On detection accuracy of L7-filter
and OpenDPI. Third International Conference on Networking and Dis-
tributed Computing, pages 119-123, 2012.

WAND - Network Research Group. The case against L7 Fil-
ter. http://www.wand.net.nz/content/case-against-17-filter,
December 2012. [Online; accessed 14-January-2013].

Murray Cole. Algorithmic skeletons: structured management of parallel
computation. MIT Press, Cambridge, MA, USA, 1991.

Marco Vanneschi. The programming model of ASSIST, an environment
for parallel and distributed portable applications. Parallel Computing,
28(12):1709-1732, December 2002.

Bruno Bacci, Marco Danelutto, Salvatore Orlando, Susanna Pelagatti,
and Marco Vanneschi. P3L: A structured high level programming lan-
guage and its structured support. Concurrency Practice and Fxperience,
7(3):225-255, May 1995.

Marco Aldinucci and Marco Danelutto. Skeleton-based parallel pro-
gramming: Functional and parallel semantics in a single shot. Computer
Languages, Systems and Structures, 33(3-4):179-192, October 2007.

M. Vanneschi. Course Notes of High Performance Systems and Enabling
Platforms - Master Program in Computer Science and Networking. 2011.

The Muenster Skeleton Library Muesli - A Comprehensive Overview.
http://www.ercis.org/de/node/230, 2009. [Online; accessed 13-
February-2013].

82

[51]

[60]

BIBLIOGRAPHY

Philipp Ciechanowicz and Herbert Kuchen. Enhancing muesli’s data
parallel skeletons for multi-core computer architectures. In Proceedings
of the 2010 IEEFE 12th International Conference on High Performance
Computing and Communications. IEEE Computer Society, 2010.

OpenMP - Website. http://openmp.org/wp/. [Online; accessed 14-
January-2013].

Message Passing Interface (MPI) - Website. http://www.mcs.anl.gov/
research/projects/mpi/. [Online; accessed 14-January-2013].

S. Ernsting and H. Kuchen. Data parallel skeletons for GPU clusters and
multi-GPU systems. In Proceedings of ParCo 2011. 10S Press, 2012.

Marco Aldinucci, Massimo Torquati, and Massimiliano Meneghin. Fast-
flow: Efficient parallel streaming applications on multi-core. Computing
Research Repository, abs/0909.1187, 20009.

Marco Aldinucci, Massimiliano Meneghin, and Massimo Torquati. Effi-
cient smith-waterman on multi-core with fastlow. In Marco Danelutto,
Tom Gross, and Julien Bourgeois, editors, Proceedings of International
Euromicro PDP 2010: Parallel Distributed and network-based Process-
ing, Pisa, Italy, February 2010. IEEE.

Kiminori Matsuzaki, Hideya Iwasaki, Kento Emoto, and Zhenjiang Hu.
A library of constructive skeletons for sequential style of parallel pro-
gramming. In Proceedings of the 1st international conference on Scalable
information systems. ACM, 2006.

Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Take-
ichi. Domain-specific optimization strategy for skeleton programs. In
Proceedings of Euro-Par 2007. Springer, 2007.

Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu, and Masato
Takeichi. The third homomorphism theorem on trees: downward &
upward lead to divide-and-conquer. SIGPLAN Notices, 44(1):177-185,
January 2009.

Johan Enmyren and Christoph W. Kessler. SkePU: a multi-backend
skeleton programming library for multi-GPU systems. In Proceedings

of the fourth international workshop on High-level parallel programming
and applications. ACM, 2010.

BIBLIOGRAPHY 83

[61]

[62]

[63]

[64]

[65]

[68]

CUDA - Website. http://www.nvidia.com/object/cuda_home_new.
html. [Online; accessed 14-January-2013].

OpenCL - Website. http://www.khronos.org/opencl/. [Online; ac-
cessed 14-January-2013].

M. Danelutto, L. Deri, and D. De Sensi. Network monitoring on mul-
ticores with algorithmic skeletons. In Proceedings of ParCo 2011. 10S
Press, 2012.

Massimo Torquati. Single-Producer/Single-Consumer queues on
shared cache multi-core systems. Computing Research Repository,
abs/1012.1824, 2010.

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano
Meneghin, and Massimo Torquati. An efficient unbounded lock-free
queue for multi-core systems. In Proceedings of 18th International Euro-
Par 2012 Parallel Processing. Springer, 2012.

Leslie Lamport. Specifying concurrent program modules. ACM Trans-
actions on Programming Languages and Systems, 5(2):190-222; April
1983.

John Giacomoni. Fastforward for efficient pipeline parallelism: A cache-
optimized concurrent lock-free queue. In Proceedings of the The 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming. ACM Press, 2008.

HPC Advisory Council. Interconnect Analysis: 10GigE and InfiniBand
in High Performance Computing. http://www.mellanox.com/blog/
2009/10/interconnect-analysis-infiniband-and-10gige-in-
high-performance/, 2009. [Online; accessed 12-February-2013].

Mellanox Technologies. InfiniBand clustering. Delivering better
price/performance than Ethernet. http://www.mellanox.com/pdf/
whitepapers/IB_vs_Ethernet_Clustering WP_100.pdf. [Online; ac-
cessed 12-February-2013].

Infiniband trade association Website. http://www.infinibandta.org/.
[Online; accessed 2-January-2013].

Myricom Website. http://www.myricom.com/. [Online; accessed 2-
January-2013].

84

[72]

73]

[74]

[75]

BIBLIOGRAPHY

Libzero. http://www.ntop.org/products/pf_ring/libzero-for-
dna/. [Online; accessed 2-January-2013].

PFRing with Direct NIC Access. http://www.ntop.org/products/pf_
ring/dna/. [Online; accessed 2-January-2013].

Augonnet Cédric. Interval-based registration cache for zero-copy proto-
cols. http://cedric-augonnet.com/wp-content/uploads/2012/02/
Rapport-StageM1.pdf, 2007. [Online; accessed 12-February-2013].

Hiroshi Tezuka, Francis O’Carroll, Atsushi Hori, and Yutaka Ishikawa.
Pin-down cache: A virtual memory management technique for zero-
copy communication. In Proceedings of the 12th. International Parallel

Processing Symposium on International Parallel Processing Symposium.
IEEE Computer Society, 1998.

Myrinet. MyrilOGE performances. http://www.myricom.com/scs/
performance/Myril0GE/. [Online; accessed 2-January-2013].

Performances of PFRing with Direct NIC Access. http://www.ntop.
org/pf_ring/pf_ring-dna-rfc-2544-benchmark/. [Online; accessed
2-January-2013].

W. Simpson. RFC 1853 - IP in IP Tunneling. http://tools.ietf.
org/html/rfc1853, 2012. [Online; accessed 23-December-2012].

Information Sciences Institute University of Southern California. RFC
791 - Internet Protocol Specification. http://tools.ietf.org/rfc/
rfc791.txt, 2012. [Online; accessed 23-December-2012].

Fowler /Noll/Vo hash function. http://www.isthe.com/chongo/tech/
comp/fnv/. [Online; accessed 2-January-2013].

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice Hall Professional Technical Reference, 2nd edition, 1988.

Murmur3 hash function. http://code.google.com/p/smhasher/. [On-
line; accessed 2-January-2013].

Joyent Inc. HT'TP Parser. https://github.com/joyent/http-parser,
2012. [Online; accessed 11-January-2013].

NLnet Labs - Signature based antivirus. http://www.nlnetlabs.nl/
downloads/antivirus/, 2012. [Online; accessed 14-January-2013].

BIBLIOGRAPHY 85

[85]

[91]

[92]

Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an
aid to bibliographic search. Communications of the ACM, 18(6):333~
340, June 1975.

D. Moore, C. Shannon, and k. claffy. Characteristics of fragmented
traffic on Internet links. In Internet Measurement Workshop (IMW),
2001.

Libpcap - Website. http://www.tcpdump.org/pcap.htm, 2012. [Online;
accessed 14-January-2013].

CAIDA Association. The CAIDA UCSD Anonymized Internet Traces
2011 - 19/05/2011. http://www.caida.org/data/passive/passive_
2011_dataset.xml. [Online; accessed 23-December-2012].

CAIDA - Website. http://www.caida.org/home/, 2012. [Online; ac-
cessed 23-December-2012].

Anand Balachandran, Geoffrey M. Voelker, Paramvir Bahl,

and P. Venkat Rangan. CRAWDAD trace ucsd/sig-
comm2001 /tcpdump /08292005 (v. 2002-04-23). http://crawdad.
cs.dartmouth.edu/ucsd/sigcomm2001/tcpdump/08292005, April

2002. [Online; accessed 14-January-2013].

Massachusetts Institute of Technology: Lincoln Laboratory. DARPA
intrusion detection evaluation data set. www.ll.mit.edu/mission/
communications/cyber/CSTcorpora/ideval/data/1999/training/
weekl/index.html. [Online; accessed 14-January-2013].

Alfred Aho. Compilers, principles, techniques, and tools. Addison-
Wesley Pub. Co, Reading, Mass, 1986.

