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Introduction

1 Introduction

The widespread use of cloud computing technologies has changed the way modern
industries operate, but it has also made them more vulnerable to complex cyber
threats that can seriously harm organizations; it’s crucial to understand how these
attacks happen and how to defend against them.

In this thesis, we delve into the details of cyber threats on two industry-leading cloud
providers, Azure and AWS. The main goal is to gain a better understanding of the
security measures that exist and how effective they are in preventing threats. This
serves two purposes: First, it helps identify which provider offers the most reliable
defense against malicious entities, which can inform decisions when deploying cloud
services. Secondly, it helps assess whether investing in honeypots is a viable way to
understand the attackers’ techniques and enhance server security. The deployment
of honeypot software in a cloud environment is an already-explored concept. Past
research [1] investigated the link between the popularity of cloud providers and the
number of attacks. This current study, however, pivots from popularity to a more
security-centric focus.

It was discovered that there is a significant contrast in the types of attacks between
Azure and AWS. Azure encountered more SSH attacks, whereas AWS experienced
fewer SMB attacks. These variations indicate different security obstacles for each
platform. Moreover, the study highlights patterns in the timing and location of
attacks. The highest number of attacks occurred during nighttime and on Mondays,
and the primary sources of attacks were the United States, China, Singapore, and
Hong Kong. It was noted that most attacks originated from Autonomous Systems
such as Digital Ocean, Google, and Tencent, which implies that attackers utilize
cloud services for their operations.

Additionally, the analysis reveals that most attacks are carried out automatically
through scripts, often occurring precisely on the hour. A distinct categorization
of attackers was made based on their interactions with honeypots, services, and
providers, with a majority specializing in attacking one or more honeypots within
a single provider and focusing on one service. However, a small yet highly dan-
gerous group of attackers has orchestrated coordinated attacks across various cloud
providers. The analysis of malware attacks has revealed that the most common types
specifically target IoT devices and originate from the United States and China. This
study underscores the importance of tailored security measures and a multilayered
approach to cyber defense, emphasizing the value of honeypots as early warning
systems in detecting and analyzing sophisticated, targeted attacks.
Due to limited resources, our study employs just two honeypots across distinct cloud
providers, which prevents us from drawing certain conclusions in some analyses due
to the restricted dataset. It’s important to highlight that these limitations were
established in advance and do not undermine the integrity of the thesis’s findings.
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Introduction

The study begins by proposing the following hypotheses:

H1: No notable temporal dependency exists among attacks.

H2: No apparent spatial dependency exists among attacks.

H3: No dependency from the attacked protocol exists.

H4: Most of the attacking nodes run a Linux-based OS.

H5: Attackers can be segregated based on their behavior.

H6: All geographical regions contribute equally to the origins of malware activities.

H7: A significant correlation exists between the cloud provider’s hosting choice and
the observed activity.

H8: There is a significant volume of attacks that target IoT devices.

According to the data analysis of the data we collected, hypotheses H4, H5, H7, and
H8 were accepted, while the remaining hypotheses were rejected.

The hypotheses H1-H8, which have been proposed, lay the foundation for addressing
the study objective of this thesis, outlined on the following page. For a more precise
understanding and a finer granularity in the response, we will define several subtypes
of these hypotheses in the next chapter. This will include a detailed explanation of
their meanings and the rationale behind their selection.

The thesis utilizes eight hypotheses to methodically examine cyber-attack patterns,
each hypothesis targeting a specific facet of security concerns. By aligning with
the twelve study objectives, these hypotheses pave a clear path for a comprehensive
investigation. This systematic approach allows for an in-depth exploration of the
security landscape, considering temporal, spatial, and behavioral aspects, and serves
as a foundational structure for the research.
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Introduction

The research objectives are:

1. Time and Day Impact on Attack Patterns [H1]: Focusing on the tem-
poral aspects of cyber attacks, this objective examines how time and day
influence attack patterns.

2. Geographical and Spatial Attack Patterns [H2]: This aim delves into
the spatial distribution of attacks, identifying the primary sources and impli-
cations.

3. Protocol Dependency [H3]: This concise goal examines the relationship
between attacked protocols and attack patterns, seeking to uncover dependen-
cies within specific protocols highlighting possible coordinated attacks.

4. Linux’s Predominant Role in Attacks [H4]: Analyzing the role of Linux-
based systems in cyber-attacks, this objective highlights the relationship be-
tween the OS type and attack landscape.

5. Attackers’ Skill Levels and Resources [H5]: This goal focuses on the
skills and resources utilized by attackers, with an emphasis on differentiating
between automated and manual attacks.

6. Behavior and Profiling of Attackers [H5]: Understanding the behaviors,
strategies, and specialization of attackers are at the core of this objective.

7. Tor Nodes Relevance [H5]: A brief objective focusing on the relevance of
Tor nodes in cyberattacks, analyzing how attackers may utilize Tor nodes.

8. Malware Origins Assessment [H6]: Focused on identifying the origins,
types, and purposes of various malware, this goal contributes to a broader
understanding of the malware landscape.

9. Coordinated Attacks [H7]: Investigating the presence of organized and
collaborative attacks across various cloud providers, this objective examines
the complexity of multi-faceted cyber threats.

10. Comparison Between AWS and Azure [H7]: This objective contrasts
the security architectures of AWS and Azure, identifying unique challenges
and strengths.

11. Understanding IoT-Specific Malware [H8]: By exploring malware that
specifically targets IoT devices, this objective emphasizes the need for robust
IoT security.
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1.1 Chapters Overview

1.1 Chapters Overview

• In Chapter 2, the study’s background is established by describing the definition
of a honeypot and the concept of cloud computing. A detailed explanation of
the methodology used to deploy honeypots and collect data is provided.

• Chapter 3 examines when cyber-attacks happen. It looks at how an attacker’s
time zone might influence the timing. Findings from this study are then
shared. Autocorrelation analysis, a method to find patterns, is used to see
if the timing of one attack is linked to others. Finally, it wraps up with the
results of this time-based analysis, revealing any patterns in the timing of at-
tacks. Essentially, it’s all about understanding when and why cyber attacks
occur.

• Chapter 4 discusses how to figure out where cyber attacks come from. The
first part goes deeper into the origins of these threats. Then, the chapter talks
about making the data more understandable by considering the population
and area of the places the attacks come from. The chapter then explores the
AS from which most attacks come.

• Chapter 5 examines cyber-attacks based on specific protocols. Specifically, it
looks at which services get attacked most often and compares this between
different cloud providers identifying the most targeted services and comparing
security across different cloud platforms.

• Chapter 6 focuses on creating profiles for attackers by identifying their skill
levels, strategies, and the operating systems they use. It also investigates the
role of TOR nodes, which can hide an attacker’s location and identity.

• Chapter 7 explores the origin and types of malware. It looks at how malware
is uploaded and downloaded and where it’s hosted.

• Chapter 8 compares how different cloud providers experience attacks. It ex-
amines correlations between various factors, like the type of honeypots used,
the cloud provider, and the metrics observed.

• Chapter 9 examines attacks specifically aimed at IoT devices. It delves into
a particular type of malware called Mirai, known for its focus on IoT. The
chapter explores the impact of Mirai attacks and where this malware appears
in their data.

• Chapter 10 discusses the usefulness of a honeypot for corporations in protecting
their production servers. It serves as both an early detection system and a
decoy.

• Chapter 11 summarizes all the findings based on the collected data.
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Background

2 Background

2.1 Honeypot: definition and general use

A honeypot is a computer security mechanism designed to identify, divert, or counter
unauthorized attempts to access information systems. Typically, a honeypot appears
to be a genuine part of a network or website containing valuable information or
resources that would attract potential attackers. However, an isolated and monitored
system blocks or analyzes the attackers’ actions.

Honeypots can be classified according to the low, medium, or high level of inter-
action they offer to the attacker. They are commonly categorized as low, medium,
or high interaction. A low-interaction honeypot provides limited engagement, typi-
cally mimicking specific services or protocols. A medium-interaction honeypot offers
a wider range of services but still doesn’t provide full system access. Conversely,
a high-interaction honeypot allows full system access, presenting a more authentic
environment, often at the cost of increased risk and complexity in terms of manage-
ment and analysis.

As reported in [1], an early and notable application of honeypots occurred in 1986
by Clifford Stoll, a system administrator at the University of California, Berkeley.
In his book, ’The Cuckoo’s Egg’ [2], Stoll recounts discovering an unauthorized
user with superuser access penetrating his system. He implemented a honeypot
strategy to catch the intruder, using borrowed terminals connected to the system’s
incoming phone lines. This approach allowed him to discern the attacker’s intentions,
ultimately leading to the arrest of a German operative working for the KGB.

In 1990, the concept of honeypots gained significant traction through the influential
work of Cheswick [3]. His pioneering efforts sparked the birth of the Honeynet
Project [4], an initiative that continues to contribute to the field even today. [5]. This
research aims to utilize honeypots to acquire a deeper understanding of the specific
threat landscapes targeting cloud infrastructures. Furthermore, the research sought
to analyze and highlight the differences between various cloud service providers,
reinforcing our understanding of their unique security profiles.
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2.2 Honeypot: Cloud Deployment

2.2 Honeypot: Cloud Deployment

The term "cloud" suggests the data is airborne and accessible from anywhere, as
it can migrate between different physical servers and locations [6]. The National
Institute of Standards and Technology (NIST) outlines three distinct cloud service
models:

• Software as a Service (SaaS)—This describes applications businesses subscribe
to and operate on cloud infrastructure via the Internet.

• Platform as a Service (PaaS)—In this model, the vendor provides high-level
application services, allowing the business to create its own custom applica-
tions. While the business can freely configure and deploy its application, it’s
still regulated by the provider with its hardware and resources.

• Infrastructure as a Service (IaaS)—This model provides on-demand access to
computing resources such as servers, storage, networking, and virtualization.

In this analysis, we focus on the security aspects of Infrastructure as a Service (IaaS),
since our honeypots were deployed as virtual servers properly configured.

The concept of deploying honeypot software in cloud environments has been previ-
ously examined. Earlier research [1] explored the correlation between the popularity
of cloud providers and the frequency of attacks. Unlike past studies that focused
on popularity, this current research shifts its emphasis to a more security-centered
approach.

A similar shift can be observed in the recent work by Orca Security [7]. They
deployed honeypots containing cloud access keys across multiple cloud providers,
timing the time interval from deployment to the keys being discovered and exploited.
Specifically, on the AWS cloud platform, it took just two minutes for cloud keys to
be compromised.

This study has deployed a total of four honeypots, two of which were hosted on
AWS and the other two on Azure cloud. The two honeypots hosted on Azure will be
referred to in this study as Azure A and Azure B, and the two hosted on AWS will be
designated as AWS A and AWS B. These honeypots all supported the SSH protocol,
utilizing Cowrie [8] a medium-interaction honeypot. Furthermore, one honeypot on
each cloud platform was configured to support a variety of other protocols such as
FTP, SMB, and HTTP. For this multi-protocol support, the Dionaea low-interaction
honeypot was utilized [9].
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2.3 Methodology

Honeypot Cloud Platform Supported Protocols Location
Azure A Azure SSH, FTP, SMB, HTTP Amsterdam
Azure B Azure SSH Amsterdam
AWS A AWS SSH, FTP, SMB, HTTP Amsterdam
AWS B AWS SSH Amsterdam

Table 1: Deployment details of the honeypots

2.3 Methodology

The main goal is to understand how different security measures work and how well
they can prevent threats. This analysis has two purposes. First, it helps us find the
provider that offers the best protection against malicious actors, so we can make
informed decisions when selecting a provider. Second, it helps us evaluate whether
investing in honeypots is an effective way to enhance server security.

We have developed hypotheses that explain the tactics and patterns of different
attack methods, and we will carefully study them to achieve our goal [10].

To initiate, an investigation is carried out on the time patterns and schemes that fit
the honeypot data. Given the seemingly random nature of the collected data, one
could infer:
H1: No notable temporal dependency exists among attacks.

Since most of the attack origins are inspected:
H2: No apparent spatial dependency exists among attacks.

Additionally, disparities among the targeted services are delved into:
H3: No dependency from the attacked protocol exists.

H3.1: Autonomous systems, from which attacks originate, are uniformly distributed
across various cloud service providers

Since most open-source software is developed for Linux, the following hypothesis is
examined:

H4: Most of the attacking nodes run a Linux-based OS.
It’s evident that not all attackers behave in the same way. Gaining insights into
these varying behaviors is a pivotal objective of this study. Thus, the following
hypotheses are examined:
H5: Attackers can be segregated based on their behavior.

H5.1: The resources of the attacker do not exhibit a significant dependency.

H5.2: The skill level of the attacker does not exhibit a significant dependency.

H5.3: Attacks originating from TOR nodes are not significantly prevalent.
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2.3 Methodology

The study also investigates the origins, types, and goals of malware attacks:

H6:All geographical regions contribute equally to the origins of malware activities.

H6.1: The contribution of geographical regions to the origins of SSH malware attacks
is not equal.

H6.2: All geographical regions contribute equally to the origins of malware uploads.

H6.3: The contribution of geographical regions to malware-hosting is not equal.

H6.4: The use of a common SSH key across multiple attacks does not suggest a
coordinated operation.

H6.5: All types of malware are downloaded with equal frequency.

The study further delves into the differences in the observed data between the two
cloud providers, Azure and AWS, predicated on the following hypothesis:

H7: There is a significant correlation between the choice of the cloud provider for
hosting and the observed activity.

H7.1: The data observed on machines within the same cloud provider do not show
a significant dependency.

H7.2: The likelihood of a successful SSH login attempt is relatively high

H7.3: The risk of an attacker downloading or uploading malware is substantial.
itemize

Lastly, hypotheses H8 and H8.1 are proposed to investigate two insights:

• Attacks targeting IoT devices are the most common.

• Mirai botnets play a substantial role in the overall landscape of attacks.

H8: There is a significant volume of attacks that target IoT devices.

H8.1: A significant volume of attacks originate from Mirai botnets.
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2.3 Methodology

2.3.1 Deployment details

We have designed and implemented many scripts to perform our statistical analysis.
The most important one implement correlation, trend detection, and autocorrela-
tion computations on the time series. This customized approach was due to the
specific requirements of our study, which included accessing data directly from the
Prometheus1 server and generating correlation graphs with data points.

The outputs of the computations are represented within a Pandas2data frame [11].
This structured data representation simplifies the management and manipulation of
the acquired data. To further enhance the visualization and comprehension of our
findings, we adopted Pyplot to transform the data into a time-series format. This
rigorous and customized analytical process allowed us to explore correlations and
trends within our dataset.

The system exploits both virtual machines (VMs) and Docker containers [12] to build
a scalable and isolated environment for the honeypot servers. We use VMs as pro-
tective barriers between the network and the hosted honeypots. This approach effec-
tively confines potential security breaches within the containers themselves, thereby
preserving the host system’s integrity.

Figure 2.1: Honeypot machine Architecture

To improve the security standards of our system, we’ve incorporated a sophisticated
alert system that activates immediately when access is granted to either the host or
the virtual machine. This proactive system serves as an instant notification mech-

1Prometheus: An open-source time-series database used for real-time systems monitor-
ing and alerting, originally developed at SoundCloud.

2Pandas: open-source data analysis library for Python, providing flexible data struc-
tures for handling and analyzing complex datasets.
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2.3 Methodology

anism, ensuring prompt responses to any potential security threats and preserving
our security infrastructure’s continuous robustness. In addition, we’ve deployed
a protective protocol to suspend the operations of either the Docker container or
the VM when an unauthorized login attempt is detected while the system is in an
armed state. This automatic halt mechanism minimizes potential damage and pro-
vides ample time for security responses. For securing access to the VMs themselves,
we’ve fortified them with a two-factor authentication (2FA) system [13], providing
an added layer of protection against unauthorized access.

Because of the huge volume of logs produced by the honeypots, we’ve strategically
implemented a Centralized Server, leveraging MongoDB [14] for optimized storage
and proficient data management. Our preference for MongoDB stems from its in-
herent flexibility, which includes crafting custom scripts to safely export data from
the secure confines of the honeypot environment. Moreover, it allows us to formu-
late efficient query scripts tailored for handling the extensive dataset. This synergy
significantly streamlines and enhances the analytical process.

For real-time monitoring and time-series data analysis, we have integrated Prometheus
[15]using custom scripts named Prometheus Collectors that enable the integration
of this time-series database with our VMs and honeypots, measuring not only log
data but also the VMs environment metrics. However, since Prometheus is primar-
ily a metric collection tool, we have paired it with Grafana [16]. Grafana, with
its customizable dashboards and MongoDB integration, allows us to visualize our
metrics and analyze the data more comprehensively. The flawless integration be-
tween Grafana and MongoDB is achieved using custom scripts taken from a GitHub
repository mongodb-grafana by James Osgood [17], the forked version of which is
available by Nes Cohen [18].

Figure 2.2: Honeypot Server Architecture
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2.3 Methodology

Finally, the data collected from each honeypot is securely transmitted to a server
hosting both Prometheus and MongoDB through the Tailscale network [19] for en-
hanced privacy and security. Tailscale provides a reliable and encrypted network
tunnel that protects the data transfer between the honeypots and the storage server
from potential eavesdropping or unauthorized access.

In summary, the combination of Tailscale, for safe data transferring, Prometheus
for time series generation, Grafana for data visualization as in fig 2.3 and 2.4, and
MongoDB for efficiently storing the substantial dataset for more fined grained anal-
ysis, enabled us to create a robust and secure ecosystem for collecting, storing, and
analyzing honeypot data.

Figure 2.3: Grafana attacks Dashboard 1

Figure 2.4: Grafana attacks Dashboard 2
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2.4 Underlying Assumptions

2.4 Underlying Assumptions

These are the assumptions Underlying our analysis:

• Within the scope of this research, an "attack" is any inbound interaction
towards the system housing the honeypot. We regard all these as malicious,
since the system isn’t hosting any applications beyond the honeypot software
itself, and as such, there shouldn’t be any legitimate connections taking place.

• The term "Malware Upload" denotes the execution of commands or a series of
commands to exploit the SSH machine. The main goal of these commands is to
hijack the SSH-authorized keys. After acquiring these keys, the attacker gains
a backdoor into the system, which significantly eases subsequent access into
the compromised system. Alternatively, where specified, we refer to Malware
uploaded using SMB protocol to the Honeypots

• On the other hand, "Malware Downloads" denotes situations where malware
is directly fetched and downloaded onto the host machine through web re-
quests. These requests are usually implemented via ’wget ’ or ’curl ’ commands
triggered by the attackers.

• When presenting time series data, the analysis zeroes in on the week from
06/19/2023 to 06/26/2023. Yet, when the data is represented in non-time
series formats—like aggregated data or charts—it covers a more extensive time
frame, specifically a two-month collection period.
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Understanding Attack Timing

3 Understanding Attack Timing

In this section, we delve into the temporal aspect of cyber attacks, a critical factor
that is often neglected. While most security analyses focus on technological so-
phistication and sources of attacks, understanding ’when’ attacks occur can provide
valuable insights for threat mitigation.

This section delves into a detailed examination of the temporal patterns observed in
cyber attacks (2.1), an intriguing contrast between the frequency of attacks during
the day versus night (2.2), and a comprehensive analysis of timing patterns in attacks
using autocorrelation methods (2.3).

3.1 The When of Cyber Attacks: Temporal Analysis

To initiate the analysis, we present and discuss the time series for each honeypot,
isolated on a weekly basis. The time series illustrates the quantity of SSH attacks
over time, captured with a sampling rate of 30 seconds. In addition, a detailed
analysis is conducted for each honeypot, breaking down the data by day of the week
and hour to provide further granularity.

• 3.1.1 Azure

Figure 3.1: Attacks’ distribution on Azure A over a week

Figure 3.2: Attacks per weekday - Azure A

15



3.1 The When of Cyber Attacks: Temporal Analysis

Figure 3.3: Attacks by hour - Azure A

Figure 3.2 shows that the distribution of login attempts throughout the week is not
uniform on Azure A. It is noteworthy that the highest number of attacks occurred
on Monday, decreasing throughout the week, and a slight increase over the weekend.

Turning our attention to Figure 3.3, a pronounced peak can be observed around
midnight. This is when the average number of SSH login attempts significantly
escalates, indicating that it is the preferred time for attacks.

Figure 3.4: Attacks’ distribution on Azure B over a week

Figure 3.5: Attacks by weekday - Azure B
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3.1 The When of Cyber Attacks: Temporal Analysis

Figure 3.6: Attacks by the hour - Azure B

The frequency of access attempts exhibits a distinct variance based on the day of
the week on Azure B as well, as shown in Fig3.4. Notably, Mondays register the
highest average number of attempts, as already seen on Azure A. The number of
attacks decreases until Thursday, with an increase over the weekend. The number
of attacks on Sunday is particularly with respect to the other days.

In contrast to Azure A , the distribution of authentication attempts throughout
the day in the current system is relatively uniform. However, a minor surge in the
average number of login attempts can be discerned around 15:00 (3:00 PM) as shown
in Fig 3.6. This peak, while observable, is markedly less conspicuous than the one
in Azure A.
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3.1 The When of Cyber Attacks: Temporal Analysis

• 3.1.2 AWS

Figure 3.7: Attacks’ distribution on AWS A over a week

Figure 3.8: Attacks per weekday - AWS A

Figure 3.9: Attacks by the hour - AWS A

Figure 3.8, shows the connection pattern on AWS A, it is evident that the distribu-
tion of activity is not uniform throughout the week. The largest number of attacks
occurs on Monday, followed by a sharp drop on Tuesday. The attacks then decrease
gradually throughout the rest of the week, with a slight increase on Saturday and
another drop on Sunday.

A further observation from Figure 3.9 shows that some timeframes, particularly
around 17:00, result in a large average number of login attempts. This suggests a
notable surge in activity during these periods

18



3.1 The When of Cyber Attacks: Temporal Analysis

Figure 3.10: Attacks’ distribution on AWS B over a week

Figure 3.11: Attacks per weekday - AWS B

Figure 3.12: Attacks by the hour - AWS B

An analysis of AWS B shows similar trends to AWS A regarding the non-uniform
distribution of login attempts throughout the day. Nevertheless, the pattern of
these attempts exhibits distinct differences. A key observation is the peak in attack
occurrences on Monday, followed by a gradual decrease as the week progresses.
Notably, unlike AWS A, AWS B does not show a perceptible increase in attacks
during the weekend.

Additionally, Fig. 3.12 shows a surge in activity around 8:00, characterized by a rise
in the average number of login attempts. This suggests an interval of heightened
cyber activity and potential susceptibility to breaches.

Interestingly, an analysis of the relation between attacks and the day of the week
confirms that there is a noticeable fluctuation in login attempts. Fridays, for in-
stance, endure the highest average volume of attempts.

19



3.1 The When of Cyber Attacks: Temporal Analysis

Figure 3.13: Average attacks by hour on both providers

Fig. 3.13 confirm that the two cloud providers have a similar distribution of the
average number of attacks throughout the day even though AWS experienced sig-
nificantly fewer attacks on SSH than Azure.

3.1.3 Findings

The examination of SSH login attempts over time revealed an uneven yet similar
distribution of connections on all honeypots. A few key observations can be drawn
from this analysis:

• Most attacks occur on Monday on both cloud environments.

• Attacks in the AWS environment mainly occur towards the close of the work-
week, recording lower values on Sundays—a pattern that deviates from the
one observed within the Azure environment.

• There is a clear variation in the volume of attacks between the servers. AWS B
has a lower number of attacks than AWS A, while Azure B has a much higher
number of attacks than Azure A

These findings clearly reveal a clear temporal dependency in the attack patterns,
thus contradicting Hypothesis H1 which posits an absence of such a dependency.
To reinforce this claim and further investigate this temporal relationship, we will
continue our analysis throughout this study.
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3.2 Time zones: Attacker’s Perspective

3.2 Time zones: Attacker’s Perspective

To enhance our understanding of attack timing, our analysis zeroes in on the specific
times these incidents take place, especially from the attacker’s perspective. To offer
a clear visualization of the results, we partition the day into three periods.

Figure 3.14: Day periods

As shown in Fig. 3.14 the term ’Night1’ refers to the period from midnight to 6
AM, ’Day’ encompasses the timeframe from 6 AM to 6 PM, and ’Night2’ covers the
hours from 6 PM to midnight Although the honeypots are situated in Amsterdam,
we utilize Coordinated Universal Time (UTC) in our analysis. This + simplifies the
comparison among the attackers’ time zones and yields identical results, because of
the negligible time difference.
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3.2 Time zones: Attacker’s Perspective

Fig 3.15 and 3.16 show the distribution of the number of executed SSH commands
over different periods of the day on both cloud providers from two different prospec-
tives: One of the honeypots and the attackers and the attackers’. This is done by
taking into account the timezone the command was run from. This allows us to get
accurate results in this daytime, and nighttime analysis.

3.2.1 Azure

Figure 3.15: SSH commands execution over different periods of the day - Azure

3.2.2 AWS

Figure 3.16: SSH commands execution over different periods of the day - AWS

Given that the ’Day’ period lasts 12 hours, there’s a noticeable increase in run
commands from midnight to 6 AM during the ’Night1’ period. If we merge both the
’Night1’ and ’Night2’ periods, we find that, from the perspective of the honeypot,
commands are executed slightly more during the night.

Switching to the attackers’ viewpoint, the distribution of attacks across the night
periods seems to be more evenly balanced. When we consider these periods together,
it’s observed that the quantity of run commands executed during the night aligns
with those carried out during the day.
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3.3 Time zones: Findings

From the honeypot’s perspective, we observe a higher frequency of command exe-
cutions during the night, particularly from 6 PM to midnight. When merging both
night periods, it becomes clear that commands are executed more often during the
night.

When switching to the attackers’ viewpoint, we discover that the number of run
commands during the ’Night2’ period closely parallels that of the ’Day’ period. This
observation is in line with AWS’s analysis. When considering both the ’Night1’ and
’Night2 periods, it’s evident that, from an attacker’s perspective, there’s a trend
towards executing more attacks during the night.

Findings

Based on the presented data, the following conclusions can be drawn:

1. Azure: Honeypot prospective attacks occur slightly more frequently during
the night, and from the attacker’s perspective, the attacks are more evenly
distributed throughout the day.

2. AWS: Attacks occur more frequently during the night from both perspectives.
Intriguingly, from the honeypot’s viewpoint, attacks concentrate between 6
AM and midnight, whereas from the attacker’s perspective, most commands
are executed between midnight and 6 AM. This discrepancy may result from
the timezone difference between the two perspectives.

To fully understand the patterns observed on AWS, it becomes essential to shift our
focus to the role of time zones.

Figure 3.17: Distribution of the difference between the attacker’s time zone and
honeypot’s time zone
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3.3 Time zones: Findings

Figure 3.17 illustrates the distribution of the time difference between the two per-
spectives. Notably, most commands are executed with a time difference of -8 hours
on both cloud providers, indicating that the attacker’s timezone lags by 8 hours.

An intriguing discrepancy emerges when AWS shows a significant spike around the
-7.5 hours mark, a pattern not evident in Azure. This agrees with our earlier obser-
vation of increased attacks during the ’night1’ period from the attacker’s perspective.
This disparity might be due to the geographical distribution of attacks, a topic that
will be further explored in the following chapter.
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3.4 Autocorrelation Analysis

To delve deeper into the temporal patterns of attacks, we will apply autocorrelation
analysis on various metrics associated with each honeypot, using a specific offset,
denoted as α. This process will help to focus on recurring attack patterns, to simplify
the discovery of hidden behavioral trends among the attacks.

3.4.1 Determining the Optimal Offset α

The following graphs illustrate the fluctuations in the average auto-correlation value
of SSH login attempts across different time lags. The data has been resampled at a
minute level. For instance, a lag of 30 in the plots corresponds to a 30-minute time
interval.

Figure 3.18: Lag α in minutes - Azure A

Figure 3.19: Lag α in minutes - Azure B

Fig. 3.18 and 3.19 show that the correlation values peak with lower values of α. As
α increases, the correlation values tend to fluctuate, ultimately converging to zero
when the lag exceeds 600 minutes (10 hours).
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3.4 Autocorrelation Analysis

Figure 3.20: Lag α in minutes - AWS A

Figure 3.21: Lag α in minutes - AWS B

Concerning AWS, we found that similar to Azure, lower values of α result in higher
correlations. However, this phenomenon is less present on AWS B because of the
lower count of attacks observed.

Our findings from both cloud providers led us to select α as 3, which equates to a
time offset of 3 minutes. We based this decision on our results, which revealed a
strong for this specific offset in our study. This suggests that most attacks recur not
hourly or daily, but rather minutely.

This marked interrelation formed the basis of our hypothesis that utilizing the same
time delta for autocorrelations across all SSH metrics would yield valid and reliable
results. Furthermore, this approach simplifies the comprehension of results across
all honeypots.
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3.4 Autocorrelation Analysis

3.4.2 Autocorrelating SSH Metrics: Azure A

Figure 3.22: Login Attempts (SSH)

Figure 3.23: Successful logins (SSH)

The autocorrelation graph shows a significant, abrupt decrease (lasting for 24 hours
from 2023-06-22 at 12:00) in the autocorrelation graphs for both login attempts
and successful login in figures 3.22 and 3.23. This pattern may suggest that an
automated script, which was targeting the honeypot at a regular interval (3 minutes),
unexpectedly stopped operations for roughly a day before resuming its activities.
The more noticeable drop in the autocorrelation graph for successful logins may
be due to the typically lower occurrence of successful logins with respect to total
attempts. Consequently, the temporary halt in the script’s activity has a more
discernible impact on the overall correlation.
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3.4 Autocorrelation Analysis

3.4.3 Autocorrelating SSH Metrics: Azure B

Figure 3.24: Login Attempts (SSH)

Figure 3.25: Successful logins (SSH)

Besides the heightened autocorrelation observed between total login attempts and
successful ones, we identify an intriguing shift in the pattern.
The sudden drop previously observed in Azure A has unexpectedly transformed
into a sharp spike, as shown in Fig. 3.24 and 3.25. This likely indicates that an
automated script temporarily shifted its focus from Azure A to Azure B.
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3.4 Autocorrelation Analysis

3.4.4 Autocorrelating SSH Metrics: AWS A

Figure 3.26: Successful logins (SSH)

Switching the cloud provider from Azure to AWS reveals some intriguing differ-
ences in autocorrelation patterns. For example, the variability in the correlation of
successful logins suggests a more unpredictable pattern in the timing of attacks.

Furthermore, a significant finding emerges: there is an abrupt decline in correlation
on AWS successful logins, as shown in figure 3.26, mirroring similar patterns previ-
ously observed on Azure, even if with a noticeable time lag. These findings further
strengthen the hypothesis that we are dealing with a botnet3 targeting both cloud
providers.

3.4.5 Autocorrelating SSH Metrics: AWS B

Figure 3.27: Login Attempts (SSH)

3A botnet refers to a network of computers infected with malicious software and con-
trolled as a group without the owners’ knowledge, often used for nefarious activities such
as sending spam or conducting distributed denial-of-service attacks.
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3.4 Autocorrelation Analysis

Interestingly, we notice a significant increase in both connections and commands
in Fig. 3.27 and 3.28, suggesting a potential occurrence of an automated attack
executed by a script working periodically. Additionally, we have noticed a repeated
decrease in correlation across multiple instances on both AWS and Azure platforms.
This repeated pattern lends additional support to the hypothesis that the same
botnet targeted all the servers.

Figure 3.28: Commands (SSH)

3.4.6 Autocorrelating SMB Metrics: Azure A

Figure 3.29: Connections (SMB)

We observe a correlation coefficient of roughly 0.6 in figure 3.29. Intriguingly, we also
detect a consistent decrease in correlation, indicating a similar pattern across the
data. This observation prompts us to conjecture that the aforementioned botnet
may not have been confined to SSH attacks but could have also executed SMB
attacks. This implies that the botnet’s activities were not restricted to a single
protocol but spanned multiple attack vectors.
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3.4 Autocorrelation Analysis

Figure 3.30: Connections (SMB)

3.4.7 Autocorrelating SMB Metrics: AWS A

Figure 3.30 shows that in AWS we have a relatively lower correlation level, hovering
in the range of 0.4-0.5. However, on Azure, the previously observed drop in correla-
tion morphs into a spike, indicating a significant shift in SMB attacks from AWS to
Azure. This shift suggests that the same perpetrator or entity behind the attacks
has now targeted AWS B, underscoring their adaptability in choosing and attacking
different server instances.

3.4.8 Inconclusive Correlations

In our analysis, autocorrelations of FTP, SMB, and HTTP protocols did not yield
any useful insights and were therefore omitted.
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3.4 Autocorrelation Analysis

3.4.9 Findings

Autocorrelations were analyzed for different protocols and cloud providers. The cho-
sen value α is the offset in minutes, and correlations were observed with a precision
of 30 seconds.

1. SSH:

• Azure A: Stronger autocorrelation between login attempts and successful
logins than commands. A significant drop in autocorrelation patterns for
24 hours may be due to a script attacking the honeypot.

• Azure B: Similar observations as Azure A, with a spike in autocorrelation
after a previous drop, suggesting that a script temporarily shifted its
focus.

• AWS A: District cloud provider with fluctuations in the autocorrelation
of successful logins, indicating an erratic attack pattern. A sudden drop
in correlation is similar to Azure, indicating the presence of a botnet
across different platforms.

• AWS B: Increased connections and commands, suggesting an automated
attack. Repeated decreases in correlation further support the hypothesis
of a shared botnet across all servers.

2. SMB:

• Azure: Moderate correlation level with a consistent decrease, indicating
possible SMB attacks conducted by the same botnet targeting multiple
protocols.

• AWS: Comparatively lower correlation level, indicating SMB attacks but
with less consistency.

.
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3.5 Temporal Analysis: Findings

In conclusion, this chapter has provided a comprehensive overview of the deployment
and analysis of honeypots in cloud infrastructures, specifically targeting AWS and
Azure. The primary goal was to understand the patterns and tactics of various
attack strategies. The study proposed multiple hypotheses, including Hypothesis
H1 : "No notable temporal dependency can be discerned."

However, analyzing the data collected from the honeypots revealed a clear temporal
dependency in the observed attack patterns. The study found that the frequency
of attacks varied based on the day of the week and the time of the day. Namely
observing that most attacks occur on Mondays. Additionally, the study suggests a
preference for attacks occurring during the attacker’s local nighttime. However, it
is essential to underscore that the automated nature of most cyberattacks implies
that these activities can be executed without specific regard to day or night. This
lack of temporal preference is largely due to the automated systems and scripts that
can initiate attacks at any time. The intricacies of this automated behavior will be
thoroughly examined in Chapter 6.

Therefore, based on the evidence gathered and analyzed in this chapter, Hypothesis
H1 is rejected. The findings clearly indicate that there is a significant temporal
dependency in the attack patterns on the honeypots deployed in the cloud infras-
tructures.
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4 Spatial Analysis: Deciphering the Geographical
Origins of Attacks

4.1 Origins of Cyber Threats: A Closer Look

After understanding when most cyber-attacks occur, the source, or ’from’, of the
attacks becomes an evident subsequent subject of analysis to obtain a deeper un-
derstanding of the attacker’s behavior.

Our research proceeds in steps, initially examining each cloud environment indi-
vidually. Subsequently, we compare these findings to gain fresh perspectives on
cloud-targeted attacks. This enables us to delve into the disparities that might be
unique to different cloud environments.

To increase the granularity of our analysis, we consider that some attackers may
engage in multiple assaults. Thus, an initial investigation based on the overall
number of attacks is followed by a more detailed analysis focused on unique IP
addresses in order to analyze the count of individual attackers rather than the total
number of attacks.

4.1.1 Total attacks - Azure

Figure 4.1: Top 10 Attackers’ countries by percentage - Azure
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4.1 Origins of Cyber Threats: A Closer Look

As shown in figure 4.1 most attackers on Azure are from the United States ( 22.9%)
followed by China (22.8%) and Singapore (13.7%), making Asia the continent from
where most attacks come. Figure 4.2 shows the total attacks from each country, for
a total of over 3 million connections.

Figure 4.2: Top 10 Countries by total attacks- Azure
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4.1 Origins of Cyber Threats: A Closer Look

4.1.2 Total attacks - AWS

Figure 4.3: Top 10 countries by percentage - AWS

Fig. 4.3 shows that for AWS most attacks originate from the United States (23.1%),
trailed by Indonesia (22.4%) and Singapore (19.7%). Asia stands out yet again as
the continent responsible for most of these attacks. Fig. 4.4 presents the aggregate
number of attacks from each country, accounting for almost 1 million connections,
only a third of what was observed with Azure.

Figure 4.4: Top 10 countries by total attacks - AWS
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4.1 Origins of Cyber Threats: A Closer Look

4.1.3 Clouds Compared by IP Count

Figure 4.5: Top 10 countries by IP count - Combined

Analyzing from an IP perspective, we encountered 12,178 unique IP addresses for
AWS and 11,917 for Azure, resulting in a total of 20,250 unique IP addresses (count-
ing only once the common ones) across both platforms. By associating these IP
addresses with their originating countries, we gain valuable insights into the geo-
graphical patterns and differences in attacks across the two platforms. Figure 4.5
shows the top 10 countries by IP count for each cloud provider and for the combined
dataset.

Upon closer examination of the geographical distribution of attackers on each cloud
platform, distinct patterns emerge, as shown in Figure 4.6. Even if the total number
of attacks on Azure is larger than those on AWS, the diversity of actors targeting
AWS is bigger. This indicates that numerous unique sources have attacked AWS.

For AWS, the top three countries with the most IP addresses are the US (3,245),
China (1,308), and India (669). For Azure, the top three countries are the US
(3,251), Singapore (844), and China (695).

Interestingly, each platform has unique countries from which it receives attacks. 15
countries, including the Bahamas, Belize, and Curacao, only appear in the AWS
data. Azure has 16 unique countries, including Burundi, Cape Verde, and Cyprus.

However, there are also commonalities. A total of 126 countries appear in both
the AWS and Azure data, including major countries like the US, China, India,
Singapore, South Korea, Germany, Brazil, Russia, Hong Kong, and the UK.

Additionally, although Indonesia ranked second in the total number of attacks on
AWS, we observed that it accounted for a relatively small proportion of unique
attackers. This suggests that attacks from this country are repeated several times.
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Figure 4.6: Top 10 countries by IP count

4.2 Normalization of Attack Data by Population and Geo-
graphical Area

In the forthcoming analysis, we adjust our data to account for variables such as
population size and geographical area of each country as in other studies [10]. This
data normalization method is crucial in gaining a clearer comprehension of the
distribution pattern of cyber attacks. By incorporating these factors, we ensure
that our interpretation is not skewed by sheer size or population, resulting in both
more precise comparisons, and draw accurate conclusions.

For example, initial data might imply an increased volume of attacks originating
from the United States, a conclusion that could simply reflect the country’s sub-
stantial population and expansive geographic spread. This factor alone may skew
the perceived threat level. By controlling for these aspects, we can more precisely
comprehend the intensity of attacks based on per capita or per square kilometer
calculations, thereby offering a more accurate and nuanced understanding.
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4.2 Normalization of Attack Data by Population and Geographical Area

Figure 4.7: Attacks by Countries Normalized - AWS

In Fig. 4.7 and 4.8, the variable R denotes the ratio of attacks originating from a
specific country to the total number of attacks from all countries. This ratio indicates
each country’s relative contribution to the overall attack volume. The values "R
per GDP" and "R per Population" serve to normalize R by considering a country’s
Gross Domestic Product (GDP) and population size, respectively. These normalized
metrics yield insights into the intensity of attacks in relation to a country’s economic
output and population. Specifically, a high "R per GDP" value implies a substantial
volume of attacks compared to the nation’s economic scale, while a high "R per
Population" value points to a large number of attacks in proportion to its populace.

Figure 4.8: Attacks by Countries Normalized - Azure

Our data indicate that countries like the United States and China bear the brunt of
the highest number of attacks across AWS and Azure platforms. However, upon nor-
malizing GDP and population, smaller nations such as Singapore and Hong Kong ex-
hibit a heightened intensity of attacks. Specifically, Indonesia and Singapore emerge
prominently within the AWS environment when considering the number of attacks
relative to GDP. Simultaneously, Singapore and Hong Kong are noteworthy when
we evaluate attacks in relation to population size. Meanwhile, within the Azure
environment, Singapore and Hong Kong present the highest frequency of attacks
when analyzed in terms of GDP and population size.
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4.3 Autonomous Systems: Exploring Attacks’ Genesis

An Autonomous System (AS) can be described as a network of interconnected IP
routing prefixes under the authority of one or more network operators, all represent-
ing a single administrative entity or domain. It presents a cohesive and precisely
defined routing policy for the Internet.

To deepen our comprehension of the spatial distribution of attacks, we implement
an analytical evaluation of the AS associated with each aggressor for both cloud
service providers leveraging MaxMind’s AS Database [20]. Our aim is to compare
the emergent data, thereby revealing potential correlations or deviations.

Figure 4.9: AS distribution - Azure

On Azure, DigitalOcean’s prominence is observed. ASNs corresponding to Google
Cloud Platform and Tencent also feature among the top ASNs, indicating that most
attackers use cloud services to carry out attacks. ASNs associated with regional
ISPs such as Korea Telecom and international cloud service providers like Alibaba
are also common, emphasizing the widespread usage of these services. Interestingly,
some ASNs like CLOUDFLARENET and MICROSOFT-CORP-MSN-AS-BLOCK
are not prominent in the AWS environment in fig. 4.10, appear within the top ASNs
for Azure, suggesting unique interaction patterns within the Azure environment.
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4.3 Autonomous Systems: Exploring Attacks’ Genesis

Figure 4.10: AS distribution - AWS

On AWS, the DigitalOcean AS emerges as the most common, potentially indicat-
ing that traffic in this environment frequently originates from, or is routed through
DigitalOcean-hosted infrastructure. Furthermore, technology giants’ presence, such
as Google Cloud Platform and Tencent, is conspicuous, suggesting their infrastruc-
tures are recurrently used for AWS honeypot interactions.
Regional ISPs like Korea Telecom and international cloud providers like Alibaba
also feature within the top ASNs. However, certain ASNs like CHINA UNICOM
China169 Backbone and Clouvider Limited, which are not prominent in the Azure
environment, appear within the top ASNs for AWS. This suggests that there are
some patterns unique to the AWS environment.

Figure 4.11: AS distribution for both clouds

When considering the combined dataset from both the AWS and Azure environ-
ments, DigitalOcean remains the most common ASN, implying its substantial role
in the traffic observed across both environments. The frequent appearance of ASNs
corresponding to Google Cloud Platform and Tencent highlights their widespread
use in both environments. The presence of ASNs linked to regional ISPs like Ko-
rea Telecom and international cloud service providers like Alibaba underscores the
global and distributed nature of the analyzed traffic.
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4.4 Spatial Analysis: Findings

Our analysis of cyber threats originating from various geographical regions and their
correlation with different cloud environments offers critical insights. We observed
that the United States and China are the primary sources of attacks on both AWS
and Azure platforms. When normalized for GDP and population, smaller nations
like Singapore and Hong Kong displayed an unexpectedly high intensity of attacks,
indicating a disproportionate cyber threat considering their size and economic scale.

Furthermore, examining the Autonomous System (AS) associated with each attacker
revealed distinct patterns across the two cloud platforms. While DigitalOcean was
the most common AS for both AWS and Azure, certain AS showed a pronounced
association with specific cloud environments. For instance, CHINA UNICOM,
China169, and Clouvider Limited were mostly linked to AWS, whereas CLOUD-
FLARENET and MICROSOFT were more commonly associated with Azure. Ac-
cording to our findings, the distribution of Autonomous Systems is not uniform
across different cloud providers. This clearly contradicts Hypothesis H3.1, which as-
sumes an even distribution of Autonomous Systems across cloud platforms. There-
fore, we reject Hypothesis H3.1.

Our results confirm that it’s clear that geographical origin does significantly influ-
ence the distribution of threats. This evidence contradicts the assertion made in
Hypothesis H2, which assumes that there is no dependency on spatial factors for
the occurrence of attacks. Consequently, we reject Hypothesis H2.
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5 Protocol-Specific Analysis

5.1 Most attacked services: Cloud Providers Compared

Now, let’s delve into the distribution of attacks across different protocols on each
cloud. Gaining insights into which protocol faces the highest number of attacks
can be crucial in identifying the security measures implemented by these service
providers.

As previously noted, two honeypots were deployed on each cloud provider, one of
which supported protocols other than SSH. While it might initially seem insignificant
to compare SSH results with those of other protocols, because SSH was supported
by all honeypots, it is still meaningful to compare the proportions of attacks on each
protocol between the different cloud providers. This comparison can yield several
insights into each provider’s security landscape, as we will explore shortly.

Figure 5.1: Azure’s most attacked protocols distribution

Figure 5.2: AWS’s most attacked protocols distribution
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5.1 Most attacked services: Cloud Providers Compared

The data in Fig. 5.1 and 5.2 reveal distinct patterns in attack targets for Azure and
AWS. Most attacks on Azure are primarily focused on SSH, while AWS experiences
a marginally higher frequency of SMB attacks than SSH attacks.

This notable difference suggests the presence of robust security measures in Azure,
which effectively deter a significant proportion of adversarial traffic. Interestingly,
this trend contradicts the expectation that Azure, a Microsoft product, would endure
more SMB attacks because SMB is mostly associated with Windows systems.

This leads us to assume that Azure’s firewalls may be particularly calibrated to
block SMB connections due to their close association with Windows, while AWS’s
firewalls may be more proficient at filtering out SSH connections than SMB ones.

Findings

These observations shows a significant dependency on the type of attacked proto-
col. Therefore, we reject hypothesis H3, which initially suggested a lack of such
dependency.

Chapter 8 will comprehensively analyze the varying attack patterns observed for
each protocol on individual providers.
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6 Attacker Profiling

To better understand the diverse nature of attackers, we have established various
categories that capture distinct attack patterns. This classification extends beyond
the scope of Agrawal’s 2022 study [21], which focused on the number of targeted
honeypots and the involved services. Our methodology also incorporates the count
of cloud providers targeted by each attacker, thus offering a more comprehensive
view of their behavior.

6.1 Defining Attackers’ Profiles

1. Singular Cloud Strike - Attacks only one honeypot and only one service
within one cloud provider (CP = 1, H = 1, S = 1)

2. Solo Cloud Intruder - Attacks only one honeypot and more than one service
within one cloud provider (CP = 1, H = 1, S > 1)

3. Single-Provider Cloud Blitz - Attacks only one cloud provider and more
than one honeypot and service (CP = 1, H > 1, S > 1)

4. Multi-Target Cloud Assault - Attacks more than one honeypot and only
one service per honeypot within one cloud provider (CP = 1, H > 1, S = 1)

5. Rogue Cloud Invasion - Attacks more than one cloud provider and more
than one service per cloud provider (CP > 1, H = 1, S > 1)

6. Multi-Provider Cloud Raid - Attacks more than one cloud provider and
more than one honeypot per provider, and only one service per honeypot (CP
> 1, H > 1, S = 1)

7. Total Cloud Onslaught - Attacks more than one cloud provider and more
than one honeypot per provider, and more than one service per honeypot (CP
> 1, H > 1, S > 1)
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6.1 Defining Attackers’ Profiles

Categories Distribution - Total

Figure 6.1: Number of attackers by category

Table 2: Distribution of Total Attacks
Profile Percentage
“Singular Cloud Strike” 67.2%
“Multi-Provider Cloud Raid” 29.8%
“Solo Cloud Intruder” 1.2%
“Rogue Cloud Invasion” 1.1%
“Multi-Target Cloud Assault” 0.7%
“Total Cloud Onslaught” 0.01%
“Single-Provider Cloud Blitz” 0.004%

We initiate our analysis by examining the distribution of attackers’ categories across
both cloud providers. in Figure 6.1 and Table 2. Notably, 67.2% of attackers are
directed toward a single cloud and service, while a significant 29.8% of attackers
extend their activities to both clouds, targeting more than one honeypot within
each provider. While the other categories are only a small fraction of the total
attackers, their importance is foundational, as they represent the most powerful and
dangerous attackers.
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6.1 Defining Attackers’ Profiles

Distribution - Azure

Figure 6.2: Number of attackers by category - Azure

Table 3: Distribution of Azure Attacks
Profile Percentage
“Singular Cloud Strike” 66.7%
“Multi-Provider Cloud Raid” 30.6%
“Solo Cloud Intruder” 0.9%
“Rogue Cloud Invasion” 1.1%
“Multi-Target Cloud Assault” 1.1%
“Total Cloud Onslaught” 0.02%
“Single-Provider Cloud Blitz” 0.02%

The distribution of attackers on Azure, as in Figure 6.2 and detailed in the corre-
sponding table, shows a significant majority (66.7%) of the attackers are classified
as “Singular Cloud Strike”. This category includes attackers who have targeted a
single cloud provider and have restricted their activities to a single honeypot and
service.

Moreover, a notable proportion (30.6%) of attackers fall under the “Multi-Provider
Cloud Raid” category, showing that these attackers have launched assaults on mul-
tiple cloud providers.

Only a small fraction of attackers are classified as Solo Cloud Intruder” (0.9%),
Rogue Cloud Invasion” (1.1%), Multi-Target Cloud Assault” (1.1%), Total Cloud
Onslaught” (0.02%), and “Single-Provider Cloud Blitz” (0.02%).
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6.1 Defining Attackers’ Profiles

Categories Distribution - AWS

Figure 6.3: Number of attackers by category -AWS

Table 4: Distribution of AWS Attacks
Attack Type Percentage of

Attacks
“Singular Cloud Strike” 67.8%
“Multi-Provider Cloud Raid” 30.0%
“Solo Cloud Intruder” 1.1%
“Rogue Cloud Invasion” 0.9%
“Multi-Target Cloud Assault” 0.2%
“Total Cloud Onslaught” 0.01%
“Single-Provider Cloud Blitz” 0%

Similar to Azure, Fig. 6.3 shows the distribution of attacks on AWS, with a signifi-
cant majority (67.8%) classified as "Singular Cloud Strike".

The "Multi-Provider Cloud Raid" profile also represents a significant proportion
(30.0%) of AWS attackers. This shows that several attackers target more than one
cloud provider.

The remaining categories, including "Solo Cloud Intruder" (1.1%), "Rogue Cloud
Invasion" (0.9%), and "Multi-Target Cloud Assault" (0.2%), make up only a small
fraction of AWS attacks. Interestingly, the "Total Cloud Onslaught" profile is even
smaller (0.01%), and the "Single-Provider Cloud Blitz" profile was not found in
AWS.
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6.1 Defining Attackers’ Profiles

Findings

On both cloud providers, 67% of attackers, target a single honeypot and restrict their
focus to one service within a singular cloud provider. However, a significant minority,
around 30%, shows more diverse strategies, attacking multiple cloud providers and
honeypots within each provider.

The 0.1% of the attacks show an even more extensive reach, attacking multiple cloud
providers, multiple honeypots within each provider, and multiple services. This level
of multi-vector attack was used by only two identified attackers - one originating
from Hong Kong and the other from China.

As a result of this analysis, hypothesis H5, which assumes that attackers can be
classified by their behavior, has been confirmed.
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6.2 Skill and Strategy: Run Commands

6.2 Skill and Strategy: Run Commands

In this section, we aim to analyze the attackers’ tactics by examining the most
frequent commands for both cloud platforms and then comparing the results.

6.2.1 Commands Timing and Origins

Figure 6.4: Distribution of commands over time

Figure 6.5: Distribution of commands by country

As expected, the United States and Singapore lead in executing the most commands
and carrying out the highest number of attacks. Fig.6.4 shows a noticeable decline
in overall commands towards the end of the week.
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6.2 Skill and Strategy: Run Commands

Figure 6.6: Distribution of commands over time - Azure

Figure 6.7: Distribution of commands by country - Azure

The Azure patterns align with the overall results observed previously, which is to
be expected due to the higher number of attacks targeted toward this provider.
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6.2 Skill and Strategy: Run Commands

Figure 6.8: Distribution of commands over time - AWS

Figure 6.9: Distribution of commands by country - AWS

Nevertheless, we observe a distinct trend on AWS. The number of executed com-
mands dramatically increases, marking a stark contrast to the plummeting numbers
on Azure. Furthermore, Indonesia now emerges as the predominant source of most
commands. This is consistent with the findings of our previous analysis that con-
cluded Indonesia has repeatedly been targeting AWS, most likely with a series of
commands.
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6.2.2 Commands Categories

Similar to the methodology used for attackers’ categorization, we have systematically
sorted a total of 395,753 commands into various categories. This comprehensive
classification not only presents an organized overview of the commands but also
provides an insightful understanding of the attacker’s intentions.

Figure 6.10: Commands Categories

As shown in Fig. 6.10, most of the commands fall within the SSH Manipulation
category, indicating that compromising the SSH service is a primary objective for
attacks.
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6.2 Skill and Strategy: Run Commands

We shall now examine each cloud provider individually to understand the differences

Figure 6.11: Commands Categories - Azure

Figure 6.12: Command Categories - AWS

Fig. 6.11 and 6.12 presents the distribution of command categories on Azure and
AWS platforms respectively. A notable 82.67% of commands on Azure fall within the
SSH manipulation category, in contrast to AWS, where this category only accounts
for 53.7%. Interestingly, the proportion of commands classified as information gath-
ering is substantially higher on AWS (30.27%), than in Azure (8.13%). This pattern
suggests that attackers on AWS are more prone to seek information about the ma-
chine than on Azure.. Additionally, it is worth mentioning that other categories
like Malware Download, File Operation, Text Processing, System Modification, and
Process Management make up a minor percentage of the total commands on both
platforms.
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6.3 Unveiling Linux’s Role in Cyber Attacks

In order to shed light on Linux’s function in cyber incidents, it is necessary to first
position Linux within the larger device landscape by comparing its adoption rate
with that of Windows and macOS. Examining relevant data provides a fundamental
perspective on Linux’s role in this context.

Linux’s footprint in the desktop/laptop operating system market is smaller compared
to Windows and macOS. According to global statistics provided Windows is leading
this segment, covering approximately 68.15% of the market share in 2023. MacOS
followed next with about 21.38%, while Linux constituted a mere 3.08% [22].

However, interpreting these figures as indicative of Linux’s minimal presence would
be a gross oversimplification. Indeed, Linux’s sphere of influence extends signifi-
cantly beyond personal computing. It is the underlying architecture for most server
environments and a notable percentage of all Internet of Things (IoT) devices. As
a matter of fact, a report from Eclipse Foundation in 2020 has shown that 43% of
IoT developers prefer Linux for their IoT devices [23].

This predominance is largely attributed to its open-source nature, flexibility, and
robust security features. Yet, these qualities have also made Linux a significant
player in the cyber threat landscape. This is particularly true given that many
exploitation tools have been exclusively developed for this platform.

6.4 OS Detection: SSH Clients

In order to detect the attacker’s OS, the SSH client version was used. As a matter of
fact, the SSH client versions can provide valuable insights into the OS platforms used
to attack the honeypot. To achieve this, a classification approach was implemented
to categorize SSH client versions into different operating systems as shown in 6.13.
The approach involved examining specific keywords within the client versions’ strings
and associating them with either Windows or Linux OS. If the keywords matched,
the SSH clients were classified accordingly. Specifically, SSH client strings that
included OpenSSH, libSSH, or Go were classified as Linux, which included PuttY,
and Windows. The clients were classified as ‘Unknown’ if no matches were found.

Figure 6.13 presents the analysis previously mentioned. The SSH clients are sorted in
descending order based on the frequency of usage, making libssh the most frequently
used. This substantial usage of libssh clients could be due to automated scripts
operating as part of a larger botnet structure.
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Figure 6.13: OS associated with each SSH Client

Figure 6.14: SSH client strings injections

Throughout this analysis, we noted intriguing SSH client names, including unusual
instances like GET/ HTTP/1.1. We uncovered additional instances exhibiting sim-
ilar patterns, as illustrated in Fig. 6.14. These unconventional client names most
likely are injection attempts forged by attackers. Since these strings do not corre-
spond to any SSH client they do not convey information about the attacker’s OS.
Thus, they have been categorized as unknown.

Particularly noteworthy is the instance GET /freepbx/recordings/index.php HTTP/1.1.
This instance refers to a vulnerability in FreePBX, a communication software, which
bypasses authentication [24]. Some other instances within the table seem to signify
encrypted network traffic, possibly TLS. The rationale for using HTTP requests as
SSH clients remains uncertain.

Our attention was also drawn to strings like xe0Cookie: mstshash=Administ [25],

57



6.5 OS Detection: Clouds compared

and others where ’Administ’ is supplanted by different strings. These attacks were
recognized as RDP BlueKeep Denial of Service [26] attacks and were only detected
on Azure.

6.5 OS Detection: Clouds compared

Figure 6.15: OS Fingerprint distribution

Fig. 6.15 shows that AWS mostly targets Linux nodes, while Azure shows a minor
involvement with Windows nodes (2.9%). Furthermore, we observe a notable pres-
ence of unidentified clients, corresponding to the injection of strings we previously
encountered.

Findings

Our analysis clearly shows Linux’s significant role in the attack landscape; thus,
hypothesis H4 is accepted. Furthermore, we found that Azure has been targeted
by more Windows machines than AWS, suggesting that AWS may have additional
security layers against SSH client injection strings.
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6.6 Investigating the Role of TOR Nodes

The Onion Router (Tor) enables anonymous communication by directing internet
traffic through a worldwide network of servers. While it is a vital tool for preserving
privacy and avoiding censorship, it can also be exploited by malicious actors to hide
their identities and location. Fig. 6.16 shows that TOR nodes constitute a minimal

Figure 6.16: TOR nodes per Cloud

number of attackers. Out of a total of 20,250 attackers, only 20 were identified
as using the TOR network. Interestingly, Azure had twice the number of TOR
attackers compared to AWS. Several factors could contribute to this discrepancy,
including varying security measures implemented on AWS and Azure platforms.

Findings

Based on the data, we can conclude that hypothesis H 5.3 is proven as attacks
originating from TOR nodes are not statistically significant, accounting for only
0.17% of attackers.
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6.7 Skill and Strategy: Attack Duration and Attacker Ex-
pertise

One useful approach to classify attacks considers whether they are carried out man-
ually or using automated tools. In order to distinguish between these two categories
the duration of the SSH connection can be used. In this study, we will say that an
attack is automatic if it lasts less than 2 minutes. If it lasts longer, we will call it a
manual attack.

Automated Attacks

These attacks utilize automated scripts and botnets. These tools attack a number
of targets simultaneously. These attacks are typically quick and tend to result in a
shorter connection.

Manual Attacks

On the other hand, manual attacks are usually more sophisticated than automated
ones. They manually connect to the system and explore the environment trying
different attack vectors and adapting their strategies based on the responses from
the system. This process is slower and results in a longer connection.

Figure 6.17: Attack categorization (using SSH Session Duration as discriminator)

Fig. 6.17 shows the distribution of the two types of attacks: automated and man-
ual. The overwhelming majority (98.5%) of attacks are automated, while manual
attacks constitute a small fraction (1.5%). This suggests that most attackers rely
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Figure 6.18: SSH Session duration distribution

on automated tools or scripts to carry out their attacks, which could be due to the
operation of botnets.

As can be seen in Fig. 6.18, most attacks are characterized by very short session
times. This strongly indicates that these attacks are likely carried out automatically,
by scripts. However, there are also instances of longer session times, as confirmed
by the findings presented in the pie chart above.

Figure 6.19: Run commands over time based on Attacker’s category
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In Figure 6.19, we can see that the number of commands executed in automated ones
is higher than in manual attacks. There are some noticeable spikes in the number
of automated commands, which could represent periods of increased attack activity.

Interestingly, as shown in Figure 6.19, the frequency of manual attacks—the dark-
green segment at the bottom—appears relatively stable over time, with no fluc-
tuations apart from an isolated spike on June 25th. This pattern could indicate
that despite their smaller numbers, manual attackers have kept levels of activity
throughout the analyzed period.

Figure 6.20: Heat-map of attacks over time

This heat map shows the number of attacks by day of the week and hour of the day
and it reveals some interesting patterns. For instance, there appears to be a higher
number of attacks at the beginning of each hour, as indicated by the darker vertical
bands. These patterns could reflect the behavior of the attackers and the automated
tools they use. For example, the concentration of attacks at the beginning of each
hour could be due to automated scripts that are scheduled to run on the hour.
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Figure 6.21: Top 5 automated attacks commands

Figure 6.21 shows the most common commands executed during automated attacks.
The command cd ; chattr -ia .ssh; lockr -ia .ssh is the most frequently used, appear-
ing more than 3000 times. It removes the immutable and append-only attributes
from the .ssh directory, allowing the attacker to modify or delete SSH keys. The
longest one involves downloading malware from an external server.

The prevalence of these commands in automated attacks suggests that many attack-
ers are using similar tools or scripts.

Figure 6.22: Top 5 manual attacks commands

Figure 6.22 shows the most common commands executed during manual attacks.
The most frequent commands are those that retrieve system information (uname
-a;nproc, uname -a) or download and execute scripts from external servers.
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Findings

Our analysis found a significant difference in the connection durations between auto-
mated and manual attacks. Most automated attacks lasted less than a few seconds,
while manual attacks could last several minutes or more. This finding aligns with
our understanding of the behaviors of these two types of attackers.

In light of our findings, it’s evident that the skill levels and resources needed for
automated and manual attacks are notably different. Automated attacks mostly
rely on a set of shared commands and may not need advanced skills aiming to
attack as many systems as possible.

On the other hand, manual attackers, who have extended connections and a diverse
repertoire of commands, appear more adaptable and tactical. These attackers may
potentially modify their strategies based on the unique characteristics of the system
they target, exhibiting a higher degree of skill and strategic planning.

These findings support hypotheses H5.1 and H5.2, showing that their skill level
and available resources significantly influence the attackers’ patterns. For example,
the availability of a botnet could simplify the execution of widespread automated
attacks.
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7 Unraveling Discovered Malware: Origins and Types

7.1 Malware Origins Analysis (SSH)

In this section, we delve into the geographical origins of malware Transfers (File
uploads and Downloads) observed on our SSH honeypots by analyzing the source
IPs of attackers. This investigation can provide us with insights into the most active
regions from where malware attacks originate. We utilized VirusTotal to analyze
the malware samples [27].

SSH Malware Uploads vs Malware Downloads

In this context, the term Malware Upload refers to the execution of SSH com-
mands that upload malware, generally with the intent of hijacking the SSH-authorized
keys. Possessing these keys provides the attacker with a backdoor to the system fa-
cilitating their reentry into the compromised system.
In contrast, Malware Downloads directly downloads malware onto the machine
through web requests using ’wget ’ commands and ’curls’ from the attackers. The
malevolent files are downloaded from an external server, usually under the attacker’s
control.

Figure 7.1: Number of Malware Transfers (Uploads & Downloads) by Country and
honeypots’ Data Center

The above bar chart shows the number of malware transfers organized on the ge-
ographical origins of the attackers, inferred by their IP addresses. Most of these
transfers are initiated by United States-based IPs, followed by those originating
from Singapore and Germany.

The relatively high frequency of malware transfers attributed to German-originating
attacks may be explained by their geographical proximity to the Netherlands, where
the honeypots are located. This geographical proximity may enhance the interac-
tion between German attackers and these honeypots, therefore leading to an above-
average rate of malware downloads from this region.
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7.2 Malware Uploads Analysis

Figure 7.2: Number of Malware uploads over time

As we can observe from Fig. 7.2, the number of malware uploaded is higher in the
case of the Azure honeypots. We can observe the following:

• 19/06 was the day with the most malware uploads on the AWS honeypots.

• On 21/06, there was an increase in malware uploads detected in the AWS
honeypots, indicating a bounce-back trend. This day also had the most mal-
ware uploads on Azure’s honeypots. This similar trend in both data centers
probably suggests the existence of a common attack.

• On 24/06 there is a steep descent in malware uploads on both the datacenter
suggesting that on this Saturday, automated attackers ceased activity
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Let’s now briefly focus on the principal aim of these uploads which is to hijack the
SSH-authorized keys:

Interestingly, most (over 95%) of these malware uploads across both cloud providers
upload the same SSH key. The global pattern observed in Fig. 7.3 suggests the
existence of a botnet or multiple attack vectors that scan the network. Upon iden-
tifying a vulnerable (or brute-force susceptible) SSH client, the attacker attempts
to incorporate the machine into the existing botnet. The recurrent use of the same
SSH keys supports this hypothesis.

Figure 7.3: Top 5 Countries of Common Backdoor Key Uploads

Our previous analysis observed a pervasive pattern of the SSH backdoor key being
uploaded to both AWS and Azure data centers. This key was not confined to any
specific geographic location, but rather, was detected across numerous countries
worldwide.

This global distribution, coupled with the consistent uploads to two distinct data
centers, may imply the existence of a coordinated operation on a global scale. A
plausible interpretation of this phenomenon could be the activities of a widespread
botnet. Alternatively, this might indicate a common attack vector being exploited
by multiple attackers worldwide.

While these interpretations are just our speculations, the data suggests that a co-
ordinated effort is being made to exploit this particular SSH backdoor key across
various geographic locations and infrastructure providers.
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Figure 7.4: Common SSH backdoor key Correlation between the two data centers

In extending our analysis of the SSH backdoor key’s uploads across AWS and Azure
honeypots, we focus on the correlation between these uploads over our week-time
data. This strong correlation, especially considering the global distribution of these
uploads, further confirms the hypothesis of a coordinated operation. The upload
patterns hint at a network of actors, such as a globally distributed botnet, system-
atically uploading the same SSH backdoor key to these data centers.
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7.3 Malware Downloads Analysis

Azure

Figure 7.5: Percentage of Malware Types

Figure 7.6: Distribution of Malware Types

These charts provide an overview of the types of malware Downloaded in the SSH
honeypots by the attackers (from their servers), sorted by the download count.
The Linux/Mirai.Gen (with 2500 copies), Linux/Malware Downloader (with 2000
copies), and Perl/Shellbot.NAT trojan (with 1500 copies) types, indicating that they
are the most commonly downloaded malware types. In particular, Linux/Mirai.Gen
shows the highest values (in copies downloaded), suggesting that this type of mal-
ware is a significant threat.

In conclusion, examining the data from our SSH Azure honeypots has shed light on
several key findings. This study has suggested a possible link between geographical
location and the cyber threats experienced. We will be conducting an analysis
of this finding in Chapter 9. Additionally, our previous sections have identified a
significant presence of libssh fingerprints in our dataset. This observation suggests
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the existence of several custom attack scripts, with a substantial fraction possibly
originating from Mirai or similar botnets.

AWS

Figure 7.7: Distribution of Malware Types in Percentage

Figure 7.8: Distribution of Malware Types by Download Count

Fig. 7.8 confirms the existence of a higher volume of Malware Downloads on Azure
than AWS. This suggests that attacks targeting AWS over SSH are not only fewer
in number, as indicated by previous analyses but also download malicious software
with a much lower frequency than those targeting Azure. Note: ND in the figure
refers to malware instances whose types were not determined.

Interestingly, despite the lower number of malware downloads on AWS, there is a
strong correlation between SSH key uploads in both data centers. This could suggest
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that AWS may adopt more robust firewall protections against malicious downloads,
leading to fewer successful malware downloads.
An alternative explanation could be that attackers using malware downloads prefer
Azure servers.
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7.4 Exploring Malware Hosting

Malware hosting refers to the servers or infrastructure attackers use to store and
distribute malicious software. These servers are accessed via command-line inter-
faces such as SSH, where specific commands are used to download the malware onto
target systems.

Due to the high volume of malware downloads observed on Azure’s honeypots and
the comparatively insignificant data obtained from AWS honeypots, as observed in
the previous sub-chapter, we have narrowed our focus exclusively to Azure’s malware
downloads dataset. This approach ensures that our analysis remains robust, drawing
from a richer data set, and provides more meaningful insights into the malware-
hosting landscape.

Our analysis focuses on the origins of the malware servers which have been used
to download the malware in the honeypots. The United States and China will
emerge as significant contributors, hosting most of the malware. The distribution
of malware types across these countries provides a unique insight into the prevalent
threats in these regions.

Figure 7.9: Malware Types for Each Hosting Country by Download Count (Azure)

Fig. 7.9 offers a breakdown of malware types for each originating server’s country.
Each color signifies a different type of malware.
From United States (US) Servers, we observe an important prevalence of Linux/Mirai.Gen
and Linux/Malware Downloader malware types, where Linux/Mirai.Gen is domi-
nant. These two types are the majority of malware downloads from the US, showing
the country’s role in the propagation of these specific malware types.

In contrast, the malware downloads from China’s (CN) servers are mostly Perl/Shellbot.NAT
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trojan and Linux/Miner, with Perl/Shellbot.NAT trojan is the predominant type.
This suggests that this type of malware is particularly prevalent in China.

Figure 7.10: Malware Downloads Across Attackers’ Database locations

The United States (US) and China (CN) stand out as the primary sources for mal-
ware hosting. The United States, in particular, accounts for most file downloads,
again showing its dominant position in the malware landscape.

Findings

Our investigation, focused on Azure’s honeypot malware downloads due to its high
volume, provides significant insights.
The analysis of Azure’s honeypot malware downloads highlights the fundamental
role of the United States and China as significant sources of such malware. In
particular, the United States is the leading contributor, accounting for most mal-
ware downloads. It is notable that specific types of malware, namely Linux/Mirai.
Gen and Linux/Malware Downloader are mostly associated with the United States.
In contrast, China shows a higher prevalence of Perl/Shellbot.NAT trojan and
Linux/Miner.
The distribution of malware downloads across these countries provides a perspec-
tive into the regional threat landscape. It underscores the varying threat profiles
of different regions, emphasizing the need for region-specific malware detection and
prevention strategies.
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7.5 Malware Origins Analysis (SMB)

It was apparent that SMB honeypots presented an interesting opportunity for po-
tential attackers. From their perspective, they encountered an SMB file server ac-
commodating not only the latest versions of Samba, namely SMBv2, and SMBv3,
but also the more vulnerable SMBv1. This older version has been a frequent target
of attacks, particularly against outdated Microsoft Windows and Windows Server
systems. Given this context, one would expect to find many Windows-specific mal-
ware.

As stated earlier, half of the deployed honeypots were designed to support the SMB
protocol. While the number of honeypots might seem significant at first glance, we
argue that its relevance is minimal in this context. Instead of relying on raw numbers,
we opt for a more proportion-focused approach, utilizing graphical representations
for better clarity.

Specifically, we aim to carry out an analysis focusing on the geographical distribu-
tion of originating IP addresses to establish a meaningful comparison between SSH
and SMB attackers. This method allows us to visualize and better understand the
proportional differences and similarities between these two types of attacks.

Azure

Figure 7.11: Number of Malware Uploads by Country - Azure (SMB)
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The chart in Fig. 7.11 provides insight into the top 10 countries accounting for the
most malware uploads through the SMB protocol. A comparison of this data with
the SSH Malware Transfers data reveals a fundamental difference in the primary
sources of these attacks.

Although SSH malware transfers displayed the United States, Singapore, and China
as the main origins, SMB data, on the other hand, introduces an entirely different
set of countries into the equation. It is worth noting that countries like India and
Russia emerge as prominent contributors to SMB malware uploads.

This variation in the data supports the idea that the geographical origins of attacks
can significantly differ based on the protocol that is being exploited.

Figure 7.12: Number of unique Malware Types by Top 10 Countries (SMB - Azure)

Fig. 7.12 shows the distribution of unique malware types, divided by the top 10
countries of origin (from attackers who uploaded the malware). Notably, each coun-
try shows at least three distinct malware types, with Indonesia presenting the highest
variety. This pattern mirrors the distribution observed in the total SMB malware
upload count, with approximately 60 instances originating from India, implying an
average ratio of roughly 12 iterations per malware type. This trend, even if less
pronounced, is also present in the same data for the other countries.
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Figure 7.13: Top 10 Malware Types distributed by uploaded variants - Azure (SMB)

The above bar chart shows the 10 most prevalent types of SMB-uploaded malware.
Each type can be associated with numerous uploads, but is rather interesting that
the first nine malware types are either variants or slight modifications of the Wan-
naCry malware. This is coherent with our anticipatory assumption concerning the
potential extensive exploitation of SMBv1, which we will explore in a subsequent
discussion.

Figure 7.14: Heatmap of Malware Types by country - Azure (SMB)

The preceding heatmap shows the correlation between the top 10 malware types and
their countries of origin. This visual representation simplifies an understanding of
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the geographical distribution of each malware type. India, in particular, exhibits a
darker hue, indicative of a higher count in malware uploads. Specifically, the Wan-
naCry variant W32.FarmVT.HyperOf.trojan appears to have a significant presence
in India, highlighting the country’s prominent role in this context.

AWS

Figure 7.15: Number of Malware Uploads by country - AWS (SMB)

The bar chart in Fig. 7.15 indicates that India is the leading country in terms
of malware uploads, with the highest figure exceeding 80 copies of malware. This
pattern is also replicated in the Azure datacenter’s honeypot that records SMB
activity, which registered the most malware downloads over SMB originating from
India, tallying up to 60 instances.

The following countries, ranked by the number of malware downloads over SMB,
present a varied picture compared to the data observed in the Azure data center.
While the second most active country in Azure’s case was Russia, the AWS honeypot
places Vietnam in this position, with more SMB malware uploads than previous
observations.

Russia, nonetheless, remains a prominent player in terms of the number of malware
uploaded over SMB, but, with a smaller proportion compared to the leading coun-
tries. Consequently, the analysis generates similar data to that obtained from the
Azure honeypot, implying a certain level of independence in the country of origin
for SMB attackers across the two data centers.

The bar chart in Fig. 7.16 presented above shows the distribution of unique up-
loaded malware variants, divided according to their countries of origin. Notably,
each country has been found to host at least three distinct malware types, with
India showcasing the greatest diversity. This distribution reflects the overall count
of malware uploads, with roughly 82 instances from India, yielding an average of
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Figure 7.16: Number of unique Malware Types by Top 10 Countries - AWS (SMB)

approximately 11.7 instances per malware type.

Upon comparing this data with the statistics from the Azure honeypot, we notice a
shift in the rankings. Vietnam emerges as the second most active country, displacing
Russia from its earlier position. This alteration confirms the observation made in
the previous bar chart, where many SMB malware uploads from Vietnam were wit-
nessed. On the other hand, there is the same observed average number of instances
per malware type (12) originating from India, suggesting common attackers in both
datacenters honeypots.
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Figure 7.17: Top 10 Malware Types distributed by uploaded variants - SMB (AWS)

Looking at the bar chart in Fig. 7.17, we see that a few malware types clearly stand
out. One type is much more common than the others, followed by nine, gradually
becoming less frequent.

Delving further into the specifics, we discern that the most common malware types
are variants or minor modifications of the WannaCry malware. This observation
aligns with our previous supposition concerning the potential exploitation of the
SMBv1 protocol, an aspect that will be examined in further depth in further anal-
yses.

A comparative analysis of the SMB-uploaded malware types prevalent in AWS and
Azure presents intriguing facts. Some malware types appear across both platforms,
suggesting shared threats between the two cloud providers. However, the frequency
of these malware types presents a marked variation, thereby showing distinctive
threat landscapes for AWS and Azure.

Intriguingly, a new malware, W32.FamVT.Pykspa.Trojan, has emerged with multi-
ple versions. This MS-Windows worm, known to propagate via Skype messaging,
mapped drives, and network shares (that uses SMB), carries a backdoor that per-
mits the execution of arbitrary commands by a remote attacker [28].

79



7.5 Malware Origins Analysis (SMB)

Figure 7.18: Heatmap of Malware Types by Country - AWS (SMB)

The heatmap is crucial in linking the emergence of the new malware variant Pykspa
to the increase in attacker activities from Vietnam. The results from the heatmap
show a strong correlation between the appearance of this worm variant and the surge
in attacks from Vietnam, with over 30 copies being downloaded.

Interestingly, the heatmap also reveals that attackers from Indonesia and India have
shown engagement with this particular malware family. Moreover, the presence of
the WannaCry variant, W32.FamVT.HyperiOF.Trojan, which was commonly ob-
served in the Azure data, is also reflected in the AWS honeypot data. This observa-
tion suggests a substantial overlap in the threat landscapes of the two major cloud
platforms, with the addition of the new Pykspa malware in the AWS environment.
While not robust, this observed trend could indicate stronger security measures
being employed against SMB attacks within the Azure environment. Since both
Azure and SMB are Microsoft products, there may be a natural focus on protecting
against these types of intrusions. Alternatively, this trend might simply reflect a
greater predilection among attackers for targeting AWS machines.
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7.6 Unraveling Discovered Malware: Findings

The study reveals significant insights into malware attacks’ origins, types, and ob-
jectives.

The geographical analysis of the malware transfers indicates a global reach, with
significant hotspots including the United States, Singapore, and Hong Kong. Un-
derstanding these origins is an important step in comprehending the extent and
scope of the attackers.

SSH

Regarding attack types, a key finding is the high volume of malware uploads with
the primary objective of hijacking the SSH-authorized keys. This tactic provides
the attacker a backdoor for reentry into the compromised system. The recurrence
of the same SSH keys across several attacks suggests the potential existence of a
botnet or multiple attack vectors scanning for vulnerable SSH clients.

The malware download analysis reveals specific malware types, notably Linux/Mirai.Gen,
Linux/Malware Downloader, and Perl/Shellbot.NAT trojan types are the most com-
mon.

The analysis also points out the prevalence of a common SSH backdoor key across
different countries and infrastructure providers, implying a coordinated operation
possibly involving a globally distributed botnet or multiple actors exploiting a com-
mon attack vector.

Finally, the malware-hosting analysis highlights the United States and China as sig-
nificant contributors, hosting most of the malware downloads. The type of malware
hosted in these countries offers intuitions into the prevalent threats in these regions.

To answer the Hypothesis of type H6 :

• H6: All geographical regions contribute equally to the origins of malware ac-
tivities.

The data collected from honeypots deployed on Azure and AWS contradicts
this hypothesis. The geographical origins of malware attacks show significant
disparities, indicating that all regions do not contribute equally.

• H6.1: The contribution of geographical regions to the origins of SSH malware
attacks is not equal.

The collected data aligns with this hypothesis. Notably, the origins of SSH
malware attacks show significant geographical variations, with the United
States, Singapore, and Germany being particularly active sources.

• H6.2: All geographical regions contribute equally to the origins of malware
uploads.
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The hypothesis is rejected based on the evidence. The data indicates a stark
disparity in the volume of malware uploads from different geographical regions,
with the United States leading in terms of contributions.

• H6.3: The contribution of geographical regions to malware-hosting is not equal.

The data supports this hypothesis. There is a clear difference in the contri-
butions of different regions to malware-hosting, with the United States and
China standing out as major contributors.

• H6.4: The use of a common SSH key across multiple attacks does not suggest
a coordinated operation.

The data contradicts this hypothesis. The recurrent use of the same SSH key
across multiple attacks suggests the possibility of a coordinated operation or
botnet activity.

• H6.5: All types of malware are downloaded with equal frequency.

The hypothesis is rejected based on the evidence. The data clearly demon-
strates that different malware types are downloaded at varying frequencies
with Linux/Mirai.Gen, Linux/Malware Downloader, and Perl/Shellbot.NAT
Trojan is the most prevalent.

SMB

After examining the data from Azure and AWS honeypots, we discern several inter-
esting differences and correlations that explain the SMB threats in these two cloud
platforms.

Prominently, a different malware variant, W32.FamVT.Pykspa.Trojan, makes its
appearance in the AWS data. This worm, known to propagate via various channels
such as mapped drives and network shares (both of them use the SMB protocol),
carries a backdoor that allows the execution of arbitrary commands by a remote
attacker. The appearance of this new malware variant in the AWS environment,
which is absent in the Azure data, presents an intriguing fact to our findings.

Simultaneously, we observe an increasing trend in the number of attacks originating
from Vietnam, particularly involving this new Pykspa malware, as indicated by the
heatmap’s strong correlation. The heatmap also reveals that attackers from Indone-
sia and India are engaging with this particular malware family, further emphasizing
its prevalence.

In contrast, the presence of the WannaCry variant W32.FamVT.HyperiOF.Trojan,
commonly observed in the Azure data, is reflected in the AWS environment. This
overlap suggests a certain level of commonality in the threat landscapes of the two
cloud platforms.
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However, compared to AWS, Azure exhibits a slightly distinct set of countries as the
primary sources of SMB protocol attacks, but countries like India prevail in both
the data centers’ data. A lower count of connections and malware uploads could
indicate stronger security measures on Azure against SMB attacks or, alternatively,
a higher interest among attackers in infiltrating AWS systems via SMB.

Furthermore, the higher frequency of SMB attacks on AWS and the emergence of
the new Pykspa malware could suggest a heightened interest among attackers in
exploiting AWS systems. Yet, it may also be the case that this observed pattern
might simply be a product of chance or a reflection of the larger population of AWS
users.
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8 Attack patterns: Cloud providers compared

In our research, we thoroughly examine correlations between different honeypots
across various cloud service providers and protocols. This approach is aimed at
showing shared attack patterns.

In this particular segment of our study, we employ data points that have been gath-
ered over the defined one-week observation period. The observational period under
consideration extends from midnight on the 19th of June, 2023, stretching right
through the week to the final second of the 26th of June, 2023, at 23:59:59 hours.

This week-long period has been chosen as representative and offers a balanced view
of the regular operations and incidents. It is long enough to capture daily and weekly
patterns yet short enough to avoid the inclusion of potential anomalies that might
occur over longer periods. This timeframe will provide a comprehensive snapshot of
the attack patterns, allowing us to uncover insights and correlations in a controlled
and manageable context.

Note that the initial surge noticed in each graph is attributed to the limited data
points at the onset, not indicative of an actual pattern. As data accumulates,
correlations evolve to be more exact. Thus, our focus lies on the under data-points,
aiming to reveal facts about synchronized attacks or common vulnerabilities.

In this context, the correlation coefficient computed at each data point measures the
degree of association or relationship between different honeypots across the various
honeypot metrics, varying from 0 (no relationship between data points) to 1 (the
data points have equal values).

In conclusion, these correlations have substantial practical implications. They shape
our understanding of threats and attackers.

8.1 Correlation: Different Honeypots, Same Cloud Provider,
Same Metrics

In the context of this research, conducting an exploration of correlations within the
same cloud service providers proves to be useful. By drawing comparisons across
diverse cloud service providers, we stand to discover possibly orchestrated intrusion
patterns. Using a comparative methodology can help reveal recurring vulnerabilities
in these data centers or expose the tactics used by attackers who launch simultaneous
attacks on multiple honeypots.
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8.1.1 Azure

Figure 8.1: Login Attempts (SSH)

Figure 8.2: Successful Logins (SSH)

Interestingly, a distinct step-shaped pattern can be observed in a section of the
correlation graphs (the 24h window starting 2023-06-24 at 12:00), suggesting the
possibility of a coordinated attack between the two honeypots. This observation
raises the hypothesis that a deliberate and synchronized effort might occur in both
systems simultaneously.
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Figure 8.3: File Captures (SSH)

When examining the above correlation graph, a little and not easily identifiable
step-like pattern emerges in a specific area. This pattern might be due to a coordi-
nated attack shared between the two honeypots.

Findings

The analysis of SSH login attempts within two honeypots in the same Azure data
center shows important facts. A step-shaped pattern is discernible in the corre-
lation graph within a specific 24-hour window. This pattern strongly indicates a
coordinated attack on both honeypots, suggesting an attempt to exploit system
vulnerabilities simultaneously.

However, no significant correlation can be established when we focus on SSH com-
mands.

In contrast, the correlation graph of the SSH file captures shows a not very dis-
cernible step-like pattern. Although vague, this could suggest a shared coordinated
attack strategy between both honeypots.
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8.1.2 AWS

Figure 8.4: Login Attempts (SSH)

The correlation graph shows a certain level of correlation, although no distinct
pattern can be discerned. The sudden spike in the graph potentially points out the
beginning of collaborative attacks of attackers facing the two honeypots.

Figure 8.5: Successful logins (SSH)

The correlation graph shows a subtle step-like pattern in a specific area (from 12:00
of the 23-06), introducing uncertainty on a coordinated attack between the two
honeypots.
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Figure 8.6: SSH Commands

Figure 8.7: File Captures (SSH)

It is noteworthy that the correlation graph displays three faint step-like patterns,
suggesting the possibility of three synchronized attacks targeting both honeypots. it
is fundamental to clarify that the low correlation level does not necessarily suggest
that the same attacker targeted the two honeypots. The correlation is computed
on the number of attacks at a specific instance, and there may have been variations
in the total number of attacks between the two honeypots, resulting in a higher
correlation value.
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8.1.3 Findings

During the analysis of different honeypots within the same cloud provider and the
same protocol, the following findings were observed:

Azure (SSH):

• A distinct step-shaped pattern was observed in the correlation graphs for Login
Attempts and Successful Logins, suggesting the possibility of a coordinated
attack between the two honeypots.

• No significant correlation was found in the Commands graph, indicating a lack
of coordinated activity in this aspect.

• In the File Captures graph, a subtle step-like pattern emerged, albeit not easily
identifiable, raising uncertainty abou a planned attack between the honeypots.

AWS (SSH):

• The correlation graphs for Login Attempts showed a certain level of correlation,
although no distinct pattern could be discerned.

• Similar to the Login Attempts, the correlation graph for Successful Logins dis-
played a subtle step-like pattern in a specific area, introducing uncertainty
regarding a coordinated attack.

• No discernible significant correlation was observed in the Commands and File
Captures graphs.

Overall, the findings suggest the possibility of coordinated attacks between honey-
pots within the same cloud provider and protocol. The step-shaped patterns and
correlations indicate synchronized efforts.
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8.2 Correlation: Different Honeypots, Different Cloud Providers,
Same Metrics

Exploring Correlations between providers is a valuable aim of our study. We may
find coordinated attack patterns by comparing patterns across different cloud service
providers. This comparative approach could illuminate systemic weaknesses across
platforms or reveal the tactics of attackers who simultaneously target multiple sys-
tems.

8.2.1 SSH Metrics

Azure A Correlated with AWS A

Figure 8.8: Login Attempts (SSH)

Figure 8.9: Successful Logins (SSH)

The correlation of (SSH) login attempts on two distinct honeypots, each situated in
different data centers is minimal. This indicates that the relationship between the
SSH login attempts on these two honeypots and the successful logins achieved is no-
tably weak. Despite the strong similarity in the data, the correlation is surprisingly
low.
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Azure A Correlated with AWS B

Figure 8.10: Login Attempts (SSH)

Figure 8.11: Successful Logins (SSH)

The correlation of (SSH) login attempts on these two distinct honeypots is minimal.
This indicates that the relationship between the SSH login attempts on these two
honeypots and the successful logins achieved is notably weak. Despite the strong
similarity in the data, the correlation is surprisingly low. This observation is further
corroborated by the high correlation between SSH login attempts and successful
logins on these honeypots.
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Figure 8.12: SSH Commands

Figure 8.13: File Captures (SSH)

The correlation of (SSH) file captures from the two distinct honeypots is negligible.
This suggests that the relationship between the SSH file captures of the two honey-
pots and the SSH commands executed on these systems is markedly weak. Despite
the strong similarity in the data, the correlation is surprisingly low. This assertion is
further substantiated by the high correlation between the executed SSH commands
and the corresponding SSH file captures.

Findings

The analysis of SSH data from these two honeypots, Azure A and AWS B, even
if situated in geographically close data centers, reveals notably weak correlations.
This applies to SSH login attempts, successful logins, executed commands, and
file captures. Despite their similarities, the data from these honeypots behaves
independently. These findings highlight the need for tailored security measures in
these diverse cloud environments.
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Azure B Correlated with AWS B

Figure 8.14: Login Attempts (SSH)

Figure 8.15: Successful Logins (SSH)

The analysis of (SSH) login attempts on the two distinct honeypots presents an in-
teresting dynamic. Initially, the correlation between the login attempts on these two
systems was low; this points out a lack of synchronicity in the attack patterns. How-
ever, as days pass, the correlation coefficient exhibits a fluctuating pattern, slightly
rising, reverting to zero, and then escalating to the previous value. This suggests a
non-linear relationship between the login attempts on the two honeypots, possibly
introducing a new attacker common to the two honeypots.

Simultaneously, a similar trend is observed in the correlation between successful lo-
gins on these honeypots. This parallel rise could point out a shared set of successful
strategies used by attackers across different data centers, despite the initial lack of
correlation.

Furthermore, the marginally higher correlation value between successful logins within
a 24-hour period starting from 23 at 12:00, as compared to SSH login attempts, sug-
gests the possibility of a targeted attack with a higher rate of successful logins. This
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hypothesis is partially supported by the significant correlation observed between
SSH login attempts and successful logins. Another hypothesis emerges from the
lower correlation of login attempts, which may have led to a higher correlation of
successful logins due to the low number of SSH successful logins on both honeypots.

Figure 8.16: SSH Commands

Interestingly, we can observe step-shaped patterns in the correlation graph, which
suggests the possibility of an attacker targeting both honeypots at the same time.
The patterns observed in this graph are similar to the ones observed in the correla-
tion of SSH successful logins; this can be attributed to the high correlation between
SSH Successful Logins and SSH Executed Commands.

Findings

Our analysis of SSH login attempts on Azure B and AWS B shows interesting find-
ings. The data indicates the functions of the correlation coefficient between login
attempts on both systems over time, suggesting the presence of shared attackers
employing a non-linear attack pattern.

Interestingly, we observed a parallel increase in the correlation between successful
logins on both honeypots. This indicates the potential of attackers leveraging a
common set of successful strategies across different data centers, despite the initial
discordance in their attack patterns.

An intriguing observation was the marginally elevated correlation between success-
ful logins within a 24-hour period, starting from the 23rd hour. This is indicative
of a potential targeted attack with a higher success rate.

Our exploration also uncovered step-shaped patterns in the correlation graph of SSH
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commands, suggesting a synchronized targeting strategy on both honeypots. The
observed patterns are similar to the correlation trends in successful logins, likely due
to the high correlation between successful logins and SSH commands.
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8.2.2 SMB

Figure 8.17: Connections (SMB)

Notably, the correlation graph reveals some step-like patterns, indicating a com-
pelling correlation between SSH connections and SMB activity. This intriguing
observation suggests the possibility of three synchronized attacks, targeting both
honeypots with a coordinated approach between SSH and SMB protocols. Such
findings present intriguing possibilities for coordinated efforts in the realm of SSH
and SMB-based exploits.

8.2.3 HTTP

Figure 8.18: HTTP Connections

Findings

we can observe distinct patterns in the data, suggesting a potential shared activity
between the two honeypots, particularly concerning the HTTP protocol.
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8.2.4 Findings

The analysis of different honeypots deployed on different cloud providers, focusing
on the same metrics, has produced several results:

SSH: Intriguing patterns emerge when comparing honeypots within the same cloud
provider, indicating the possibility of coordinated attacks. However, when com-
paring honeypots across different cloud providers, no significant correlations were
observed in most cases, suggesting a lack of coordinated attacks.

FTP: No significant correlation was observed between honeypots, indicating a lack
of coordinated FTP-based attacks.

SMB: The correlation analysis between SMB honeypots revealed small but interest-
ing step-like patterns, indicating a potential correlation between SSH connections
and SMB activity. This suggests the possibility of coordinated attacks targeting
both SSH and SMB protocols.

HTTP: Similarly, when comparing honeypots, non-distinct patterns were observed
in the data, remotely indicating potential collaboration or shared activity, particu-
larly in relation to the HTTP protocol.
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8.3 Correlation: Same Honeypot, Same Cloud Provider, Dif-
ferent Metrics

Investigating correlations between different metrics within the same honeypot and
cloud provider can yield valuable insights into attackers’ behavior and modus operandi.

1. A correlation between SSH login attempts and successful logins can offer in-
sights into the effectiveness of intrusion attempts.

2. The correlation between malware downloads and SSH commands can help
identify potential post-intrusion activities.

3. The analysis of the relations between login attempts and SSH file captures can
shed light on the data exfiltration practices of attackers.

4. The analysis of the correlation between SSH malware downloads and SMB or
FTP uploads can reveal cross-protocol attack patterns.

5. The correlation between SMB connections and SSH login attempts may point
to multi-vector intrusion strategies.
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8.3.1 Correlation between Login attempts and successful logins (SSH):

The correlation between SSH login attempts and successful attempts is valuable for
detecting brute-force attacks and identifying credential stuffing.

Azure A

Figure 8.19: Total attempts (SSH) - Successful logins (SSH)

On Azure A, the high correlation (0.8 to 0.9) between SSH login attempts and
successful logins in the honeypot suggests a strong relationship between these two
variables. This indicates a direct influence of login attempts on the likelihood of
successful SSH logins. The correlation coefficient is close to 1, suggesting a highly
positive linear relationship, implying that the probability of successful logins also
increases with the number of login attempts.
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Azure B

Figure 8.20: Total attempts (SSH) - Successful logins (SSH)

On Azure B, the high correlation between SSH login attempts and SSH successful
logins indicates a strong positive relationship between these two variables. This
suggests that as the number of login attempts increases, there is a corresponding
increase in successful logins. However, the sudden plummet down near 0.5 for a
few minutes may indicate a possible SSH brute force attack. It could may be due
to a repeated effort to gain unauthorized access to the system during that specific
timeframe.

AWS A

Figure 8.21: Total attempts (SSH) - Successful logins (SSH)

Here on AWS A, we observe another plummet at approximately the same time as
the previous one. This could suggest that the DDoS attack was perpetrated on
multiple cloud providers.
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AWS B

Figure 8.22: Total attempts (SSH) - Successful logins (SSH)

In this case, on AWS B, there is no sudden decrease in activity, then it cannot
be attributed to any visible decrease, indicating that the alleged DDoS attack did
not specifically target this server. Furthermore, we can observe a distinct step-
like pattern, which suggests a well-defined discrepancy between the total number of
attempts and the successful ones.

One potential approach to analysis involves investigating the relationship between
Login Attempts (SSH) and SSH commands within the honeypot environment. By
examining the timestamps and correlating the two-time series, it is possible to deter-
mine whether specific types of Login Attempts (SSH) are associated with particular
SSH commands. For example, a sudden spike in Login Attempts (SSH) followed by
a surge in SSH commands could indicate a coordinated attack.
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8.3.2 Correlation between Malware Downloads and SSH Commands

Correlating SSH commands with malware downloads reveals valuable insights into
attack patterns and aids in classifying different types of attackers. This correlation
enables the identification of unauthorized access and the subsequent download of
malicious files or corruption of the SSH access mechanism through the observation
of SSH Commands.

Azure Honeypots Correlations

Figure 8.23: Total attempts (SSH) - Commands (SSH)

Figure 8.24: Total attempts (SSH) - Commands (SSH)

The already-encountered plummet is present here as well; the reason may be that
commands usually follow after a connection. However, the plummet actually be-
comes a peak since the overall correlation is much lower, suggesting weaker connec-
tions between connections and commands when compared to the correlation between
total and successful attempts.
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AWS Honeypots Correlations

Figure 8.25: Total attempts (SSH) - Commands (SSH)

Figure 8.26: Total attempts (SSH) - Commands (SSH)

Here we don’t see the spike anymore. We observe a similar correlation between
the two honeypots. A distinct rise in correlation can be observed from 23-06; the
same correlation is nearly reached due to the AWS A honeypot but with a constant
increase.
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8.3.3 Correlation between Login Attempts and SSH File Captures

The correlation between Malware Downloads and SSH Login Attempts offers a valu-
able tool for distinguishing between automated and manual attacks. Automated
attacks often involve repeated login attempts, followed by malware downloads once
access is achieved. In contrast, manual attacks might result in a more random
pattern of SSH login attempts and malware downloads.

In this analysis, we aim to analyze the correlation between these two metrics to help
identify the nature of the attacks—whether they are automated or manual. The
hypothesis is that a strong positive correlation might indicate automated attacks,
while a weaker correlation might suggest manual attacks.

Azure Honeypots Correlations

Figure 8.27: Total Login attempts (SSH) - File Captures (SSH)

Figure 8.28: Total Login attempts (SSH) - File Captures (SSH)

We note a higher degree of correlation in Azure A compared to Azure B. Interest-
ingly, a temporary decrease in correlation observed in Azure A appears to correspond
with a surge in correlation in Azure B.
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AWS Honeypots Correlations

Figure 8.29: Total Loign attempts (SSH) - File Captures (SSH)

Figure 8.30: Total Login attempts (SSH) - File Captures (SSH)

As shown in Fig. 8.29 and Fig. 8.30 there is a high degree of correlation marked
by various fluctuations. Notably, we can identify a common decrease in correlation
over a 24-hour period starting at 12:00 on the 22. This pattern is congruent with
what we have previously noted in the Azure honeypots.

The observed shift could be linked to the phenomenon observed in the Azure data-
center’s honeypot, where multiple attackers ceased their activities on the Azure A
honeypot and redirected their focus to Azure B. Consequently, this trend of reduc-
ing attacks is similarly noticeable in the AWS B honeypot, although it is absent in
AWS A.
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8.3.4 Correlation between SSH Malware Downloads and SMB and FTP
Uploads:

Azure Honeypots Correlations

Figure 8.31: File Captures (SSH) - FTP & SMB Uploads

AWS Honeypots Correlations

Figure 8.32: File Captures (SSH) - FTP & SMB Uploads

Here we can observe that both on AWS and on Azure there is no correlation between
SSH file captures and FTP file captures. This indicates that these two types of
attacks are not by the same kind of attacker.

106



8.3 Correlation: Same Honeypot, Same Cloud Provider, Different Metrics

8.3.5 Correlation between SMB connections and Login Attempts (SSH)

Azure Honeypots Correlations

Figure 8.33: Total Attempts (SSH) - FTP & SMB Connections

AWS Honeypots Correlations

Figure 8.34: Total Attempts (SSH) - FTP & SMB Connections

Here we can observe that both on AWS and on Azure there is no correlation be-
tween SSH login attempts and SMB connections. This shows that the same kind
of attackers do not perform these two types of attacks and therefore follow different
patterns.
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8.3.6 Findings

From the correlation analysis of diverse honeypot metrics, we derive the following
findings:

1. Strong Correlation between SSH Login Attempts and Successful Lo-
gins: The analysis of honeypots deployed across Azure and AWS reveals a
robust correlation between SSH login attempts and successful logins. This
indicates that more login attempts correspond to an increased probability of
successful logins. The discernible drops observed in the correlation graphs
may indicate SSH brute force attacks, denoting periods of increased intrusion
attempts.

2. Varied Correlation between Login Attempts (SSH) and SSH Com-
mands: The correlation between SSH Login Attempts and SSH commands
shows considerable heterogeneity across distinct servers on both Azure and
AWS. This suggests that the relationship between these two metrics might
be weaker than the correlation between total SSH Login attempts and SSH
successful logins.

3. Shared Attack Pattern: The finding of a common attack pattern could
imply a redirection of the attacker’s focus towards a different honeypot, po-
tentially showing a degree of adaptability in attackers’ tactics.

4. Limited Correlation between SSH File Captures and FTP File Cap-
tures: The low correlation between these two metrics on both Azure and AWS
suggests that distinct types of attackers likely orchestrate these attacks; this
points out a lack of direct connection between SSH and FTP-based attacks.

5. Absence of Correlation between SSH Login Attempts and SMB Con-
nections: The lack of correlation between SSH login attempts and SMB con-
nections on both AWS and Azure supports the idea that these distinct types
of attacks are executed by distinct attackers, reinforcing the notion of distinct
threat actors behind SSH and SMB attacks.
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8.4 Findings: Correlations Attack patterns of Cloud providers
compared

Based on our correlation analysis of our honeypots data, focusing on the same
metrics, the findings reveal patterns and potential coordinated attacks. Notably,
the data points towards synchronized attackers’ efforts within the same cloud provider,
suggesting coordinated attacks exist.

In the case of SSH, a noticeable pattern was detected within the same cloud provider,
indicating potential coordinated attacks. However, such patterns were not promi-
nent across different cloud providers, implying a lack of coordinated attacks.

Regarding FTP, the data shows no significant correlations either within or between
cloud providers. This lack of correlation is due to the near absence of FTP attacks
in the data set rather than a lack of coordinated activity.

With respect to SMB protocols, visible step-like patterns emerged within the same
cloud provider. This pattern indicates a potential correlation between SSH connec-
tions and SMB activity, suggesting the possibility of coordinated attacks targeting
SSH and SMB protocols.

For HTTP, the data shows distinct patterns within the same cloud provider, indi-
cating potential coordinated activity.

When focusing on the same cloud providers, Azure and AWS, the findings
show the possibility of coordinated attacks between honeypots within the same
cloud provider, mainly for the SSH Protocol. The distinct step-like patterns indicate
synchronized efforts. However, the correlation analysis also reveals lower but still
significant coordination in some aspects, such as commands and file captures.

The correlation analysis of the same honeypot metrics deployed across Azure
and AWS reveals a strong correlation between SSH login attempts and success-
ful logins. This suggests that increased login attempts correspond to an increased
probability of successful logins. Notably, the correlation between login attempts and
SSH commands exhibits considerable variability across different servers, suggesting a
weaker relationship between these two metrics compared to the correlation between
total attempts and successful logins. Identifying a shared attack pattern implies the
potential adaptability of attacker tactics. this trend can also be attributed to the
presence in the data of attackers who discover exploitable systems but do not exe-
cute any commands. The relatively high correlation observed between SSH Login
Attempts and Malware download suggests that we observe a high number of au-
tomatic attackers that gain access to the system and then download malware with
a high success rate; this confirms the deduction of the previous chapters. Further-
more, the absence of correlation between SSH login attempts and SMB connections
reinforces the notion of separate threat actors for distinct attack vectors.
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In conclusion, our findings provide valuable insights into potential coordinated
attacks across different cloud providers and protocols. The previous work aims to
unravel these complex patterns further, providing a more specific understanding of
attacker behaviors and strategies, thereby informing more effective and dynamic
defenses.

Therefore we can now answer the following hypotheses:

H7: There is a significant correlation between the cloud provider’s hosting choice
and the observed activity.

Our analysis and prior chapter findings show the significant influence of a cloud
provider’s choice on the observed metrics. This includes the attack patterns, proto-
cols employed, and the total number of attacks. Consequently, we accept Hypothesis
7 (H7 ) due to the substantial evidence of the correlation.

H7.1: The data observed on machines within the same cloud provider do not show
a significant dependency.

The patterns and correlations observed within the same cloud provider can indicate
somewhat of a dependency. We cannot determine with certainty if this suggests
that attack vectors, rather than the choice of cloud provider, influence the observed
data.

H7.2: There is a high chance that SSH login attempt leads to successful ones.

Our analysis robustly confirms a high correlation between SSH login and successful
attempts. This supports the hypothesis and implies that an Increase In the number
of login attempts often increases successful intrusions.

H7.3: There is a high chance that an attacker will download or upload malware.

The high correlation between SSH login attempts and malware downloads confirms
the hypothesis. This suggests successful logins often lead to potential malware
downloads or file captures.
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8.5 Correlating Trends: a Quick evaluation

Besides the more standard approach of correlating the number of attacks over time,
we can also analyze the overall trend of attack metrics between two honeypots. To
achieve this, we can modify the two-time series by subtracting each value at time
t from the value at time t-1. We can identify and correlate similar attack trends
among multiple honeypots by doing so.
Within the scope of our study, it’s plausible that a low degree of correlation might
emerge from our trend analysis. This assumption is based on the intrinsic charac-
teristics of the dataset, which can often be sporadic, multifaceted, and influenced by
too many external variables governed by attackers. Furthermore, the threat land-
scape constantly evolves with new patterns, making it difficult to establish stable
trends over extended periods. Consequently, while our analysis method of com-
puting trend differences between two time points could discover correlations among
multiple honeypots, the degree of correlation may be modest due to these inherent
complexities.

8.5.1 Correlating Trends: Different honeypots, Same cloud provider,
Same metrics

Azure Honeypots (Azure A - Azure B)

Figure 8.35: SSH Login Attempts

Here we notice a slight increased correlation between the login attempt trends of
the two Azure honeypots. This observation could suggest a simultaneous increase
in SSH Login Attempts targeting these two honeypots. However, caution should be
used in interpretation, as the level of correlation observed, while higher than 0, is
not robust enough to be classified as statistically significant.
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Figure 8.36: SSH Commands

From the above correlation of trends in SSH commands we can see that the slight
increase in the correlation coefficient in the previous graphs is somewhat mirrored
at the beginning of Fig. 8.36, an explanation can be the relatively high correlation
observed between SSH Login Attempts and SSH Commands.

8.5.2 Correlating Trends: Different honeypots, Different cloud provider,
Same metrics

Azure Honeypots (Azure A - AWS B)

Figure 8.37: SSH Login Attempts

Here, we note a minimal rise in the correlated trends, potentially hinting at a parallel
increase in SSH Login Attempts directed toward both honeypots. However, this
increment does not reach a value to be regarded as a significant insight.
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Figure 8.38: SSH Commands

We observe a slight increase in correlated trends, indicating possible concurrent
SSH login attempts on both honeypots. However, this subtle rise does not provide
significant insights.

8.5.3 Correlating Trends: Findings

Building on the initial explanation offered in the introduction, it is crucial to state
again why we might expect a lower correlation in our analysis. The nature of
intrusion data, specifically its built-in complexity and volatility, is a significant factor
in these lower correlations. The data we are dealing with is influenced by a large
array of external variables, all controlled by threat actors who follow unpredictable
and dynamic attack patterns.

Intrusion activities are not uniform or constant; they are frequently changing in
response to many factors, such as adjustments in the threat landscape, the evolution
of attacker techniques, the introduction of new vulnerabilities, and shifts in attacker
focus. These variables are incredibly difficult to control or account for, adding layers
of complexity to the analysis.

This further contributes to the low correlation levels we might observe in our trend
correlation analysis.

A marginal amplification in correlation is detected between the SSH Login attempts
on instances Azure B and AWS B. This discovery may suggest possible synchronized
SSH attacks aimed at both Azure B and AWS B honeypots. The parallelism in the
patterns of these attempts reinforces the idea generated in the previous correlations
of a coordinated SSH attack, possibly from the same botnet. It is important to
recognize that the adopted methodology for trend analysis may have limitations in
capturing all relevant variables and patterns.
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8.6 Inconclusive Correlations

Within this chapter, we focused on correlation graphs involving various honeypots
and diverse metrics. Throughout this analysis, we encountered instances where the
relationships between certain factors remained enigmatic or failed to yield significant
insights. Consequently, we made the deliberate choice to omit these correlation
graphs.

For instance, the comparative examination of SSH commands across distinct honey-
pots within a shared provider did not provide any useful information. On a similar
note, SSH metrics and HTTP connection correlations across different providers did
not yield any noteworthy insight. A parallel situation emerged when analyzing
the trend of login attempts and commands across distinct Honeypots on different
providers. The following table summarizes most of the correlation analyses that
didn’t provide useful data:
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Table 5: Summary of Correlations that did provide insignificant data
Correlation

FTP & SMB Connections on AWS

SSH & SMB Connections on AZURE

SSH Login attempts between AWS A & Azure B

SSH Successful Logins between AWS A & Azure B

SSH Commands between AWS A & Azure B

SSH File captures between AWS A & Azure B

SSH Connections Azure A - AWS A (Trend Correlation)

SSH Connections Azure B - AWS A (Trend Correlation)

SSH Connections Azure B - AWS B (Trend Correlation)

SSH Commands Azure B - AWS A (Trend Correlation)

SSH Commands Azure A - AWS B (Trend Correlation)
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9 IoT-Focused Analysis: Evaluating IoT-Targeted
Attacks

As we continue our in-depth exploration of IoT-targeted attacks in this chapter,
we must revisit our findings from the previous analysis on SSH Malware uploads.
The prominence of specific malware types and their geographical distribution, as
revealed in Chapter 6 it’s crucial for the current analysis. It is the predominance
of Linux/Mirai.Gen that guides our current focus, given their evident threat to IoT
environments, a quick evaluation of which devices are most vulnerable is indeed
necessary.

Figure 9.1: Distribution of Malware Types by Download Count

The previous findings underscored the pervasive nature of Linux/Mirai.Gen types
of malware, particularly in the United States, have a global download count of over
2500 copies. This predominance is not merely an indication of their popularity, but
it also signifies the potential vulnerabilities they exploit in our IoT landscape. As
we explore this further, we seek to understand the implications of these malware
types in IoT-targeted attacks.
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9.1 Unveiling Mirai: A Deep Dive into its IoT Focus:

Mirai is a type of malware that generally targets low-end devices, once infected
these devices become a bot, a remotely controlled device, which joins a large group
of other bots, creating a "bot-net".
Once the network node becomes a bot, it tries to spread the malware in the net-
work, this behavior explains the predominance of Mirai in what is observed in our
honeypots.
Attackers that "own" a botnet can use all these infected devices to target a specified
victim (such as a web service) with a DDoS attack.
The attack vector of this malware mostly focuses on SSH clients, employing brute
force techniques to gain unauthorized access. After gaining access, the malware
quickly spreads and enlarges the botnet’s control through the newly downloaded
script. This seamless integration further amplifies the botnet’s capacity, enhancing
its power to execute Distributed Denial of Service (DDoS) attacks.

Figure 9.2: Global IoT Device Sales (data source: IoT Analytics)

IoT-Devices are often a receptacle for the Mirai malware, given their general lack
of maintenance and usage of default passwords and usernames. Also, the always-
increasing number of these devices gives cyber-criminals the possibility of a theo-
retically enormous botnet, that can successfully target even the most resilient of
services.

In 2017, an investigation showed that 15% of IoT devices operate on default user-
names and passwords [29]. If this trend is stationary, by 2023, a staggering 2 billion
weakly protected devices will be interconnected. These devices can be compromised
by attackers employing standard password lists and adopting attack patterns docu-
mented in this research.
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9.2 Botnet Assessment: Understanding the Impact of Mirai
Attacks

In recent years, Mirai has been accused of being the cause behind massive Dis-
tributed Denial of Service attacks. For example, in October 2016, significant dis-
ruption was observed affecting famous web services including Twitter, Reddit, and
Netflix. This perturbation, known as the Dyn DNS attack, was attributed to the
Mirai botnet and achieved a staggering traffic volume of approximately 1.2 Tbps,
marking it as one of the most substantial in recorded history [30].

9.3 Finding Mirai in our Data:

9.3.1 Credentials Analysis

e consider in some detail the risk of attackers manipulating devices through the
use of basic password lists, along with analogous attack patterns discerned from
our honeypot data. Our focus shifts towards understanding common password and
username combinations used by these malicious scripts. The goal is to ascertain
whether our data supports the hypothesis of a significant presence of IoT-targeted
attackers.

Figure 9.3: Top 10 usernames & passwords used on our SSH honeypots

The recurring username and password combination 3245gs5662d34 and its variant
345GS5662d34 have been noted across multiple instances in our data marking a
surprising pattern because these passwords do not correspond to any widely used
device, service or known attack vectors.

Interestingly, this phenomenon is not unique to our data. Similar patterns have
been observed in other honeypots located around the globe [31] [32], suggesting a
wider trend that extends beyond our study. Other researchers have been unable to
attribute these specific password patterns to a known source or cause, despite their
widespread appearance [33].
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One theory is that these credentials could be part of a botnet’s operations, yet the
evidence to support this remains elusive. Furthermore, these username and password
combinations do not appear in any known compilations of leaked passwords, making
their widespread use even more intriguing. another explanation of the usage of these
passwords could be a way for attackers’ scripts to detect honeypots, their prevalence
across different honeypots underscores the need for further investigation into their
potential implications for threats.

To continue the research of Mirai malware in our data:

We will base our reference point on the hardcoded credentials [34] employed within
the attack vector of the Mirai.gen malware. This comprises a set of over 50 dis-
tinct username and password combinations, which, as imagined, are predicated on
frequently used combinations prevalent in the Internet of Things devices. To this
end, we shall conduct a comparative analysis of our own usernames and passwords
against this set.

Figure 9.4: Number of Distinct Mirai.gen Usernames and Passwords in our honeypot
data

This bar chart suggests that a considerable portion of our dataset consists of user-
names and passwords that are hardcoded in the Mirai.gen malware. It is particularly
concerning that most of the Mirai usernames appear in our dataset, indicating that
these usernames are common targets in the attacks we observed.

However, fewer than one-third of the Mirai passwords are present in our dataset.
This discrepancy could be attributed to the diverse password preferences among
different attackers, as well as the relative age of our password list.
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The list is derived from an early version of the Mirai malware, which frequently con-
tains customized code that is continuously updated by the attackers, as referenced
in [35]. Another plausible reason might be the use of different types of malware that
come with a distinct set of hardcoded passwords.

Figure 9.5: Top 10 Mirai.gen Usernames and Passwords in our honeypot data

Usernames: Among the Mirai hardcoded usernames present in our dataset, "root" is
by far the most common, appearing over 225,000 times. Other frequently occurring
usernames include "admin", "user", "administrator", and "ubnt".

Passwords: The most frequently observed Mirai hardcoded password in our dataset
is "123456", followed by "1234", "12345", and "password". Other commonly used
passwords include "root", and "admin".
These observations reveal that most of the attacks we’ve witnessed have employed
usernames and passwords known to be hardcoded in the Mirai malware. This sug-
gests that our network is subject to attempted intrusions by Mirai or versions of it.
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9.3.2 Bot Fingerprints

In line with our previous analyses, particularly those concerning the fingerprinting of
attackers, we have discovered that the fingerprint most frequently associated with
SSH attackers is generated by libssh 4, accounting for over 65% of total attacks.
This prevalence hints at a significant presence of custom attack scripts, potentially
originating not just from botnets in general, but specifically from those associated
with the Mirai malware. This correlation indicates a prevalence of these types of
attack vectors.

Figure 9.6: Top 5 SSH Clients

The popularity of this fingerprint, combined with the observed usage of common
Mirai usernames and passwords, confirms our hypothesis of a significant Mirai mal-
ware presence in the attackers.
This interpretation, however, could be too biased by our previous findings. A high
frequency of libssh fingerprints could also be due to broader use of custom attack
scripts beyond just Mirai. Given the open nature of libssh, other threat actors could
utilize it in their attack scripts.

4Libssh is an open-source library that enables applications to provide or use SSH. It
is widely used due to its flexibility, enabling developers to incorporate SSH capabilities
directly into their applications. However, its very accessibility and popularity make it a
tool of interest for threat actors who aim to exploit SSH vulnerabilities.
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9.4 IoT-Focused Analysis: Findings

This chapter has focused on IoT-targeted attacks, emphasizing the Mirai malware.
Our analysis of honeypot data revealed common username and password combina-
tions employed in SSH attacks, many of which matched those hardcoded in the Mirai
malware. Notably, the combination 3245gs5662d34 and its variant 345GS5662d34
were prevalent across different honeypots worldwide, despite not corresponding to
any known attack vector.

Our comparative analysis with Mirai’s hardcoded credentials indicated a significant
overlap, suggesting a potential vulnerability to such attacks. However, the presence
of these credentials in our dataset does not necessarily imply a successful breach,
as many systems may have updated these default credentials or implemented addi-
tional security measures.

In conclusion, our findings show the importance of simple but robust security prac-
tices, including the use of strong, unique passwords and regular updating of IoT
devices.

Our analysis confirms Hypothesis H8, which proposed that a substantial part of
attacks target IoT devices. In fact, an examination of common username and pass-
word combinations used in the observed SSH Login attempts, many of which are
default or simplistic, indeed suggests that IoT devices are a significant target.

Furthermore, Hypothesis H8.1 is supported by the overlap between the hardcoded
credentials used by the Mirai malware and those present in our dataset. This
strongly implies that a large volume of attacks originates from Mirai botnets. The
presence of the majority of Mirai usernames and a noticeable portion of Mirai pass-
words in our data underscores the potential vulnerability of our network to Mirai or
similar types of malware.
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10 Conclusions & Future Works

As we conclude our study, it’s important to acknowledge how limited resources have
impacted our research. Using only two honeypots from different cloud providers
has limited our ability to draw clear conclusions because of the small amount of
data we had. Remember, we intentionally set these limits, and while they do make
our findings a bit less certain, they don’t take away from the overall validity of our
thesis’s findings.

10.1 Work Results

This study of honeypots in cloud environments shows interesting attack patterns.
For instance, Azure sees three times more SSH attacks than AWS but
twenty times fewer SMB attacks. This highlights each platform’s different se-
curity challenges and could be attributed to each provider’s different security mea-
sures.

The study also shows that attack patterns can depend on the time and day of the
week. For example, attacks tend to happen more at night and are most
common on Mondays. This pattern emphasizes the importance of considering
attackers’ time zones when analyzing such data.

The study also found a significant spatial pattern to the attacks, with the United
States and China being the primary sources. Smaller nations like Singapore
and Hong Kong also displayed many attacks relative to their size and economic scale.
Moreover, the study also pointed out that the spread of AS across different cloud
services and within each AS was not equal. Most attacks came from the AS
run by Digital Ocean, indicating that most attackers leverage the cloud
to carry out their attacks.

It’s also worth noting that Linux plays a significant role in the SSH attack landscape.
As a matter of fact, both providers were mostly attacked by Linux clients.
The data also showed an important link between the protocol type and the attack
frequency, suggesting that attackers might choose their targets based on the protocol.
It was also observed that some attackers manipulate SSH client strings to
exploit known vulnerabilities, AWS seems to be less targeted by these types of
attacks.

The study also showed that the skill levels and resources available to attackers can
significantly influence their attack patterns. Automated attacks, which are usu-
ally less complex and last for a shorter time duration, represent the majority of
threats (98.5%). In contrast, manual attacks, which require more skill and plan-
ning, can last for several minutes and represent a small part of the threat landscape.

The data analysis provided interesting insights into the behavior of attackers. The
attackers were categorized into distinct profiles based on their interactions with
honeypots, services, and cloud providers. Most attackers (67%) specialized in
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attacking a single honeypot within a single provider, focusing on just one
service. However, a significant portion (30%) showed more versatility, launching
attacks on multiple honeypots across different providers. A small but especially
dangerous group of attackers (0.1%) demonstrated a capacity for broad
and diverse attacks, targeting all honeypots across multiple services.

After correlating data from honeypots in the same cloud, and hence with the the
same provider, we have observed patterns indicating the presence of coordinated
attacks. These attacks occur within the same cloud and, sometimes, in smaller
proportions, across different clouds.

Uploaded and Downloaded Malware provided valuable data about their origins,
types, and goals. The geographical analysis showed that cyber-criminal
activity is global, with significant hotspots in the United States, Singa-
pore, and Hong Kong. SSH attacks often aim to hijack the SSH-authorized keys,
providing the attacker a backdoor for reentry into the compromised system; inter-
estingly, a common backdoor key has been uploaded by most attackers (over 95%).
The malware download analysis revealed specific malware types, notably
Linux/Mirai.Gen, Linux/Malware Downloader, and Perl/Shellbot.NAT
Trojan, as the most common.

We have extended our analysis of the downloaded malware, focusing specifically on
an IoT-targeted approach due to the alarming occurrence of Mirai malware found
on the honeypots (with over 2500 copies isolated on Azure alone). By examining
Mirai’s source code SSH password list, along with the fingerprints of SSH clients
that launched attacks on the honeypots, we were able to confirm our hypothesis.
The data pointed to a majority of IoT-targeted attacks, carried out by one
or multiple Mirai-type botnets, within our attackers’ data. This finding under-
scores the urgent need to fortify IoT security, particularly in light of the escalating
adoption of IoT technologies and the emergence of these now-predominant threats.

In light of what we found in this research, it becomes evident that both AWS and
Azure have their sets of security challenges. Azure encountered a 300 % increase
in SSH attacks compared to AWS, However, Azure’s resilience is showcased by its
substantial resistance to SMB attacks, having encountered twenty times fewer SMB
attacks than AWS. This strong contrast in attacks shows the unique security ar-
chitectures and measures each platform has implemented. A significant observation
relates to the behavior of SSH-downloaded malware. While Azure recorded many
such incidents, AWS displayed remarkable resilience, with instances dropping to
zero. This pattern suggests that AWS may have enforced stringent security
measures specifically against external malware downloads, offering solid
protection against these types of attacks. Moreover, AWS’s reduced vulnerability
to manipulations of SSH client strings emphasizes its strength in particular areas,
adding to its robust defense profile. Azure’s susceptibility to SSH attacks is
evident from the numerous attempts to log in via SSH and download mal-
ware. On the other hand, AWS’s primary vulnerability is in the SMB
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attack domain. These variations in attack types, sources, and frequencies un-
derline both platforms’ distinct security challenges. Potential users must carefully
evaluate these vulnerabilities in conjunction with their operational requirements,
the nature of their data, and the protocols they intend to implement. This consider-
ation will enable them to align their choices with each platform’s specific risks and
benefits.
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Objective Achieved Findings

Time and Day Impact
on Attacks

✓ Attacks tend to happen more at night and are most
common on Mondays

Geographical Attack
Patterns

✓ United States and China being the primary sources.
Most attacks came from the AS run by Digital Ocean

Protocol dependency ✓ Azure experienced three times more SSH attacks than
SMB, while AWS was attacked slightly more on SMB
than SSH

Linux’s predominant
role in attacks

✓ Data showed that 98% of attacks came from Linux
clients.

Attackers’ Skill Levels
and Resources

✓ Automated attacks represent the majority of threats
(98.5%)

Behavior and Profiling
of Attackers

✓ Most attackers (67%) specialized in attacking a single
honeypot within a single provider, focusing on just one
service. However, a significant portion (30%) showed
more versatility, launching attacks on multiple honey-
pots across different providers. A small but especially
dangerous group of attackers (0.1%) targeted all honey-
pots across multiple services

Tor Nodes’ Predomi-
nant role

✗ It was shown that attacks coming from Tor nodes were
statistically insignificant on both providers

Malware Origins ✓ The geographical analysis showed that cyber-criminal
activity is global, with significant hotspots in the United
States, Singapore, and Hong Kong. The malware
download analysis revealed specific malware types, no-
tably Linux/Mirai.Gen, Linux/Malware Downloader,
and Perl/Shellbot.NAT Trojan, as the most common

Coordinated Attacks ✓ We have observed patterns indicating the presence of
coordinated attacks across providers

Comparison Between
AWS and Azure

✓ Azure’s susceptibility to SSH attacks is evident from the
numerous attempts to log in via SSH and download mal-
ware. On the other hand, AWS’s primary vulnerability
is in the SMB attack domain

Understanding IoT-
Specific Malware

✓ The data pointed to a majority of IoT-targeted attacks
carried out by one or multiple Mirai-type botnets

Table 6: Summary of Objectives and Findings
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10.2 Honeypots: Utility for corporations

In this thesis, honeypots were used to offer insights into the continuous siege faced
by all internet-connected devices. However, an important question remains - besides
their utility in data collection, can honeypots significantly contribute to protecting
critical servers?

The ancient Chinese warrior Sun Tzu once stated, "All warfare is based on decep-
tion", and that surprise, rather than confrontation, leads to victory. These concepts
also apply to honeypots—they act as a form of deception and serve as an early
warning system for corporations, thereby preventing unwelcome surprises.

However, one might question their effectiveness—if every device is constantly under
attack, how can a honeypot provide a reliable warning about threats? The answer
can be found in an in-depth analysis of attack behaviors and methodologies. For
instance, what was discussed in Chapter 6,"Skill and Strategy: Attack Duration and
Attacker Expertise," could be pivotal in distinguishing the manual attacks on the
honeypot from the routine, automated ones. These attackers likely harbor a specific
interest in the corporation’s network and, thus, pose a greater threat.

By understanding the intricacies of these manual attacks, honeypots can provide an
early warning system tailored to address these threats. This makes honeypots an
invaluable tool in a corporation’s cybersecurity strategy, acting not just as a decoy
but also as a detector and analyzer of sophisticated, targeted attacks.

Furthermore, another approach to identifying more dangerous attackers profiled in
Chapter 6.1: Defining Attackers’ Profiles is to deploy multiple honeypots, each
strategically positioned close to a different production server across varied networks
and locations. If an attacker targets multiple such honeypots, it strongly indicates
their potential danger. By adopting this approach, organizations can more effec-
tively sift through many attacks, pinpointing and responding to the most significant
threats.

Future Studies

While the present study has established a foundational understanding of attackers’
behaviors and patterns within cloud environments, cyber threats’ dynamic and ex-
pansive nature requires further research. Delving into additional cloud providers
distributed across various geographical regions can validate and consolidate this
study’s findings and pave the way for a more detailed and comprehensive analysis.
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