
Università di Pisa
Facoltà di Scienze Matematiche Fisiche e Naturali

Corso di Laurea Specialistica in Tecnologie Informatiche

Tesi di Laurea

Towards wire-speed network monitoring
using Virtual Machines

Relatore:

Prof. Luca Deri

Controrelatore:

Prof. Gianluigi Ferrari

Candidato:

Alfredo Cardigliano

Anno Accademico 2009/2010

In every conceivable manner, the family is

link to our past, bridge to our future.

— Alex Haley

Dedicated to my parents.

Abstract

Virtualization is becoming a very common trend in the industry today. Im-

proving utilization of power and hardware, reducing server administration costs,

simplifying disaster recovery and increasing availability, Virtualization is sweeping

away the trend of having one application running on one server.

On the other hand, Virtualization software must be very robust and efficient,

without compromising performance. This is especially true for network monitoring

applications, specially when single packet capture and analysis is required and

running at wire-speed becomes crucial.

Furthermore, in the era of Cloud computing, Virtualization technology plays a

key role. A non-intrusive, on-demand, remote network monitoring tool can repre-

sent an example of modern Cloud service.

This thesis discusses a method for speeding up network analysis applications

running on Virtual Machines, and presents a framework that can be exploited

to design and implement this kind of applications. An example of usage is also

provided, with Virtual PF_RING, for validation and performance evaluation.

v

Sommario

La Virtualizzazione sta diventando una tendenza molto comune nell’industria

di oggi. Migliorando l’utilizzo dell’energia e dell’hardware, riducendo i costi di

amministrazione dei server, semplificando il ripristino in seguito a disastri e au-

mentando la disponibilità, la Virtualizzazione sta eliminando la tendenza ad avere

una singola applicazione in esecuzione su un server.

D’altra parte, il software di Virtualizzazione deve essere molto robusto ed ef-

ficiente, senza compromettere le prestazioni. Ciò è particolarmente vero per le

applicazioni di monitoraggio di rete, specialmente quando è necessario catturare

ed analizzare ogni singolo pacchetto e diventa essenziale andare alla velocità del

mezzo trasmissivo.

Inoltre, nell’era del Cloud computing, la Virtualizzazione gioca un ruolo chiave.

Uno strumento di monitoraggio di rete a distanza, non intrusivo, su richiesta, può

rappresentare un esempio di servizio Cloud moderno.

In questa tesi viene descritto un metodo per migliorare le prestazioni delle

applicazioni di analisi di rete in esecuzione su Macchine Virtuali, e viene presentato

un framework che può essere utilizzato per la progettazione e l’implementazione

di applicazioni di questo genere. Viene dato anche un esempio d’uso, Virtual

PF_RING, per la convalida e la valutazione delle prestazioni.

vii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my super-

visor Prof. Luca Deri for his support throughout this thesis, for having spent his

valuable time helping me with tips and indicating the best direction to follow, for

his enthusiasm, and for having believed in me since the very beginning. His efforts

are highly appreciated. I could not have imagined having a better supervisor for

my master thesis.

I would also like to extend my deepest gratitude to my family, and especially

my parents, for the absolute confidence in me and for the constant moral (and

economical) support during these years. Without their encouragement I would not

have had a chance to be here. I am simply indebted to them.

Pisa, april 2011 Alfredo Cardigliano

ix

Contents

1 Introduction 1

1.1 Overview . 1

1.1.1 A long packet journey . 3

1.1.2 Packet filtering: the earlier the better 4

1.1.3 Limited network hardware support 4

1.2 Motivation . 5

1.3 Scope of work . 6

1.4 Requirements . 6

1.5 Thesis outline . 8

2 Related Work 9

2.1 Virtualization . 9

2.1.1 Virtualization technologies 10

2.1.2 Paravirtualized devices . 11

2.1.3 Hardware-assisted virtualization 11

2.1.4 Xen vs KVM . 14

2.2 KVM . 16

2.2.1 Memory management . 17

2.2.2 VirtIO . 19

2.3 Packet journey: from the wire to the Virtual Machine 21

2.4 Data reduction: packet filtering . 24

xi

xii CONTENTS

3 The vNPlug Framework 29

3.1 Hypervisor-bypass and isolation . 29

3.2 Framework design . 31

3.3 vNPlug-Dev: memory mapping and event signalling 32

3.3.1 Zero-copy from kernel-space to guest user-space 32

3.3.2 Two-way event signalling . 36

3.4 vNPlug-CTRL: control messages over VirtIO 40

3.4.1 Routing messages . 41

3.5 vNPlug interface . 42

3.5.1 Host side API . 42

3.5.2 Guest side API . 43

4 Validation with PF_RING 45

4.1 PF_RING: a kernel module for packet capture acceleration 45

4.2 Virtual PF_RING . 47

4.2.1 Design . 49

4.2.2 Performance evaluation . 50

4.2.3 Validation . 59

5 Final Remarks 63

5.1 Open issues and future work . 64

A Ethernet Basics 67

B Code snippets 71

B.1 vNPlug-CTRL . 71

B.1.1 Host side . 71

B.1.2 Guest side . 76

B.2 vNPlug-Dev . 77

B.2.1 Host side . 77

CONTENTS xiii

B.2.2 Guest side . 80

Bibliography 83

List of Figures

2.1 Intel VMDq technology . 12

2.2 Intel SR-IOV technology . 13

2.3 Xen and KVM design approaches. 15

2.4 QEMU/KVM memory design . 18

2.5 Packet journey with Virtio-Net. 24

3.1 Hypervisor-bypass idea . 30

3.2 Framework architecture . 32

3.3 vNPlug-Dev memory mapping . 35

3.4 QDev live cycle . 36

3.5 Host-to-guest notifications . 39

3.6 Guest-to-host notifications . 40

3.7 Control messages routing . 42

3.8 Registration of an application and creation of a new mapping . . . 44

4.1 PF_RING design . 46

4.2 Virtual PF_RING design . 50

4.3 Testbed topology . 51

4.4 Number of packets processed per time unit (1x Gigabit Ethernet) . 53

4.5 Percentage of idle time (1x Gigabit Ethernet) 54

4.6 Percentage of Packet Capture Loss 55

xv

xvi LIST OF FIGURES

4.7 Number of packets processed per time unit (1x VM, 2x Gigabit

Ethernet) . 56

4.8 Percentage of idle time (1x VM, 2x Gigabit Ethernet) 57

4.9 Number of packets processed per time unit (2x VM, 2x Gigabit

Ethernet) . 58

4.10 Percentage of idle time (2x VM, 2x Gigabit Ethernet) 59

A.1 Ethernet frame format . 67

List of Tables

4.1 Maximum rates for Gigabit Ethernet 52

xvii

Chapter 1

Introduction

Virtualization continues to demonstrate additional benefits the more it is used

and almost all today’s datacenter solutions are based on it. Running network

monitoring applications for high-speed networks on a VM (Virtual Machine) is not

a simple task, especially when we need to capture and analyse every single packet,

ensuring no packet loss and low latency.

The aim of this thesis is to provide a method to achieve near-native perfor-

mance in packet capture within a VM, using Open Source virtualization solutions

and commodity hardware. Considerations, in this chapter, apply to the Kernel-

based Virtual Machine, a full virtualization solution for Linux, better described in

Chapter 2, where we will see the motivation of this choice.

This chapter presents an overview of the problem, explains the scope and the

motivations of this thesis, and identifies its requirements.

1.1 Overview

Virtualization, intended as the technique for the simultaneous execution of more

operating systems instances on a single computer, is increasingly gaining popularity

for a lot of well-known reasons.

• Improved power and hardware utilization: fewer physical computers and

1

2 CHAPTER 1. INTRODUCTION

hardware utilized more efficiently, increasing so energy efficiency.

• High flexibility thanks to the abstraction layer that separates applications

and hardware.

• Simplified disaster recovery: failures are quickly repaired, increasing avail-

ability. With live migration, a running virtual machine can be moved among

different physical computers, without disconnecting the application.

• Automatic load-balancing techniques instantaneously reallocating hardware

resources on peak demands.

• Administration costs reduction: less effort is required by administrators, due

to automatic disaster recovery and load-balancing software. Furthermore

there are fewer physical computers, and the number of specialized installa-

tions is dramatically reduced.

On the other hand, virtualization software must be very robust and efficient,

without compromising performance. In fact, it is well-known that virtualization

involves additional overhead, due to the abstraction level it provides. This is espe-

cially true in the case of network monitoring applications for high-speed networks.

Analyzing efficiently an high-speed network, by means of applications running on

VMs, is a major performance challenge, and this is even more hard if we use com-

modity hardware.

Packet capture is perhaps the most expensive task for passive monitoring appli-

cations, in terms of CPU cycles. Despite many efforts made to speed the networking

on VMs up, it still represents a bottleneck and native performances are still away

(see [46]), unless you use hardware support, usually not so flexible.

Regarding packet capture with applications running on native general-purpose

operating systems and commodity hardware, researchers [15, 20, 17] have demon-

strated that performance can be substantially improved by enhancing these systems

1.1. OVERVIEW 3

for traffic analysis. In fact, the abstraction layers, provided by these systems, pro-

duce a series of overheads and multiple memory accesses for packet copies which

can be avoided. These results can be exploited and extended in order to improve

performance also in the case of virtualized environments, where the level of ab-

straction is much higher and introduces much more overhead.

1.1.1 A long packet journey

The journey of a packet, from the wire to the application, on a native operating

system, can be long and it usually involves multiple copies.

In Chapter 2 we will see that the journey of a packet, from the wire to an

application running on a VM, can be longer, because it passes through multiple

layers before reaching the application. The number of copies may further increase,

and the abstraction layer provided by the hypervisor (the software managing the

VMs) introduces additional overhead.

The worst case occurs with fully virtualized network devices. In this case the

guest operating system (the operating system running on the VM) runs unmodified

using standard drivers for network devices. But this high level of abstraction,

provided by the hypervisor, leads to very low performance.

Better performance can be achieved with paravirtualized network devices: the

guest operating system communicates with the hypervisor using ad-hoc drivers,

reducing packet copies as well as the hypervisor overhead. In Chapter 2 we will

see some example reaching one copy, or zero-copy in some smart implementations,

from the hypervisor to the guest’s kernel-space.

In both cases, the journey of a packet continues on the guest operating system,

and needs additional copies, from the guest’s kernel-space to reach the monitoring

application. The aim of a capture accelerator is to reduce this journey by providing

a straight path from the wire to the monitoring application, avoiding the operating

system and hypervisor overheads.

4 CHAPTER 1. INTRODUCTION

1.1.2 Packet filtering: the earlier the better

The common and simplest way to configure VMs networking is to use a virtual

bridge. A virtual bridge is a functionality usually provided by the operating system,

a way to connect two Ethernet segments together. With this configuration you can

link a real network device to a virtual network device. The virtual network device

can be used to forward packets to the hypervisor, as we will see in Chapter 2. In

this configuration, another issue with packet capture is that, with the real device

in promiscue mode (making the device pass all traffic it receives), every VM will

receive a copy of each packet crossing the card.

As said before, one of the main reasons of performance loss is due to packet

copies, and we should avoid to waste CPU cycles pushing up unnecessary packets.

Thus, it becomes important to use efficient packet filtering techniques at the lowest

level possible.

An alternative way to virtual bridges is virtual switches, for example Open

vSwitch [36]. Open vSwitch operates like an hardware switch, implementing stan-

dard Ethernet switching, but also providing high flexibility with filtering support

at various layers of the protocol stack and supporting OpenFlow [30]. As mentioned

in [35], the problem is that these switches require much CPU to switch packets,

and these CPU cycles could be used elsewhere.

So, besides the reduction of the packet journey, designing a network monitoring

application it is important to take into account an efficient as-soon-as-possible

packet filtering method. A packet capture accelerator should provide support also

this way.

1.1.3 Limited network hardware support

In order to boost network I/O and to reduce the burden on the hypervisor, in

the last few years, companies as Intel have addressed their efforts in enhancements

to processors, chipsets and networking devices by enabling hardware assists to the

1.2. MOTIVATION 5

virtualization requirements.

As the hypervisor abstracts the network device and shares it with multiple VMs,

it needs to sort by destination and then deliver incoming packets. In order to avoid

the overhead introduced by this sorting activity, the new generation of commodity

network cards support multiple reception queues, by performing data sorting in the

adapter. This technology, combined with optimized paravirtualization techniques,

allows networking to achieve very high performance. But the number of queues is

limited, as well as the sorter ability, resulting not so flexible for packet capture.

Other technologies allow VMs to share a real network device and to bypass

the hypervisor involvement in data movement. This is achieved by configuring

a single ethernet port to appear as multiple separate physical devices, each one

assigned to a VM. Once again, these techniques allow networking to achieve near-

native performance, but they are not flexible enough for packet capture, due to

limitations on the number of virtualized devices and sorting filters.

1.2 Motivation

In the era of Cloud computing [3], which is the natural evolution of the adoption

of virtualization, the efficient execution of network monitoring applications on VMs

can also open a new scenario. For instance a company can provide a remote on-

demand network analysis service with some considerable advantages:

• no need of expensive and intrusive hardware in place;

• elimination of support and upgrade costs;

• clients can dynamically select services from a set.

But also the use of VMs within an in-place network appliance provides some

advantages, the same as described above by talking about benefits of virtualization,

provided that they are efficient.

6 CHAPTER 1. INTRODUCTION

Furthermore, we can consider application domains such as lawful interception.

If an xDSL user is intercepted, only a few tenths packets per second need to be

captured out of million flowing on the link, where several hundred users are con-

nected. Moreover, we can consider to separate traffic analysis, regarding different

flows on the same link, on different VMs. Existing general purposes solutions are

not optimized for splitting traffic into flows as efficiently as required by these ap-

plications. Thus, a solution which provides a straight path for packets and gives

the possibility to apply an efficient packet filtering at the host (the actual machine

on which the virtualization takes place), may represent the turning point.

1.3 Scope of work

As explained above, the journey of a packet from the wire to the application

is too long. The use of software switches in order to play with flows requires

additional overhead. Relatively new hardware support, combined with optimized

paravirtualization techniques, provides near-native performance and represents a

very good solution for common network connectivity, but it is too limited for packet

capture.

The scope of this thesis is to accelerate the packet capture, defining a framework

that can be used with little efforts by a network monitoring application running

on a VM, to achieve near-native performance.

1.4 Requirements

During the analysis phase, some requirements have been defined. In Chapter 4

these requirements will be used to validate the work.

1. High performance

The objective of this framework is exactly the following: increase application

1.4. REQUIREMENTS 7

performance. This is accomplished either directly, helping the application

to collapse the packets path, and indirectly, allowing the applications to use

smart tricks, for instance the as-soon-as-possible packet filtering.

2. Flexibility

The framework must be flexible enough to accommodate various network

monitoring application families, without focusing on one application loosing,

this way, generality, and providing everything a network monitoring applica-

tion may need.

3. Dynamic VM reconfiguration

Applications must be able to start using the framework at runtime, whitout

restarting the VM, or the framework itself, or other applications using the

framework.

4. Scalability

The framework must be scalable in terms of number of concurrent applica-

tions using it.

5. Ease of use

The framework must provide a simple interface which leads the design and

the development of efficient monitoring applications, requiring limited effort.

6. Open Source

The proposed solution must be based on Open Source software.

7. Commodity hardware

The proposed solution must not rely on expensive/exotic hardware to im-

prove the performance. This increases the flexibility and makes easier the

applications deployment.

8 CHAPTER 1. INTRODUCTION

1.5 Thesis outline

This chapter outlines the subject of this thesis, summarizing the key concepts

necessary to understand its goals and to identify the requirements.

Chapter 2 provides the knowledge on virtualization technologies, focusing on

Open Source solutions, and describes existing software and hardware sup-

ports to networking.

Chapter 3 describes the design choices made during the framework definition.

Chapter 3 validates the work redesigning PF_RING, a packet capture accelera-

tor, to run efficiently on virtual environments.

Chapter 5 contains conclusions, open issues and possible future work.

Appendix A contains an overview of the Ethernet communication protocol, that

will be used to calculate the theoretical rate of a link.

Appendix B contains code snippets for a better and more pratical understanding

of the framework.

Chapter 2

Related Work

2.1 Virtualization

Virtualization can refer to various computing concepts, in this case it is intended

as the creation of Virtual Machines. A VM acts as a real computer, but one or many

can be concurrently executed on a physical one, each with its own operating system.

The hypervisor, also referred to as Virtual Machine Monitor, is the software that

manages a VM on the host, providing allocation and access of physical hardware

to the VMs. First of all, the CPU allocation, by means of scheduling algorithms,

is an example of resource management.

An important property of virtualization is the isolation: even if VMs share the

resources of a single physical computer, they remain completely isolated from each

other, as if they were separated physical computers. It must be not possible for

the software running on a guest to acquire access to the host or to another VM,

providing a platform for building secure systems. Furthermore, the fault isolation

enhances system reliability, allowing the execution of several critical applications

on one physical machine.

9

10 CHAPTER 2. RELATED WORK

2.1.1 Virtualization technologies

Many different virtualization techniques are available today, with different flex-

ibility and performance, depending on the abstraction degree. In fact, a complex

abstraction layer provides high flexibility, but also overhead and lower performance.

Full virtualization

With full virtualization, the hypervisor emulates the complete hardware visible

to the VM, and it is usually used when the guest’s instruction set differs from the

host’s instruction set. QEMU [7] is an example of machine emulator that relies

on dynamic binary translation [38, 39], converting binary code from the guest

CPU architecture to the host architecture on the fly, achieving a reasonable speed.

This is a very high abstraction level, which makes it possible to run the same

VM on hosts with different architectures, but also implies a huge overhead for the

hypervisor and very low performance.

Native execution

With native execution, the hypervisor virtualizes a machine with the same in-

struction set of the physical host. This way the guest operating system can be

executed natively, ensuring isolation thanks to some techniques, such as hardware

protection and trap mechanisms. In fact, the guest operating system is executed

natively in unprivileged mode, and whenever it tries to execute a privileged in-

struction, which would conflict with the isolation or the resource management of

the hypervisor, the hardware protection traps out to the hypervisor invoking an

handling routine. This technique reduces overheads allowing to achieve very high

performance.

2.1. VIRTUALIZATION 11

Paravirtualization

When the host architecture does not have hardware support able to coop-

erate with virtualization techniques, it is possible to achieve high performance

through paravirtualization. Paravirtualization requires the guest operating system

is aware of being virtualized, forwarding critical instructions which need to be exe-

cuted to the hypervisor by the hypercall mechanism. This technique can be placed

performance-wise between full virtualization and native execution.

2.1.2 Paravirtualized devices

In a fully virtualized environment, the guest operating system is completely un-

aware of being virtualized, and all the hardware it sees is emulated-real-hardware,

with very low performance.

In order to achieve higher performance, avoiding the overhead of emulating

real hardware, it is possible to use paravirtualized devices. This way, the guest

operating system is aware of being virtualized, and cooperates with the hypervisor

to virtualize the underlying hardware. In other words, the guest uses particular

drivers to talk with the hypervisor through a more direct path. Later in this

chapter we will discuss of Virtio [42], an interface for paravirtualization (look also

at [2]).

2.1.3 Hardware-assisted virtualization

In the last few years companies like Intel and AMD have addressed their ef-

forts in enhancements to processors, chipsets and networking devices to meet the

virtualization requirements.

As we saw above in the case of “native execution”, thanks to hardware support,

it is possible to improve virtualization achieving very high performance.

Almost all recent processors take advantage of virtualization extensions, such

as the Intel Virtualization Technology and the AMD Secure Virtual Machine. The

12 CHAPTER 2. RELATED WORK

VM1 VM2 VM3

Virtual Switch

Hypervisor

VM2

RX

1

TX

1

RX

2

RX

3

RX

4

TX

2

TX

3

TX

4

VMDq NIC

MAC/VLAN Sorter

Figure 2.1: Hardware sorting using the Intel VMDq technology.

main feature of these technologies is to allow the guest code to be executed natively,

by adding a new unprivileged execution mode, the guest execution mode, in which

some instructions or registers accesses trigger traps that can be handled by the

hypervisor. Furthermore, they provides hardware acceleration for context switches,

and some other kind of enhancements, as we will see later talking about memory

management with the Kernel-based Virtual Machine.

Other virtualization extensions concerning I/O devices, such as network devices,

have been introduced in order to reduce the burden on the hypervisor.

Network devices

As hypervisor abstracts the network device and shares it with multiple VMs,

it needs to sort by destination and then to deliver incoming packets. This sorting

consumes CPU cycles and impacts on performance. Through the use of a relatively

new generation of commodity NICs (Network Interface Cards), supporting multiple

2.1. VIRTUALIZATION 13

Hypervisor

SR-IOV NIC

Physical

Function

Virtual

Function 1

Virtual

Function 3

Virtual

Function 2

VM1 VM2 VM3

VF driver VF driver VF driver

Figure 2.2: Virtual Functions with the Intel SR-IOV technology.

receive queues (such as the VMDq technology [43] depicted in Figure 2.1 on the

facing page, part of the Intel Virtualization Technology for Connectivity), it is

possible to reduce this overhead, by performing data sorting in the adapter. By

using this technology combined with optimized paravirtualization techniques it is

possible to achieve very high performance as shown in [41, 45]. The problem of this

technology, with respect to our needs in packet capture, is the low flexibility, due

to the limited number of queues and the confined ability of the sorter, which places

packets based only on MAC (Media Access Control) address and VLAN (Virtual

LAN) tag.

Another relatively new Intel technology is the SR-IOV (Single Root I/O Virtu-

alization) [34], a way of sharing a device in a virtualized environment, bypassing the

hypervisor involvement in data movement. With this technology a single ethernet

port can be configured by the hypervisor to appear as multiple separate physical

devices, each one with its own configuration space. As shown in Figure 2.2, the

hypervisor assigns each Virtual Function, lightweight PCIe (Peripheral Component

14 CHAPTER 2. RELATED WORK

Interconnect Express) functions, to a VM, providing independent memory space

and DMA (Direct Memory Access) streams. Memory address translation technolo-

gies based on IOMMUs (Input/Output Memory Management Unit) [8, 22], such as

Intel VT-d [13] and AMD IOMMU, provide hardware assisted techniques to allow

the direct DMA transfers keeping isolation between host and VMs . The hyper-

visor is still involved either for control functions and to deliver virtual interrupts

to the VMs. Once again, this technique allows networking to achieve near-native

performance, but it is not so flexible, due to limitations on the number of Virtual

Functions and sorting filters.

There are several projects [40, 47, 27] following the same approach of the SR-

IOV, with different designs of self-virtualized devices for direct I/O. They represent

good solutions for common network connectivity but, besides efficiency, we aim to

provide more flexibility to traffic monitoring applications.

2.1.4 Xen vs KVM

Since Open Source is required, there are two alternatives: Xen and KVM

(Kernel-based Virtual Machine). Let’s have an overview of both hypervisors. Fig-

ure 2.3 on the facing page shows the differences between the design approaches

followed by these hypervisors.

Xen (see [5, 19]) comes as a stand-alone hypervisor, a layer directly above

the hardware. It supports either paravirtualization and hardware-assisted vir-

tualization. As said above, paravirtualization requires modified guest operating

systems, using a special hypercall interface, allowing Xen to achieve high per-

formance even on architectures which lack of hardware support to virtualization.

Hardware-assisted virtualization, instead, allows Xen to run unmodified guest op-

erating systems.

In Xen, the host operating system runs in domain 0, a privileged domain that

can administer the other domains and allow control over the hardware. In fact, the

2.1. VIRTUALIZATION 15

Hardware

Hypervisor

Virtual Machine Virtual Machine

domain0 domainX

Operating
System

Applications Applications

Operating
System

(a) Xen design.

Hardware

Operating
System

Hypervisor

Hypervisor

Virtual Machine

Applications

Applications

Operating
System

(b) KVM design.

Figure 2.3: Xen and KVM design approaches.

driver architecture is split in a back-end in the domain 0 and a front-end in the

guest domains: I/O requests in guest domains are sent to domain 0, which checks

the request and executes the necessary operations.

KVM (an overview is available on [26]) is a small and relatively simple hyper-

visor based on Linux, in the sense that a kernel module makes the Linux kernel

itself be an hypervisor. Officially it supports hardware-assisted virtualization only.

KVM, in practice, is split into architecture-independent and architecture-dependent

modules, kvm_intel and kvm_amd, loaded according to the underlying hardware.

These modules are officially included in the mainline Linux kernel, however they

can be compiled separately, without any changes on the latter.

Common hypervisor tasks, like scheduling and memory management, are del-

egated to the Linux kernel, while the VMs hardware is emulated by a modified

version of QEMU [7]. For instance, while Xen uses its own scheduling algorithms,

such as the Borrowed Virtual Time or the Simple Earliest Deadline First, KVM

relies on the Linux kernel algorithm.

Compared to Xen:

• KVM has the advantage of being into the mainline Linux kernel, while to run

16 CHAPTER 2. RELATED WORK

a Xen host you need a supported kernel or to use some commercial solution.

• KVM is a pretty new project, so Xen has had more time to mature, but the

former is growing very fast.

• KVM leverages Linux kernel capabilities, such as scheduling and memory

management, benefiting from any of its improvements.

• Officially, KVM supports hardware-assisted virtualization only, anyway vir-

tualization extensions are widely available on commodity hardware nowadays.

• KVM is small and relatively simple, therefore understanding it and integrat-

ing new functionality would be simpler with respect to Xen.

Therefore KVM has many advantages in our case, so it is where our choice falls

upon.

2.2 KVM

As summarized above, KVM turns the Linux kernel into an hypervisor by

means of a small kernel module and hardware virtualization extensions (the Intel

Virtualization Technology and the AMD Secure Virtual Machine).

The KVM module provides a set of features, such as the creation of a VM,

memory allocation, access to virtual CPU registers, injection of virtual CPU inter-

rupt, etc. These features are accessed by means of a character device, which can

be used at user-space through the ioctl interface.

In fact, with KVM, a VM appears as a normal user-space process. As with a

regular process, the scheduler is not aware of scheduling a virtual CPU, and the

memory manager allocates discontiguous pages to form the VM address space.

As described in [26], in order to run a VM, a user-space process calls the kernel

to execute guest code, until an I/O instruction or an external event occurs. The

2.2. KVM 17

kernel causes the hardware to enter guest mode, a new mode added to the existing

user mode and kernel mode. The processor can exit guest mode due to:

• an event such as an external interrupt or a shadow page table fault. In

this case the kernel performs the necessary operations and resumes guest

execution.

• an I/O instruction or a signal queued to the process. In this case the kernel

exits to user-space.

In this design, the user-space process is a QEMU process. The upstream QEMU

[7] is an Open Source emulator which supports many different guest processors

on several host processors and it is able to emulate several I/O devices. KVM

uses a modified QEMU, to benefit from the QEMU I/O model and hardware

virtualization.

2.2.1 Memory management

The virtualized guest physical memory is part of the user address space of the

QEMU process, allocated with a malloc-equivalent function. This means the guest

sees malloc-ated memory as being its physical memory, and as a normal malloc-

ated memory, there is no physical memory allocated until it is touched for the first

time.

Every time a guest operating system makes a change in its page tables, the

host hooks it and updates the shadow page tables. The shadow page tables encode

the double translation from guest virtual to host physical, and are exposed to the

hardware. This mechanism works by means of traps: when the guest tries to set the

page table base register, the hardware triggers a trap, handled by the hypervisor.

This allows the hypervisor to provide transparent MMU (Memory Management

Unit) virtualization, but introduces overhead due to frequent updates to the page

table structures [1].

18 CHAPTER 2. RELATED WORK

Guest
physical
memory

Host
physical
memory

Virtual Machine

Process 1 virtual memory Process 2 virtual memory

QEMU
virtual
memory

Shadow Page

Table Entry

Figure 2.4: QEMU/KVM memory design and Shadow Page Tables.

The second generation of hardware extensions incorporates MMU virtualization

(called Extended/Nested Page Tables respectively from Intel and AMD), providing

multi-level translation in hardware [10] and eliminating much of the overhead in-

curred to keep the shadow page tables up-to-date. In fact, using Extended/Nested

Page Tables, a first level of page tables mantains the guest virtual to guest physi-

cal mapping, while, in an additional level of page tables the hypervisor maintains

guest physical to host physical mapping. Both the two levels of page tables are

exposed to the hardware. So, when a virtual address gets accessed, the hardware

first looks at the guest’s page tables the same way of the native execution, then

at the nested page tables to determine the corresponding host physical address.

The TLB (Translation Lookaside Buffer) is extended with new tags, called Virtual

Processor Identification by Intel, which allows the TLB to keep track of which

2.2. KVM 19

entry belongs to which guest. Thus, entries of different guests can coexist and a

VM switch does not require a TLB flush.

Linux may try to swap the malloc-ated memory representing the guest physical

one, but every change must be coordinated with these hardware structures. In

KVM this is a task of the MMU Notifier.

2.2.2 VirtIO

Virtio is the de-facto standard for paravirtualized devices in the QEMU/KVM

environment, which provides a simple and efficient transport mechanism (an overview

is available in [42]).

The basic abstraction used by Virtio is a virtqueue, that is a queue where

buffers are posted by the guest and comsumed by the host. Each buffer is a

scatter-gather array consisting of “out” entries, destined to the hypervisor driver,

and “in” entries, used by the hypervisor to store data destined to the guest driver.

Paravirtualized devices can use more than one queue, for instance a network device

uses one queue for reception and one for transmission. Virtio also provides a

mechanism to negotiate features, so that back-end supports can be detected by

guest drivers.

Virtio actually uses a Virtio-over-PCI implementation, which leverages the pre-

existing PCI emulation and gives maximum portability for guests. With this ap-

proach, the configuration is also easy using an I/O region.

The virtqueue implementation, virtio ring, consists of:

• an array of descriptors, where the guest chains together guest-physical ad-

dress and length pairs. Each descriptor contain also a “next” field for chaining

and a flag indicating whether the buffer is read-only or write-only.

• a ring where the guest indicates which descriptors are available for use. This

implementation permits an asynchronous use of the queue, so that fast-

20 CHAPTER 2. RELATED WORK

serviced descriptors do not have to wait for the completion of slow-services

descriptors.

• a ring where the host indicates which descriptors have been used.

When buffers are added/consumed, a notification mechanism is used. In order

to avoid useless VM exits, some flags allow the consumer/producer of a virtqueue

to suppress notifications. For instance, this can be an important optimization of a

guest network driver, that is advising that interrupts are not required.

As said before, the guest memory appears in the host as part of the virtual

address space of a process. Based on this assumption, this Virtio implementation

is publishing buffers from guest to host, relying on the fact that it is simple to map

guest physical memory to host virtual memory.

VirtIO-Net

The Virtio network driver uses two separate virtqueues, one for reception and

one for transmission. It has some features such as TCP/UDP Segmentation Offload

and Checksum Offload.

Segmentation Offload is the ability of some network devices of taking a frame

and breaking it down to smaller-sized frames, reducing so the number of packet

transfers to the adapter. With Virtio-Net, the guest driver can transfer large frames

to the host, reducing the number of calls out from the VM.

Some network devices can also perform hardware checksumming, required in

some protocol header (i.e. TCP). Since we have a reliable transmission medium

between guest and host, the Virtio-Net driver can forward packets to the back-end

without computing the checksum. When a packet is forwarded to the physical

network, the checksum gets computed, at that point, by the hardware.

VirtIO-Net allows network devices to achieve higher performance (but far from

native) compared to emulated devices. The packet journey is still too long. Pack-

ets, before reaching the hypervisor, have to pass through a virtual bridge and a

2.3. PACKET JOURNEY: FROM THE WIRE TO THE VIRTUAL MACHINE21

virtual TAP device (a virtual network device which provides packet reception and

transmission for user-space programs).

VHost-Net

VHost-Net is a relatively new back-end for Virtio-Net that accelerates this

paravirtualized device. The guest side of the Virtio-Net driver does not require

modification.

The VHost-Net support is designed as a kernel module, configured at user-

space, with the aim to reduce the number of system calls by moving the virtqueue

operations into the kernel. It uses eventfd (a file descriptor for event notification,

better described later) for signaling, and structures the memory paying attention

to VM migration.

First of all, this accelerator improves not only latency but also throughput and

overhead. Compared to a user-space Virtio-Net back-end, performance are closer

to native.

2.3 Packet journey: from the wire to the Virtual

Machine

As described in [15], the journey of a packet from the wire to the application,

on a native operating system, may be long and it usually involves at least two

copies, one from the network card to a socket buffer (a data structure associated

to every sent or received packet by the Linux Network stack), and one from the

socket buffer to the monitoring application. The journey of a packet from the wire

to an application running on a VM may be much longer, because it passes through

multiple layers before reaching the application.

Usually, before reaching the VM hypervisor, packets pass through virtual switches

[35, 36], or virtual bridges and TAP devices. When a packet reaches the hypervisor

22 CHAPTER 2. RELATED WORK

it gets delivered to the guest operating system in different ways, according to the

adopted virtualization technique.

The worst case occurs with fully-virtualized network devices. In this case the

guest operating system runs unmodified using standard drivers for network de-

vices, taking so the worst performance. Better performance can be achieved with

paravirtualized network devices, such as Virtio-Net introduced above.

In order to have a better idea of the packet journey, using Virtio-Net, we shall

give the following brief overview. We are not going to describe the journey when

the VHost-Net support is used, because it is an optimization that runs at kernel-

space and would be inflexible for a packet capture accelerator (anyway it will be

considered for performance comparison in Chapter 4).

The journey begins when a packet hits the Ethernet adapter, then:

1. The packet is stored into an adapter’s reception queue in a FIFO (First In

First Out) manner.

2. If the device uses DMA, which is pretty common nowadays, the driver pre-

allocates a socket buffer and initializes a pointer. The device copies the

packet directly in kernel memory through DMA.

3. The adapter issues an interrupt to inform the CPU about the event.

4. The interrupt handler can notify the kernel in two ways:

(a) With older drivers, it enqueues the buffer in a FIFO queue, notifies the

kernel, and returns from the interrupt. This queue is unique for all

the interfaces, one for each CPU to avoid serialization. The kernel will

dequeue the packet later, using a software interrupt which passes the

packet to the upper layer.

This mechanism leads to a phenomena called “congestion collapse” [32],

because if the number of received packets is high and for each packet an

2.3. PACKET JOURNEY: FROM THE WIRE TO THE VIRTUAL MACHINE23

interrupt is issued, the CPU spends all the time handling them instead

of doing something else.

(b) New drivers, instead, use the NAPI (New API) [44] interface, a mecha-

nism introduced to resolve the “congestion collapse”. Instead of issuing

an interrupt, the drivers notify the kernel about new packets, register

the device on a poll list and disable interrupts. Then the device is polled

by means of a software interrupt, and each time its handler is called, it

can pass a certain quota of packets to the upper layer. If the queue is

empty, then the device is not polled anymore and interrupts are turned

on again.

5. At this point, before delivering the packet to the upper-layer protocol handler,

a copy is delivered to each registered sniffer. Then, the bridging is handled.

6. The virtual bridge adds the source MAC address to the forwarding database,

then looks for the destination MAC address. If the address is found, the

packet is forwarded to the corresponding port, otherwise it is flooded to all

ports.

7. If a virtual TAP device is connected to the bridge, as in the case of Virtio-Net,

it receives a copy of the packet.

8. The QEMU process receives the packet from the TAP device using a read

system call.

9. Virtio-Net then delivers the packet to the VM, by copying it into a virtqueue

and sending a notification (the Virtio-over-PCI support emulates an inter-

rupt) to the paravirtualized drivers running on the guest.

The journey continues on the guest operating system following the same path

since the beginning.

24 CHAPTER 2. RELATED WORK

Device
Driver

Real NIC

Virtual Bridge

rx_vq

QEMU process Guest

Virtio-Net
driver

Virtio-Net
back-end

Virtual TAP

DMA

netif_receive_skb() br_deliver()

read()

push() get_buf()

Host Kernel

Figure 2.5: Packet journey with Virtio-Net.

A sniffer running on a VM, which misses of virtualization support, is able to

receive the packet only when the 5th point on the guest is reached. Therefore, it

pays, besides the overhead of the hypervisor (included virtual bridge and virtual

TAP), two times the overhead of the operating systems mechanisms.

So it is clear that, in the same way as a packet capture accelerator on a native

system creates a straight path at least from the 5th point to the monitoring appli-

cation, we are at least twice as motivated to create a straight path from the 5th

point on the host to the application running on the guest.

2.4 Data reduction: packet filtering

The previous section shows the way QEMU/KVM provides networking to the

VMs, passing through a virtual bridge. As we saw, a virtual bridge connects two

2.4. DATA REDUCTION: PACKET FILTERING 25

Ethernet segments together providing L2 (Data Link layer) forwarding, flooding

all the received packets, if no information on the destination are available. This

means that, in a typical network monitoring activity, every VM linked to the real

device will receive a copy of each packet that crosses the NIC.

As discussed in [14], in application domains such as lawful interception, this

represents a major problem. In fact - as mentioned - “network operators usually

provide a copy of packets flowing through a link where several hundred users are

connected, while the law states that only the traffic of intercepted users can actually

be captured and analyzed. This means that if an xDSL user is intercepted, only a

few tenths pps (packets per second) need to be captured out of million pps flowing

on the link”. This becomes even more evident in our case, where we might consider

to split traffic into flows, implementing separate traffic analysis on different VMs.

This example demonstrates that providing a straight path for packets to in-

crease packet capture performance is not enough. The overall system performance

can be further improved with packet filtering, by letting the system to “do not

waste several CPU cycles just for pushing unnecessary packets to user space that

will be later discarded”. Thus, it becomes important to reduce packet copies with

an as-soon-as-possible packet filtering.

One possible solution is to replace the virtual bridge with a virtual switch,

for example Open vSwitch [35, 36]. Open vSwitch operates like an enhanced L2

switch, implementating standard Ethernet switching, providing high flexibility with

full control on the forwarding table, specifying how packets are handled based on

L2, L3 (Network Layer), and L4 (Transport Layer) headers, and implementing a

superset of the OpenFlow protocol [30].

As mentioned in [35], the problem is that these switches require high CPU

utilization to switch packets, and these cycles could be used elsewhere. Designing

our framework, we should provide an high degree of flexibility to applications,

allowing them to use more optimized packet-filtering solutions (both software and

26 CHAPTER 2. RELATED WORK

hardware-based) at the host.

The concept of packet filtering was first proposed by Mogul et al. a quarter of

a century ago [31]. The idea was the same: moving the filtering to the lowest layer

possible reduces the system overhead (“the packet filter is part of the operating

system kernel, so it delivers packets with a minimum of system calls and context

switches”) pushing up only interesting packets (“far more packets are exchanged

at lower levels than are seen at higher levels. A kernel-resident implementation

confines these overhead packets to the kernel and greatly reduces domain crossing”).

So far, an extensive research has been done to refine the filtering model and a

large number of solutions have been produced.

BPF (Berkeley Packet Filter) [29], the most widely-used packet filter, was born

a few years later to support high-speed network monitoring applications. BPF is

implemented as an interpreter able to execute programs. A filter program is an

array of instructions that sequentially perform some actions on a pseudo-machine

state. Instructions, for instance, can fetch data from the packet, execute arithmetic

operations, and test the results, accepting or rejecting the packet based on them.

Enhancements to BPF and many other solutions have been introduced over the

years, highlighting the importance of a fast and flexible packet filtering tool. We

can see some examples.

BPF+ [6] enhances the performance of BPF with optimizations to eliminate

redundant predicates across filters and just-in-time compilation to convert filters

to native code.

xPF [23] tries to reduce the context switching overheads of BPF, increasing

its computational power and moving more packet processing capabilities into the

kernel. In fact xPF allows programs to maintain state across invocations and

supports backward jumps. The idea is to use BPF not just to demultiplex packets

but as a tool to execute monitoring applications inside the kernel.

FFPF (Fairly Fast Packet Filters) [11] is a monitoring framework which further

2.4. DATA REDUCTION: PACKET FILTERING 27

increases performance. When multiple applications are executed simultaneously,

it tries to avoid packet copies by sharing packet buffers when multiple applications

need to access overlapping sets of them, and uses memory mapping to reduce

context switches and copies between kernel-space and user-space. FFPF is also

extensible using kernel-space library functions, which are precompiled binaries that

can be loaded at runtime.

Swift [50] tries to achieve high performance in a way similar to BPF. In fact

Swift is also implemented as an interpreter which executes programs, but with a

simplified computational model and powerful instructions, allowing common filter-

ing tasks to be accomplished with a small number of instructions.

PF_RING, described in Chapter 4, is a packet capture accelerator which also

provides enhanced packet filtering capabilities, and it is extensible through plugins

and hardware support.

Chapter 3

The vNPlug Framework

This chapter discusses the design choices which led to the creation of vNPlug,

a framework that drives the design, and facilitates the development, of network

monitoring applications executed on VMs, allowing designers and programmers to

focus on software requirements rather than to deal with details concerning virtual

environments in order to achieve high performance.

3.1 Hypervisor-bypass and isolation

As introduced in Chapter 1 and highlighted in Chapter 2, this framework aims

to improve the packet capture speed, first of all by reducing the packet journey.

In order to achieve the same result, in the case of a native operating system,

the approach followed by PF_RING (see Chapter 4) is to bypass the operating

system standard mechanisms using a memory map from kernel-space to the ad-

dress space of the monitoring application. This straight path reduces the overhead

and the number of data copies, allowing PF_RING to achieve high performance,

demonstrating this way how a general purpose operating system can be optimized

for network monitoring [12].

The operating system bypass approach is adopted in many research project as

well as by commercial products, most of all in areas requiring intense I/O activity,

29

30 CHAPTER 3. THE VNPLUG FRAMEWORK

Application

VM

Host

Operating System

Operating System

Hypervisor

user-space

kernel-space

user-space
kernel-space

Hypervisor

bypass

Operating

System

bypass

Figure 3.1: Hypervisor-bypass idea.

and where low latency and high bandwidth are vital [48, 4, 37].

With this work, we want to propose a model that extends the idea of operating

system bypass to the context of virtual environments, providing a way to create

a mapping between the host kernel-space and the guest user-space, where the

monitoring application is located. Figure 3.1 depicts the idea of hypervisor-bypass.

The hypervisor involvment in all the VM I/O accesses ensures isolation and

system integrity, but it also leads to longer latency and higher overhead compared

to native I/O accesses in non-virtualized environments, becoming a bottleneck

for I/O intensive workloads. The hypervisor-bypass approach aims to perform

operations that require intensive workloads directly, without the involvement of

the hypervisor.

Studies on High-Performance Computing [21, 28] have demonstrated that the

hypervisor-bypass method can represent a very good solution in order to remove

bottlenecks in systems with high I/O demands, especially those equipped with

modern low latency and high bandwidth network interconnects.

We shall now focus on isolation: bypassing the hypervisor makes it unaware of

the resources allocated by the applications. Since we aim to give to the applications

3.2. FRAMEWORK DESIGN 31

an high degree of freedom, this might break the isolation property through, even

if, designing the framework, we have been pedantic on safety. That’s the price for

flexibility.

3.2 Framework design

In this section we start with an high-level view of the design, to identify the

major components of the framework.

As described in the previous section, this framework should provide a way to

create a mapping between the host kernel-space and the guest user-space in order

to reduce the packet journey.

Furthermore, it should provide a way for applications to use some features

provided by the host side, such as an as-soon-as-possible packet filtering.

These requirements suggest an architecture split in a guest side and a host

side, with some kind of control communication to let both sides get coordinate.

For instance, the monitor application on the guest side, might want to use the

communication channel to instruct its own back-end, on the host side, to filter

some kind of packets.

Thus, as shown in Figure 3.2 on the following page, we can identify two main

components of the framework. The first component, vNPlug-Dev, is responsible

of memory mapping and of an efficient event signalling. The second component,

vNPlug-CTRL, is responsible of coordinating the host and the guest side by pro-

viding a control communication channel.

Obviously, with this design, the application using the framework, which can be

a monitoring application designed for virtual environments or a library for packet

capture, is aware of being virtualized. Of course, in the case of a library for

packet capture, it is possible to exploit the library abstraction layer in order to run

monitoring applications, this time, not aware of virtualization.

32 CHAPTER 3. THE VNPLUG FRAMEWORK

Host Kernel

Qemu Process

KVM

Guest

App

backend
App

A

P

I

A

P

I

vNPlug-CTRL

vNPlug-Dev vNPlug-Dev

vNPlug-CTRL

vNPlug framework

Figure 3.2: vNPlug global architecture.

3.3 vNPlug-Dev: memory mapping and event sig-

nalling

This component shall provide a way to map memory from the host kernel-space

to the guest user-space, that is where the monitoring application is running. In

addition it shall provide an efficient event signalling to notify, for instance, the

arrival of a new packet.

3.3.1 Zero-copy from kernel-space to guest user-space

In this section we aim to define the basis for allowing applications to create

a mapping between host kernel-space and guest user-space, in order to support

zero-copy implementations.

Paging and memory map overview

As we know, the virtual address space of a Linux process is divided into pages,

with a lot of advantages. This let processes share the physical memory, while

3.3. VNPLUG-DEV: MEMORY MAPPING AND EVENT SIGNALLING 33

each one has a linear virtual address space. Thanks to this abstraction, each page

can reside in any location of the physical memory, and the same physical memory

can be mapped to different pages. Furthermore, it is possible to use a memory

protection mechanisms on pages. Each process has its own set of Page Tables,

mantained by the operating system, which keep information about the mapping

between virtual memory and physical memory, and associate, to each page, some

protection flags.

Each Linux process is represented by a process descriptor, plus a memory de-

scriptor. The latter manages information about the process memory, including the

Page Tables and the Virtual Memory Areas. A Virtual Memory Area, basically,

consists of a range of contiguous addresses in the process virtual address space,

and some access rights. For instance, the stack segment corresponds to a Virtual

Memory Area. This one-to-one association does not apply to the memory mapping

segment (used by the kernel to create anonymous memory mapping or to map files

directly to memory) where there may be different Virtual Memory Areas, one for

each mapping.

This is what we have behind the scene of the mmap system call, that allows an

application to ask for a mapping between the process virtual address space and a

file or a shared memory object. PF_RING, for instance, uses this functionality to

map the kernel-space ring buffer into the user-space library.

The next step is allowing an application, like PF_RING, to map a user-space

memory area, which is the result of a mmap, into a guest.

Exporting guest memory

As described in Chapter 2, the guest physical memory appears in the host as

part of the virtual address space of the QEMU process. Thus, if a guest physical

address is given, the mapping in host virtual address results simple. This is the

way Virtio works, publishing buffers from the guest to the host.

34 CHAPTER 3. THE VNPLUG FRAMEWORK

In order to keep things simple, we want to map contiguous guest physical

memory, resulting so contiguous in the virtual memory of the QEMU process.

This simplify the applications design, in particular when they need to map a buffer

from the host kernel-space.

Even if exporting guest memory is simple, the allocation of contiguous physical

memory on the guest becomes difficult, in particular if the application requires a

large buffer. Furthermore, even with the assumption of contiguous memory, it is

complex to have an efficient access to such memory from the host kernel-space.

Instead, we aim to allow an application - mapping via mmap large contiguous

buffers from kernel-space (allocated for instance with a single vmalloc) into user-

space - to map this buffer into the guest. Therefore, we would find another solution,

a way to import host memory instead of exporting guest memory.

Virtual PCI devices: importing host memory

Another way is to attach an additional block of memory to the guest by means

of a memory region of a virtual device, mapping a virtual memory area of the

QEMU process to this memory region. This is supported by the internal API

(Application Programming Interface) of QEMU/KVM, which allows a module to

emulate a PCI device and create this mapping. The mapped virtual memory area

may be the result of a mmap on kernel-space memory, for instance.

Inside the VM, the memory region of the virtual device can be accessed by an

ioremap, and mapped in a virtual memory area of a process via a kernel module

which creates a character device with mmap support.

This way we have achieved our goal: a mapping between host kernel-space and

guest user-space (Figure 3.3 on the next page shows the steps which led to the

final mapping). Actually, the framework aims to provide a mapping between the

host user-space and the guest user-space, with the possibility, for the application,

to create the second mapping, from host kernel-space to host user-space.

3.3. VNPLUG-DEV: MEMORY MAPPING AND EVENT SIGNALLING 35

Host Kernel

Qemu Process

KVM

Guest

App

backend

App

vNPlug-Dev
vNPlug-Dev

kernel

userspace

vNPlug-Dev
Virtual Device

In-kernel

App backend

qemu_ram_alloc_from_ptr()

mmap()

mmap()

Figure 3.3: Memory mapping using the Virtual Device.

QDev, virtual device management and hotplug

The QEMU internal API provides device creation and configuration through the

QDev device model. The latter manages the tree of virtual devices connected by

busses, and supports device hot-plug and hot-unplug. Figure 3.4 on the following

page shows the live cycle of a QDev device.

The hotplug support allows devices to dynamically attach to or remove from

the system, while it is running. The PCI bus supports hotplug, and it is possible to

create a QDev-compliant “hotpluggable” PCI device. Furthermore, basic hotplug

support is included in all modern operating systems, making “hotplugged” devices

get immediately usable, with no extra effort.

The interesting aspect of this is that we can take advantage from the hotplug

support to dynamically attach shared memory to the guest, whenever it is required.

Without this support, we would have had to attach a device with the shared

memory at the VM boot, but this would have been inflexible.

36 CHAPTER 3. THE VNPLUG FRAMEWORK

qdev_register() Registration

Plug

Unplug

qdev_create()

set properties

qdev_init()

qdev_unplug()

qdev_free()

qdev_device_add()

device del

device->unplug()

device->exit()

device->init()

Figure 3.4: QDev live cycle.

3.3.2 Two-way event signalling

As mentioned above, the framework must provide a notification mechanism

between host and guest. In fact, applications may need an high performance

mechanism to notify, for instance, of a new packet into the receive buffer. It is easy

to find other examples of notifications in the opposite direction as well. Thus, the

framework aims to create an efficient two-way event signalling mechanism between

host and guest.

Host to guest: Message Signaled Interrupts and IRQFD support

Since we are using a virtual PCI device in order to share memory, it is natural

to think of a notification mechanism from host to guests that we already have for

free: virtual hardware interrupts. There are two alternative ways to use interrupts:

IRQs and Message Signaled Interrupts.

3.3. VNPLUG-DEV: MEMORY MAPPING AND EVENT SIGNALLING 37

With traditional IRQs, a device has an interrupt pin which asserts when it

wants to require a service. This way, PCI cards are limited to a small number of

interrupts due to the hardware limitation.

Message Signaled Interrupts is an alternative way of requiring interrupts. It

enables a device to generate an interrupt, emulating a pin assertion by sending

a memory write on its PCI bus, to a special address in memory space. Then

the chipset determines which interrupt it has to generate, depending on the data

sent with the write request. Message Signaled Interrupts increases the number of

available interrupts, allowing a device to allocate up to 32 interrupts with MSI,

2048 with MSI-X. Message Signaled Interrupts also have a lot of other features

that significantly increase flexibility.

The QEMU/KVM device model lets a virtual PCI device generate both tra-

ditional IRQs and Message Signaled Interrupts, the latter when supported by the

guest operating system. Designing our framework we can use both, encouraging the

use of the latter which increase flexibility, simplifying the notification mechanism

when several events are required, using multiple vectors instead of status registers,

and performance, due to the KVM support which will be introduced later.

Given that we have now a way to notify the guest, we need a flexible mechanism

for applications to require an interrupt. Both QEMU and KVM have nice support

for eventfd, a file descriptor for event notification. With this mechanism it is

possible to create a file descriptor that can be used to refer to an eventfd object

from either user-space and kernel-space. Basically an eventfd object is represented

by a 64-bit kernel-space counter.

An eventfd has the following behaviour:

• A read on the file descriptor :

– if the counter has a non-zero value, returns an unsigned 64-bit integer.

Then the counter is reset to zero or decremented by 1, according to a

flag specified when creating the eventfd.

38 CHAPTER 3. THE VNPLUG FRAMEWORK

– if the counter is zero, blocks until the counter become non-zero, or fail

if the file descriptor has been set “non-blocking”.

• A write on the file descriptor adds an unsigned 64-bit integer to the counter.

QEMU provides a simple way to add eventfd file descriptors, with associated

handlers, to a set of ones that the former polls. Thus, one solution is to let the

QEMU process poll an eventfd, and to associate an handler which notifies the VM

with an IRQ or an MSI vector (one for each eventfd, if there are many).

Another solution, even more efficient, keeping the flexibility of using eventfd

to throw interrupts, concerns the use of the irqfd support of KVM. In fact, since

virtual interrupts are injected to the guest via KVM, the irqfd support allows the

latter to directly translate in kernel-space a signal on an eventfd into an interrupt,

without passing through the QEMU process.

Now, from the interrupt reception, inside the guest kernel, we need a mechanism

to notify the user-space application. Here we can get inspired by the eventfd ap-

proach, using a blocking read on the character device (the same previously created

for the memory map) in order to wait for notifications.

Figure 3.5 on the next page shows the path of a notification when the eventfd

is signaled within kernel-space and irqfd is used.

Guest to host: IOEventFD support

We want an efficient mechanism for notifications from guest to host and the

best candidate is the ioeventfd support of KVM, which is also used by VHostNet,

the optimized back-end for Virtio-Net described in Chapter 2, as it is the fastest

and more flexible way to get notified from the guest.

With the ioeventfd support it is possible, while creating the emulated PCI

device in QEMU, to register arbitrary addresses of a MMIO (Memory-Mapped

I/O) region, in order to trigger an eventfd signal, when the guest tries to execute

3.3. VNPLUG-DEV: MEMORY MAPPING AND EVENT SIGNALLING 39

Host Kernel

Qemu Process Guest

App

backend
vNPlug-Dev

vNPlug-Dev

kernel

userspace

In-kernel

App backend

KVM

irqfd signal

vNPlug-Dev
Virtual Device

interrupt

App

read()

Figure 3.5: A possible configuration for host-to-guest notifications.

a write operation at that address. Moreover, it is possible to assign a different

eventfd to each different value to match.

This is particularly efficient because, while a normal I/O operation on an em-

ulated QEMU virtual device requires a heavy VM exit, going back to the QEMU

user-space to synchronously serve the request by means of a user-space handling

routine, this mechanism allows a lightweight exit, long enough to signal an eventfd

in kernel-space by means of a KVM service routine.

Applications on the host side can use the eventfd to get notified, from both

user-space or kernel-space.

Instead, on the guest side, we just need to map the MMIO region in user-space,

the same way we do for the shared memory, notifying events via normal writes at

a known address. Events can be identified depending on the value of the write,

setting the relationship between value to match and eventfd into the ioeventfd

support.

Figure 3.6 on the following page shows an example of notification with ioeventfd

40 CHAPTER 3. THE VNPLUG FRAMEWORK

Host Kernel

Qemu Process Guest

App

backend
vNPlug-Dev

vNPlug-Dev

kernel

userspace

In-kernel

App backend

KVM

vNPlug-Dev
Virtual Device

App

write

trap

ioeventfd signal

Figure 3.6: Guest to host notifications with in-kernel polling.

and in-kernel polling.

3.4 vNPlug-CTRL: control messages over VirtIO

This component shall provide a communication channel, between the guest side

of the monitoring application and its back-end in the host, in order to exchange

control messages to coordinate the two sides. First of all, this can be useful for an

application on the guest side to require the backend to setup a new shared memory,

but we can find a lot of other examples.

Actually, we may consider to use a common network connection. The reason

this component has been introduced, in our design, is that we want something more

reliable. For instance, with a network connection, a user might unintentionally

make changes to the network interface, compromising so the correct behaviour of

the framework.

Chapter 2 introduced Virtio, the support for paravirtualized devices, and briefly

described its transport mechanism. Besides being efficient and ensuring low re-

3.4. VNPLUG-CTRL: CONTROL MESSAGES OVER VIRTIO 41

sponse times, it requires a little more effort at development time with respect to

a network communication. Thus, the choice of this support would fit our require-

ments.

The two-way communication channel over Virtio can use two virtqueues, one

for host-to-guest messages and one for the counter-direction. In order to send

and receive messages from the guest user-space, the most convenient solution is to

expose common file operations on a character device, such as read and write.

3.4.1 Routing messages

Through the communication channel, the framework handles the routing of

messages between host-side and guest-side of applications. Of course, it may sup-

port multiple applications, and each may need multiple virtual devices. This means

that each application needs a unique identifier, and the same holds for each virtual

device. Furthermore, the framework may need to coordinate the two sides of itself.

Therefore, these considerations suggest to use something similar to a mini-

mal protocol stack. At the bottom, the Virtio transport mechanism takes place,

providing a two-way point to point communication between the two sides of the

framework, guest side and host side. At the second layer, a framework-level header

allows the framework to distinguish between messages addressed to itself and mes-

sages addressed to an application. At the third layer, an application-level header

allows the framework to identify the application. From the fourth layer on, all is

managed by the application, to identify internal operations and to address virtual

devices.

Figure 3.7 on the next page shows an example of routing with a control message

from an application instance to its back-end. Appendix B.1.1 gives an example of

implementation of framework-level and application-level headers.

42 CHAPTER 3. THE VNPLUG FRAMEWORK

Virtio-over-PCI

Host side Guest side

App1
back-end

App2
back-end

App1
instance1

App1
instance2

Framework

App2
instance1

Framework

Virtual
Device
1

Virtual
Device
2

Virtual
Device
3

Mapping

1
Mapping

2
Mapping

3

Figure 3.7: Control messages routing using an approach similar to a protocol stack.

3.5 vNPlug interface

In order to simplify and encourage the development of monitoring applications,

the framework should provide a simple API, supplying an high level abstraction of

the implemented functions. Framework’s components get abstracted through two

subsets of the interface: the host side API and the guest side API.

3.5.1 Host side API

The features that the host side interface must provide are:

• Registration and unregistration of the application back-end, with a unique

identifier.

• Control messages reception and transmission.

• Shared memory creation and removal, given:

– the user-space virtual address and the size of the memory area to map.

3.5. VNPLUG INTERFACE 43

– the number of host-to-guest and guest-to-host events.

This functionality must return the virtual device unique identifier, and the

eventfds used by the application to signal and wait for events.

3.5.2 Guest side API

The features that the guest side interface must provide are:

• Control messages transmission and reception, using a unique identifier to

address the application back-end.

• Shared memory mapping and unmapping in the virtual address space of the

application, given the virtual device identifier.

• Event-signalling and event-waiting functionalities.

Figure 3.8 on the following page shows the registration of an application to the

framework, and the creation/removal of a virtual device.

44 CHAPTER 3. THE VNPLUG FRAMEWORK

App1 backend:App1 vNPlug-CTRL

:vNPlug-Dev

register()

add_mapping()
new_virtual_device()

id, eventfds

remove_mapping()
del_virtual_device()

id

Figure 3.8: Registration of an application and mapping creation/removal.

Chapter 4

Validation with PF_RING

The previous chapter introduced the vNPlug framework. This chapter will

present Virtual PF_RING, an application designed on top of vNPlug, which is

based on the PF_RING packet capture accelerator that we are going to introduce.

Virtual PF_RING represents a use case example for the framework, and allows us

to have an idea of the framework performance. Then, the thesis requirements will

be validated.

4.1 PF_RING: a kernel module for packet capture

acceleration

PF_RING [16] is a kernel-based extensible traffic analysis framework, that

significantly improves the performance of packet capture. It reduces the journey

of a packet from the wire to user-space, with different working modes, which differ

on their level of optimization.

PF_RING can use both standard drivers or PF_RING-aware enhanced drivers.

In order to achieve high packet capture performance, it is necessary to modify the

implementation of network card drivers, because they are not optimized for packet

capture. In fact, usually when a packet is received, a new socket buffer is allocated

45

46 CHAPTER 4. VALIDATION WITH PF_RING

Application 1 Application 2

Standard
Linux Network Stack

ring ring

user-space

kernel

PF_RING

Enhanced
drivers

Standard
drivers

mmap()

Figure 4.1: PF_RING design.

and queued in kernel structures. Then, if the packet is handled by PF_RING, it

gets copied into a ring buffer and discarded by the kernel. An optimized driver

can push packets directly into the PF_RING buffer, bypassing the standard kernel

path.

PF_RING takes advantage of many other sophisticated mechanisms, to ac-

celerate the packet capture, such as the TNAPI (Threaded NAPI), which polls

packets simultaneously from each reception queue, and the DNA (Direct NIC Ac-

cess), which is a way to map NIC memory and registers to user-space.

PF_RING has a rich support for packet filtering. It also supports hardware

filtering using commodity network adapters, of course when supported.

Moreover, PF_RING can implement advanced packet parsing and filtering by

means of dynamically-loadable kernel plugins, which can elaborate packets directly

at the kernel layer without copying packets to user-space.

The PF_RING framework provides a user-space library that exposes an easy-

to-use API to monitoring applications. Through this library, ring buffers are di-

4.2. VIRTUAL PF_RING 47

rectly mapped from kernel-space into user-space by using a mmap, reducing the

number of copies.

When an application wants to read a new packet, the library checks the ring:

• if there are new packets available, they get processed immediately.

• if no packets are found, a poll is called in order to wait for new packets.

When the poll returns, the library checks again the ring.

Actually, this algorithm uses a slight variant, an “adaptive sleep”, to avoid many

systems calls when the application consumes packets too quickly. This variant

performs an active wait instead of a poll, with a sleep interval that is changed

according to the incoming packet rate, allowing the kernel to copy several packets

into the ring during it.

4.2 Virtual PF_RING

The aim of Virtual PF_RING is to validate the vNPlug framework, and to

demonstrate that a packet capture library can be ported in a virtual environment

with very little effort using this method.

First of all, the whole vNPlug framework has been developed following the

design choices described in Chapter 3. The implementation, on the host side in

QEMU, includes:

• the vNPlug-CTRL component. This component registers a virtual PCI de-

vice via QDev, and uses the Virtio support with two virtqueues to allow the

two-way communication channel. Appendix B.1.1 shows the device creation

and the virtqueues initialization.

• the vNPlug-Dev component. This component can be used to register multiple

virtual PCI devices via QDev, on demand, at runtime. Each virtual device

uses a memory region to map memory from the host, and a memory region

48 CHAPTER 4. VALIDATION WITH PF_RING

for registers (status/mask for standard IRQ, virtual device identifier, size of

the mapped memory, guest to host notifications via ioeventfd). An additional

region can be used for MSI. Multiple events are supported, in both directions,

depending on the applications requirements. Appendix B.2.1 shows the way

a new virtual device is added using the QDev support, and the way the

ioeventfd and irqfd supports are set.

• an interface implementing the host-side API. Appendix B.1.1 shows the way

applications get registered.

Instead, on the guest side, the implementation includes:

• a kernel module responsible of:

– the creation of a character device for allowing a user-space process to

send and receive messages over Virtio via common read and write file

operations. Appendix B.1.2 contains an example of adding a message

to a virtqueue.

– the creation of a character device for each virtual PCI device connected

to the VM, in order to: map the shared memory via mmap, wait for

interrupts via blocking read, and signal events by writing to the registers

region. Of course hotplug is also supported, by loading the acpiphp

kernel module.

Appendix B.2.2 shows the registration of this module inside the Linux kernel.

• a slight user-space library, implementing the guest-side API and mediating

between the above mentioned character devices and the applications.

PF_RING has been redesigned, or rather we should say “slightly modified”, to

fit the model imposed by the vNPlug framework.

4.2. VIRTUAL PF_RING 49

4.2.1 Design

The design of PF_RING lends itself particularly well to be adapted to the vN-

Plug framework. In fact, on the host side, it only needs a few enhancements, keep-

ing both the kernel module and the user-space library fully backward-compatible.

The PF_RING library uses a mmap to export the ring from kernel-space into

user-space. In order to map this memory area into the guest, the same virtual

address, returned by the mmap, can be passed to the framework. The framework

will perform the “dirty work”, making the memory area available into the guest

user-space.

In order to replace the poll, it is possible to use the two-way event signalling

support. When an application on the guest-side wants to read a new packet, but

no packets are found into the ring, the library on the guest-side informs the host

side that it wants to be alerted if a new packet arrives. This way, the host-side

knows that if there are unread packets, or when a new one arrives, it has to send

an interrupt to the guest-side. An algorithm similar to the “adaptive sleep” of the

PF_RING library can be used, in order to avoid many poll -equivalent calls.

So, Virtual PF_RING, needs one event for each direction. The eventfds, created

by the framework, can be used to signal an event or to wait for one, directly from

the PF_RING module, inside the kenel.

The Virtual PF_RING back-end, on the host-side, is also responsable of reg-

istering the application to the framework, and of translating guest-to-host control

messages into calls to the PF_RING library.

Instead, on the guest-side, a new and very slight library has been created, which

translates each calls to the PF_RING library into control messages, in addition to

the memory mapping and event signalling/waiting described above.

Figure 4.2 on the next page depicts the overall design of Virtual PF_RING.

50 CHAPTER 4. VALIDATION WITH PF_RING

Host Kernel

Qemu Process

KVM

Guest

A
P
I

A
P
I

vNPlug-CTRL

vNPlug-Dev

vNPlug-CTRL

vNPlug-Dev

libpfring

irqfd

ioeventfd
PF_RING
module

Virtual
PF_RING
back-end

Virtual
PF_RING

Figure 4.2: Virtual PF_RING design.

4.2.2 Performance evaluation

After the example with Virtual PF_RING, it should be quite clear that the

framework provides high flexibility and reduces development of efficient monitoring

applications. Now, we want to evaluate its ability to cope with high packet rates,

and to compare its performance with pre-existing (software-based) neworking sup-

ports.

During the preliminary test phase pktgen [33], the Linux packet generator, has

been used. Pktgen is a testing tool included in the Linux kernel, which can be used

to generate packets at high speed, configuring things like: headers content, packet

size, delay between packets, number of packets to send, etc. It is not a tool for

precise measurements, but it has proved useful testing the framework’s correctness.

Performance evaluations have been conducted building a simple testbed (shown

in Figure 4.3 on the facing page), which consists of:

• an IXIA [24] 400 Traffic Generator with two Gigabit Ethernet ports

4.2. VIRTUAL PF_RING 51

Laptop

Switch

Server

IXIA 400

Traffic Generator

Figure 4.3: Testbed topology.

• a server equipped with:

– an entry-level Quad-Core Intel Xeon at 2.5GHz

– 4Gb of memory

– an Intel 82576 Gigabit Ethernet Controller Dual-Port

– an Intel 82574 Gigabit Ethernet Controller

– a Linux 2.6.36 kernel

• a laptop

The traffic generator is connected to the server through the two Gigabit Eth-

ernet ports of the Intel 82576. The laptop has the purpose of managing the traffic

generator and the main computer, so it is connected via Ethernet to the manage-

ment port of the IXIA 400 and to the Intel 82574.

The IXIA 400 is able to generate traffic at wire-rate on each port, and it is

possible to configure the precise rate and a lot of other settings, such as the header

fields, the packet size, the payload content, etc.

In order to test the framework performance, we will use Virtual PF_RING.

The performance of Virtual PF_RING will be compared with the performance of

PF_RING running on a native (non virtualized) environment. Virtual PF_RING

will be also compared to PF_RING running on a virtual environment, using the

Virtio-Net support (described in Chapter 2) with the VHostNet optimization. The

52 CHAPTER 4. VALIDATION WITH PF_RING

Table 4.1: Maximum rates for Gigabit Ethernet.

Packet size in bytes Max pkts/s

64 1,488,095
128 844,594
256 452,898
512 234,962
1024 119,731

aim is to reason at the worst case for the framework, and at the best case without

the framework (in any case without hardware support for networking). The same

server is used to obtain performance results for both the native and the virtualized

environment.

The device driver used on the server on the host-side is the igb, developed

by Intel, which is included in the Linux kernel. Note that, although PF_RING

supports optimized drivers to bypass the standard operating system’s mechanisms

described in Chapter 2, they were not used because we do not want to rely on

particular supports and we want to reason at the worst case.

All the VMs we will use have a single virtual CPU and 512Mb of memory, and

run Linux with a 2.6.36 kernel.

Before evaluating performance, it is worth mentioning the most important pa-

rameter, the packet size. Packet size is relevant because, at wire-rate, the smaller

the size, the higher the number of packets, then the higher the overhead due to han-

dling. Gigabit Ethernet is built on top of the Ethernet protocol, better described

in Appendix A, keeping compatibility with pre-existing Ethernet standards, like

Fast Ethernet. The maximum theoretical rate can be calculated using the frame

size and the IFG (Inter Frame Gap). Table 4.1 shows the maximum rates with

respect to the frame sizes that will be used during the tests.

Another aspect it is worth to note, is that, thanks to the framework’s design,

it is possible to use efficient packet filtering techniques within the host (in kernel-

space or even in hardware), further increasing performance in a real case. In

4.2. VIRTUAL PF_RING 53

 400 600 700 800 900

200

400

600

800

1000

1200

Packet size (Bytes)

P
a
c
k
e
t
ra
te
 (
K
p
p
s
)

Virtio-Net VHostNet

1488

64 128 256 512 1K

Virtual PF_RING

Native PF_RING

Generated traffic

Figure 4.4: Number of packets processed per time unit (1x Gigabit Ethernet).

fact, through the efficient communication channel provided by the vNPlug-CTRL

component, Virtual PF_RING is able to instruct the PF_RING module to set a

varity of efficient filters.

In order to evaluate performance we will use pfcount, a simple application run-

ning on top of PF_RING, which captures packets, updates some statistics, and

then discards them without doing any analysis.

As a first test, we want to see the performance when a single application instance

is processing one Gigabit of traffic, with several packet sizes.

First of all we want to compare the number of packets processed per time

unit. Results, in Figure 4.4, show that Virtual PF_RING, like PF_RING in a

native environment, is able to process packets at wire-rate, for every packet size,

up to the maximum rate for Gigabit Ethernet which is 1.488 million packets per

second. Instead we can observe that, without the framework, using PF_RING

in a virtual environment with the Virtio-Net support, it is possible to capture all

54 CHAPTER 4. VALIDATION WITH PF_RING

 400 600 700 800 900

100

10

20

30

40

50

60

70

80

90

Packet size (Bytes)

%
 I
d
le

Virtio-Net VHostNet

64 128 256 512 1K

Virtual PF_RING

Native PF_RING

Figure 4.5: Percentage of idle time (1x Gigabit Ethernet).

packets crossing the wire only up to a few hundred thousand of packets per second,

then performance gets even worse (it seems to suffer from a problem similar to the

“congestion collapse” phenomena described in Chapter 2, but at a different layer).

Another aspect it is worth considering to evaluate the system overhead is the

percentage of CPU idle time. Figure 4.5 shows that Virtual PF_RING can cope

with high packet rates while keeping the CPU relatively idle, almost the same

percentage as the native solution. Instead, with the Virtio-Net support, there

is more overhead (and we should remember that fewer packets per second are

processed).

Now let us see Figure 4.6 on the facing page, which contains a more friendly

representation of the results: the percentage of packet loss. The reliability of a

network monitoring solution depends, first of all, on the percentage of packets it

is able to process. In some critical applications, providing wire-speed processing

with no packet loss it is going to get mandatory. This figure highlights Virtual

4.2. VIRTUAL PF_RING 55

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Packet size (Bytes)

P
a
c
k
e
t
C
a
p
tu
re
 L
o
s
s

Virtio-Net VHostNet

Virtual PF_RING

Native PF_RING

64 128 512 1K256

0% 0% 0% 0% 0% 0% 0% 0% 0% 0%0% 0%

90%

78%

51%

(1.488 Mpps) (0.844 Mpps) (0.452 Mpps) (0.234 Mpps) (0.119 Mpps)

Figure 4.6: Percentage of Packet Capture Loss.

PF_RING, like native PF_RING, experiences no packet loss in any case, even

with the highest rate possible. Instead, using Virtio-Net, the percentage of packet

loss can reach 90% for high rates.

A second test has been performed to gain an insight into the scalability, eval-

uating what happens with two instances of the pfcount application, each one pro-

cessing one Gigabit of traffic on a different interface. Both application instances

run on the same VM.

Looking at the Figure 4.7 on the next page, that shows the sum of the number

of packets processed per time unit by the two application instances, we can see

that Virtual PF_RING, like native PF_RING, is able to process up to nearly

two million packets per second with no loss (with an average of one million per

instance). When the packet rate on the wire further increases, with 64-byte packets

at wire-speed, both start to lose packets, but native PF_RING processes about

half a million more.

56 CHAPTER 4. VALIDATION WITH PF_RING

 400 600 700 800 900

500

1000

1500

2000

2500

Packet size (Bytes)

P
a
c
k
e
t
ra
te
 (
K
p
p
s
)

Virtio-Net VHostNet

64 128 256 512 1K

Virtual PF_RING

Native PF_RING

Generated traffic
2976

Figure 4.7: Number of packets processed per time unit (1x VM, 2x Gigabit Ethernet).

This does not mean that Virtual PF_RING is unable to scale as much as the

native PF_RING, it may be due to the way a virtual machine is executed. In fact,

while the two instances of pfcount of the native solution can run concurrently on

different cores of the SMP, we know that a virtual CPU, where the two application

instances of the virtual solution are scheduled on, is itself scheduled as a normal

process by the host operating system.

Regarding the virtual solution without the framework, using the Virtio-Net

support, performance are similar or even worse to the previous, with up to one

hundred thousand packets per second processed by each application instance. This

means that even with large packets, there is a high percentage of loss.

Figure 4.8 on the facing page, which shows the percentage of CPU idle time,

supports our hypothesis about the scalability. In fact, it shows that Virtual

PF_RING keeps the CPU relatively idle, with an higher percentage compared

to the native PF_RING. The solution based on Virtio-Net continues to require

4.2. VIRTUAL PF_RING 57

 400 600 700 800 900

100

10

20

30

40

50

60

70

80

90

Packet size (Bytes)

%
 I
d
le V
ir
ti
o-
N
et
 V
H
os
tN
et

64 128 256 512 1K

Virtual PF_RING

Native PF_RING

Figure 4.8: Percentage of idle time (1x VM, 2x Gigabit Ethernet).

more overhead, even with a very low percentage of captured packets.

Another test has been conducted evaluating the performance of two instances of

the application, each one processing one Gigabit of traffic on a different interface,

but this time each one running on a different VM.

In this case, as shown in Figure 4.9 on the next page, the sum of the number

of packets processed per time unit by the two application instances follows the

same performance as the previous test for lossless packet rates. Instead, in this

case, for 64-byte packets at wire-speed, the capture rate of Virtual PF_RING is

really close to the capture rate of the native PF_RING. This, once again, supports

our hypothesis about scalability. In fact, in this case we have two virtual CPUs

scheduled on the host, one for each VM, and on each virtual CPU an application

instance is scheduled.

The solution based on Virtio-Net, this time, seems to scale for large packets

but, at high rates, performance are similar to the previous ones.

58 CHAPTER 4. VALIDATION WITH PF_RING

 400 600 700 800 900

500

1000

1500

2000

2500

Packet size (Bytes)

P
a
c
k
e
t
ra
te
 (
K
p
p
s
)

Virtio-Net VHostNet

64 128 256 512 1K

Virtual PF_RING

Native PF_RING

Generated traffic
2976

Figure 4.9: Number of packets processed per time unit (2x VM, 2x Gigabit Ethernet).

Figure 4.10 on the facing page shows the percentage of CPU idle time. As one

would guess, this time Virtual PF_RING requires more overhead than the native

PF_RING. The solution based on Virtio-Net continues to require much overhead,

even with very poor performance.

Latency would be another significative measure which assumes considerable rel-

evance in some critical applications, where an immediate response time is required.

The most precise counter available on x86 architecture is the TSC (Time Stamp

Counter), a 64-bit counter that increases at each clock cycle and can be used for

accurate latency comparisons. The rdtsc instruction returns the TSC value, storing

its high part in register EDX and its low part in register EAX.

Since a KVM guest does not access the host TSC - because it would experience

issues during live migration or when the virtual CPU is scheduled on multi-core

SMPs - the guest-visible TSC differs from the host TSC for an offset and may expe-

rience drifts. Nowadays there are several attempts to improve TSC virtualization.

4.2. VIRTUAL PF_RING 59

 400 600 700 800 900

100

10

20

30

40

50

60

70

80

90

Packet size (Bytes)

%
 I
d
le

Virtio-Net VHostNet

64 128 256 512 1K

Virtual PF_RING

Native PF_RING

Figure 4.10: Percentage of idle time (2x VM, 2x Gigabit Ethernet).

Latency comparison, in our case, requires fine-grained time measurement, but

tests have proved it is not possible to get a perfectly synchronized time. Some

tests have been evaluated, printing the TSC when a packet is received by the igb

driver, and when it is processed by pfcount, trying to adjust results with averages

and offsets, but it was impossible to stay accurate and significant.

However, we can assume that the latency with Virtual PF_RING is lower than

with Virtio-Net, probably close to the native PF_RING, as the path of the packet

is drastically cut down.

4.2.3 Validation

In order to validate the proposed method, we shall look at the requirements

defined during the analysis, reported in Chapter 1, to see if they are satisfied.

1. High performance

In the previous section, the performance of a packet capture library, based on

60 CHAPTER 4. VALIDATION WITH PF_RING

the framework, has been evaluated. Results demonstrate that it is possible

to achieve very high performance, with no packet loss even at wire-rate with

the smallest packets possible on Gigabit Ethernet. The percentage of CPU

idle time demonstrates that also the overhead is optimal, because it is similar

to the native case. An aspect it is worth to note, is that, with this method, it

is possible to use efficient packet filtering techniques within the host, further

improving performance and CPU utilization in a real case.

2. Flexibility

The framework provides applications an high degree of freedom, with a very

flexible API. In fact, the API supplies simple but effective tools, everything

a monitoring application may need to design an efficient infrastructure for

packet capture:

• it allows applications to share, at run-time, multiple buffers of arbitrary

size between host-side and guest-side;

• it provides an efficient event signalling support, which is also flexible

thanks to the eventfd mechanism (events can be signalled/waited from

both user-space and kernel-space);

• it provides a reliable and efficient communication channel to coordinate

host-side and guest-side.

3. Dynamic VM Reconfiguration

Applications can register to the framework at run-time. New virtual devices

can be dynamically plugged in, mapping new memory, without compromising

the behaviour of the VM, or of other applications, or of other virtual devices.

4. Scalability

Actually, the number of concurrent applications is not limited, as well as

the number of virtual devices. Each virtual device has an independent sup-

4.2. VIRTUAL PF_RING 61

port. The only support which is shared among applications, on the same

VM, is the control communication channel, which should not produce effi-

ciency problems. So, as verified in the previous section, the only limitation

is imposed by resources availability.

5. Ease of use

The framework simplifies the development of efficient monitoring applications

running on VMs, because it provides, through a very simple API, a set of

flexible tools for memory mapping, event signalling and control communica-

tions, hiding what is behind the scene of a virtual environment. The Virtual

PF_RING example showed that designing and developing an application

using the framework requires very little effort.

6. Open Source

The framework is based on an Open Source virtualization solution: Linux

and QEMU/KVM.

7. Commodity hardware

The framework does not rely on specialised monitoring hardware, thanks to

its design this choice is left to applications. During the performance evalua-

tion phase, described in the previous section, only commodity hardware has

been used, achieving anyway very good results.

Chapter 5

Final Remarks

There have been many efforts in recent years to improve network performance

on VMs, both with hardware and software solutions. In previous chapters we

spoke about paravirtualization, self-virtualized devices for direct I/O, and various

hardware supports. However, none of these address the problem of using VMs for

high-performance network monitoring.

This thesis has presented the idea of hypervisor-bypass, which allows packets to

follow a straight path from the kernel to an application running on a VM, avoiding

the involvement of the hypervisor and the intervention of the operating system

standard mechanisms (completely on the guest-side, partially on the host-side).

Our performance evaluations showed that this method can significantly improve

performance, which are close to native under most circumstances, while current

virtualization approaches have proven ill suited to be used with network monitoring

applications when wire-rate packet capture is required.

The fact that the hypervisor, in order to maximize performance, lets a guest

access some resources directly, is also visible in the case of the CPU. With native

execution, which is the virtualization technique used by KVM, a VM can execute

all non-privileged instructions natively without intervention of the hypervisor. In-

stead, the execution of a privileged instruction will trigger a trap, allowing the

hypervisor to make sure that the execution can continue without compromising

63

64 CHAPTER 5. FINAL REMARKS

isolation and system integrity.

Since most CPU-intensive activities of a monitoring application seldom use

privileged instructions, they can achieve near-native performance even when exe-

cuted on a VM. This means that, as clearly shown by the results in this study,

removing bottlenecks in packet capture, it is possible to collapse the gap between

performance achieved by virtualized network monitoring applications running in

VMs and performance achieved by applications running natively, opening new sce-

narios.

In regard to commercial solutions, Endace [18], leader in high-speed packet

capture and analysis, recently introduced its virtualized solution, advertised as

“100-Percent Packet-Capture”. The Endace DOCK Network Monitoring Platform

allows multiple simultaneous analytics applications to be all hosted within the same

platform, including also 3rd party applications. This solution leverages specialized

network monitoring hardware, designed specifically for packet capture. Mike Riley,

chief executive officer at Endace, promoting the new virtualized solutions, said “By

separating hardware from software, organizations can fundamentally change the

way that they measure and manage their networks. Organizations need the ability

to run their own proprietary applications in a managed environment with the ability

to work with the best application vendors in the market. No organizations should be

beholden to a single application vendor. The days of the point solution are gone.”

5.1 Open issues and future work

The current framework implementation already represents an efficient and flex-

ible solution, providing all the supports described in Chapter 3 during the design

phase. The framework, togheter with Virtual PF_RING, gives us a complete

packet capture solution, which benefits of the improvements made to PF_RING

(just at the price of keeping the slight translation layer up-to-date).

An issue is the live migration, in fact the hypervisor does not have knowledge of

5.1. OPEN ISSUES AND FUTURE WORK 65

the resources allocated by the applications. This is in contrast to traditional device

virtualization approaches, where the hypervisor is involved and it can suspend all

the operations when live migration starts. Developing the framework we focused

on basic functionalities without attention to live migration, so in future we will

work on such support.

As already discussed, also isolation remains an open issue, because the use of

resources by applications, which have an high degree of freedom, is not directly

controlled by the framework.

Furthermore, it would be interesting to carry out more detailed performance

evaluations, to look for other possible improvements, and to test the framework

in VMs with multiple virtual CPUs investigating on scheduling and resource man-

agement. It would also be interesting to evaluate the framework’s performance on

a 10 Gigabit network in order to evaluate its scalability this way.

Appendix A

Ethernet Basics

Ethernet is made up of a number of components which operate in the lower two

layers of the OSI model: the Data Link layer and the Physical layer.

Ethernet separates the Data Link layer into two distinct sublayers: the LLC

(Logical Link Control) sublayer and the MAC (Media Access Control) sublayer.

The IEEE 802.2 standard describes the LLC sublayer, and the IEEE 802.3 standard

describes the MAC sublayer and the Physical layer.

The MAC layer uses the CSMA/CD (Carrier Sense Multiple Access with Col-

lision Detection) to send packets around an Ethernet network. A packet on an

Ethernet link is called frame, and consists of the following fields (see Figure A.1):

• Preamble (8 bytes)

The Preamble field contains a synchronization pattern consisting of of 7 in-

Destination Source CRCDataPreamble
Type
/Len

8 6 6 2 446-1500

LLCVLAN
(optional)

Figure A.1: Ethernet frame format.

67

68 APPENDIX A. ETHERNET BASICS

stances of 0101 0101, and the Start of Frame Delimiter 0101 1101.

• Destination address (6 bytes)

The Destination address field contains the address of the Ethernet interface

card to which the frame is directed.

• Source address

The Source address field contains the address of the station that is transmit-

ting the frame.

• Optional: VLAN Tag (4 bytes)

This optional field contains the IEEE 802.1Q VLAN tag, indicating VLAN

(Virtual LAN) membership.

The first 2 bytes of the tag are the TPID (Tag Protocol Identifier) value,

0x8100, which is necessary to identify the presence of the VLAN tag (it is

located in the same place as the Type/Length field). The remaining 2 bytes

contain the TCI (Tag Control Information), Quality of Service and VLAN

ID.

• Type/Length field (2 bytes)

The Type/Length needs to be interpreted. The Ethernet II specification uses

this Type field to identify the upper layer protocol, for example a value of

0x0800 signals that the frame contains an IPv4 datagram. The IEEE 802.3

specification replaces the Type field with the Length field, used to identify

the length of the Data field. The protocol type in IEEE 802.3 frames is

moved to the data portion of the frame.

Since both formats are in use, in order to allow frames to coexist on the

same Ethernet segment, Type values must be greater than or equal to 1536.

With this convention, since the maximum length of the data field of an IEEE

69

802.3 frame is 1500 bytes, it is possible to determine whether a frame is an

Ethernet II frame or an IEEE 802.3 frame.

• Data Field (46-1500 bytes)

The Data field contains the information received from the upper layer.

The LLC field is present in IEEE 802.3 frames, within the Data field, pro-

viding information for the upper layer. It consists of the DSAP (Destination

Service Access Point) field, the SSAP (Source Service Access Point) field and

the Control field.

The need for additional protocol information led to the introduction of the

SNAP (SubNetwork Access Protocol) header, an extension to the LLC field,

indicated by the SSAP and DSAP addresses with a value of 0xAA. The SNAP

header is 5 bytes, 3 bytes for the organization code assigned by IEEE, 2 bytes

for the type set from the original Ethernet specifications.

• CRC Field.

The CRC (Cyclic Redundancy Check) field contains a cyclic redundancy

check to detect corrupted data within the entire frame.

The minimum size of a packet, without considering the preamble which is added

by the card, is 64 bytes.

Calculating the maximum number of packets crossing a link per time unit, we

have to consider the Preamble, but also the IFG (Inter Frame Gap), the minimum

gap between frames (12 bytes).

Appendix B

Code snippets

This appendix contains code snippets, extracted from the framework sources,

for a better and more pratical understanding of the implementation.

B.1 vNPlug-CTRL

B.1.1 Host side

Listing B.1: Registration of an application back-end to the framework

static struct vNPlugCTRLClientInfo vapp_client_info = {

.id = VNPLUG_CLIENT_ID_VAPP ,

.name = "vapp",

.msg_handler = vapp_ctrl_msg_handler ,

};

static void vapp_register(void)

{

vnplug_ctrl_register_client (& vapp_client_info);

}

device_init(vapp_register);

71

72 APPENDIX B. CODE SNIPPETS

Listing B.2: Control message headers, framework layer and application layer

#define VNPLUG_CTRL_MSG_TYPE_FWD 0

#define VNPLUG_CTRL_MSG_TYPE_LOG 1

struct vnplug_ctrl_msg_fwk_hdr {

/* message type */

uint32_t type;

};

struct vnplug_ctrl_msg_app_hdr {

/* application id */

uint32_t id;

/* payload length */

uint32_t payload_len;

/* message data */

char payload [0];

};

B.1. VNPLUG-CTRL 73

Listing B.3: Registration of a virtual device and initialization of the two-way commu-

nication channel over Virtio

VirtIODevice *vnplug_ctrl_init(DeviceState *dev)

{

VirtIOvNPlugCTRL *v;

v = (VirtIOvNPlugCTRL *) virtio_common_init(

"vnplug -ctrl",

VIRTIO_ID_VNPLUG_CTRL ,

sizeof(struct vnplug_ctrl_virtio_config),

sizeof(VirtIOvNPlugCTRL));

v->vdev.get_config = vnplug_ctrl_get_config;

v->vdev.set_config = vnplug_ctrl_set_config;

v->vdev.get_features = vnplug_ctrl_get_features;

v->vdev.set_features = vnplug_ctrl_set_features;

v->vdev.bad_features = vnplug_ctrl_bad_features;

v->vdev.reset = vnplug_ctrl_reset;

v->vdev.set_status = vnplug_ctrl_set_status;

v->h2g_vq = virtio_add_queue(

&v->vdev ,

VNPLUG_CTRL_VQ_SIZE ,

vnplug_ctrl_handle_h2g);

v->g2h_vq = virtio_add_queue(

&v->vdev ,

VNPLUG_CTRL_VQ_SIZE ,

vnplug_ctrl_handle_g2h);

register_savevm(dev , "vnplug -ctrl", -1, VNPLUG_CTRL_VM_V ,

vnplug_ctrl_save , vnplug_ctrl_load , v);

v->vm_state = qemu_add_vm_change_state_handler(

vnplug_ctrl_vmstate_change , v);

74 APPENDIX B. CODE SNIPPETS

return &v->vdev;

}

static int vnplug_ctrl_init_pci(PCIDevice *pci_dev)

{

VirtIOPCIProxy *proxy = DO_UPCAST(

VirtIOPCIProxy , pci_dev , pci_dev);

VirtIODevice *vdev;

vdev = vnplug_ctrl_init (&pci_dev ->qdev);

virtio_init_pci(

proxy ,

vdev ,

PCI_VENDOR_ID_VNPLUG_CTRL ,

PCI_DEVICE_ID_VNPLUG_CTRL ,

PCI_CLASS_VNPLUG_CTRL ,

0x00);

proxy ->nvectors = vdev ->nvectors;

return 0;

}

static PCIDeviceInfo vnplug_ctrl_info = {

.qdev.name = "vnplug",

.qdev.size = sizeof(VirtIOPCIProxy),

.init = vnplug_ctrl_init_pci ,

.exit = vnplug_ctrl_exit_pci ,

.qdev.props = (Property []) {

DEFINE_VIRTIO_COMMON_FEATURES(

VirtIOPCIProxy ,

host_features),

DEFINE_PROP_END_OF_LIST (),

},

B.1. VNPLUG-CTRL 75

.qdev.reset = virtio_pci_reset ,

};

static void vnplug_ctrl_register_devices(void)

{

pci_qdev_register (& vnplug_ctrl_info);

}

device_init(vnplug_ctrl_register_devices);

76 APPENDIX B. CODE SNIPPETS

B.1.2 Guest side

Listing B.4: Virtio device driver: sending a control message on the guest-to-host

virtqueue

static int32_t vnplug_ctrl_virtio_send_msg(

struct vnplug_ctrl_info *vi,

struct scatterlist sg[],

struct vnplug_ctrl_msg_fwk_hdr *hdr ,

void *payload , uint32_t payload_size ,

void *ret_payload , uint32_t ret_payload_size)

{

int32_t err;

uint32_t out = 2, in = 1; /* number of "out "/"in" entries */

sg_init_table(sg, out + in);

/* "out" entries */

sg_set_buf (&sg[0], hdr , sizeof (*hdr));

sg_set_buf (&sg[1], payload , payload_size);

/* "in" entries */

sg_set_buf (&sg[out + 0], ret_payload , ret_payload_size);

err = vi->g2h_vq ->vq_ops ->add_buf(vi ->g2h_vq ,

sg, out , in, vi);

if (err < 0)

return err;

vi ->g2h_vq ->vq_ops ->kick(vi ->g2h_vq);

return 0;

}

B.2. VNPLUG-DEV 77

B.2 vNPlug-Dev

B.2.1 Host side

Listing B.5: Example of adding a new virtual device using QDev

DeviceState *qdev;

QemuOpts *opts;

opts = qemu_opts_create (& qemu_device_opts , NULL , 0);

qemu_opt_set(opts , "driver", "vnplug -dev");

qemu_opt_set_uint(opts , "backend_events", 1);

qemu_opt_set_uint(opts , "guest_events", 1);

qemu_opt_set(opts , "msi", "on");

qemu_opt_set(opts , "irqfd", "on");

qemu_opt_set(opts , "ioeventfd", "on");

qemu_opt_set_uint(opts , "vma_size", buffer ->info ->tot_mem);

qemu_opt_set_ptr(opts , "vma_ptr", buffer ->ptr);

qemu_opt_set_ptr(opts , "client_info_ptr", client);

qdev = qdev_device_add(opts);

78 APPENDIX B. CODE SNIPPETS

Listing B.6: Setting up the irqfd support of KVM

static int set_irqfds(struct vNPlugDev *vndev , int on) {

int i, err;

for (i = 0; i < vndev ->backend_events; i++) {

err = kvm_set_irqfd(

vndev ->dev.msix_irq_entries[i].gsi ,

vndev ->backend_eventfd[i],

on);

if (err < 0)

return err;

}

return 0;

}

B.2. VNPLUG-DEV 79

Listing B.7: Setting up the ioeventfd support of KVM

static int set_ioeventfds(struct vNPlugDev *vndev , int on) {

int i, err;

for (i = 0; i < vndev ->guest_events; i++){

err = kvm_set_ioeventfd_mmio_long(

vndev ->guest_eventfd[i],

vndev ->reg_base_addr + REG_OFFSET_IOEV ,

i,

on);

if (err < 0)

return err;

}

return 0;

}

80 APPENDIX B. CODE SNIPPETS

B.2.2 Guest side

Listing B.8: vNPlug-dev device driver: registration of the PCI driver, initialization of

the character devices

static const struct file_operations vnplug_fops = {

.owner = THIS_MODULE ,

.read = vnplug_read ,

.write = vnplug_write ,

.mmap = vnplug_mmap ,

.open = vnplug_open ,

.release = vnplug_release ,

};

static struct pci_device_id vnplug_pci_ids [] __devinitdata = {

{

.vendor = PCI_VENDOR_ID_VNPLUG_DEV ,

.device = VNPLUG_DEV_ID ,

.subvendor = PCI_ANY_ID ,

.subdevice = PCI_ANY_ID ,

},

{ 0, }

};

static struct pci_driver vnplug_pci_driver = {

.name = VNPLUG_DEVICE_NAME ,

.id_table = vnplug_pci_ids ,

.probe = vnplug_pci_probe ,

.remove = vnplug_pci_remove ,

};

static int __init vnplug_init_module(void)

{

int ret;

B.2. VNPLUG-DEV 81

/* vNPlug -Dev */

vnplug_major = register_chrdev (0, VNPLUG_DEVICE_NAME , &vnplug_fops);

if (vnplug_major < 0) {

ret = vnplug_major;

goto exit;

}

vnplug_class = class_create(THIS_MODULE , VNPLUG_DEVICE_NAME);

if (IS_ERR(vnplug_class)){

ret = -ENOMEM;

goto clean_major;

}

ret = pci_register_driver (& vnplug_pci_driver);

if (ret < 0)

goto class_destroy;

/* vNPlug -CTRL */

vnplug_ctrl_major =

register_chrdev (0, VNPLUG_CTRL_DEVICE_NAME , &vnplug_ctrl_fops);

if (vnplug_ctrl_major < 0){

ret = vnplug_ctrl_major;

goto unregister;

}

ret = register_virtio_driver (& vnplug_ctrl_virtio_driver);

if (ret) {

goto clean_ctrl_major;

82 APPENDIX B. CODE SNIPPETS

}

return ret;

clean_ctrl_major:

unregister_chrdev(vnplug_ctrl_major , VNPLUG_CTRL_DEVICE_NAME);

unregister:

pci_unregister_driver (& vnplug_pci_driver);

class_destroy:

class_destroy(vnplug_class);

clean_major:

unregister_chrdev(vnplug_major , VNPLUG_DEVICE_NAME);

exit:

return ret;

}

module_init(vnplug_init_module);

module_exit(vnplug_exit_module);

MODULE_DEVICE_TABLE(pci , vnplug_pci_ids);

Bibliography

[1] K. Adams and O. Agesen. “A comparison of software and hardware tech-

niques for x86 virtualization”. In: Proceedings of the 12th international con-

ference on Architectural support for programming languages and operating

systems. ACM. 2006, pp. 2–13. isbn: 1595934510.

[2] Z. Amsden et al. “VMI: An interface for paravirtualization”. In: Ottawa Linux

Symposium. Citeseer. 2006.

[3] M. Armbrust et al. “Above the clouds: A berkeley view of cloud comput-

ing”. In: EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2009-28 (2009).

[4] P. Balaji et al. “High performance user level sockets over Gigabit Ethernet”.

In: Cluster Computing, 2002. Proceedings. 2002 IEEE International Confer-

ence on. IEEE. 2002, pp. 179–186. isbn: 0769517455.

[5] P. Barham et al. “Xen and the art of virtualization”. In: Proceedings of the

nineteenth ACM symposium on Operating systems principles. ACM. 2003,

pp. 164–177. isbn: 1581137575.

[6] A. Begel, S. McCanne, and S.L. Graham. “BPF+: Exploiting global data-flow

optimization in a generalized packet filter architecture”. In: ACM SIGCOMM

Computer Communication Review 29.4 (1999), pp. 123–134. issn: 0146-4833.

83

84 BIBLIOGRAPHY

[7] F. Bellard. “QEMU, a fast and portable dynamic translator”. In: Proceed-

ings of the USENIX Annual Technical Conference, FREENIX Track. 2005,

pp. 41–46.

[8] M. Ben-Yehuda et al. “Utilizing IOMMUs for virtualization in Linux and

Xen”. In: Proceedings of the 2006 Ottawa Linux Symposium. 2006.

[9] Christian Benvenuti. Understanding Linux Network Internals. O’Reilly, 2005.

[10] R. Bhargava et al. “Accelerating two-dimensional page walks for virtualized

systems”. In: Proceedings of the 13th international conference on Architec-

tural support for programming languages and operating systems. ACM. 2008,

pp. 26–35.

[11] H. Bos et al. “FFPF: fairly fast packet filters”. In: Proceedings of the 6th

conference on Symposium on Opearting Systems Design & Implementation-

Volume 6. USENIX Association. 2004, pp. 24–24.

[12] L. Braun et al. “Comparing and improving current packet capturing solutions

based on commodity hardware”. In: Proceedings of the 10th annual conference

on Internet measurement. ACM. 2010, pp. 206–217.

[13] S. Muthrasanallur G. Neiger G. Regnier R. Sankaran I. Schoinas R. Uhlig B.

Vembu J. Wiegert D. Abramson J. Jackson. “Intel Virtualization Technology

for Directed I/O”. In: (2006).

[14] L. Deri. “High-speed dynamic packet filtering”. In: Journal of Network and

Systems Management 15.3 (2007), pp. 401–415. issn: 1064-7570.

[15] L. Deri and F. Fusco. “Exploiting commodity multicore systems for network

traffic analysis”. In: Unpublished. http://luca. ntop. org/MulticorePacketCap-

ture. pdf ().

[16] L. Deri et al. “Improving passive packet capture: beyond device polling”. In:

Proceedings of SANE. Vol. 2004. Citeseer. 2004.

BIBLIOGRAPHY 85

[17] L. Deri et al. “Wire-speed hardware-assisted traffic filtering with mainstream

network adapters”. In: Advances in Network-Embedded Management and Ap-

plications (2011), pp. 71–86.

[18] Endace. Endace, world leaders in high-speed packet capture and analysis so-

lutions. 2011. url: http://www.endace.com.

[19] K. Fraser et al. “Safe hardware access with the Xen virtual machine monitor”.

In: 1st Workshop on Operating System and Architectural Support for the on

demand IT InfraStructure (OASIS). Citeseer. 2004.

[20] F. Fusco and L. Deri. “High speed network traffic analysis with commodity

multi-core systems”. In: Proceedings of the 10th annual conference on Internet

measurement. ACM. 2010, pp. 218–224.

[21] W. Huang et al. “A case for high performance computing with virtual ma-

chines”. In: Proceedings of the 20th annual international conference on Su-

percomputing. ACM. 2006, pp. 125–134. isbn: 1595932828.

[22] M.D. Hummel et al. Address translation for input/output (I/O) devices and

interrupt remapping for I/O devices in an I/O memory management unit

(IOMMU). US Patent 7,653,803. 2010.

[23] S. Ioannidis et al. “xPF: packet filtering for low-cost network monitoring”.

In: High Performance Switching and Routing, 2002. Merging Optical and IP

Technologies. Workshop on. IEEE. 2002, pp. 116–120. isbn: 488552184X.

[24] IXIA. IXIA, the Leader in Converged IP Testing. 2011. url: http://www.

ixiacom.com.

[25] Alessandro Rubini Jonathan Corbet Greg Kroah-Hartman. Linux Device

Drivers, 3rd Edition. O’Reilly, 2005.

[26] A. Kivity et al. “kvm: the Linux virtual machine monitor”. In: Proceedings

of the Linux Symposium. Vol. 1. 2007, pp. 225–230.

http://www.endace.com
http://www.ixiacom.com
http://www.ixiacom.com

86 BIBLIOGRAPHY

[27] J. LeVasseur et al. “Standardized but flexible I/O for self-virtualizing de-

vices”. In: Proceedings of the First conference on I/O virtualization. USENIX

Association. 2008, pp. 9–9.

[28] J. Liu et al. “High performance VMM-bypass I/O in virtual machines”. In:

Proceedings of the annual conference on USENIX. Vol. 6. 2006.

[29] S. McCanne and V. Jacobson. “The BSD packet filter: A new architecture

for user-level packet capture”. In: Proceedings of the USENIX Winter 1993

Conference Proceedings on USENIX Winter 1993 Conference Proceedings.

USENIX Association. 1993, pp. 2–2.

[30] N. McKeown et al. “OpenFlow: enabling innovation in campus networks”. In:

ACM SIGCOMM Computer Communication Review 38.2 (2008), pp. 69–74.

issn: 0146-4833.

[31] J. Mogul, R. Rashid, and M. Accetta. “The packer filter: an efficient mech-

anism for user-level network code”. In: Proceedings of the eleventh ACM

Symposium on Operating systems principles. ACM. 1987, pp. 39–51. isbn:

089791242X.

[32] J.C. Mogul and K.K. Ramakrishnan. “Eliminating receive livelock in an

interrupt-driven kernel”. In: ACM Transactions on Computer Systems

(TOCS) 15.3 (1997), pp. 217–252. issn: 0734-2071.

[33] R. Olsson. “pktgen the linux packet generator”. In: Linux symposium. Cite-

seer. P. 11.

[34] PCI-SIG. Single Root I/O Virtualization and Sharing Specification, Revision

1.0. 2007.

[35] J. Pettit et al. “Virtual Switching in an Era of Advanced Edges”. In: ().

[36] B. Pfaff et al. “Extending networking into the virtualization layer”. In: Proc.

HotNets (October 2009) ().

BIBLIOGRAPHY 87

[37] I. Pratt and K. Fraser. “Arsenic: A user-accessible gigabit ethernet interface”.

In: INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Com-

puter and Communications Societies. Proceedings. IEEE. Vol. 1. IEEE. 2001,

pp. 67–76. isbn: 0780370163.

[38] M. Probst. “Dynamic binary translation”. In: UKUUG Linux Developer’s

Conference. Vol. 2002. 2002.

[39] M. Probst. “Fast machine-adaptable dynamic binary translation”. In: Pro-

ceedings of the Workshop on Binary Translation. Vol. 9. Citeseer. 2001.

[40] H. Raj and K. Schwan. “High performance and scalable I/O virtualization via

self-virtualized devices”. In: Proceedings of the 16th international symposium

on High performance distributed computing. ACM. 2007, pp. 179–188.

[41] K.K. Ram et al. “Achieving 10 Gb/s using safe and transparent network in-

terface virtualization”. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments. ACM. 2009,

pp. 61–70.

[42] R. Russell. “virtio: towards a de-facto standard for virtual I/O devices”.

In: ACM SIGOPS Operating Systems Review 42.5 (2008), pp. 95–103. issn:

0163-5980.

[43] R. Hiremane S. Chinni. “Virtual Machine Device Queues: An Integral Part

of Intel Virtualization Technology for Connectivity that Delivers Enhanced

Network Performance”. In: (2007).

[44] J.H. Salim, R. Olsson, and A. Kuznetsov. “Beyond softnet”. In: Proceedings

of the 5th annual Linux Showcase & Conference. 2001, pp. 18–18.

[45] J.R. Santos et al. “Bridging the gap between software and hardware tech-

niques for i/o virtualization”. In: USENIX 2008 Annual Technical Conference

on Annual Technical Conference. USENIX Association. 2008, pp. 29–42.

88 BIBLIOGRAPHY

[46] J. Shafer. “I/O virtualization bottlenecks in cloud computing today”. In: Pro-

ceedings of the 2nd conference on I/O virtualization. USENIX Association.

2010, pp. 5–5.

[47] J. Shafer et al. “Concurrent direct network access for virtual machine mon-

itors”. In: 2007 IEEE 13th International Symposium on High Performance

Computer Architecture. IEEE. 2007, pp. 306–317.

[48] P. Shivam, P. Wyckoff, and D. Panda. “EMP: zero-copy OS-bypass NIC-

driven gigabit ethernet message passing”. In: (2001).

[49] J. Sugerman, G. Venkitachalam, and B.H. Lim. “Virtualizing I/O devices on

VMware workstation’s hosted virtual machine monitor”. In: Proceedings of

the General Track: 2002 USENIX Annual Technical Conference. 2001, pp. 1–

14.

[50] Z. Wu, M. Xie, and H. Wang. “Swift: a fast dynamic packet filter”. In: Pro-

ceedings of the 5th USENIX Symposium on Networked Systems Design and

Implementation. USENIX Association. 2008, pp. 279–292.

	Frontespizio
	Dedica
	Abstract
	Sommario
	Acknowledgments
	Contents
	Introduction
	Overview
	A long packet journey
	Packet filtering: the earlier the better
	Limited network hardware support

	Motivation
	Scope of work
	Requirements
	Thesis outline

	Related Work
	Virtualization
	Virtualization technologies
	Paravirtualized devices
	Hardware-assisted virtualization
	Xen vs KVM

	KVM
	Memory management
	VirtIO

	Packet journey: from the wire to the Virtual Machine
	Data reduction: packet filtering

	The vNPlug Framework
	Hypervisor-bypass and isolation
	Framework design
	vNPlug-Dev: memory mapping and event signalling
	Zero-copy from kernel-space to guest user-space
	Two-way event signalling

	vNPlug-CTRL: control messages over VirtIO
	Routing messages

	vNPlug interface
	Host side API
	Guest side API

	Validation with PF_RING
	PF_RING: a kernel module for packet capture acceleration
	Virtual PF_RING
	Design
	Performance evaluation
	Validation

	Final Remarks
	Open issues and future work

	Ethernet Basics
	Code snippets
	vNPlug-CTRL
	Host side
	Guest side

	vNPlug-Dev
	Host side
	Guest side

	Bibliography

