
2nd TMA PhD School - June 2011 1

High-Speed Traffic Capture and Analysis
Using Open-Source Software and

Commodity Hardware

Part 1: Packet Capture

Luca Deri <deri@ntop.org>

2nd TMA PhD School - June 2011

Overview

•Accelerating packet capture and analysis: PF_RING.

• Layer 7 kernel packet filtering and processing.

•Direct NIC Access: PF_RING DNA.

• Towards 10 Gbit packet capture using commodity
hardware.

• Strong Multicore NIC: Tilera Tile64

2

2nd TMA PhD School - June 2011

Accelerating Packet Capture
and Analysis: PF_RING

3

2nd TMA PhD School - June 2011 4

Packet Capture: Open Issues

•Monitoring low speed (100 Mbit) networks is already possible using
commodity hardware and tools based on libpcap.

• Sometimes even at 100 Mbit there is some (severe) packet loss: we
have to shift from thinking in term of speed to number of packets/
second that can be captured analyzed.

• Problem statement: monitor high speed (1 Gbit and above) networks
with common PCs (64 bit/66 Mhz PCI/X/Express bus) without the need
to purchase custom capture cards or measurement boxes.

• Challenge: how to improve packet capture performance without
having to buy dedicated/costly network cards?

2nd TMA PhD School - June 2011

Packet Capture Goals

• Use commodity hardware for capturing packets at
wire speed with no loss under any traffic
condition.

• Be able to have spare CPU cycles for analyzing
packets for various purposes (e.g. traffic
monitoring and security).

• Enable the creation of software probes that sport
the same performance of hardware probes at a
fraction of cost.

5

2nd TMA PhD School - June 2011 6

Socket Packet Ring (PF_RING)

Read
Index

Write
Index

Incoming Packets

Outgoing Packets Userspace

Kernel

Socket
(ring)

Network
Adapter

mmap()

Socket
(ring)

PF_RING

Application A Application Z

2nd TMA PhD School - June 2011

PF_RING Internals

7

Circular Buffer

B
u
ff
e
r

S
lo

ts

Device Driver

dev_queue_xmit()
netif_rx() - No NAPI

netif_receive_skb() - NAPI

Linux Kernel

Read from
PF_RING Userland

Kernel

http://en.wikipedia.org/wiki/Circular_buffer

Slot size is dynamic
as they are filled in
according to the size
of packets that have
been received

http://en.wikipedia.org/wiki/Circular_buffer
http://en.wikipedia.org/wiki/Circular_buffer

2nd TMA PhD School - June 2011

PF_RING Packet Journey [1/2]

8

Packet Received Parse Packet (up to layer 4)

Defragment packet (optional)

Added the packet to PF_RING
sockets that potentially match it

(packet and socket device match)

Same as above for PF_RING
socket clusters

Return control to the kernel

2nd TMA PhD School - June 2011

PF_RING Packet Journey [2/2]

9

Add Packet to PF_RING Packet Filtering

Sampling Rate Check

PF_RING Reflector Check
Queue Packet

on PF_RING

Back to PF_RING

2nd TMA PhD School - June 2011

PF_RING: Benefits

• It creates a straight path for incoming packets in order to
make them first-class citizens.

• No need to use custom network cards: any card is supported.

• Transparent to applications: legacy applications need to be
recompiled in order to use it.

• No kernel or low-level programming is required.

• Developers familiar with network applications can
immediately take advantage of it without having to learn new
APIs.

10

2nd TMA PhD School - June 2011

PF_RING: Performance Evaluation

11

Pkt Size Kpps Mpps % CPU Idle Wire-Speed

250 259.23 518 > 90% Yes

250 462.9 925.9 88% Yes

128 355.1 363.6 86% Yes

128 844.6 864.8 82% Yes

Test setup: pfcount, full packet size, 3.2 GHz Celeron (single-core) - IXIA 400 Traffic Generator

2nd TMA PhD School - June 2011 12

PF_RING on Embedded Devices

http://nst.sourceforge.net/nst/docs/user/ch09s02.html

2nd TMA PhD School - June 2011

PF_RING Socket Clustering [1/2]

• In order to exploit modern computer architectures either
multiprocessing or threading have to be used.

• Often computer programs are monolithic and hard to split into
several concurrent and collaborating elements.

• In other cases (proprietary applications) source code is not
available hence the application cannot be modified and split.

• There are hardware products (e.g. see cPacket’s cTap) that split/
balance network traffic across network hosts.

• What is lacking at the operating system level is the concept of
distributing sockets across applications. This is because network
sockets are proprietary to an application/address-space.

13

2nd TMA PhD School - June 2011

PF_RING Socket Clustering [2/2]

• Socket clustering is the ability to federate PF_RING sockets similar, but
opposite, to network interface bonding.

• The idea is simple:
– Run several monitoring applications, each analyzing a portion of the

overall traffic.
and/or

– Create multithreaded applications that instead of competing for packets
coming from the same socket, have private per-thread sockets.

14

2nd TMA PhD School - June 2011 15

PF_RING Clustering: Threads

PF_RING
Socket

Thread Thread Thread Thread

Compete
for

Packets

Mutexes
and

Locking
is Needed

Clustered
PF_RING

Socket

Thread Thread Thread Thread

No Locking
Needed

Clustered
PF_RING

Socket

Clustered
PF_RING

Socket

Clustered
PF_RING

Socket

PF_RING

Vanilla PF_RING Application PF_RING Socket Cluster

2nd TMA PhD School - June 2011

• Same as clustering with threads, but across address spaces.

• PF_RING allows clustering to be enabled seamlessly both at
thread and application level.

16

PF_RING Clustering: Applications

Clustered
PF_RING
Socket

Application Application Application Application

Clustered
PF_RING
Socket

Clustered
PF_RING
Socket

Clustered
PF_RING
Socket

PF_RING

2nd TMA PhD School - June 2011

PF_RING Clustering: Code Example
if((pd = pfring_open(device, promisc, snaplen, 0)) == NULL) {

 printf("pfring_open error\n");

 return(-1);

 } else {

 u_int32_t version;

 pfring_version(pd, &version);

 printf("Using PF_RING v.%d.%d.%d\n",

 (version & 0xFFFF0000) >> 16, (version & 0x0000FF00) >>
8,

 version & 0x000000FF);

 }

 if(clusterId > 0) {

 int rc = pfring_set_cluster(pd, clusterId);

 printf("pfring_set_cluster returned %d\n", rc);

 }

17

2nd TMA PhD School - June 2011

PF_RING Clustering: Summary

•Network traffic balancing policy across socket clusters
– Per-flow (default)
– Round-Robin

• Advantages:
–No locking required when threads are used
–Ability to distribute the load across multiple applications

– Very fast as clustering happens into the kernel.

• Socket clustering has been the first attempt to make
PF_RING more multi-processing/core friendly.

18

2nd TMA PhD School - June 2011

PF_RING: Packet Filtering [1/2]

• PF_RING has addressed the problem of accelerating packet
capture.

• Packet filtering instead is still based on the “legacy” BPF code.

• This means that:

– Each socket can have up to one filter defined.

– The packet needs to be parsed in order to match the filter,
but the parsing information is not passed to user-space.

– The BPF filter length can change significantly even if the filter
is slightly changed.

19

2nd TMA PhD School - June 2011

PF_RING: Packet Filtering [2/2]

20

tcpdump -d "udp"

(000) ldh [12]

(001) jeq #0x800 jt 2 jf 5

(002) ldb [23]

(003) jeq #0x11jt 4 jf 5

(004) ret #96

(005) ret #0

tcpdump -d "udp and port 53"

(000) ldh [12]

(001) jeq #0x800 jt 2 jf 12

(002) ldb [23]

(003) jeq #0x11 jt 4 jf 12

(004) ldh [20]

(005) jset #0x1fff jt 12 jf 6

(006) ldxb 4*([14]&0xf)

(007) ldh [x + 14]

(008) jeq #0x35 jt 11 jf 9

(009) ldh [x + 16]

(010) jeq #0x35 jt 11 jf 12

(011) ret #96

(012) ret #0

2nd TMA PhD School - June 2011

Beyond BPF Filtering [1/2]

• VoIP and Lawful Interception traffic is usually very little
compared to the rest of traffic (i.e. there is a lot of incoming
traffic but very few packets match the filters).

• Capture starts from filtering signaling protocols and then
intercepting voice payload.

• BPF-like filtering is not effective (one filter only). When multiple
filters need to be enforced, each one has to be executed
individually.

• It is necessary to add/remove filters on the fly with hundred
active filters.

21

2nd TMA PhD School - June 2011 22

Beyond BPF Filtering [2/2]

Solution

– Filter packets directly on device drivers (initial release) and
PF_RING (second release).

– Implement hash/bloom based filtering (limited false
positives) but not BPF at all.

–Memory effective (doesn’t grow as filters are added).

– Implemented on Linux on Intel GE cards. Great performance
(virtually no packet loss at 1 Gbit).

–No much difference between PF_RING and driver filtering
hence the code has been moved to PF_RING.

2nd TMA PhD School - June 2011

Dynamic Bloom Filtering [1/2]

23

Insert: hash_1(X), hash_2(X)....hash_n(X)

Check for inclusion

2nd TMA PhD School - June 2011

Bloom Filters [2/2]

24

• Ability to specify a thousand different IP packet filters

• Ability to dynamically add/remove filters without having to
interrupt existing applications.

• Only “precise” filters (e.g. host X and port Y) are supported.

• The filter processing speed and memory being used is
proportional to the number of filters but independent from
their number and complexity.

2nd TMA PhD School - June 2011 25

Dynamic Bloom Filtering

• Available into PF_RING (in 3.x series up to 3.7.x).

• Ability to set per-socket bloom filters

Dynamic Filtering

BPF Filtering (Optional)

Packet Consumption

U
s
e
r

S
p
a
c
e

K
e
rn

e
l

S
p
a
c
e

N
e
tw

o
rk

D
e
v
ic

e
D

ri
v
e
r

2nd TMA PhD School - June 2011

PF_RING: Bloom Evaluation

26

• Tests performed using a dual Xeon 3.2 GHz CPU
injecting traffic with an IXIA 400 traffic generator with
1:256 match rate.

• Packet loss only above 1.8 Mpps (2 x 1 Gbit NICs).
• Ability to specify thousand of filters with no performance

degradation with respect to a single filter (only false
positive rate increases).

2nd TMA PhD School - June 2011

Bloom Filters Limitations [1/2]

• Bloom filtering has shown to be a very interesting technology
for “precise” packet filtering.

• Unfortunately many application require some features that
cannot be easily supported by blooms:

– port ranges

– negative expressions (not <expression>)

– IP address/mask (where mask != /32)

– in case of match, know what rule(s) matched the filter

27

2nd TMA PhD School - June 2011

Bloom Filters Limitations [2/2]

• Possible workarounds
– Support ranges by calculating the hash on various combinations
• 5-tuple for perfect matching (proto, ip/port src, ip/port dst)

•multiple bloom dictionaries for /32, /24, /16, and /8 networks for network
match

• Note that as bloom matching is not exact, using a bloom dictionary for
storing negative values (i.e. for implementing the not) is not a good idea.
This is because not(false positive) means that a packet might be discarded
as the filter is not match although this packet passed the filter.

• In a nutshell:

– Bloom filters are a fantastic technology for exact packet matching

– PF_RING must also offer support for ‘partial’ filtering.

28

2nd TMA PhD School - June 2011

Extended PF_RING Filters [1/2]
The author has made a survey of network applications and created a list
of desirable features, that have then been implemented into PF_RING:

• “Wildcard-ed” filters (e.g. TCP and port 80). Each rule has a rule-id and
rules are evaluated according to it.

• Precise 5-tuple filters (VLAN, protocol, IP src/dst, port src/dst).

• Precise filters (e.g. best match) have priority over (e.g. generic) wilcard-
ed filters.

• Support of filter ranges (IP and port ranges) for reducing the number of
filters.

• Support of mono or bi-directional filters, yet for reducing number of
filters.

• Ability to filter both on standard 5-tuple fields and on L7 fields (e.g.
HTTP method=GET).

29

2nd TMA PhD School - June 2011

Extended PF_RING Filters [2/2]

• Parsing information (including L7 information) need to be returned to user-
space (i.e. do not parse the packet twice) and to all PF_RING components
that for various reasons (e.g. due to socket clustering) need to have
accessed to this information.

• Per-filter policy in case of match:

– Stop filtering rule evaluation and drop/forward packet to user-space.

– Update filtering rule status (e.g. statistics) and stop/continue rule evaluation
without forwarding packet to user-space.

– Execute action and continue rule evaluation (via PF_RING plugins).

• Filtering rules can pass to user-space both captured packets or statistics/
packet digests (this for those apps who need pre-computed values and not
just raw packets).

30

2nd TMA PhD School - June 2011

PF_RING Packet Parsing [1/4]

•Contrary to BPF that basically does parse packets
while filtering them, PF_RING filtering requires packet
to be parsed first.

•Parsing information is propagated up to the
userland.

• The basic PF_RING engine contains parsing up to
TCP/UDP.

31

2nd TMA PhD School - June 2011

PF_RING Packet Parsing [2/4]

32

struct pkt_parsing_info {
 /* Core fields (also used by NetFlow) */
 u_int8_t dmac[ETH_ALEN], smac[ETH_ALEN]; /* MAC src/dst addresses */
 u_int16_t eth_type; /* Ethernet type */
 u_int16_t vlan_id; /* VLAN Id or NO_VLAN */
 u_int8_t ip_version;
 u_int8_t l3_proto, ip_tos; /* Layer 3 protocol/TOS */
 ip_addr ip_src, ip_dst; /* IPv4 src/dst IP addresses */
 u_int16_t l4_src_port, l4_dst_port; /* Layer 4 src/dst ports */
 struct {
 u_int8_t flags; /* TCP flags (0 if not available) */
 u_int32_t seq_num, ack_num; /* TCP sequence number */
 } tcp;
 u_int16_t last_matched_plugin_id; /* If > 0 identifies a plugin to that matched the packet */
 u_int16_t last_matched_rule_id; /* If > 0 identifies a rule that matched the packet */
 struct pkt_offset offset; /* Offsets of L3/L4/payload elements */

 /* Leave it at the end of the structure */
 packet_user_detail pkt_detail;
};

2nd TMA PhD School - June 2011

PF_RING Packet Parsing [3/4]

• The decision to always parse the packet is motivated
as follows:
–Packet parsing is very cheap (in terms of computation)

and its slow-down is negligible.
–Beside rare exceptions (e.g. for packet-to-disk

applications), user space applications will need to
parse packets.

•PF_RING does not natively include layer-7 packet
filtering as this is delegated by plugins as shown
later in this presentation.

33

2nd TMA PhD School - June 2011

PF_RING Packet Parsing [4/4]

34

struct pfring_pkthdr {
 struct timeval ts; /* time stamp */
 u_int32_t caplen; /* length of portion present */
 u_int32_t len; /* length this packet (off wire) */
 struct pkt_parsing_info parsed_pkt; /* packet parsing info */
 u_int16_t parsed_header_len; /* Extra parsing data before packet */
};

Ex
te

nd
ed

 P
ar

si
ng

Plugin-based Parsing

ts caplen len parsed_pkt l7 parsing
parsed

len
Payload

(Optional)

2nd TMA PhD School - June 2011

PF_RING: Exact Filters [1/2]
• Exact filters (called hash filtering rules) are used whenever all the

filtering criteria are present in the filter.

• Exact filters are stored in a hash table whose
key is calculated on the filter values.

• When a packet is received, the key is calculated
and searched into the filter hash.

35

typedef struct {
 u_int16_t vlan_id;
 u_int8_t proto;
 u_int32_t host_peer_a, host_peer_b;
 u_int16_t port_peer_a, port_peer_b;

 [...]
} hash_filtering_rule;

Fi
lte

r E
le

m
en

ts

Parse Filter Expression

Calculate Filter Hash Key

Insert the Key into
the Filter Hash

2nd TMA PhD School - June 2011

• Filters can have a rule associated to it such as:

– Pass packet to userland in case of match.

– Drop packet in case of match.

– Execute the action associated with the packet.

• Actions are implemented into plugins. Typical action include:
– Add/delete filtering rule

– Increment specific traffic counters.

– Interact with the Linux kernel for performing specific actions.

36

typedef struct {
 [...]

 rule_action_behaviour rule_action; /* What to do in case of match */
 filtering_rule_plugin_action plugin_action;
 unsigned long jiffies_last_match;
} hash_filtering_rule;

PF_RING: Exact Filters [2/2]

Fi
lte

r A
ct

io
ns

2nd TMA PhD School - June 2011

PF_RING: Wildcard-ed Filters [1/2]

• This filter family has to be used whenever:
– Not all filter elements are set to a specific value.

– The filter contains value ranges.

• Filters are bi-directional (i.e. they are checked on both source and
destinations fields.

• Filtering rules have a unique (in the PF_RING socket) numeric
identifier that also identifies the rule evaluation order.

37

typedef struct {
 u_int8_t dmac[ETH_ALEN], smac[ETH_ALEN]; /* Use '0' (zero-ed MAC address) for any MAC address.
 This is applied to both source and destination. */
 u_int16_t vlan_id; /* Use '0' for any vlan */
 u_int8_t proto; /* Use 0 for 'any' protocol */
 ip_addr host_low, host_high; /* User '0' for any host. This is applied to both source
 and destination. */
 u_int16_t port_low, port_high; /* All ports between port_low...port_high
 0 means 'any' port. This is applied to both source
 and destination. This means that
 (proto, sip, sport, dip, dport) matches the rule if
 one in "sip & sport", "sip & dport" "dip & sport"
 match. */
} filtering_rule_core_fields;

2nd TMA PhD School - June 2011

PF_RING: Wildcard-ed Filters [2/2]

• Filters can optionally contain some extended fields used for:

–Matching packet payload

– Implementing more complex packet filtering by means of
plugins (see later).

• User-space PF_RING library allows plugins to specify some
parameters to be passed to filters (e.g. pass only HTTP
packets with method POST).

38

typedef struct {
 char payload_pattern[32]; /* If strlen(payload_pattern) > 0, the packet payload
 must match the specified pattern */
 u_int16_t filter_plugin_id; /* If > 0 identifies a plugin to which the data structure
 below will be passed for matching */
 char filter_plugin_data[FILTER_PLUGIN_DATA_LEN];
/* Opaque data structure that is interpreted by the
 specified plugin and that specifies a filtering
 criteria to be checked for match. Usually this data
 is re-casted to a more meaningful data structure
*/
} filtering_rule_extended_fields;

2nd TMA PhD School - June 2011

Combining Filtering with Balancing [1/4]

• PF_RING clustering allows socket to be grouped so that they
be used for effectively sharing load across threads and
processes.

• Clustering works at PF_RING socket level and it’s basically a
mechanism for balancing traffic across packet consumers.

• PF_RING filtering rules combine the best of these technologies
by implementing traffic balancing for those packets that match
a certain filter.

• The idea is to have the same filter specified for various sockets
that are the grouped together. Packets matching the filter are
then forwarded only to one of the sockets.

39

2nd TMA PhD School - June 2011 40

Combining Filtering with Balancing [2/4]

Incoming Packet

Parse packet
(once for all sockets/filters)

Return control to Caller

Loop through the filters

Loop through the PF_RING sockets

Match found ?

Balance

2nd TMA PhD School - June 2011

• Filtered packets are balanced across sockets as
follows

41

Combining Filtering with Balancing [3/4]

typedef struct {
 [...]
 u_int8_t balance_id, balance_pool; /* If balance_pool > 0, then pass the
 packet to PF_RING caller only if
 (hash(proto, sip, sport, dip, dport) %
 balance_pool) = balance_id */
 [...]
} filtering_rule; Filter match found

Compute balance Value
hash(proto, sip, sport, dip, dport) % balance_pool

Is balance Value == balance_id ?
(i.e. per-flow balancing)

Pass the Packet Drop the Packet

2nd TMA PhD School - June 2011

• Using balancing for distributing load across applications/
threads is very effective for exploiting multi-processor/core
architectures.

42

Combining Filtering with Balancing [4/4]

PF_RING
Socket

Application Application Application Application

PF_RING
Socket

PF_RING
Socket

PF_RING
Socket

PF_RING

Filtering Rule

balance_id=0
balance_pool=4

Filtering Rule

balance_id=1
balance_pool=4

Filtering Rule

balance_id=2
balance_pool=4

Filtering Rule

balance_id=3
balance_pool=4

2nd TMA PhD School - June 2011

PF_RING Packet Reflection [1/3]

• Often, monitoring applications need to forward filtered packets to remote
systems or applications.

• Traffic balancers for instance are basically a “filter & forward” application.

• Moving packets from the kernel to userland and then back to the kernel
(for packet forwarding) is not very efficient as:

– Too many actors are involved.

– The packet journey is definitively too long.

• PF_RING packet reflection is a way to forward packets that matched a
certain filter towards a remote destination on a specific NIC (that can be
different from the one on which the packet has been received).

• Packet reflection is configured from userland at startup.

• All forwarding is performed inside the kernel without any application
intervention at all.

43

2nd TMA PhD School - June 2011 44

PF_RING Packet Reflection [2/3]

 /* open devices */
 if((pd = pfring_open(in_dev, promisc, 1500, 0)) == NULL)
 {
 printf("pfring_open error for %s\n", in_dev);
 return -1;
 } else
 pfring_set_application_name(pd, "forwarder");

 if ((td = pfring_open(out_dev, promisc, 1500, 0)) == NULL) {
 printf("pfring_open error for %s\n", out_dev);
 return -1;
 } else
 pfring_set_application_name(td, "forwarder");

 /* set reflector */
 if (pfring_set_reflector(pd, out_dev) != 0)
 {
 printf("pfring_set_reflector error for %s\n", out_dev);
 return -1;
 }

 /* Enable rings */
 pfring_enable_ring(pd);
 pfring_enable_ring(td);

 while(1) sleep(60); /* Loop forever */

2nd TMA PhD School - June 2011

• PF_RING packet reflection allows easily and efficiently to implement:

– Filtering packet balancers

– (Filtering) Network bridges

• In a nutshell this technique allows to easily implement the “divide and
conquer” principle and to combine it with techniques just presented.

45

PF_RING Packet Reflection [3/3]

PF_RING-based
Traffic Balancer

PF_RING-based
Monitoring Application

PF_RING-based
Monitoring Application

PF_RING-based
Monitoring Application

PF_RING-based
Monitoring Application

Host
Incoming Traffic

(e.g. 10 Gbit)

Outgoing Traffic
(e.g. 1 Gbit)

2nd TMA PhD School - June 2011

PF_RING Kernel Plugins [1/3]

• Implementing into the kernel is usually more efficient than doing the
same in userland because:
– Packets do not need to travel from kernel to userland.

– If a packet is supposed to be received by multiple applications it is not
duplicated on the various sockets, but processed once into the kernel

• For packet filtering, it is important to filter as low as possible in the
networking stack, as this prevents packet not matching the filter to
be propagated and the discarded later on.

• PF_RING plugins allow developers to code small software modules
that are executed by PF_RING when incoming packets are received.

• Plugins can be loaded and unloaded dynamically via insmod/
rmmod commands.

46

2nd TMA PhD School - June 2011

• Each plugin need to declare a data structure according to the format below.

• The various pfring_plugin_* variables are pointers to functions that are called by
PF_RING when:

– A packet has to be filtered.

– An incoming packet has been received and needs to be processed.

– A userland application wants to know stats about this plugin.

– A filtering rule will be removed and the memory allocated by the plugin needs to be released.

47

PF_RING Kernel Plugins [2/3]

struct pfring_plugin_registration {
 u_int16_t plugin_id;
 char name[16]; /* Unique plugin name (e.g. sip, udp) */
 char description[64]; /* Short plugin description */

 plugin_filter_skb pfring_plugin_filter_skb; /* Filter skb: 1=match, 0=no match */
 plugin_handle_skb pfring_plugin_handle_skb;
 plugin_get_stats pfring_plugin_get_stats;
 plugin_free_ring_mem pfring_plugin_free_ring_mem;
 plugin_add_rule pfring_plugin_add_rule;
 plugin_register pfring_plugin_register;

 kernel_packet_start pfring_packet_start;
 kernel_packet_reader pfring_packet_reader;
 kernel_packet_term pfring_packet_term;
};

2nd TMA PhD School - June 2011

PF_RING Kernel Plugins [3/3]

• Plugins are associated with filtering rules and are triggered whenever a
packet matches the rule.

• If the plugin has a filter function, the this function is called in order to check
whether a packet passing the header filter will also pass other criteria. For
instance:

– ‘tcp and port 80’ is a rule filter used to select http traffic

– The HTTP plugin can check the packet payload (via DPI) to verify that the packet
is really http and it’s not another protocol that hides itself on the http port.

• In order to perform complex checks, rules need to be stateful hence to
allocate some memory, private to the plugin, that is used to keep the state.

• PF_RING delegates to the plugin the duty of managing this opaque memory
that is released by PF_RING when a rule is deleted, by calling the plugin
callback.

48

2nd TMA PhD School - June 2011

Efficient Layer 7
Packet Analysis

49

2nd TMA PhD School - June 2011

Using PF_RING Filters: HTTP Monitoring [1/5]

• Goal
– Passively produce HTTP traffic logs similar to those produced by

Apache/Squid/W3C.

• Solution
– Implement plugin that filters HTTP traffic.

– Forward to userspace only those packets containing HTTP requests
for all known methods (e.g. GET, POST, HEAD) and responses (e.g.
HTTP 200 OK).

– All other HTTP packets beside those listed above are filtered and not
returned to userspace.

– HTTP response length is computed based on the “Content-Length”
HTTP response header attribute.

50

static int __init http_plugin_init(void)
{
 int rc;

 printk("Welcome to HTTP plugin for PF_RING\n");

 reg.plugin_id = HTTP_PLUGIN_ID;
 reg.pfring_plugin_filter_skb = http_plugin_plugin_filter_skb;
 reg.pfring_plugin_handle_skb = NULL;
 reg.pfring_plugin_get_stats = NULL;

 snprintf(reg.name, sizeof(reg.name)-1, "http");
 snprintf(reg.description, sizeof(reg.description)-1, "HTTP protocol analyzer");

 rc = do_register_pfring_plugin(®);

 printk("HTTP plugin registered [id=%d][rc=%d]\n", reg.plugin_id, rc);

 return(0);
}

2nd TMA PhD School - June 2011

Plugin Registration

51

Using PF_RING Filters: HTTP Monitoring [2/5]

static int http_plugin_plugin_filter_skb(filtering_rule_element *rule,
 struct pfring_pkthdr *hdr, struct sk_buff *skb,
 struct parse_buffer **parse_memory)
{
 struct http_filter *rule_filter = (struct http_filter*)rule-
>rule.extended_fields.filter_plugin_data;
 struct http_parse *packet_parsed_filter;

 if((*parse_memory) == NULL) {
 /* Allocate (contiguous) parsing information memory */
 (*parse_memory) = kmalloc(sizeof(struct parse_buffer*), GFP_KERNEL);
 if(*parse_memory) {
 (*parse_memory)->mem_len = sizeof(struct http_parse);
 (*parse_memory)->mem = kcalloc(1, (*parse_memory)->mem_len, GFP_KERNEL);
 if((*parse_memory)->mem == NULL) return(0); /* no match */
 }

 packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);
 parse_http_packet(packet_parsed_filter, hdr, skb);
 } else {
 /* Packet already parsed: multiple HTTP rules, parse packet once */
 packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);
 }

 return((rule_filter->the_method & packet_parsed_filter->the_method) ? 1 /* match */ : 0);
}

2nd TMA PhD School - June 2011

Plugin Packet Filtering

52

Using PF_RING Filters: HTTP Monitoring [3/5]

static void parse_http_packet(struct http_parse *packet_parsed,
 struct pfring_pkthdr *hdr,
 struct sk_buff *skb) {
 u_int offset = hdr->parsed_pkt.pkt_detail.offset.payload_offset; /* Use PF_RING Parsing */
 char *payload = &skb->data[offset];

 /* Fill PF_RING parsing information datastructure just allocated */
 if((hdr->caplen > offset) && !memcmp(payload, "OPTIONS", 7)) packet_parsed->the_method = method_options;
 else if((hdr->caplen > offset) && !memcmp(payload, "GET", 3)) packet_parsed->the_method = method_get;
 else if((hdr->caplen > offset) && !memcmp(payload, "HEAD", 4)) packet_parsed->the_method = method_head;
 else if((hdr->caplen > offset) && !memcmp(payload, "POST", 4)) packet_parsed->the_method = method_post;
 else if((hdr->caplen > offset) && !memcmp(payload, "PUT", 3)) packet_parsed->the_method = method_put;
 else if((hdr->caplen > offset) && !memcmp(payload, "DELETE", 6)) packet_parsed->the_method = method_delete;
 else if((hdr->caplen > offset) && !memcmp(payload, "TRACE", 5)) packet_parsed->the_method = method_trace;
 else if((hdr->caplen > offset) && !memcmp(payload, "CONNECT", 7)) packet_parsed->the_method = method_connect;
 else if((hdr->caplen > offset) && !memcmp(payload, "HTTP ", 4)) packet_parsed->the_method =
method_http_status_code;
 else packet_parsed->the_method = method_other;
}

2nd TMA PhD School - June 2011

Plugin Packet Parsing

53

Using PF_RING Filters: HTTP Monitoring [4/5]

 if((pd = pfring_open(device, promisc, 0)) == NULL) { printf("pfring_open error\n"); return(-1); }

 pfring_toggle_filtering_policy(pd, 0); /* Default to drop */

 memset(&rule, 0, sizeof(rule));
 rule.rule_id = 5, rule.rule_action = forward_packet_and_stop_rule_evaluation;
 rule.core_fields.proto = 6 /* tcp */;
 rule.core_fields.port_low = 80, rule.core_fields.port_high = 80;
 rule.plugin_action.plugin_id = HTTP_PLUGIN_ID; /* HTTP plugin */
 rule.extended_fields.filter_plugin_id = HTTP_PLUGIN_ID; /* Enable packet parsing/filtering */
 filter = (struct http_filter*)rule.extended_fields.filter_plugin_data;
 filter->the_method = method_get | method_http_status_code;

 if(pfring_add_filtering_rule(pd, &rule) < 0) {
printf("pfring_add_filtering_rule() failed\n");
return(-1); }

 while(1) {
 u_char buffer[2048];
 struct pfring_pkthdr hdr;

 if(pfring_recv(pd, (char*)buffer, sizeof(buffer), &hdr, 1) > 0)
 dummyProcesssPacket(&hdr, buffer);
 }

 pfring_close(pd);

2nd TMA PhD School - June 2011

Userland application

54

Using PF_RING Filters: HTTP Monitoring [5/5]

2nd TMA PhD School - June 2011

YouTube Monitoring [1/2]

• YouTube monitoring is an extension of the HTTP plugin.

• HTTP is used by YouTube to transport videos usually encoded in H.264
or Flash Video.

• The HTTP plugin can be used for monitoring, from the network point of
view, the YouTube traffic and detecting whether the network quality is
adequate or if the user should have experienced unstable playback.

• Video streams are tracked by checking the URL (e.g. GET /get_video?
video_id=...) and the server host (www.youtube.com).

• Whenever a YouTube video stream is detected, the HTTP plugin adds
an exact matching rule on the hash, used to track the stream, with the
YouTube plugin specified as rule action.

55

http://www.youtube.com
http://www.youtube.com

2nd TMA PhD School - June 2011

YouTube Monitoring [2/2]
• The YouTube plugin is able to measure some stream statistics such as

throughput, jitter, bandwidth used.

• When a stream is over, the plugin return to userland a packet with the
stream statistics.

• Note that all stream packets are not returned to userland, but just the
statistics, that contributes to reduce load on the probe and improve
performance.

56

struct youtube_http_stats {
 u_int32_t initialTimestamp, lastTimestamp, lastSample; /* Packet Timestamps [jiffies] */
 struct timeval initial_tv;
 u_int32_t tot_pkts, tot_bytes, cur_bytes;
 u_int32_t num_samples;
 u_int8_t signaling_stream; /* 1=signaling, 2=real video stream */
 char url[URL_LEN];
 char video_id[VIDEO_ID_LEN], video_playback_id[VIDEO_ID_LEN];
 u_int32_t min_thpt, avg_thpt, max_thpt; /* bps */
 u_int32_t min_jitter, avg_jitter, max_jitter; /* jiffies */
 u_int32_t duration_ms;
 char content_type[CONTENT_TYPE_LEN];
 u_int32_t tot_jitter, num_jitter_samples;
};

2nd TMA PhD School - June 2011

Dynamic PF_RING Filtering: VoIP [1/6]
• Goal

– Track VoIP (SIP+RTP) calls at any rate on a Gbit link using commodity
hardware.

– Track RTP streams and calculate call quality information such as jitter, packet
loss,without having to handle packets in userland.

• Solution

– Code a PF_RING plugin for tracking SIP methods and filter-out:
• Uninteresting (e.g. SIP Options) SIP methods

• Not well-formed SIP packets

• Dummy/self calls (i.e. calls used to keep the line open but that do not result in a real
call).

– Code a RTP plugin for computing in-kernel call statistics (no pkt forwarding).

– The SIP plugin adds/removes a precise RTP PF_RING filtering rule whenever
a call starts/ends.

57

2nd TMA PhD School - June 2011

Dynamic PF_RING Filtering: VoIP [2/6]
– Before removing the RTP rule though PF_RING library calls, call information is

read and then the rule is deleted.

– Keeping the call state in userland and do not forwarding RTP packets,
allows the code of VoIP monitoring applications to be greatly simplified.

– Furthermore as SIP packets are very few compared to RTP packets, the
outcome is that most packets are not forwarded to userland contributing to
reduce the overall system load.

58

(user space)

(kernel space)

RTP media
SIP signaling

SIP filter RTP
analyzer

 VoIP Monitor
RTP packets
Add/remove flow

SIP packets

RTP statistics (poll)

2nd TMA PhD School - June 2011

Dynamic PF_RING Filtering: VoIP [3/6]

• SIP Plugin
– It allows to set filters based on SIP fields (e.g. From, To, Via, CallID)

– Some fields are not parsed but the plugin returns an offset inside the SIP packet
(e.g. SDP offset, used to find out the IP:port that will be used for carrying the
RTP/RTCP streams).

– Forwarded packets contain parsing information in addition to SIP payload.

• RTP Plugin
– It tracks RTP (mono/by-directional) flows.

– The following, per-flow, statistics are computed: jitter, packet loss, malformed
packets, out of order, transit time, max packet delta.

– Developers can decide not to forward packets (this is the default behavior) or to
forward them (usually not needed unless activities like lawful interception need
to be carried on).

59

2nd TMA PhD School - June 2011

Dynamic PF_RING Filtering: VoIP [4/6]

• Validation

– A SIP test tool and traffic generator (sipp) is used to create synthetic SIP/RTP
traffic.

– A test application has been developed: it receives SIP packets (signaling)
and based on them it computes RTP stats.

– A traffic generator (IXIA 400) is used to generate noise in the line and fill it
up. As RTP packets are 100 bytes in average, all tests are run with 128 bytes
packets.

– The test code runs on a cheap single-core Celeron 3.2 GHz (cost < 40 Euro).

– In order to evaluate the speed gain due to PF_RING kernel modules, the
same test application code is tested:
• Forwarding SIP/RTP packets to userland without exploiting kernel modules (i.e. the

code uses the standard PF_RING).

• RTP packets are not forwarded, SIP packets are parsed/filtered in kernel.

60

2nd TMA PhD School - June 2011

Dynamic PF_RING Filtering: VoIP [5/6]

61

0

5

10

15

20

1000 10’000 20’000 30’000 40’000 50’000

% Idle CPU [128 bytes packets]

RTP Plugin
RTP stats computed in userland
PF_RING capture only (no RTP analysis)

0

175

350

525

700

1000 10’000 20’000 30’000 40’000 50’000

Max Throughput (Mbps) with no loss [128 bytes packets]

Kernel
Rules

Kernel
Rules

2nd TMA PhD School - June 2011

Dynamic PF_RING Filtering: VoIP [6/6]

• Validation Evaluation

– In-kernel acceleration has demonstrated that until 40K rules, kernel plugins
are faster than a dummy application that simply captures packets without
any processing.

– On a Gbit link it is possible to have up to ~10K concurrent calls with G.711
(872 Mbit) or ~30K calls with G.729 (936 Mbit). This means that with the
current setup and a slow processor, it is basically possible to monitor a
medium/large ISP.

• Future Work Items
– The plugins are currently used as building blocks glued together by means

of the user-space applications.

– The SIP plugin can dynamically add/remove RTP rules, so that it is possible
to avoid (even for SIP) packet forwarding and send to userland just VoIP
statistics for even better performance figures.

62

2nd TMA PhD School - June 2011 63

PF_RING Content Inspection

•PF_RING allows filtering to be combined with packet
inspection.
•Ability to (in kernel) search multiple string patterns into

packet payload.
•Algorithm based on Aho-Corasick work.
• Ideal for fields like lawful interception and security

(including IDSs).
•Major performance improvement with respect to

conventional pcap-based applications.

2nd TMA PhD School - June 2011

L7 Analysis: Summary

• The use of kernel plugins allows packets to have a short journey
towards the application.

• In-kernel processing is very efficient and it avoids the bottleneck of
several userland application threads competing for packets.

• As PF_RING requires minimal locking (when the filtering rule is
accessed and updated), packets are processed concurrently
without any intervention from userland applications.

• As the Linux kernel concurrently fetches packets from adapters,
this is a simple way to exploit multi-processing/core without
having to code specific (multithreaded) userland applications and
serialize packets on (PF_RING) sockets.

64

2nd TMA PhD School - June 2011

Direct Access to NICs

65

2nd TMA PhD School - June 2011

Direct NIC Access: Introduction

• Commercial accelerated NICs are accelerated either using ASIC (rare) or
FPGAs (often) chips.

• Accelerators improve common activities such as packet filtering and are
also responsible of pushing packets to memory with very limited (< 1%)
load on the main CPU.

• Applications access packets directly without any kernel intervention at all.

• A kernel-mapped DMA memory allows the application to manipulate
card registers and to read packets from this memory where incoming
packets are copied by the hardware accelerators.

• Cards falling in this category include:
– Endace DAG

– Napatech

– NetFPGA

66

2nd TMA PhD School - June 2011

Direct NIC Access: Comparison [1/2]

67

Device Driver

Application

DMA

PF_RING

Userland

Kernel

Circular
Buffer

NAPI
Polling

PF_RING
Polling

Hardware AccelerationPF_RING

Device Driver

Application

DMA

Accelerated
Cards

Userland

Kernel

NIC
Memory

Map FPGA

Application
Polling

2nd TMA PhD School - June 2011

Direct NIC Access: Comparison [2/2]

• The reason why accelerated cards are so efficient are:
– The FPGA polls packets as fast as possible without any intervention from the

main CPU. In Linux the main CPU has to periodically read packets through
NAPI from the NIC.

– Received packets are copied on a pre-allocated large memory buffer so no
per-packet allocation/deallocation is necessary at all, as it happens in vanilla
Linux.

– Similar to PF_RING, packets are read from circular buffer without any kernel
interaction (beside packet polling).

• Limitations

– As applications access packets directly, if they improperly manipulate card’s
memory the whole system might crash.

– FPGA filtering is very limited and not as rich as PF_RING.

– Contrary to PF_RING, only one application at time can read packers from the
ring.

68

2nd TMA PhD School - June 2011

Welcome to nCap (Circa 2003)

Standard

TCP/IP

Stack

Enhanced libpcap

Accelerated Device Driver

PF_RING

Monitoring

Application

Monitoring

Application

Monitoring

Application

Ethernet

nCap

Legacy

S
tr

a
ig

h
t

C
a

p
tu

re

U
s
e
rl
a
n
d

K
e
rn
e
l

69

2nd TMA PhD School - June 2011

nCap Features

Packet
Capture

Acceleration

Wire Speed

Packet
Capture

Number of
Applications

per Adapter

Standard TCP/IP Stack

with accelerated driver

Limited No Unlimited

PF_RING

with accelerated driver

Great Almost Unlimited

Straight Capture Extreme Yes One

70

2nd TMA PhD School - June 2011

nCap Internals

• nCap maps at userland the card registers and memory.

• The card is accessed by means of a device /dev/ncap/ethX

• If the device is closed it behaves as a “normal” NIC.

• When the device is open, it is completely controlled by
userland the application.

• A packet is sent by copying it to the TX ring.

• A packet is received by reading it from the RX ring.

• Interrupts are disabled unless the userland application wait
for packets (poll()).

• On NIC packet filtering (MAC Address/VLAN only).

71

2nd TMA PhD School - June 2011

nCap Comparison (1 Gbit)

Source Cesnet (http://luca.ntop.org/ncap-evaluation.pdf)

Maximum

Packet Loss

at Wire Speed

Estimated

Card

Price

Manufacturer

DAG 0% > 5-7 K Euro Endace.com

nCap 0.8% 100 Euro

Combo 6 (Xilinx) 5% > 7-10 K Euro Liberouter.com

72

http://luca.ntop.org/ncap-eval.pdf
http://luca.ntop.org/ncap-eval.pdf

2nd TMA PhD School - June 2011

Beyond PF_RING

• PF_RING has shown to be an excellent packet capture
acceleration technology compared to vanilla Linux.

• It has reduced the cost of packet capture and forward to userland.

• However it has some design limitations as it requires two actors
for capturing packets that result in sub-optimal performance:

– kernel: copy packet from NIC to ring.

– userland: read packet from ring and process it.

• PF_RING kernel modules demonstrated that limiting packet
processing in user-space by moving it to kernel results in major
performance improvements.

• A possible solution is to map a NIC to user-space and prevent the
kernel from using it.

73

2nd TMA PhD School - June 2011

PF_RING DNA (Direct NIC Access)

• PF_RING DNA is an extension for PF_RING that allows NICs to be
accessed in direct mode fully bypassing Linux NAPI.

• Based on the lessons learnt while developing nCap, DNA is a
technology developed in clean-room that has been designed to be
NIC-neutral in order to allows various NICs to be supported.

• The NIC mapping is driver dependent hence it requires some driver
modifications in order to:
– Disable NAPI when the NIC is accessed in DNA mode.

– Contiguously allocate RX card’s memory in one shot (and not per packet).

– Register the NIC with PF_RING so the card is accessed seamlessly from
PF_RING applications without the need to know the NIC internals and its
memory layout.

74

2nd TMA PhD School - June 2011

PF_RING DNA (De)Registration

75

/* Register with PF_RING */
do_ring_dna_device_handler(add_device_mapping,
 adapter->tnapi.dma_mem.packet_memory,
 adapter->tnapi.dma_mem.packet_num_slots,
 adapter->tnapi.dma_mem.packet_slot_len,
 adapter->tnapi.dma_mem.tot_packet_memory,
 rx_ring->desc,
 rx_ring->count, /* # of items */
 sizeof(struct e1000_rx_desc),
 rx_ring->size, /* tot len (bytes) */
 0, /* Channel Id */
 (void*)netdev->mem_start,
 netdev->mem_end,
 netdev,
 intel_e1000,
 &adapter->tnapi.packet_waitqueue,
 &adapter->tnapi.interrupt_received,
 (void*)adapter,
 wait_packet_function_ptr);

NIC Memory
Pointers

NIC DMA Ring

NIC Registers
Memory

Packet Polling

2nd TMA PhD School - June 2011

PF_RING DNA: Current Status

• As of today, DNA is available for Intel-based 1 Gbit (e1000 driver) and
10 Gbit (ixgbe) NICs.

• Any modern dual-core (or better) system can achieve wire rate
packet capture at any packet size using DNA.

• A userland library used to manipulate card registers has been
integrated into PF_RING.

• Applications do not need to do anything different from standard
PF_RING with the exception that the ring memory has to be open
using pfring_open_dna() instead of the standard
pfring_open().

• When an application opens the adapter in DNA mode, other
applications using the same adapter in non-DNA mode will stop
receiving packets until the application quits.

76

2nd TMA PhD School - June 2011

Towards 10 Gbit Packet Capture
Using Commodity Hardware

77

2nd TMA PhD School - June 2011

Enhanced NIC Drivers [1/5]
• The current trend in computer architecture is towards multi-core systems.

• Currently 4-core CPUs are relatively cheap, some manufacturers
announced a 64-core x86 CPU by the end of 2008.

• Exploiting multi-core in userland applications is relatively simple by using
threads.

• Exploiting multi-core in kernel networking code is much more complex.

• Linux kernel networking drivers are single-threaded and the model is still
the same since many years.

• It’s not possible to achieve good networking performance unless NIC drivers
are also accelerated and exploit multi-core.

78

2nd TMA PhD School - June 2011

Enhanced NIC Drivers [1/4]

• The current trend in computer architecture is towards multi-core
systems.

• Currently 4-core CPUs are relatively cheap and rather common on
the market. Intel announced Xeon Nehalem-EX with 16 threads (8
cores) for late 2009. The core rush is not yet over.

• Exploiting multi-core in userland applications is relatively simple by
using threads.

• Exploiting multi-core in kernel networking code is much more
complex.

• Linux kernel networking drivers are single-threaded and the model
is still the same since many years.

• It’s not possible to achieve good networking performance unless NIC
drivers are also accelerated and exploit multi-core.

79

2nd TMA PhD School - June 2011

Enhanced NIC Drivers [2/4]

Intel has recently introduced a few innovations in the
Xeon 5000 chipset series that have been designed to
accelerate networking applications:
• I/O Acceleration Technology (I/OAT)

– Direct Cache Access (DCA) asynchronously move packets from NIC directly on CPU’s
cache in DMA.

– Multiple TX/RX queues (one per core) that improve system throughput and utilization.

— MSI-X, low latency interrupts and load balancing across multiple RX queues.

— RSS (Receive-Side Scaling) balances (network flow affinity) packets across RX queue/
cores.

— Low-latency with adaptive and flexible interrupt moderation.

In a nutshell: increase performance by distributing workloads across available CPU cores.

80

2nd TMA PhD School - June 2011

Enhanced NIC Drivers [3/4]

81

2nd TMA PhD School - June 2011

Enhanced NIC Drivers: Linux NAPI [4/4]

82

RX
Queue

RX
Queue

RX
Queue

RX
Queue

RSS (Resource Side Scaling)

10 Gbit PHY

Networking Stack

Monitoring
Application

NAPI
Sequential RX
Ring Polling

2nd TMA PhD School - June 2011

Linux NAPI Limitations [1/2]

83

2nd TMA PhD School - June 2011

Linux NAPI Limitations [2/2]

• Multiple-RX queues are not fully exploited by Linux as NAPI polls them
in sequence and not concurrently

• Interrupts are enabled/disabled globally (i.e. for all queues at the
same time) whereas they should be managed queue-per-queue as
not all queues have the same amount of traffic (it depends on how
balance-able is the ingress traffic).

• Original queue index (that can be used as flow identifier) is lost when
the packet is propagated inside the kernel and then to userland.

• Userland applications see the NIC as a single entity and not as a
collection of queues as it should be. This is a problem as the software
could take advantage of multiple queues by avoiding threads
competing for incoming packets all coming from the same NIC but
from different queues.

84

2nd TMA PhD School - June 2011

Example of Multi-Queue NIC Statistics

85

ethtool -S eth5
NIC statistics:
 rx_packets: 161216
 tx_packets: 0
 rx_bytes: 11606251
 tx_bytes: 0
 lsc_int: 1
 tx_busy: 0
 non_eop_descs: 0
 rx_errors: 0
 tx_errors: 0
 rx_dropped: 0
 tx_dropped: 0
 multicast: 4
 broadcast: 1
 rx_no_buffer_count: 2
 collisions: 0
 rx_over_errors: 0
 rx_crc_errors: 0
 rx_frame_errors: 0
 rx_fifo_errors: 0
 rx_missed_errors: 0
 tx_aborted_errors: 0
 tx_carrier_errors: 0
 tx_fifo_errors: 0

 tx_heartbeat_errors: 0
 tx_timeout_count: 0
 tx_restart_queue: 0
 rx_long_length_errors: 0
 rx_short_length_errors: 0
 tx_tcp4_seg_ctxt: 0
 tx_tcp6_seg_ctxt: 0
 tx_flow_control_xon: 0
 rx_flow_control_xon: 0
 tx_flow_control_xoff: 0
 rx_flow_control_xoff: 0
 rx_csum_offload_good: 153902
 rx_csum_offload_errors: 79
 tx_csum_offload_ctxt: 0
 rx_header_split: 73914
 low_latency_interrupt: 0
 alloc_rx_page_failed: 0
 alloc_rx_buff_failed: 0
 lro_flushed: 0
 lro_coal: 0
 tx_queue_0_packets: 0
 tx_queue_0_bytes: 0
 rx_queue_0_packets: 79589
 rx_queue_0_bytes: 5721731
 rx_queue_1_packets: 81627
 rx_queue_1_bytes: 5884520

2nd TMA PhD School - June 2011

Memory Allocation Life Cycle [1/5]
• Incoming packets are stored into kernel’s memory that has been previously

allocated by the driver.

• As soon that a packet is received, the NIC NPU (Network Process Unit) checks if
there’s an empty slot and if so it copies the packet in the slot.

• The slot is removed from the RX buffer and propagated through the kernel.

• A new bucket is allocated and places on the same position of the old slot.

86

Read Index
(NIC Device Driver)

Write Index
(Network Process Unit)

NIC RX Buffer
(one per RX Queue)

2nd TMA PhD School - June 2011

• The consequence of this allocation policy is that:
– Every new packet requires one slow allocation (and later-on a free).

– As the traffic rate increases, increasing allocations/free will happen.

– In particular at 10 Gbit, if there’s a traffic spike or a traffic shot, the system may
run out of memory as incoming packets:
• require memory hence the memory allocator does its best to allocate new slots.

• are stuck in the network kernel queue because the packet consumers cannot
keep-up with the ingress traffic rate.

– When the system runs in low memory it tries to free cached memory in order to
free some space.

– Unfortunately when the ingress rate is very high, the memory recover process
does not have enough time hence the system runs out of memory and the
result is that Linux’s OOM (Out Of Memory) killer has to kill some processes in
order to recover some memory.

87

Memory Allocation Life Cycle [2/5]

2nd TMA PhD School - June 2011

Memory Allocation Life Cycle [3/5]

88

 if(rx_desc->status & E1000_RXD_STAT_DD) {
 /* A packet has been received */
#if defined (CONFIG_RING) || defined(CONFIG_RING_MODULE)
 handle_ring_skb ring_handler = get_skb_ring_handler();

 if(ring_handler && adapter->soncap.soncap_enabled) {
 ring_handler(skb, 0, 1, (hash_value % MAX_NUM_CHANNELS));
 } else {
#endif

[.....]
 if (++i == rx_ring->count) i = 0;
 next_rxd = E1000_RX_DESC(*rx_ring, i);
 prefetch(next_rxd);
 next_buffer = &rx_ring->buffer_info[i];
 cleaned = TRUE;
 cleaned_count++;
 pci_unmap_single(pdev, buffer_info->dma, PAGE_SIZE, PCI_DMA_FROMDEVICE);
 [.....]
 skb = netdev_alloc_skb(netdev, bufsz);
 buffer_info->dma = pci_map_single(pdev,
 skb->data,
 adapter->rx_buffer_len,
 PCI_DMA_FROMDEVICE);
 [.....]

2nd TMA PhD School - June 2011 89

Memory Allocation Life Cycle [4/5]

Read Index Write Index

netif_rx()

Linux Kernel
RX Queue

pci_unmap_single

netdev_alloc_skb
pci_map_single

P
F

_
R

IN
G

R
X

 R
in

g

memcpy()
No kmalloc/kfree

NAPI

PF_RING

2nd TMA PhD School - June 2011

Memory Allocation Life Cycle [5/5]

•Avoiding memory allocation/deallocation has several
advantages:
–No need to allocate/free buffers

–No need to map memory though the PCI bus
– In case of too much incoming traffic, as the kernel has

more priority than userland applications, there’s no risk
to run out of memory as it happens with standard NAPI.

• The last advantage of doing a packet copy to the
PF_RING buffer is the speed. Depending on the setup,
the packet capture performance can be increased of
10-20% with respect to standard NAPI.

90

2nd TMA PhD School - June 2011

Enhanced NIC Drivers: TNAPI [1/8]

• In order to enhance and accelerate packet capture under Linux, a
new Linux driver for Intel 1 and 10 Gbit cards has been developed.
Main features are:
– Multithreaded capture (one thread per RX queue, per NIC adapter).

The number of rings is the number of cores (i.e. a 4 core system has
4 RX rings)

– RX packet balancing across cores based on RSS: one core, one RX
ring.

– Driver-based packet filtering (PF_RING filters port into the driver) for
stopping unwanted packets at the source.

– Development drivers for Intel 82598/9 (10G) and 82575/6 (1G)
ethernet controllers.

• For this reason the driver has been called TNAPI (Threaded NAPI).

91

2nd TMA PhD School - June 2011

Enhanced NIC Drivers: TNAPI [2/8]

92

Thread Thread Thread Thread

RX
Queue

RX
Queue

RX
Queue

RX
Queue

PF_RING

RSS (Resource Side Scaling)
[Hardware per-flow Balancing]

1 Gbit / 10 Gbit NIC

Userland

Threaded
Polling

Virtual PF_RING
Ethernet Queue

No Mutex
Needed

TNAPI

2nd TMA PhD School - June 2011

• Packet capture has been greatly accelerated thanks to TNAPI as:
– Each RX queue is finally independent (interrupts are turned on/off per

queue and not per card)

– Each RX queue has a thread associated and mapped on the same CPU
core as the one used for RSS (i.e. cache is not invalidated)

– The kernel thread pushes packets as fast as possible up on the
networking stack.

– Packets are copied from the NIC directly into PF_RING (allocation/
deallocation of skbuffers is avoided).

– Userland applications can capture packets from a virtual ethernet NIC
that maps the RX ring directly into userspace via PF_RING.

93

Enhanced NIC Drivers: TNAPI [3/8]

2nd TMA PhD School - June 2011

• TNAPI Issues: CPU Monopolization

– As the thread pushes packets onto PF_RING, it should be avoided
that this thread monopolizes. This is because of the all CPU is
used by the kernel for receiving packets, then packet loss won’t
happen in kernel but in userspace (i.e. the packet loss problem is
not solved, but just moved).

– Solution: every X polling cycles, the thread has to give away some
CPU cycles. This is implemented as follow rx_budget that’s
consumed whenever a packet is received and sent to PF_RING.

94

Enhanced NIC Drivers: TNAPI [4/8]

 while(<polling packets from RX queue X>) {
 /* Avoid CPU monopolization */

 if(rx_budget > 0)
 rx_budget--;
 else {
 rx_budget = DEFAULT_RX_BUDGET;
 yield();
 }
 }

2nd TMA PhD School - June 2011

• TNAPI Issues: Interrupts and Cores Allocation

– RX ring interrupts must be sent to the right core that’s
manipulating the queue in order to preserve cache coherency.

– The userland application that’s fetching packets from queue X,
should also be mapped to core X.

– As interrupts are now sent per-queue (and not per-nic as it used to
be) we must make sure that they are sent to the same core that’s
fetching packets.

95

Enhanced NIC Drivers: TNAPI [5/8]

cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
191: 1 1 2656 1 2 2 1 2 PCI-MSI-edge eth3
192: 1 4 0 0 2655 3 1 2 PCI-MSI-edge eth2
193: 78634 14 7 13 9 13 13 18 PCI-MSI-edge eth1
194: 3 15964 6 3 3 5 3 5 PCI-MSI-edge eth0
195: 0 0 0 0 0 0 0 0 PCI-MSI-edge eth7:lsc
196: 1 2 2 0 0 2658 1 0 PCI-MSI-edge eth7:v8-Tx
197: 1 0 2 0 1 0 1 5309 PCI-MSI-edge eth7:v7-Rx
198: 1 0 0 5309 1 2 0 1 PCI-MSI-edge eth7:v6-Rx
199: 0 1 0 1 0 1 2 5309 PCI-MSI-edge eth7:v5-Rx
200: 0 1 1 5307 2 2 1 0 PCI-MSI-edge eth7:v4-Rx
201: 1 0 1 2 1 5307 2 0 PCI-MSI-edge eth7:v3-Rx
202: 2 2 0 1 1 0 5307 1 PCI-MSI-edge eth7:v2-Rx
203: 0 1 5309 1 1 1 0 1 PCI-MSI-edge eth7:v1-Rx
204: 2 2 1 0 5307 1 1 0 PCI-MSI-edge eth7:v0-Rx

2nd TMA PhD School - June 2011

Enhanced NIC Drivers: TNAPI [6/8]

• Example:
–RX ring 6 and 4 use the same CPU 3.
–We want to move RX ring 6 to CPU 1

–How to map a process to a CPU/core

96

cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
198: 1 0 0 5309 1 2 0 1 PCI-MSI-edge eth7:v6-Rx
200: 0 1 1 5307 2 2 1 0 PCI-MSI-edge eth7:v4-Rx

cat /proc/irq/198/smp_affinity
00000008
echo 2 > /proc/irq/198/smp_affinity [00000010 where 1 = CPU 1]
cat /proc/irq/198/smp_affinity
00000002
cat /proc/interrupts |grep "eth7:v6-Rx"
198: 0 67 0 5309 1 2 0 1 PCI-MSI-edge eth7:v6-Rx

unsigned long mask = 7; /* processors 0, 1, and 2 */
unsigned int len = sizeof(mask);
if (sched_setaffinity(0, len, &mask) < 0) {
 perror("sched_setaffinity");
}

2nd TMA PhD School - June 2011

Enhanced NIC Drivers: TNAPI [7/8]

97

Test Type Max Packet Capture SpeedMax Packet Capture Speed

PF_RING
300K pps 560K pps

PF_RING+TNAPI
Mono RX queue

750K pps 920K pps

PF_RING+TNAPI
Multi RX queue

860K pps
Wire Rate (1 Gbit)

~ 3 Million pps (10 Gbit)
~ 5 Million pps (10 Gbit - 2 x Xeon)

Intel Core2Duo 1.86 GHz (Dual Core)
No Intel I/OAT

CPU Intel Xeon 2.4 GHz (Quad Core)
Intel 5000 chipset (I/OAT support)

2nd TMA PhD School - June 2011 98

Enhanced NIC Drivers: TNAPI [8/8]

Testbed: Xeon X3450 @ 2.67GHz

2nd TMA PhD School - June 2011

RX Multi-Queue and DNA
• As previously explained, DNA is an excellent technology for those application

developers who need wire speed packet capture, but that do not need
features such as:

– packet filtering

– multiple application packet consumers.

• DNA so far has been ported to the Intel mono-queue 1 Gbit driver (e1000) and
multi-queue 10 Gbit driver (ixgbe).

• Currently the port of DNA to 1 Gbit RX multi-queue driver (igb) is in progress
and it will be available later this year.

• Combining DNA with multi-queue allows applications to be split into
concurrent execution threads that enables multicore architectures to be further
exploited.

• Additionally by exploiting hardware traffic balancing, it allows flow-based
applications such as netflow probes, to be further accelerated.

99

2nd TMA PhD School - June 2011

SNORT
1 (a)

CORE
1

CORE
2

CORE
8

RAM

INVERSE
MULTIPLEXER

BUFFER COLOR OR DROP

HASH FUNCTION

10GbE
INTERFACE

LOAD BALANCE

 Σ

SNORT
1 (a)
App. ‘A’
1

CLONING
FUNCTION

Monitoring
application

CLONE AND I-
MUX

PACKET FILTERS

Userland

Kernel

100

Multi-Queue on Accelerated NICs

Monitoring
application

Monitoring
application

•Direct NIC Access
•Multicore support

2nd TMA PhD School - June 2011

Exploiting PF_RING Multi-Queue: nProbe

101

RX
Queue

RX
Queue

RX
Queue

RX
Queue

MSI-X

RSS (Resource Side Scaling)

10 Gbit PHY

Polling
Thread

Polling
Thread

Polling
Thread

Polling
Thread

Packet
Cache

Packet
Cache

Packet
Cache

Packet
Cache

nProbe nProbe

DMA DMA

PF_RING

TNAPI

Userland
Flow-like Packets

Flows Flows

- Packet balancing
across cores.

- Peak nProbe
performance: 1.48 Mpps
(packet rate) x 2 Cores.

2nd TMA PhD School - June 2011

Strong Multicore NICs:
Tilera Tile64

102

2nd TMA PhD School - June 2011

Towards Strong Multicore [1/2]

General Perception is that people usually think that
multicore is a good idea, although difficult to implement.

• General PC market
— Input data is unstructured, sequential
— Billions of lines of sequential applications
— Hard to migrate it to parallel code

• Embedded market
— Data is inherently parallel
— Engineers have designed parallel applications
— Their main challenge is complexity of design

103

2nd TMA PhD School - June 2011

• Some applications are naturally parallel as in networking where a
network pipe is a multiplex of many “flows” or distinct streams.

• The only barriers towards adopting strong multicore are:
– Design the application program so that it can take advantage of

multicore without sequentially performing activities that could be
carried on in parallel.

– Entry ticket for learning multicore development tools.

– Low-level programming required to take advantage of the technology.

104

Towards Strong Multicore [2/2]

Network
Pipe

2nd TMA PhD School - June 2011

Programming Paradigms

105

 Run to completion model
— Sequential C/C++ applications
— Run multiple application instances one/core
— Use load balancer library for distribution
— Use tools to tune performance

 Parallel programming
— Parallelize application with pthreads shared

memory
— Run on multiple cores
— Use communication libraries to optimize
— Use tools to tune performance

Sequential
code

Load
Balancer

Sequential
code

Sequential
code

N tiles

Load
Balancer

Parallel
code

N groups

Multiple tiles
working on a
flow/stream

Parallel
code

Parallel
code

2nd TMA PhD School - June 2011

Parallel Processing Without Parallel Programming

106

• Standard model in the embedded world
— Facilitates immediate results using off-the-self code

• Simple architecture
— Each core runs complete application and handles one or multiple

flows or channels
— I/O management and load distribution
— Most embedded applications fit this category
— Large numbers of flows, frames channels, streams, etc…
— Most inputs are completely orthogonal

Sequential
code

Load
Balancer Get next data

Get next data

Get next data Sequential
code

Sequential
code

N Cores

2nd TMA PhD School - June 2011

Tilera TILExpress64
• 64-core CPU.

• Linux-based 2.6 operating system running on board.

• Programmable in C/C++.

• Eclipse Integration for easing software development and
debugging.

107

2nd TMA PhD School - June 2011 108

TILE64 Architecture [1/2]

2nd TMA PhD School - June 2011 109

38 terabits of on-chip bandwidth

2 Dimensional iMesh connects tilesTile = Processor + Cache + Switch

Each tile is a complete processor

Processor

Cache + MMU

Terabit
Switch

TILE64 Architecture [2/2]

2nd TMA PhD School - June 2011

Tilera Advantages

• No need to capture packets as it happens with PCs.

• 12 x 1 Gbit, or 6 x 1Gbit and 1 x 10 Gbit Interfaces (XAUI
connector).

• Ability to boot from flash for creating stand-alone
products.

• Standard Linux development tools available including
libpcap for packet capture.

• Application porting is very quick and simple: less than
100 lines of code changed in nProbe.

110

2nd TMA PhD School - June 2011 111

Porting Exiting Applications to Tile64: nProbe

Ingress Packet Processor
on 1, 2, 3, or 4 tiles

Off-the-shelf nProbe

Tilera provided Lib NetIO
Interface to packet processor

Standard Packet Capture Module
Lib Pcap

Standard get packet interface

One tile
Running
nProbe

XAUI 10GbE MAC

Header parsing and verification

Header 5-tuple hashing

Load balancing and pkt distribution

Network Packets

Buffer management
Tile A

Tile B

Tile C

2nd TMA PhD School - June 2011

nProbe Performance on Tile64

112

0

2500.0

5000.0

7500.0

10000.0

0 15 30 45 60

nProbe Throughput on TILExpressPro-20G at 700 MHz
Ze

ro
-D

ro
p

Th
ro

ug
pu

t (
M

bp
s)

nProbe Tiles

UDP 200B, 400K Flows UDP 100B, 400K Flows UDP 300B, 400K Flows

2nd TMA PhD School - June 2011

Final Remarks

113

2nd TMA PhD School - June 2011

Programming for Multicore [1/4]
• Multicore is not the solution to all performance and scalability

problems.

• Actually it can decrease the performance of poorly designed
applications.

• Like it or not, multicore is the future of CPUs, and
programmers have to face with it.

• From author’s experience before adding threads and
semaphores to parallelize an existing program, it’s worth to
think if instead the basic algorithm used are compatible with
multicore.

114

2nd TMA PhD School - June 2011

Programming for Multicore [2/4]
• When multiple cores are used, efficient memory caching is the way to improve

application performance.

• Hardware CPU caches are rather sophisticated, however they cannot work
optimally without programmer’s assistance.

• Cache coherence can be rather costly if programs invalidate it when not
necessary.

• False sharing (when a system participant attempts to periodically access data
that will never be altered by another party, but that data shares a cache block
with data that is altered, the caching protocol may force the first participant to
reload the whole unit despite a lack of logical necessity) is just an example of
performance degrading due to poor programming.

• Reference

– U. Drepped, What Every Programmer Should Know About Memory,
http://people.redhat.com/drepper/cpumemory.pdf, RedHat 2007.

115

http://people.redhat.com/drepper/cpumemory.pdf
http://people.redhat.com/drepper/cpumemory.pdf

2nd TMA PhD School - June 2011 116

Programming for Multicore [3/4]

Incoming
Packets

ThreadThreadThread Thread

Hashtable

Multi-bucket
Lock

Multi-bucket
Lock

Multi-bucket
Lock

Hash Bucket

•Bad Application Design
•Unable to scale
•Too much locking

2nd TMA PhD School - June 2011 117

Incoming
Packets

ThreadThreadThread Thread

Hash Table

Incoming
Packets

Incoming
Packets

Incoming
Packets

Hash TableHash TableHash Table

RX
Queue

RX
Queue

RX
Queue

RX
Queue

NIC

Programming for Multicore [4/4]

•Great Application Design
•Exploit Native Multicore
•Fully Lockless Hash

 http://video.google.com/videoplay?docid=2139967204534450862

Lockeless hashes:

http://video.google.com/videoplay?docid=2139967204534450862
http://video.google.com/videoplay?docid=2139967204534450862

2nd TMA PhD School - June 2011

Memory Allocation [1/2]
Limit Memory Allocation (if not necessary)

• Multithreaded programs often do not scale because the heap is a bottleneck.

• When multiple threads simultaneously allocate or deallocate memory from the
allocator, the allocator will serialize them.

• Programs making intensive
use of the allocator actually
slow down as the number
of processors increases.

118

2nd TMA PhD School - June 2011

• Programs should avoid, if possible, allocating/deallocations memory too
often and in particular whenever a packet is received.

• In the Linux kernel there are available kernel/driver patches for recycling
skbuff (kernel memory used to store incoming/outgoing packets).

• Using PF_RING (into the driver) for copying packets from the NIC to the
circular buffer without any memory allocation increases the capture
performance (around 10%) and reduces congestion issues.

References:

– A Comparison of Memory Allocators
http://developers.sun.com/solaris/articles/multiproc/multiproc.html

– The Hoard Memory Allocator
http://www.hoard.org/

119

Memory Allocation [2/2]

http://developers.sun.com/solaris/articles/multiproc/multiproc.html
http://developers.sun.com/solaris/articles/multiproc/multiproc.html
http://www.hoard.org
http://www.hoard.org

2nd TMA PhD School - June 2011

PF_RING on VMs [1/4]

Open Issues

• Long packet journey from
NIC to the VM.

• Various packet copies are
involved.

• Packets replicated on all
VMs.

• Overhead due to the
abstraction level.

Goal

• Implement straight capture
to the VM.

120

Virtual Bridge

Host
Operating System Virtual Device Device Driver

Virtual Network Card

Device Driver

Application

Network Stack

Hypervisor

Virtual
Machine

Other VMs

Network Card

2nd TMA PhD School - June 2011

PF_RING on VMs [2/4]

121

Host Kernel

QEMU

KVM

VM

Application
(back-end)

Appl.

vNPlug-Dev
vNPlug-Dev

vnplug.ko

kernel
user-space

vNPlug-Dev
Virtual Device

Appl. (back-end)
In-Kernel

ram_alloc_from_ptr()

mmap()

\dev\vnplugX

mmap()

vNPlug

• It implements a shared
memory area (host <->VM)
that is mapped as a dummy
PCI device

• Host->Guest signaling by
emulating interrupts.

• Guest->Host signaling by
writing on PCI registers that
are monitored via ioeventfd.

2nd TMA PhD School - June 2011

PF_RING on VMs [3/4]

122

 400 600 700 800 900

500

1000

1500

2000

2500

Packet size (Bytes)

Pa
ck

et
 ra

te
 (K

pp
s)

Virtio-Net VHostNet

64 128 256 512 1K

Virtual PF_RING

Native PF_RING

Generated traffic
2976

2nd TMA PhD School - June 2011

PF_RING on VMs [4/4]

123

 400 600 700 800 900

100

10

20

30

40

50

60

70

80

90

Packet size (Bytes)

%
 Id

le

Virtio-Net VHostNet

64 128 256 512 1K

Virtual PF_RING

Native PF_RING

2nd TMA PhD School - June 2011 124

References

• http://www.ntop.org/

• http://www.intel.com/cd/network/connectivity/emea/eng/226275.htm

• http://www.tilera.com

Email: Luca Deri <deri@ntop.org>

http://www.ntop.org/nProbe.html
http://www.ntop.org/nProbe.html
http://www.tilera.com
http://www.tilera.com
mailto:deri@ntop.org
mailto:deri@ntop.org

2nd TMA PhD School - June 2011 125

High-Speed Traffic Capture and Analysis
Using Open-Source Software and

Commodity Hardware

Part 2: Traffic Monitoring

Luca Deri <deri@ntop.org>

mailto:deri@ntop.org
mailto:deri@ntop.org

2nd TMA PhD School - June 2011

Monitoring Goals

•Analysis of LAN and WAN Traffic

•Unaggregated raw data storage for the near past
(-3 days) and long-term data aggregation on
selected network traffic metrics (limit: available disk
space)

•Data navigation by means of a web 2.0 GUI

•Geolocation of network flows and their aggregation
based on their geographical source.

• Integration with routing information in order to
provide accurate traffic path analysis.

126

2nd TMA PhD School - June 2011

Traffic Collection Architecture [1/2]

•Available Options
1.Exploit network equipment (routers and switches)
–Advantages:
•Maximize investment.

•Avoid adding extra network equipment/complexity in the
network.

•No additional point of Failure

–Disadvantages:
•Often is necessary to buy costly netflow engines

•Have to survive with bugs (e.g. Juniper have issues with
AS information)

127

2nd TMA PhD School - June 2011

Traffic Collection Architecture [2/2]

2.Custom Network Probes

•Advantages
–Ability to avoid limitations of commercial equipment

– (Often) Faster and more flexible than hw probes

•Disadvantages
–Add complexity to the net

–Need to mirror/wiretap traffic

128

LAN LAN

Netflow
Probe

Packet Copy

Mirror / Network Tap

2nd TMA PhD School - June 2011

Introduction to Cisco NetFlow

• Flow: “Set of network packets with some properties in
common”. Typically (IP src/dst, Port src/dst, Proto,
TOS, VLAN).

•Network Flows contain:
— Peers: flow source and destination.
— Counters: packets, bytes, time.
— Routing information: AS, network

mask, interfaces.

129

Router

Probe

Flow
Collector

Application

2nd TMA PhD School - June 2011 130

Backbone

flow collector

Flow Archive

NetFlow export

flow-rsync transfer

flow-capture

flow enabled router

Live feed

Collection Architectures [1/2]

2nd TMA PhD School - June 2011

Collection Architectures [2/2]

131

2nd TMA PhD School - June 2011

Flow Journey: Creation

132

2nd TMA PhD School - June 2011

Flow Journey: Export

133

2nd TMA PhD School - June 2011

Flow Format: NetFlow v5 vs v9

134

v5 v9

Flow Format Fixed User Defined

Extensible No Yes (Define new
FlowSet Fields)

Flow Type Unidirectional Bidirectional

Flow Size 48 Bytes
(fixed)

It depends on
the format

IPv6 Aware No IP v4/v6

MPLS/VLAN No Yes

2nd TMA PhD School - June 2011

Flow Format: NetFlow v9/IPFIX

135

2nd TMA PhD School - June 2011

InMon sFlow

136

sFlow
agent

Switch/Router

ASIC

Network
Traffic

sFlow Datagram

• Packet header (e.g. MAC,IPv4,IPv6,IPX,AppleTalk,TCP,UDP, ICMP)
• Sample process parameters (rate, pool etc.)
• Input/output ports
• Priority (802.1p and TOS)
• VLAN (802.1Q)
• Source/destination prefix
• Next hop address
• Source AS, Source Peer AS
• Destination AS Path
• Communities, local preference
• User IDs (TACACS/RADIUS) for source/destination
• URL associated with source/destination
• Interface statistics (RFC 1573, RFC 2233, and RFC 2358)

HW Packet
Sampling

% Sampling Error <= 196 * sqrt(1 / number of samples)
[http://www.sflow.org/packetSamplingBasics/]

2nd TMA PhD School - June 2011 137

Traffic Analysis & Accounting
Solutions

sFlow

• Network-wide, continuous surveillance
• 20K+ ports from a single point

• Timely data and alerts
• Real-time top talkers
• Site-wide thresholds and alarms

• Consolidated network-wide historical usage data

Core network switches

RMON enabled switches

L2/L3 Switches
RMON

NetFlowNetFlow enabled routers

sFlow enabled switches

Integrated Network Monitoring

2nd TMA PhD School - June 2011

Traffic Collection: A Real Scenario

138

Level 3

Juniper
Switch

Juniper
Router

anifani.nic.it

NetFlow v9

sFlow v5

GARR

Registro.it

monitor.nic.it

2nd TMA PhD School - June 2011

Heterogeneous Flow Collection

139

NetFlow v9 nProbe Fastbit

sFlow v5 nProbe Fastbit

Web Console

Web Server

2nd TMA PhD School - June 2011

nProbe: sFlow/NF/IPFIX Probe+Collector

140

nProbe

NetFlowsFlow

Packet
Capture

Data Dump

Raw Files / MySQL / SQLite / FastBit

Flow Export

2nd TMA PhD School - June 2011 141

• NetFlow and sFlow are the current state-of-the-
art standard for network traffic monitoring.

• As the number of generated flows can be quite
high, operators often use sampling in order to
reduce their number.

• Sampling leads to inaccuracy so it cannot
always be used in production networks.

• Thus network operators have to face the
problem of collecting and analyzing a large
number of flow records.

Problem Statement [1/2]

2nd TMA PhD School - June 2011

Problem Statement [2/2]

Where to store collected flows?
–Relational Databases
•Pros: Expressiveness of SQL for data search.

•Cons: Sacrifice flow collection speed and query response
time.

–Raw Disk Archives
•Pros: Efficient flow-to-disk collection speed (> 250K flow/s).

•Cons: Limited query facilities as well search time
proportional to the amount of collected data (i.e. no
indexing is used).

142

2nd TMA PhD School - June 2011

Towards Column-Oriented Databases [1/3]

• Network flow records are read-only, shouldn’t be modified after
collection, and several flow fields have very few unique values.

• B-tree/hash indexes used in relational DBs to accelerate queries,
encounter performance issues with large tables as:

— need to be updated whenever a new flow is stored.

— require a large number of tree-branching operations as they
use slow pointer chases in memory and random disk access
(seek), thus taking a long time.

• Thus with relational DBs it is not possible to do live flow collection/
import as index update will lead to flow loss.

143

2nd TMA PhD School - June 2011

Towards Column-Oriented Databases [2/3]

• A column-oriented database stores its content by column rather
than by row. As each column is stored contiguously, compression
ratios are generally better than row-stores because consecutive
entries in a column are homogeneous to each other.

• Column-stores are more I/O efficient (than row stores) for read-
only queries since they only have to read from disk (or from
memory) those attributes accessed by a query.

• Indexes that use bit arrays (called bitmaps) answer queries by
performing bitwise logical operations on these bitmaps.

144

2nd TMA PhD School - June 2011

Towards Column-Oriented Databases [3/3]

• Bitmap indexes perform extremely well because the intersection
between the search results on each value is a simple AND
operation over the resulting bitmaps.

• As column data can be individually sorted, bitmap indexes are
also very efficient for range queries (e.g. subnet search) as data is
contiguous hence disk seek is reduced.

• As column-oriented databases with bitmap indexes provide better
performance compared to relational databases, the authors
explored their use in the field of flow monitoring.

145

2nd TMA PhD School - June 2011

nProbe + FastBit

• FastBit is not a database but a C++ library that implements
efficient bitmap indexing methods.

• Data is represented as tables with rows and columns.

• A large table may be partitioned into many data partitions and
each of them is stored on a distinct directory, with each column
stored as a separated file in raw binary form.

• nProbe natively integrates FastBit support and it automatically
creates the DB schema according to the flow records template.

• Flows are saved in blocks of 4096 records.

• When a partition is fully dumped, columns to be indexed are first
sorted then indexed.

146

2nd TMA PhD School - June 2011

Performance Evaluation: Disk Space

147

MySQL No/With Indexes

FastBit
Daily Partition (no/with Indexes)

FastBit

Hourly Partition (no/with Indexes)

nfdump No indexes

1.9 / 4.2

1.9 / 3.4

1.9 / 3.9

1.9

Results are in GB

2nd TMA PhD School - June 2011

Performance Evaluation: Query Time [1/2]

nProbe+FastBit vs MySQL

148

Query
MySQLMySQL nProbe + FastBit

Daily Partitions
nProbe + FastBit
Daily Partitions

nProbe + FastBit
Hourly Partitions
nProbe + FastBit
Hourly PartitionsQuery

No Index With
Indexes

No
Cache

Cached No
Cache

Cached

Q1 20.8 22.6 12.8 5.86 10 5.6

Q2 23.4 69 0.3 0.29 1.5 0.5

Q3 796 971 17.6 14.6 32.9 12.5

Q4 1033 1341 62 57.2 55.7 48.2

Q5 1754 2257 44.5 28.1 47.3 30.7

Results are in seconds

2nd TMA PhD School - June 2011

Performance Evaluation: Query Time [2/2]

nProbe+FastBit vs nfdump

149

nProbe+FastBit

nfdump

45 sec

1500 sec

SELECT IPV4_SRC_ADDR, L4_SRC_PORT, IPV4_DST_ADDR, L4_DST_PORT, PROTOCOL FROM
NETFLOW WHERE IPV4_SRC_ADDR=X OR IPV4_DST_ADDR=X

worth 19 GB of data (14 hours of collected flows)

nfdump query time = (time to sequentially read the raw data) + (record filtering time)

2nd TMA PhD School - June 2011

Host Geolocation [1/3]

• Host geolocation is a known problem (vd http://
en.wikipedia.org/wiki/Geoip)

• Need to handle thousand flows/sec (no inline internet query)

• Requirements: IP -> Location e IP -> ASN

150

2nd TMA PhD School - June 2011

Host Geolocation [2/3]

• Interactive Flash™ world map, that displays hosts distribution by
country and by cities of a selected country

• nProbe + GeoIP + Python + Google Visualization. The script
– Cycles through all the hosts seen by ntop

– Gets their GeoIP info

– Counts them based on their location.

• Google GeoMap and Visualization Table

• Ajax/JSON communications with web server for updated data

151

2nd TMA PhD School - June 2011

Host Geolocation [3/3]

152

2nd TMA PhD School - June 2011

How to Add Geolocation Data [1/3]

•Routers are unable to export any geolocation
information.

•NetFlow/IPFIX flows do not contain any information
about geolocation into standard flow formats.

• Solution:
– Let the collector add geolocation information to flows

received by routers
– Let the softprobe export this information to collectors.

153

2nd TMA PhD School - June 2011

How to Add Geolocation Data [2/3]

•nProbe takes advantage of GeoIP library (GPL) to
–Add geolocation information to flows
–Map IP addresses to ASN (Autonomous System

Numbers) for adding ASN awareness.

–GeoIPASNum.dat (ASN)

–GeoLiteCity.dat (GeoLocation)

154

2nd TMA PhD School - June 2011

How to Add Geolocation Data [3/3]

155

 if(host->ipVersion == 4)
 return(GeoIP_record_by_ipnum(readOnlyGlobals.geo_ip_city_db, host->ipType.ipv4));
#ifdef INET6
 else if(host->ipVersion == 6)
 return(GeoIP_record_by_ipnum_v6(readOnlyGlobals.geo_ip_city_db, host->ipType.ipv6));
#endif

 char *rsp = NULL;
 u_int32_t as;

 if(ip.ipVersion == 4)
 rsp = GeoIP_name_by_ipnum(readOnlyGlobals.geo_ip_asn_db, ip.ipType.ipv4);
 else {
#ifdef INET6
 rsp = GeoIP_name_by_ipnum_v6(readOnlyGlobals.geo_ip_asn_db, ip.ipType.ipv6);
#endif
 }

 as = rsp ? atoi(&rsp[2]) : 0;
 free(rsp);

2nd TMA PhD School - June 2011

BGP Data Integration [1/2]

156

Juniper
Router BGP Client

(Net-BGP)

nProbe

BGP4

TCP

Patricia Tree

Initial BGP Table Dump
Live BGP Update

2nd TMA PhD School - June 2011

BGP Data Integration [2/2]

157

 # Constructor
 $update = Net::BGP::Update->new(
 NLRI => [qw(10/8 172.168/16)],
 Withdraw => [qw(192.168.1/24 172.10/16 192.168.2.1/32)],
 # For Net::BGP::NLRI
 Aggregator => [64512, '10.0.0.1'],
 AsPath => [64512, 64513, 64514],
 AtomicAggregate => 1,
 Communities => [qw(64512:10000 64512:10001)],
 LocalPref => 100,
 MED => 200,
 NextHop => '10.0.0.1',
 Origin => INCOMPLETE,
);

2nd TMA PhD School - June 2011

What if you have no BGP Router? [1/3]

158

2nd TMA PhD School - June 2011

What if you have no BGP Router? [2/3]

159

2nd TMA PhD School - June 2011

What if you have no BGP Router? [3/3]

• libbgpdump can be used to read BGP dump and
updates.

•Periodically poll the RIPE RIS
directory searching for full
dumps or updates.

•Connect to the probe and
refresh the routes according to the values being
read.

•NOTE: always use the BGP dumps for a location near
to you in order to have your view of the Internet.

160

TIME: 06/15/10 15:59:58
TYPE: TABLE_DUMP_V2/IPV4_UNICAST
PREFIX: 12.51.167.0/24
SEQUENCE: 1321
FROM: 217.29.66.65 AS12779
ORIGINATED: 06/15/10 13:20:28
ORIGIN: IGP
ASPATH: 12779 1239 3356 19343 19343 19343 19343
NEXT_HOP: 217.29.66.65
COMMUNITY: 12779:1239 12779:65098

2nd TMA PhD School - June 2011

Implementing a Web 2.0 GUI

•Web server: Lighttpd (easy and fast), avoid Apache.

•Ajax: use established frameworks
such as jQuery or Prototype.

• Implement class libraries used to read your
monitoring data. Python is used for speed, ease of
use and script compilation.

•Use templates (e.g. Mako) for
generating (XML-free) pages.

•Web frameworks are perhaps easier to use, but you
will be bound to them forever (pros and cons).

161

2nd TMA PhD School - June 2011

Storing Historical Data [1/2]

•RRD is the de-facto standard for permanently storing
numerical data.

162

 $rrd = "$dataDir/$agent-$ifIndex.rrd";

 if(! -e $rrd) {
 RRDs::create ($rrd, "--start",$now-1, "--step",20,

 "DS:bytesIn:COUNTER:120:0:10000000",

 "DS:bytesOut:COUNTER:120:0:10000000",
 "RRA:AVERAGE:0.5:3:288");

 $ERROR = RRDs::error;
 die "$0: unable to create `$rrd': $ERROR\n" if $ERROR;

 }

 RRDs::update $rrd, "$now:$ifInOctets:$ifOutOctets";
 if ($ERROR = RRDs::error) {

 die "$0: unable to update `$rrd': $ERROR\n";
 }

2nd TMA PhD School - June 2011

Storing Historical Data [2/2]

•RRD has several limitations:
–Only one (quantity one) numerical data can be stored

at each time interval (e.g. # of bytes received).

–You must know ‘in advance’ what you want to store.
For instance you can’t store anything like ‘the name
and amount of traffic sent by the top host’: the top
host changes overtime, so you need an rrd per top
host and this is not what you want.
–Sets or lists of data (e.g. top protocols with bytes on

interval X) cannot be stored in RRD.

163

2nd TMA PhD School - June 2011

Beyond RRD

•Requirements:
–Store network values are tuples (list of

<name>:<value>, where <value> can also be a list).

–Ability to aggregate tuples using a user-defined
function (i.e. not just max/min/average).
–Manipulate values as RRD does: create, update, last,

export, fetch and graph.
–Graph: images are not enough as we have tuples (not

just one value) and also because the user must be
able to interact with data, not just look at it.

164

2nd TMA PhD School - June 2011

pSWTDB [1/4]

•pSWTDB (Sliding Window Tuple DB).

•python class used to store tuples on disk using data
serialization (called pickle on python).
–Pros:
•native in python

•portable across datatypes (i.e. no need to define the type)

–Cons:
•Slow as RRD (deserialize/update/serialize at each update)

• Same principle of RRD with the exception that here
we use tuples and not numerical values.

165

2nd TMA PhD School - June 2011

pSWTDB [2/4]

• It comes with aggregation functions such as:
–Each time interval has a list of (key, value).
–Sum values with same key.

–Sort values
–Discard values ranking after position X (e.g. take the

top/bottom X values).

• Examples
–Top X protocols (list of <proto>:<value>)
–Top X hosts (list of <host>:(<proto>:<value>,...))

166

2nd TMA PhD School - June 2011

pSWTDB [3/4]

•Data are plotted using
 SVG/JavaScript.

•Users can interact with
data (pan, zoom, move).

•Multiple criteria can be
plotted at the same
time (e.g. top X hosts
and Y protocols).

•Clicking on data can be
used to trigger GUI updates

167

2nd TMA PhD School - June 2011

pSWTDB [4/4]

168

deri@MacLuca.local 234> cat pupdate.py
#!/usr/bin/python

import pSWTDB

t = pSWTDB.pSWTDB('IT.pkl')
t.update('now',
 { 'keys' : ['APPL_PROTOCOL'],
 'values' : ['SUM_PKTS'],
 'data' : {
 'das' : (4522726),
 'domain' : (1706286),
 'whois' : (62838),
 'www' : (28699),
 'smtp' : (16149),
 'https' : (10892),
 'Unknown' : (4934),
 }
 })

deri@MacLuca.local 233> cat pcreate.py
#!/usr/bin/python

import pSWTDB

t = pSWTDB.pSWTDB('ptest.pkl')
Hearbeat is 5 min
t.create(300)

Keep 60 samples, one per minute
t.add_base_aggregation('1min', 60, 60)

Keep 50 samples, each aggregating 5 samples
of the base aggregation
t.add_aggregation('5min', 5, 50, pSWTDB.sum, '')

Keep 60 samples, each aggregating 24 samples
of the 5min aggregation
t.add_aggregation('hour', 24, 60, pSWTDB.sum, '5min')

Keep 30 samples, each aggregating 12 samples
of the hour aggregation
t.add_aggregation('day', 12, 30, pSWTDB.sum, 'hour')

deri@MacLuca.local 238> cat pfetch.py
#!/usr/bin/python

import pSWTDB
import pprint

t = pSWTDB.pSWTDB('IT.pkl')
ret = t.fetch('', 'now-1h', 'now')
print t.plot(ret)

mailto:deri@MacLuca.local
mailto:deri@MacLuca.local
mailto:deri@MacLuca.local
mailto:deri@MacLuca.local
mailto:deri@MacLuca.local
mailto:deri@MacLuca.local

2nd TMA PhD School - June 2011

Traffic Data Analysis [1/4]

169

Column data sort and
data indexing

Partition data analysis

deri@anifani 203> ls -lL
total 24
4 -rwxr-xr-x 1 deri deri 1377 Mar 27 12:06 cities.py*
4 -rwxr-xr-x 1 deri deri 950 Mar 23 23:21 flows.py*
4 -rwxr-xr-x 1 deri deri 2162 May 22 13:49 top_n_flows_countries.py*
4 -rwxr-xr-x 1 deri deri 2106 Mar 25 15:48 top_n_l7_protocols.py*
8 -rwxr-xr-x 1 deri deri 4565 May 22 14:32 top_n_proto_countries.py*
deri@anifani 204> pwd
/home/deri/nProbe/fastbit/python/partition_scripts

Metrics persistent storage

Flow collection and storage
in FastBit Archive Format
(5 min timeframe partition)

2nd TMA PhD School - June 2011

Traffic Data Analysis [2/4]

170

deri@anifani 208> ls -l
total 24
16 drwxr-xr-x 3 root root 16384 May 25 08:21 aggregations/
 4 drwxr-xr-x 4 deri deri 4096 Mar 27 12:07 queries/
 4 drwxr-xr-x 6 deri deri 4096 Mar 18 19:37 rrd/
deri@anifani 209> ls -l *
aggregations:
total 34000

 20 -rw-r--r-- 1 root root 18768 May 25 16:12 A1.pkl
164 -rw-r--r-- 1 root root 167641 May 25 16:12 A2.pkl
152 -rw-r--r-- 1 root root 154778 May 25 16:12 AD.pkl
216 -rw-r--r-- 1 root root 219872 May 25 16:13 AE.pkl
148 -rw-r--r-- 1 root root 148012 May 25 16:13 AF.pkl
152 -rw-r--r-- 1 root root 152841 May 25 16:13 AG.pkl
100 -rw-r--r-- 1 root root 100615 May 25 16:12 AI.pkl
...
152 -rw-r--r-- 1 root root 154259 May 25 16:13 YE.pkl
 12 -rw-r--r-- 1 root root 10101 May 25 15:13 YT.pkl
200 -rw-r--r-- 1 root root 201469 May 25 16:12 ZA.pkl
148 -rw-r--r-- 1 root root 151246 May 25 16:12 ZM.pkl
156 -rw-r--r-- 1 root root 156071 May 25 16:12 ZW.pkl
308 -rw-r--r-- 1 root root 315311 May 25 16:13 all_countries.pkl
 4 -rw-r--r-- 1 root root 791 May 15 23:55 ne.pkl
 24 drwxr-xr-x 2 root root 20480 May 22 13:57 top_hosts/

queries:
total 8
4 drwxr-xr-x 7 deri deri 4096 May 1 00:05 2010/

rrd:
total 144
48 -rw-r--r-- 1 root root 47128 May 25 16:13 bits.rrd
12 drwxr-xr-x 2 root root 12288 May 6 02:06 bytes/
12 drwxr-xr-x 475 root root 12288 May 16 19:26 country/
12 drwxr-xr-x 2 root root 12288 May 24 23:36 flows/
48 -rw-r--r-- 1 root root 47128 May 25 16:13 flows.rrd
12 drwxr-xr-x 2 root root 12288 May 12 20:42 pkts/

2nd TMA PhD School - June 2011

Traffic Data Analysis [3/4]

171

rrd/country/CH/mandelspawn.rrd
rrd/country/CH/gds_db.rrd
rrd/country/CH/dircproxy.rrd
rrd/country/CH/rmtcfg.rrd
rrd/country/CH/ssh.rrd
rrd/country/CH/isisd.rrd
rrd/country/CH/cfinger.rrd
rrd/country/CH/gris.rrd
rrd/country/CH/daap.rrd
rrd/country/CH/x11.rrd
rrd/country/CH/postgresql.rrd
rrd/country/CH/amanda.rrd
rrd/country/CH/zephyr-hm.rrd
rrd/country/CH/gsigatekeeper.rrd
rrd/country/CH/fax.rrd
rrd/country/CH/netbios-ssn.rrd
rrd/country/CH/afs3-fileserver.rrd
rrd/country/CH/cvspserver.rrd
rrd/country/CH/ospf6d.rrd
rrd/country/CH/bpcd.rrd
rrd/country/CH/proofd.rrd
rrd/country/CH/afs3-errors.rrd
rrd/country/CH/ggz.rrd
rrd/country/CH/tproxy.rrd
rrd/country/CH/cfengine.rrd
rrd/country/CH/x11-6.rrd
rrd/country/CH/msp.rrd
rrd/country/CH/rje.rrd
rrd/country/CH/sane-port.rrd
rrd/country/CH/smtp.rrd

deri@anifani 213> ls queries/2010/05/25/16/00/
total 1172
1164 cities.pkl 8 top_n_l7_protocols.pkl

2nd TMA PhD School - June 2011

Traffic Data Analysis [4/4]

172

deri@anifani 215> ~/nProbe/fastbit/python/dump.py cities.pkl |m
{'city': [['SRC_COUNTRY',
 'SRC_CITY',
 'SRC_LATITUDE',
 'SRC_LONGITUDE',
 'SRC_REGION',
 'COUNT'],
 ['', '', '', '', '', 15079],
 ['IT', 'Rome', 41.899999999999999, 12.4832, 'Lazio', 1427],
 ['KR',
 'Seoul',
 37.566400000000002,
 126.9997,
 "Seoul-t'ukpyolsi",
 1250],
 ['RU',
 'Moscow',
 55.752200000000002,
 37.615600000000001,
 'Moscow City',
 1243],
 ['IT',
 'Milan',
 45.466700000000003,
 9.1999999999999993,
 'Lombardia',
 936],

2nd TMA PhD School - June 2011

Remote Probe Deployment [1/2]

• In order to monitor a distributed network it is often
necessary to deploy remote probes.

• Exporting flows towards a central location is not
always possible:
– Limited bandwidth available.
–Need to have a separate/secure network/tunnel as

flows contain sensitive data.
– Interference with other network activities.
–Export of raw flows is much more costly than

exporting the metrics we’re interested in.

173

2nd TMA PhD School - June 2011

Remote Probe Deployment [2/2]

• Exporting data on off-peak times is not an option:
–We would introduce latency in data consumption.
–The amount of data to transfer is not significantly

reduced (zip flows) with respect to live data export.
–Unable to use the system for near-realtime analysis

and alarm generation.

•Better solution
–Create a web service for querying data remotely in

realtime

–Export aggregated metrics (e.g. .pkl files)

174

2nd TMA PhD School - June 2011

Web Interface: Internals [1/3]

175

Python Pickle
(Historical)

Components Communication
via Ajax/jQuery

Google Maps

Observation Period (5 min)

2nd TMA PhD School - June 2011

Web Interface: Internals [2/3]

176

RRD Charts
(Data Context host/time via jQuery)

2nd TMA PhD School - June 2011

Web Interface: Internals [2/3]

177

Live FastBit Query+Aggregation
Python Glue Software

2nd TMA PhD School - June 2011

Using Geolocation Data [1/2]

178

2nd TMA PhD School - June 2011

Using Geolocation Data [2/2]

179

2nd TMA PhD School - June 2011

Disk and Memory Usage

•Collection of ~5k flows netflow/sec

• Each 5 min partition takes ~150 MB in FastBit format
(32 GB/day)

•Partitions with raw data stay 3 days on disk (limited
by available disk space)

• Each tuple archive in pickle format takes up to 400
KB (112 MB in total, almost constant).

•BGP patricia tree (inside the probe) of all routing
tables takes about ~100 MB

180

2nd TMA PhD School - June 2011

Final Remarks

•NetFlow and sFlow are the two leading monitoring
protocols.

•nProbe is an open-source software probe that can
efficiently act as a probe/collector/proxy

• Storing and analyzing large volume of data is
challenging but there are solutions available for
doing it efficiently.

•Geolocation and routing information are useful for
mapping traffic with users.

181

