High-Speed Traffic Capture and Analysis
Using Open-Source Software and
Commodity Hardware

Part 1: Packet Capture

Luca Deri <deri@ntop.org>

2nd TMA PhD School - June 2011 o 1

. - A ., Taa
m OpEn SOUME
UNIVERSITA DI PISA

Overview

e Accelerating packet capture and analysis: PF_RING.
e Layer 7 kernel packet filtering and processing.

e Direct NIC Access: PF RING DNA.

e Towards 10 Gbit packet capture using commodity
hardware.

e Strong Multicore NIC: Tilera Tile64

2nd TMA PhD School - June 2011

19

Accelerating Packet Capture
and Analysis: PF_RING

Packet Capture: Open Issues

e Monitoring low speed (100 Mbit) networks is already possible using
commodity hardware and tools based on libpcap.

e Sometimes even at 100 Mbit there is some (severe) packet loss: we
have to shift from thinking in term of speed to number of packets/
second that can be captured analyzed.

e Problem statement: monitor high speed (1 Gbit and above) networks
with common PCs (64 bit/66 Mhz PCI/X/Express bus) without the need
to purchase custom capture cards or measurement boxes.

e Challenge: how to improve packet capture performance without
having to buy dedicated/costly network cards?

2nd TMA PhD School - June 2011

19

Packet Capture Goals

» Use commodity hardware for capturing packets at

wire speed with no loss under any traffic
condition.

 Be able to have spare CPU cycles for analyzing

packets for various purposes (e.g. traffic
monitoring and security).

 Enable the creation of software probes that sport

the same performance of hardware probes at @
fraction of cost.

2nd TMA PhD School - June 2011

19

Socket Packet Ring (PF_RING)

Application A Application Z
Outgoing Packets Userspace
... T .“ Karmal
Socket % 4 Socket p
(rmg) S s .. (rlng) o
Write
“eeest Index

PF_RING |

Network |
Adapter Incoming Packets
2nd TMA PhD School - June 2011 @ .

Opn S0Urce

PF RING Internals

Read from
PF_R|NG Userland

Kernel

Slot size is dynamic
as they are filled in
according to the size
of packets that have
been received

Circular Buffer

Buffer Slots

—

netif_receive_skb() - NAPI
netif_rx() - No NAPI

dev_queue_xmit()

Linux Kernel Device Driver

http://en.wikipedia.org/wiki/Circular_buffer

£5 2nd TMA PhD School - June 2011 o
Bpen source

http://en.wikipedia.org/wiki/Circular_buffer
http://en.wikipedia.org/wiki/Circular_buffer

PF_RING Packet Journey [1/2]

Packet Received »Parse Packet (up to layer 4)

\4
Defragment packet (optional)

\/
Added the packet to PF_RING

<4—— sockets that potentially match it
(packet and socket device match)

Same as above for PF_RING
socket clusters

\/
Return control to the kernel

2nd TMA PhD School - June 2011

19

PF_RING Packet Journey [2/2]

Add Packet to PF_RING »Packet Filtering

\
Sampling Rate Check

Queue Packet . \
onPF RING PF_RING Reflector Check
\/

Back to PF_RING

2nd TMA PhD School - June 2011

PF RING: Benefits

e |t creates a straight path for incoming packets in order to
make them first-class citizens.

e No need fo use custom network cards: any card is supported.

e Transparent to applications: legacy applications need to be
recompiled in order to use it.

e No kernel or low-level programming is required.

e Developers familiar with network applications can
immediately take advantage of it without having fo learn new
APIs.

2nd TMA PhD School - June 2011 @

10

PF RING: Performance Evaluation

Pkt Size Kpps Mpps % CPU Idle | Wire-Speed
250 259.23 518 > 90% Yes
250 462.9 925.9 88% Yes
128 3551 363.6 86% Yes
128 844.6 864.8 82% Yes

Test setup: pfcount, full packet size, 3.2 GHz Celeron (single-core) - IXIA 400 Traffic Generator

2nd TMA PhD School - June 2011

1

PF RING on Embedded Devices

Ntop NetFlow Monitoring

NST, SSH tunneling, Ntop, NetFlow, & LINKsYs WRT54G S Router

IP: 24 25.80.245 Port Opemn: 22222
HATIPAT: 2425880 245: 22232 =182 168.2.51:22

wian1:24.28. 8024521 Firewall: FW2
VAN {MetFlow Probe InkEr&ce)

Site: B
(Satellite O fiice)

..... 1 . 192.188.2.0/24
| N etFlow
Ny, Data

-
Traffic Tunnel LINKSYS WRTS4GS B N
SVEASOFT: Alchemypraf 13 N :
; 0.192.168.2.1/24 (o o N 5T Configuration
/ e e e S e » Intel P4 850MHz
- = » 48x CDROM
ethd 192168 251 » 256K B RAM
i ; 1x10/100 NICs
; \ sshd port: 22 e
VWAN { Encrypted S5H ntop port 3001 (hitps)

Tunnel Ervelope (VPN)

Ntop Setup (NST Probe)

I:setup_ntup - lo -no-c-rdz T"E]
-
' NATIPAT (LINKSYS WRT54G5) ™
33;5% iptables -t nat 4 PREROUTING 1 -ptcp 4 vian1 -d 24.29.60.245 —dport 22222\
Site: A 0 -j DNAT —to-destination 192.168.251:22
(Comorate Headquarters) : Firewall: FIi1 iptables -t fiter 4 FORWARD 7 -i vian1 - tcp -d 192.188.2.51 —dport 22 ACCEPT
{)’ { Outbound connections _||:| avies = ' Sk T = ! _
; i allowed through frewall ..
) /i | Fowed froligh fewa N etFlow (LINKSY 5 WRT54GS)
& i — =
T iusrzbin/Mow-i vlan1 £ 192 168.2.51:5995
o . . ' e =/
- o el L i b BB
N otebook (Windows XP) — 2
(Running OpenSSH for Windows) T —
. ntop visual: Site A
VPN Setup (Windows XP Notebook) ntop running: Site B
ash p 22222 L 3001:127.0.0.1:3001 root@24 29.60.245 Foint browser at: hitps//127.0.0.1:3001
niop tunnel
EWH- 3004
http://nst.sourceforge.net/nst/docs/user/ch09s02.html
A
- g 2nd TMA PhD School - June 2011 |

Bpen SOUrcE

UNIVERSITA DI PISA

PF_RING Socket Clustering [1/2]

e In order to exploit modern computer architectures either
multiprocessing or threading have to be used.

e Often computer programs are monolithic and hard to split into
several concurrent and collaborating elements.

e In other cases (proprietary applications) source code is not
available hence the application cannot be modified and split.

e There are hardware products (e.g. see cPacket’'s cTap) that split/
balance network traffic across network hosts.

e What is lacking at the operating system level is the concept of
distributing sockets across applications. This is because network
sockets are proprietary to an application/address-space.

2nd TMA PhD School - June 2011 @ 13

PF_RING Socket Clustering [2/2]

e Socket clustering is the ability fo federate PF_RING sockets similar, but
opposite, to network interface bonding.

e The idea is simple:

- Run several monitoring applications, each analyzing a portion of the
overall traffic.
and/or

- Create multithreaded applications that instead of competing for packets
coming from the same socket, have private per-thread sockets.

2nd TMA PhD School - June 2011

19

14

PF_RING Clustering: Threads

No Locking
Needed
Compete
for

Mutexes Clustered Clustered Clustered Clustered
and PF_RING PF_RING PF_RING PF_RING
Locking Packets Socket Socket Socket Socket
is Needed
PF_RING
Socket \ /
‘ PF_RING \
Vanilla PF_RING Application PF_RING Socket Cluster
mop A 2nd TMA PhD School - June 2011 o 15

Source
UNIVERSITA DI PISA open

PF_RING Clustering: Applications

Clustered Clustered
PF_RING PF_RING
Socket Socket

\ /

e Same as clustering with threads, but across address spaces.

e PF_RING allows clustering to be enabled seamlessly both at
thread and application level.

Clustered
PF_RING
Socket

CIustered
PF_RING
Socket

"/‘ 2nd TMA PhD School - June 2011 o 16
open Source

PF_RING Clustering: Code Example

1f ((pd = pfring open(device, promisc, snaplen, 0)) == NULL) {
printf ("pfring open error\n");
return(-1) ;
} else {

u int32 t version;

pfring version(pd, &version);
printf ("Using PF RING v.%d.%d.%d\n",
(version & OxFFFFO0000) >> 1o, (version & OxOO00O0FFOQO0)

version & OxO000O0O0OFF) ;

1f (clusterId > 0) {
int rc = pfring set cluster (pd, clusterId);

printf ("pfring set cluster returned %d\n", rc);

£5 2nd TMA PhD School - June 2011 o
ITA DI PISA O Source

>>

PF_RING Clustering: Summary

e Network traffic balancing policy across socket clusters

— Per-flow (defauli)
- Round-Robin

e Advantages:
- No locking required when threads are used
- Ability to distribute the load across multiple applications
- Very fast as clustering happens into the kernel.

e Socket clustering has been the first attempt to make
PF_RING more multi-processing/core friendly.

2nd TMA PhD School - June 2011 @

18

PF_RING: Packet Filtering [1/2]

e PF_RING has addressed the problem of accelerating packet
capture.

e Packet filtering instead is still based on the “legacy” BPF code.
e This means that:

- Each socket can have up to one filter defined.

- The packet needs to be parsed in order to maich the filter,
but the parsing information is not passed to user-space.

- The BPF filter length can change significantly even if the filter
is slightly changed.

2nd TMA PhD School - June 2011 @ 19

PF_RING: Packet Filtering [2/2]

tcpdump -d "udp" # tcpdump -d "udp and port 53"
(000) 1dh [12] (000) 1dh [12]
(001) Jjeqg #0x800 (001) Jjeqg #0x800 jt 2 Jf 12
(002) 1db [23] (002) 1db [23]
(003) Jjeq #0x11jt 4 (003) Jjeq #0x11 jt 4 Jf 12
(004) ret #96 (004) 1dh [20]
(005) ret #0 (005) jset #Ox1fff it 12 9f 6
(006) 1ldxb 4% ([14]&0x1)
(007) 1dh [x + 14]
(008) Jjeq #0x35 jt 11 Jf 9
(009) 1dh [(x + 16]
(010) Jeq #0x35 it 11 5f 12
(011) ret #96
(012) ret #0
3 2nd TMA PhD School - June 2011 o 20

A DI PISA Dpen Soure

Beyond BPF Filtering [1/2]

e VoIP and Lawful Interception traffic is usually very little
compared to the rest of traffic (i.e. there is a lot of incoming
traffic but very few packets match the filters).

e Capture starts from filtering signaling protocols and then
intercepting voice payload.

e BPF-like filtering is not effective (one filter only). When multiple
filters need to be enforced, each one has to be executed
individually.

* |tis necessary to add/remove filters on the fly with hundred
active filters.

2nd TMA PhD School - June 2011 @ 21

Beyond BPF Filtering [2/2]

Solution

- Filter packets directly on device drivers (initial release) and
PF_RING (second release).

- Implement hash/bloom based filtering (limited false
positives) but not BPF at all.

- Memory eftective (doesn’t grow as filters are added).

- Implemented on Linux on Intel GE cards. Great performance
(virtually no packet loss at 1 Gbit).

- No much difference between PF_RING and driver filtering
hence the code has been moved to PF_RING.

2nd TMA PhD School - June 2011 @ 22

Dynamic Bloom Filtering [1/2]

Insert: hash_1(X), hash_2(X)....hash_n(X)

{ix, v z}
/ A \
0
W
Check for inclusion
TN . 3 . 2nd TMA PhD School - June 2011 mgm 23

Bloom Filters [2/2]

e Ability to specify a thousand different IP packet filters

e Ability to dynamically add/remove filters without having to
interrupt existing applications.

e Only “precise” filters (e.g. host X and port Y) are supported.
 The filter processing speed and memory being used is

proportional to the number of filters but independent from
their number and complexity.

2nd TMA PhD School - June 2011 @ 24

Dynamic Bloom Filtering

A
o O
Liser Spaca 3 é Packet Consumption
-
N
T LinuxKemel | |
: 28
i Bloom g BPF Filtering (Optional)
. Y 0
MNAPI PF_RING
i % O
i NIC Device driver gg o o
, g 25 Dynamic Filtering
e Available into PF_RING (in 3.x series up to 3.7.x).
o Ability fo set per-socket bloom filters
',/‘ 2nd TMA PhD School - June 2011 o 25

) | b Open SOURCE
NIVERS A DN A

PF RING: Bloom Evaluation

e Tests performed using a dual Xeon 3.2 GHz CPU
injecting traffic with an IXIA 400 traffic generator with
1:256 match rate.

* Packet loss only above 1.8 Mpps (2 x 1 Gbit NICs).

e Ability to specity thousand of filters with no performance
degradation with respect to a single filter (only false
positive rate increases).

2nd TMA PhD School - June 2011 @ 26

Bloom Filters Limitations [1/2]

e Bloom filtering has shown to be a very interesting technology
for “precise” packet filtering.

e Unfortunately many application require some features that
cannot be easily supported by blooms:

- port ranges

- negative expressions (not <expression>)

- |P address/mask (where mask = /32)

- in case of match, know what rule(s) matched the filter

2nd TMA PhD School - June 2011 @ 27

Bloom Filters Limitations [2/2]

e Possible workarounds

- Support ranges by calculating the hash on various combinations
e 5-tuple for perfect matching (proto, ip/port src, ip/port dst)

e multiple bloom dictionaries for /32, /24, /16, and /8 networks for network
match

o Note that as bloom matching is not exact, using a bloom dictionary for
storing negative values (i.e. for implementing the not) is not a good idea.
This is because notlfalse positive) means that a packet might be discarded
as the filter is not match although this packet passed the filter.

e In anutshell:
- Bloom filters are a fantastic technology for exact packet matching
- PF_RING must also offer support for ‘partial’ filtering.

2nd TMA PhD School - June 2011

19

28

Extended PF RING Filters [1/2]

The author has made a survey of network applications and created a list
of desirable features, that have then been implemented into PF_RING:

e “Wildcard-ed” filters (e.g. TCP and port 80). Each rule has a rule-id and
rules are evaluated according fo it.

e Precise 5-tuple filters (VLAN, protocol, IP src/dst, port src/dst).

e Precise filters (e.g. best match) have priority over (e.g. generic) wilcard-
ed filters.

e Support of filter ranges (IP and port ranges) for reducing the number of
filters.

e Support of mono or bi-directional filters, yet for reducing number of
filters.

e Ability fo filter both on standard 5-tuple fields and on L7 fields (e.qg.
HTTP method=GET).

2nd TMA PhD School - June 2011 @ 29
open Source

Extended PF RING Filters [2/2]

e Parsing information (including L7 information) need to be returned to user-
space (i.e. do not parse the packet twice) and to all PF_RING components
that for various reasons (e.g. due to socket clustering) need to have
accessed to this information.

e Per-filter policy in case of match:
— Stop filtering rule evaluation and drop/forward packet to user-space.

— Update filtering rule status (e.q. statistics) and stop/continue rule evaluation
without forwarding packet to user-space.

— Execute action and continue rule evaluation (via PF_RING plugins).

e Filtering rules can pass to user-space both captured packets or statistics/
packet digests (this for those apps who need pre-computed values and not
just raw packets).

2nd TMA PhD School - June 2011 @ 30
open Source

PF_RING Packet Parsing [1/4]

e Contrary to BPF that basically does parse packets
while filtering them, PF_RING filtering requires packet
to be parsed first.

e Parsing information is propagated up to the
userland.

e The basic PF_RING engine contains parsing up to
TCP/UDP.

2nd TMA PhD School - June 2011

19

PF_RING Packet Parsing [2/4]

struct pkt parsing info {
/* Core fields (also used by NetFlow) */

u int8 t dmac[ETH ALEN], smac[ETH ALEN]; /* MAC src/dst addresses */
u intl6é t eth type; /* Ethernet type */
u _intl6 t vlan id; /* VLAN Id or NO VLAN */

u int8 t 1p version;
u int8 t 13 proto, ip tos; /* Layer 3 protocol/TOS */
ip addr ip src, ip dst; /* IPv4 src/dst IP addresses */
u intl6 t 14 src port, 14 dst port; /* Layer 4 src/dst ports */
struct {
u int8 t flags; /* TCP flags (0 if not available) */
u int32 t seqg num, ack num; /* TCP sequence number */
} tcp;
u intl6é t last matched plugin id; /* If > 0 identifies a plugin to that matched the packet */
u intl6 t last matched rule id; /* If > 0 identifies a rule that matched the packet */
struct pkt offset offset; /* Offsets of L3/L4/payload elements */

/* Leave it at the end of the structure */
packet user detail pkt detail;

b

',/‘ 2nd TMA PhD School - June 2011 o 32
UNTVERSITA DI PISA Open SOUME

PF_RING Packet Parsing [3/4]

e The decision to always parse the packet is motivated
as follows:

- Packet parsing is very cheap (in terms of computation)
and its slow-down is negligible.

- Beside rare exceptions (e.g. for packet-to-disk
applications), user space applications will need to
parse packets.

e PF_RING does not natively include layer-7 packet
filtering as this is delegated by plugins as shown
later in this presentation.

2nd TMA PhD School - June 2011

19

PF_RING Packet Parsing [4/4]

struct pfring pkthdr {

struct timeval ts; /* time stamp */
u int32 t caplen; /* length of portion present */
u int32 t len; /* length this packet (off wire) */

struct pkt parsing info parsed pkt; /* packet parsing info */
u intl6 t parsed header len; /* Extra parsing data before packet */

s

Extended Parsing

Plugin-based Parsing

|7 parsing Payload

parsed_pkt

(Optional)

mop- 2nd TMA PhD School - June 2011 o 34
open Source

PF RING: Exact Filters [1/2]

o Exact filters (called hash filtering rules) are used whenever all the

filtering criteria are present in the filter.

typedef struct {
u intleo t vlan 1id;
u 1nt8 t proto;
u int32 t host peer a, host peer b;
u intlo t port peer a, port peer b;

Filter Elements

[]

} hash filtering rule;

e Exact filters are stored in a hash table whose
key is calculated on the filter values.

e When a packet is received, the key is calculated
and searched into the filter hash.

2nd TMA PhD School - June 2011

Parse Filter Expression

|

Calculate Filter Hash Key

|

Insert the Key into
the Filter Hash

f@. 35

Opn S0Urce

PF_RING: Exact Filters [2/2]

e Filters can have a rule associated to it such as:

Pass packet to userland in case of maich.

Drop packet in case of matich.

- Execute the action associated with the packet.

e Actions are implemented into plugins. Typical action include:
- Add/delete filtering rule

ncrement specific traffic counters.

nteract with the Linux kernel for performing specific actions.

typedef struct {
[...]

rule action behaviour rule action; /* What to do in case of match */
filtering rule plugin action plugin action;
unsigned long jiffies last match;

} hash filtering rule;

Filter Actions

2nd TMA PhD School - June 2011 @
open Source

w

6

PF RING: Wildcard-ed Filters [1/2]

e This filter family has to be used whenever:

- Not all filter elements are set to a specific value.
- The filter contains value ranges.

e Filters are bi-directional (i.e. they are checked on both source and
destinations fields.

e Filtering rules have a unique (in the PF_RING socket) numeric
identifier that also identifies the rule evaluation order.

typedef struct {
u int8 t dmac[ETH ALEN], smac[ETH ALEN]; /* Use 'O' (zero-ed MAC address) for any MAC address.

This is applied to both source and destination. */
u intl6 t vlan id; /* Use '0' for any vlan */

u int8 t proto; /* Use 0 for 'any' protocol */

ip addr host low, host high; /* User 'O' for any host. This is applied to both source
and destination. */

u intlé t port low, port high; /* All ports between port low...port high

0 means 'any' port. This 1is applied to both source
and destination. This means that
(proto, sip, sport, dip, dport) matches the rule if
one in "sip & sport", "sip & dport" "dip & sport"
match. */

} filtering rule core fields;

"{‘ 2nd TMA PhD School - June 2011 o 37
o1 P Open SOUME

PF_RING: Wildcard-ed Filters [2/2]

e Filters can optionally contain some extended fields used for:
- Matching packet payload

- Implementing more complex packet filtering by means of
plugins (see later).

e User-space PF_RING library allows plugins to specity some
parameters to be passed to filters (e.g. pass only HTTP
packets with method POST).

typedef struct {

char payload pattern[32]; /* If strlen(payload pattern) > 0, the packet payload
must match the specified pattern */

u intl6o t filter plugin 1id; /* If > 0 identifies a plugin to which the data structure
below will be passed for matching */

char filter plugin data[FILTER PLUGIN DATA LEN];
/* Opaque data structure that is interpreted by the
specified plugin and that specifies a filtering
criteria to be checked for match. Usually this data
is re-casted to a more meaningful data structure
*/

} filtering rule extended fields;

2nd TMA PhD School - June 2011

19

38

Combining Filtering with Balancing [1/4]

e PF_RING clustering allows socket to be grouped so that they
be used for effectively sharing load across threads and
processes.

e Clustering works at PF_RING socket level and it's basically a
mechanism for balancing traffic across packet consumers.

e PF_RING filtering rules combine the best of these technologies
by implementing traffic balancing for those packets that match
a certain filter.

e The idea is to have the same filter specified for various sockets
that are the grouped together. Packets matching the filter are
then forwarded only to one of the sockets.

2nd TMA PhD School - June 2011 @ 39

Combining Filtering with Balancing [2/4]

Incoming Packet Loop through the PF_RING sockets
l Loop through the filters
Parse packet —> Match found ?
(once for all sockets/filters) i
Balance

Return control to Caller

2nd TMA PhD School - June 2011

19

Combining Filtering with Balancing [3/4]

o Filtered packets are balanced across sockets as
follows

typedef struct {
[...]
u int8 t balance id, balance pool; /* If balance pool > 0, then pass the
packet to PF RING caller only 1if
(hash (proto, sip, sport, dip, dport) %
balance pool) = balance id */

[...]
} filtering rule; Filter match found

l

Compute balance Value
hash (proto, sip, sport, dip, dport) % balance pool

:

Is balance Value == balance id ?
i.e. per-flow balancing)

SO\

Pass the Packet Drop the Packet

2nd TMA PhD School - June 2011

19

41

Combining Filtering with Balancing [4/4]

PF_ RING PF_ RING PF_ RING
Socket Socket Socket
Filtering Rule Filtering Rule Filtering Rule
balance_id=0 balance_id=1 balance_id=2

balance_pool=4

balance_pool=4

balance_pool=4

PF_RING
Socket

Filtering Rule

balance_id=3
balance_pool=4

SR
o

e Using balancing for distributing load across applications/
threads is very effective for exploiting multi-processor/core
architectures.

%

2nd TMA PhD School - June 2011 o 49
open Source

PF_RING Packet Reflection [1/3]

e Often, monitoring applications need to forward filtered packets to remote
systems or applications.

e Traffic balancers for instance are basically a “filter & forward” application.

e Moving packets from the kernel to userland and then back to the kernel
(for packet forwarding) is not very efficient as:

- Too many actors are involved.
- The packet journey is definitively too long.

o PF_RING packet reflection is a way to forward packets that matched a
certain filter towards a remote destination on a specific NIC (that can be
different from the one on which the packet has been received).

e Packet reflection is configured from userland at startup.

o All forwarding is performed inside the kernel without any application
infervention at all.

2nd TMA PhD School - June 2011 @ 43
open Source

PF_RING Packet Reflection [2/3]

/* open devices */
if ((pd = pfring open(in dev, promisc, 1500, 0)) == NULL)
{

printf ("pfring open error for %$s\n", in dev);

return -1;

} else
pfring set application name (pd, "forwarder");

if ((td = pfring open(out dev, promisc, 1500, 0)) == NULL)
printf ("pfring open error for %$s\n", out dev);
return -1;

} else
pfring set application name (td, "forwarder");

/* set reflector */
1f (pfring set reflector(pd, out dev) != 0)

{

printf ("pfring set reflector error for %s\n", out dev);
return -1;

}

/* Enable rings */
pfring enable ring(pd);
pfring enable ring(td);

while (1) sleep(60); /* Loop forever */

',/‘ 2nd TMA PhD School - June 2011

{

Opn S0Urce

44

PF_RING Packet Reflection [3/3]

e PF_RING packet reflection allows easily and efficiently to implement:
- Filtering packet balancers
- (Filtering) Network bridges

e |In a nutshell this technique allows to easily implement the “divide and
conquer” principle and to combine it with ’rechniques just presented.

..

Outgoing Traffic
(e.g. 1 Gbit)
PF_RING-based
Traffic Balancer

Incoming Traffic TR E
(e.g. 10 Gbit) : : Host

£5 2nd TMA PhD School - June 2011 o
ppen source

45

PF_RING Kernel Plugins [1/3]

e Implementing into the kernel is usually more efficient than doing the
same in userland because:

- Packets do not need to travel from kernel to userland.

- If a packet is supposed to be received by multiple applications it is not
duplicated on the various sockets, but processed once into the kernel

e For packet filtering, it is important to filter as low as possible in the
networking stack, as this prevents packet not matching the filter to
be propagated and the discarded later on.

e PF_RING plugins allow developers to code small software modules
that are executed by PF_RING when incoming packets are received.

e Plugins can be loaded and unloaded dynamically via insmod/
rmmod commands.

2nd TMA PhD School - June 2011

19

46

PF_RING Kernel Plugins [2/3]

e Each plugin need to declare a data structure according to the format below.

struct pfring plugin registration ({
u intl6 t plugin id;

char name[16]; /* Unique plugin name (e.g. sip, udp) */

char description[64]; /* Short plugin description */

plugin filter skb pfring plugin filter skb; /* Filter skb: l=match, O=no match */
plugin handle skb pfring plugin handle skb;

plugin get stats pfring plugin get stats;

plugin free ring mem pfring plugin free ring mem;

plugin add rule pfring plugin add rule;

plugin register pfring plugin register;

kernel packet start pfring packet start;
kernel packet reader pfring packet reader;
kernel packet term pfring packet term;

Y

e The various pfring_plugin_* variables are pointers to functions that are called by
PF_RING when:

- A packet has to be filtered.

- An incoming packet has been received and needs to be processed.
- A userland application wants to know stats about this plugin.

- Afiltering rule will be removed and the memory allocated by the plugin needs to be released.

"/’ 2nd TMA PhD School - June 2011 o 47
ERSITA DI PISA Opn S0Urce

PF_RING Kernel Plugins [3/3]

Plugins are associated with filtering rules and are triggered whenever a
packet matches the rule.

If the plugin has a filter function, the this function is called in order to check

whether a packet passing the header filter will also pass other criteria. For

Instance:

- ‘fcp and port 80’ is a rule filter used to select hitp traffic

- The HTTP plugin can check the packet payload (via DPI) to verity that the packet
is really http and it's not another protocol that hides itself on the http port.

In order to perform complex checks, rules need to be stateful hence to
allocate some memory, private o the plugin, that is used to keep the state.

PF_RING delegates to the plugin the duty of managing this opaque memory
that is released by PF_RING when a rule is deleted, by calling the plugin
callback.

2nd TMA PhD School - June 2011

19

48

Efficient Layer 7
Packet Analysis

Using PF_RING Filters: HTTP Monitoring [1/5]

e Goal

- Passively produce HTTP traffic logs similar to those produced by
Apache/Squid/W3C.

e Solution
- Implement plugin that filters HTTP traffic.

- Forward to userspace only those packets containing HTTP requests
for all known methods (e.g. GET, POST, HEAD) and responses (e.g.
HTTP 200 OK).

- All other HTTP packets beside those listed above are filtered and not
returned to userspace.

- HTTP response length is computed based on the “Content-Length”
HTTP response header attribute.

2nd TMA PhD School - June 2011 @ 50
open Source

Using PF_RING Filters: HTTP Monitoring [2/5]

Plugin Reqistration

static int init http plugin init (void)

{
int rc;
printk ("Welcome to HTTP plugin for PF RING\n");
reg.plugin id = HTTP PLUGIN ID;
reg.pfring plugin filter skb = http plugin plugin filter skb;
reg.pfring plugin handle skb = NULL;
reg.pfring plugin get stats = NULL;

snprintf (reg.name, sizeof (reg.name)-1, "http");
snprintf (reg.description, sizeof(reg.description)-1, "HTTP protocol analyzer");

rc = do register pfring plugin(®);
printk ("HTTP plugin registered [id=%d] [rc=%d]\n", reg.plugin id, rc);

return (0) ;

',/’ 2nd TMA PhD School - June 2011 o 51
UNIVERSITA DI PISA O SOUFCE

Using PF_RING Filters: HTTP Monitoring [3/5]

Plugin Packet Filtering

static int http plugin plugin filter skb(filtering rule element *rule,
struct pfring pkthdr *hdr, struct sk buff *skb,
struct parse buffer **parse memory)
{
struct http filter *rule filter = (struct http filter*)rule-
>rule.extended fields.filter plugin data;
struct http parse *packet parsed filter;

1f ((*parse memory) == NULL) ({
/* Allocate (contiguous) parsing information memory */
(*parse memory) = kmalloc(sizeof (struct parse buffer*), GFP KERNEL);
1f (*parse memory) {
(*parse memory)->mem len = sizeof (struct http parse);
(*parse memory)->mem = kcalloc(l, (*parse memory)->mem len, GFP KERNEL) ;
if ((*parse memory)->mem == NULL) return(0); /* no match */
}
packet parsed filter = (struct http parse*) ((*parse memory) ->mem) ;
parse_http packet (packet parsed filter, hdr, skb);
} else {
/* Packet already parsed: multiple HTTP rules, parse packet once */
packet parsed filter = (struct http parse*) ((*parse memory) ->mem) ;

}

return((rule filter->the method & packet parsed filter->the method) 2 1 /* match */ : 0);
}

£ 2nd TMA PhD School - June 2011 o 59
open Source

Using PF_RING Filters: HTTP Monitoring [4/5]
Plugin Packet Parsing

static void parse http packet (struct http parse *packet parsed,
struct pfring pkthdr *hdr,
struct sk buff *skb) {
u_int offset = hdr->parsed pkt.pkt detail.offset.payload offset; /* Use PF_RING Parsing */
char *payload = &skb->datal[offset];

/* Fill PF RING parsing information datastructure just allocated */
if ((hdr->caplen > offset) && !memcmp (payload, "OPTIONS", 7)) packet parsed->the method = method options;
else if ((hdr->caplen > offset) && !memcmp (payload, "GET", 3 packet parsed->the method = method get;

))

else if ((hdr->caplen > offset) && !memcmp (payload, "HEAD", 4)) packet parsed->the method = method head;
else if ((hdr->caplen > offset) && !memcmp (payload, "POST", 4)) packet parsed->the method = method post;
else if ((hdr->caplen > offset) && !memcmp (payload, "PUT", 3)) packet parsed->the method = method put;
else if ((hdr->caplen > offset) && !memcmp (payload, "DELETE", 6)) packet parsed->the method = method delete;
else if ((hdr->caplen > offset) && !memcmp (payload, "TRACE", 5)) packet parsed->the method = method trace;
else 1f((hdr->caplen > offset) && !memcmp (payload, "CONNECT", 7)) packet parsed->the method = method connect;

) ()

else if ((hdr->caplen > offset
method http status code;
else packet parsed->the method = method other;

&& !memcmp (payload, "HTTP ", 4) packet parsed->the method =

}

Fow 2nd TMA PhD School - June 2011 o 53
— Dpen Source

Using PF_RING Filters: HTTP Monitoring [5/5]

Userland application

if ((pd = pfring open(device, promisc, 0)) == NULL) { printf("pfring open error\n"); return(-1); }
pfring toggle filtering policy(pd, 0); /* Default to drop */

memset (&rule, 0, sizeof(rule));

rule.rule id = 5, rule.rule action = forward packet and stop rule evaluation;
rule.core fields.proto = 6 /* tcp */;
rule.core fields.port low = 80, rule.core fields.port high = 80;

rule.plugin action.plugin id = HTTP PLUGIN ID; /* HTTP plugin */

rule.extended fields.filter plugin id = HTTP PLUGIN ID; /* Enable packet parsing/filtering */
filter = (struct http filter*)rule.extended fields.filter plugin data;

filter->the method = method get | method http status code;

if (pfring add filtering rule(pd, &rule) < 0) {
printf ("pfring add filtering rule() failed\n");
return(-1); }

while (1) |
u char buffer[2048];
struct pfring pkthdr hdr;

1f(pfring recv(pd, (char*)buffer, sizeof (buffer), &hdr, 1) > 0)
dummyProcesssPacket (&¢hdr, buffer);
}

pfring close (pd);

;’ 2nd TMA PhD School - June 2011 o 54
UNIVERSITA DI PISA open source

YouTube Monitoring [1/2]

e YouTube monitoring is an extension of the HTTP plugin.

e HTTP is used by YouTube to transport videos usually encoded in H.264
or Flash Video.

e The HTTP plugin can be used for monitoring, from the network point of
view, the YouTube traffic and detecting whether the network quality is
adequate or if the user should have experienced unstable playback.

e Video streams are tracked by checking the URL (e.g. GET /get_video?
video_id=...) and the server host (www.youtube.com).

e Whenever a YouTube video stream is detected, the HTTP plugin adds
an exact matching rule on the hash, used to track the stream, with the

YouTube plugin specified as rule action.

2nd TMA PhD School - June 2011

19

55

http://www.youtube.com
http://www.youtube.com

YouTube Monitoring [2/2]

e The YouTube plugin is able to measure some stream statistics such as
throughput, jitter, bandwidth used.

struct youtube http stats {

u int32 t initialTimestamp, lastTimestamp, lastSample; /* Packet Timestamps [jiffies]
struct timeval initial tv;

u int32 t tot pkts, tot bytes, cur bytes;
u 1nt32 t num samples;
u int8 t signaling stream; /* l=signaling, 2=real video stream */
char url[URL LEN];
char video 1d[VIDEO ID LEN], video playback i1d[VIDEO ID LEN];
u int32 t min thpt, avg thpt, max thpt; /* bps */
u int32 t min jitter, avg jitter, max jitter; /* jiffies */
u int32 t duration ms;
char content type[CONTENT TYPE LEN];
u 1nt32 t tot jitter, num jitter samples;

e When a stream is over, the plugin return to userland a packet with the
stream statistics.

e Nofe that all stream packets are not returned to userland, but just the

statistics, that contributes to reduce load on the probe and improve
performance.

£5 2nd TMA PhD School - June 2011 o
\ o Prea mﬁm.lrc[‘

*/

56

Dynamic PF_RING Filtering: VoIP [1/6]

e Goal

- Track VolP (SIP+RTP) calls at any rate on a Gbit link using commodity
hardware.

- Track RTP streams and calculate call quality information such as jitter, packet
loss,without having to handle packets in userland.

e Solution

- Code a PF_RING plugin for tracking SIP methods and filter-out:
e Uninteresting (e.g. SIP Options) SIP methods
o Not well-formed SIP packets

e Dummy/self calls (i.e. calls used to keep the line open but that do not result in a real
call).

- Code a RTP plugin for computing in-kernel call statistics (no pkt forwarding).

- The SIP plugin adds/removes a precise RTP PF_RING filtering rule whenever
a call starts/ends.

2nd TMA PhD School - June 2011 @ 57
open Source

Dynamic PF_RING Filtering: VolIP [2/6]

- Before removing the RTP rule though PF_RING library calls, call information is
read and then the rule is deleted.

- Keeping the call state in userland and do not forwarding RTP packets,
allows the code of VolP monitoring applications to be greatly simplified.

- Furthermore as SIP packets are very few compared to RTP packets, the
outcome is that most packets are not forwarded to userland contributing to
reduce the overall system load.

[™ VolP Monitor

SIP packets
-y RTP packets

(user space)
—> Add/remove flow

e RTP statistics (poll)

(kernel space)

‘ A
SIP filter | | RTP i

analyzer

SIP signaling

2nd TMA PhD School - June 2011 o 58
open Source

Dynamic PF_RING Filtering: VolIP [3/6]

e SIP Plugin

- It allows to set filters based on SIP fields (e.g. From, To, Via, CalllD)

- Some fields are not parsed but the plugin returns an offset inside the SIP packet
(e.g. SDP offset, used to find out the IP:port that will be used for carrying the
RTP/RTCP streams).

- Forwarded packets contain parsing information in addition to SIP payload.

e RTP Plugin

- It tracks RTP (mono/by-directional) flows.

- The following, per-flow, statistics are computed: jitter, packet loss, malformed
packets, out of order, transit time, max packet delta.

- Developers can decide not to forward packets (this is the default behavior) or to
forward them (usually not needed unless activities like lawful interception need
to be carried on).

2nd TMA PhD School - June 2011 @ 59
open Source

Dynamic PF_RING Filtering: VoIP [4/6)]

e Validation

- A SIP test tool and traffic generator (sipp) is used to create synthetic SIP/RTP
traffic.

- Atest application has been developed: it receives SIP packets (signaling)
and based on them it computes RTP stats.

- A traffic generator (IXIA 400) is used to generate noise in the line and fill it

up. As RTP packets are 100 bytes in average, all tests are run with 128 bytes
packets.

- The test code runs on a cheap single-core Celeron 3.2 GHz (cost < 40 Euro).

- In order to evaluate the speed gain due to PF_RING kernel modules, the
same test application code is tested:

e Forwarding SIP/RTP packets to userland without exploiting kernel modules (i.e. the
code uses the standard PF_RING).

e RTP packets are not forwarded, SIP packets are parsed/filtered in kernel.

2nd TMA PhD School - June 2011 @ 60
open Source

Dynamic PF_RING Filtering: VolIP [5/6]

% lIdle CPU [128 bytes packets]

20
15
10
i W
0 o
Kernel
1000 10°000 20’000 30°000 40’000 50’000
Rules
Max Throughput (Mbps) with no loss [128 bytes packets]
700
350
175
0 Kernel
1000 10°000 20’000 30°000 40’000 50’000 Rules

O RTP Plugin
©O RTP stats computed in userland
PF_RING capture only (no RTP analysis)

W A s 2nd TMA PhD School - June 2011 o

UNIVERSITA DI PISA

61

Dynamic PF_RING Filtering: VolIP [6/6]

e Validation Evaluation

- In-kernel acceleration has demonstrated that until 40K rules, kernel plugins
are faster than a dummy application that simply captures packets without
any processing.

- On a Gbit link it is possible to have up to ~10K concurrent calls with G.711
(872 Mbit) or ~30K calls with G.729 (936 Mbit). This means that with the
current setup and a slow processor, it is basically possible to monitor a
medium/large ISP.

e Future Work ltems

- The plugins are currently used as building blocks glued together by means
of the user-space applications.

- The SIP plugin can dynamically add/remove RTP rules, so that it is possible
to avoid (even for SIP) packet forwarding and send to userland just VolP
statistics for even better performance figures.

2nd TMA PhD School - June 2011 @ 62
open Source

PF_RING Content Inspection

e PF_RING allows filtering to be combined with packet
iInspection.

e Ability fo (in kernel) search multiple string patterns into
packet payload.

e Algorithm based on Aho-Corasick work.

e [deal for fields like lawful interception and security
including IDSs).

e Major performance improvement with respect o
conventional pcap-based applications.

2nd TMA PhD School - June 2011 @ 63

L7 Analysis: Summary

e The use of kernel plugins allows packets to have a short journey
towards the application.

e In-kernel processing is very efficient and it avoids the bottleneck of
several userland application threads competing for packets.

e As PF_RING requires minimal locking (when the filtering rule is
accessed and updated), packets are processed concurrently
without any intervention from userland applications.

e As the Linux kernel concurrently fetches packets from adapfers,
this is a simple way to exploit multi-processing/core without
having to code specific (multithreaded) userland applications and
serialize packets on (PF_RING) sockets.

2nd TMA PhD School - June 2011 @ 64

Direct Access to NICs

Direct NIC Access: Introduction

e Commercial accelerated NICs are accelerated either using ASIC (rare) or
FPGAs (often) chips.

o Accelerators improve common activities such as packet filtering and are
also responsible of pushing packets to memory with very limited (< 1%)
load on the main CPU.

e Applications access packets directly without any kernel intervention at all.

o Akernel-mapped DMA memory allows the application to manipulate
card registers and to read packets from this memory where incoming
packets are copied by the hardware accelerators.

e Cards falling in this category include:

- Endace DAG
- Napatech
- NetFPGA

2nd TMA PhD School - June 2011

19

66

Direct NIC Access: Comparison [1/2]

Application Application
PF_RING ! Applicgtion '
Polling DMA Userland Polling DMA Userland
Kernel Kernel
* PF_RING _-_ Accelerated
RN RGN Cards
Circular NIC .
Buffer ; Memory W
NAPI Map '\‘ "" “
R o Polling RISy L FPGA
Device Driver Device Driver
PF RING Hardware Acceleration
" 2nd TMA PhD School - June 2011 o 67

Opn S0Urce

Direct NIC Access: Comparison [2/2]

e The reason why accelerated cards are so efficient are:

- The FPGA polls packets as fast as possible without any intervention from the
main CPU. In Linux the main CPU has to periodically read packets through
NAPI from the NIC.

- Received packets are copied on a pre-allocated large memory buffer so no
per-packet allocation/deallocation is necessary at all, as it happens in vanilla
Linux.

- Similar to PF_RING, packets are read from circular buffer without any kernel
interaction (beside packet polling).

e Limitations

- As applications access packets directly, if they improperly manipulate card’s
memory the whole system might crash.

- FPGA filtering is very limited and not as rich as PF_RING.

- Contrary to PF_RING, only one application at time can read packers from the
ring.

2nd TMA PhD School - June 2011 @
open Source

68

Welcome to nCap (Circa 2003)

Monitoring Monitoring Monitoring
Application Application Application

O —
(e
% Enhanced libpcap
> i
g - Standard
S s andar
|5 ; “- TCP/IP
O : PF_RING
O - S Stack
2 E » -
o D
A4 O
5 T
Accelerated Device Driver
Ethernet

" 2nd TMA PhD School - June 2011

nCap

Legacy

69

nCap Features

Packet Wire Speed Number of
Capture Packet Applications

Acceleration Capture per Adapter

Standard TCP/IP Stack Limited No Unlimited
with accelerated driver

PF RING Great Almost Unlimited
with accelerated driver

Straight Capture Extreme Yes One

2nd TMA PhD School - June 2011

19

70

nCap Internals

- nCap maps at userland the card registers and memory.
 The card is accessed by means of a device /dev/ncap/ethX
- Ifthe device is closed it behaves as a “normal” NIC.

- When the device is open, it is completely controlled by
userland the application.

» A packet is sent by copying it to the TX ring.

» A packet is received by reading it from the RX ring.

» Interrupts are disabled unless the userland application wait
for packets (poll().

» On NIC packet filtering (MAC Address/VLAN only).

2nd TMA PhD School - June 2011 @ 71

nCap Comparison (1 Gbit)

Maximum Estimated Manufacturer
Packet Loss Card
at Wire Speed Price
DAG 0% > 5-7 K Euro Endace.com
nCap 0.8% 100 Euro
Combo 6 (Xilinx) 5% > 7-10 K Euro Liberouter.com

Source Cesnet (hitp://luca.ntop.org/ncap-evaluation.pdf)

2nd TMA PhD School - June 2011 @ 72
open Source

http://luca.ntop.org/ncap-eval.pdf
http://luca.ntop.org/ncap-eval.pdf

Beyond PF_RING

e PF_RING has shown to be an excellent packet capture
acceleration technology compared to vanilla Linux.

e |t has reduced the cost of packet capture and forward to userland.

e However it has some design limitations as it requires two actors
for capturing packets that result in sub-optimal performance:

- kernel: copy packet from NIC to ring.
- userland: read packet from ring and process it.

e PF_RING kernel modules demonstrated that limiting packet
processing in user-space by moving it fo kernel results in major
performance improvements.

e A possible solution is to map a NIC to user-space and prevent the
kernel from using it.

2nd TMA PhD School - June 2011 @ 73
open Source

PF_RING DNA (Direct NIC Access)

e PF_RING DNA is an extension for PF_RING that allows NICs to be
accessed in direct mode fully bypassing Linux NAPI.

e Based on the lessons learnt while developing nCap, DNA is a
technology developed in clean-room that has been designed to be
NIC-neutral in order to allows various NICs to be supported.

e The NIC mapping is driver dependent hence it requires some driver
modifications in order to:
- Disable NAPI when the NIC is accessed in DNA mode.
- Contiguously allocate RX card’s memory in one shot (and not per packet).

- Register the NIC with PF_RING so the card is accessed seamlessly from
PF_RING applications without the need to know the NIC internals and its
memory layout.

2nd TMA PhD School - June 2011

19

74

NIC DMA Ring

Packet Polling

PF_RING DNA (De)Registration

/* Register with PE RING */

do ring dna device handler (add device mapping,
adapter->tnapil.dma mem.packet memory,
adapter—->tnapil.dma mem.packet num slots,
adapter->tnapil.dma mem.packet slot len,
adapter->tnapil.dma mem.tot packet memory,
rx ring->desc,
rx ring->count, /* # of items */
sizeof (struct 1000 rx desc),
rx ring->size, /* tot len (bytes) */
0, /* Channel Id */
(void*)netdev->mem start,
netdev->mem end,
netdev,
intel 1000,
&adapter->tnapi.packet wailtqueue,
&adapter->tnapi.interrupt received,
(void*) adapter,
walt packet function ptr);

',/’ 2nd TMA PhD School - June 2011

NIC Memory
Pointers

NIC Registers
Memory

Opn S0Urce

PF RING DNA: Current Status

e As of today, DNA is available for Intel-based 1 Gbit (€1000 driver) and
10 Gbit (ixgbe) NICs.

e Any modern dual-core (or better) system can achieve wire rate
packet capture at any packet size using DNA.

e A userland library used to manipulate card registers has been
integrated into PF_RING.

e Applications do not need to do anything different from standard
PF_RING with the exception that the ring memory has to be open
using pfring open dna () instead of the standard

pfring open|().

e When an application opens the adapter in DNA mode, other
applications using the same adapter in non-DNA mode wiill stop
receiving packets until the application quits.

2nd TMA PhD School - June 2011 @ 76

Towards 10 Gbit Packet Capture
Using Commodity Hardware

Enhanced NIC Drivers [1/5]

The current trend in computer architecture is towards multi-core systems.

Currently 4-core CPUs are relatively cheap, some manufacturers
announced a 64-core x86 CPU by the end of 2008.

Exploiting multi-core in userland applications is relatively simple by using
threads.

Exploiting multi-core in kernel networking code is much more complex.

Linux kernel networking drivers are single-threaded and the model is still
the same since many years.

It's not possible to achieve good networking performance unless NIC drivers
are also accelerated and exploit multi-core.

2nd TMA PhD School - June 2011

19

78

Enhanced NIC Drivers [1/4]

e The current trend in computer architecture is fowards multi-core
systems.

e Currently 4-core CPUs are relatively cheap and rather common on
the market. Intel announced Xeon Nehalem-EX with 16 threads (8
cores) for late 2009. The core rush is not yet over.

e Exploiting multi-core in userland applications is relatively simple by
using threads.

e Exploiting multi-core in kernel networking code is much more
complex.

e Linux kernel networking drivers are single-threaded and the model
is still the same since many years.

e |t's not possible to achieve good networking performance unless NIC
drivers are also accelerated and exploit multi-core.

2nd TMA PhD School - June 2011 @ 79
open Source

Enhanced NIC Drivers [2/4]

Intel has recently intfroduced a few innovations in the
Xeon 5000 chipset series that have been designed to

accelerate networking applications:

o |/O Acceleration Technology (I/OAT)

- Direct Cache Access (DCA) asynchronously move packets from NIC directly on CPU’s
cache in DMA.

- Muliiple TX/RX queues (one per core) that improve system throughput and utilization.
— MSI-X, low latency interrupts and load balancing across multiple RX queues.

— RSS (Receive-Side Scaling) balances (network flow affinity) packets across RX queue/
cores.

— Low-latency with adaptive and flexible interrupt moderation.

In a nutshell: increase performance by distributing workloads across available CPU cores.

2nd TMA PhD School - June 2011 @ 80
open Source

Enhanced NIC Drivers [3/4]

Optimized TCP/IP
protocol stack
with enhancements

Enhanced direct
memaory access
with asynchronous Balanced network

low-cost copy e | processing on multiple

CPUs with network
flow affinity

Bpen SOUrcE

“nTop i @ 2nd TMA PhD School - June 2011 o

UNIVERSITA DI PISA

81

Enhanced NIC Drivers: Linux NAPI [4/4]

Monitoring
Application

Networking Stack

™
Q%%-j() Qﬁexu_&_)__ queve =
Aéﬁ%'L

RSS (Resource Side Scaling)

10 Gbit PHY

2nd TMA PhD School - June 2011

NAPI
Sequential RX
Ring Polling

Bpen SOUrcE

Linux NAPI Limitations [1/2]

vvv

(Thread (Thread) (Thread) (Thread)

N - nProbe !

Userland | ' Single Resource Competition
| i
|

: T ' Merge & Split

|

- Sequential
N Linux Device Driver _ _ _ _ o . - - -, Queue
: | Polling
| |
' :
|
SN G - A WEh) Teeeany LN -), Tewwey :

Queue Queue Queue Queue
MSI-X

RSS (Resource Side Scaling)

10 Gbit PHY

"NTop i ‘@ 2nd TMA PhD School - June 2011 o

UNIVERSITA DI PISA OpEn SOUME

Linux NAPI Limitations [2/2]

o Multiple-RX queues are not fully exploited by Linux as NAPI polls them

in sequence and not concurrently

e Interrupts are enabled/disabled globally (i.e. for all queues at the

same time) whereas they should be managed queue-per-queue as
not all queues have the same amount of traffic (it depends on how

balance-able is the ingress traffic).

e Original queue index (that can be used as flow identifier) is
the packet is propagated inside the kernel and then to user

ost when
and.

e Userland applications see the NIC as a single entity and no

'AS d

collection of queues as it should be. This is a problem as the software
could take advantage of multiple queues by avoiding threads
competing for incoming packets all coming from the same NIC but

from different queues.

2nd TMA PhD School - June 2011

0O "
Bpen SOUrcE

Example of Multi-Queue NIC Statistics

ethtool -S ethb
NIC statistics:

rx packets: 161216

tx packets: 0

rx bytes: 11606251

tx bytes: 0

lsc int: 1

tx busy: 0

non eop descs: 0
rx errors: 0

tx errors: 0

rx dropped: 0

tx dropped: 0
multicast: 4
broadcast: 1

rx no buffer count:

collisions: O

rX OvVer errors:
rx crc_errors: 0
rx frame errors:
rx fifo errors:
rx missed errors

0

0

0

tx aborted errors:
tX carrler errors:

tx_fifo_errors:

%

0

0

0
0

2

tx heartbeat errors: 0

tx timeout count: O

tx restart queue: 0

rx long length errors: 0
rx short length errors: 0
tx tcpé4 seg ctxt: 0O

tx tcpb seg ctxt: 0O

tx flow control xon: 0

rx flow control xon: 0

tx flow control xoff: 0
rx flow control xoff: 0
rx csum offload good: 153902
rx csum offload errors: 79
tx csum offload ctxt: 0
rx header split: 73914
low latency interrupt: O
alloc rx page failed: O
alloc rx buff failed: O
lro flushed: O

lro coal: O

tx queue 0 packets: 0

tx queue 0 bytes: 0

rx queue 0 packets: 79589
rx queue 0 bytes: 5721731
rx queue 1 packets: 81627
rx queue 1 bytes: 5884520

2nd TMA PhD School - June 2011 o 85

Opn S0Urce

Memory Allocation Life Cycle [1/5]

e Incoming packets are stored into kernel’'s memory that has been previously
allocated by the driver.

Read Index
(NIC Devici Driver)
NIC RX Buffer
Write Index
(Network Process Unit)

e As soon that a packet is received, the NIC NPU (Network Process Unit) checks if
there’s an empty slot and if so it copies the packet in the slof.

e The slot is removed from the RX buffer and propagated through the kernel.
e A new bucket is allocated and places on the same position of the old slot.

2nd TMA PhD School - June 2011 o 86
open Source

Memory Allocation Life Cycle [2/5]

e The consequence of this allocation policy is that:
- Every new packet requires one slow allocation (and later-on a free).
- As the traffic rate increases, increasing allocations/free will happen.

- In particular at 10 Gbit, if there’s a traffic spike or a traffic shot, the system may
run out of memory as incoming packets:

e require memory hence the memory allocator does its best to allocate new slofs.

e are stuck in the network kernel queue because the packet consumers cannot
keep-up with the ingress traffic rate.

- When the system runs in low memory it tries to free cached memory in order to
free some space.

- Unfortunately when the ingress rate is very high, the memory recover process
does not have enough time hence the system runs out of memory and the
result is that Linux’s OOM (Out Of Memory) killer has to kill some processes in
order to recover some memory.

2nd TMA PhD School - June 2011 @ 87
open Source

Memory Allocation Life Cycle [3/5]

1f (rx desc->status & E1000 RXD STAT DD)
/* A packet has been received */
#if defined (CONFIG RING) || defined(CONFIG RING MODULE)
handle ring skb ring handler = get skb ring handler();

1f (ring handler && adapter->soncap.soncap enabled) {
ring handler (skb, 0, 1, (hash value % MAX NUM CHANNELS)) ;
} else {
fendif

if (++1 == rx ring->count) 1 = 0;

next rxd = E1000 RX DESC(*rx ring, 1);
prefetch (next rxd);

next buffer = &rx ring->buffer infol[il];
cleaned = TRUE;

cleaned count++;
pci unmap single (pdev, buffer info->dma, PAGE SIZE, PCI DMA FROMDEVICE) ;

(...]

skb = netdev_alloc_ skb (netdev, bufsz);

buffer info->dma = pci map single (pdev,
skb->data,
adapter->rx buffer len,
PCI DMA FROMDEVICE) ;

,\ 2nd TMA PhD School - June 2011 o 88
open Source

Memory Allocation Life Cycle [4/5]

Linux Kernel

, , RX Queue
pci_unmap_single

netdev_alloc_skb netif_rx|()
pci_map_single

!

Read Index Write Index
memcpyl)
No kmalloc/kfree
NAPI
S
PF_RING El =
u

2nd TMA PhD School - June 2011

Bpen SOUrcE

89

Memory Allocation Life Cycle [5/5]

e Avoiding memory allocation/deallocation has several
advantages:

- No need to allocate/free bufters
- No need to map memory though the PCl bus

- In case of too much incoming traffic, as the kernel has
more priority than userland applications, there’s no risk

to run out of memory as it happens with standard NAPI.

e The last advantage of doing a packet copy to the
PF_RING bufter is the speed. Depending on the setup,
the packet capture performance can be increased of
10-20% with respect to standard NAPI.

2nd TMA PhD School - June 2011 @

90

Enhanced NIC Drivers: TNAPI [1/8]

e In order to enhance and accelerate packet capture under Linux, a
new Linux driver for Intel 1 and 10 Gbit cards has been developed.
Main features are:

- Multithreaded capture (one thread per RX queue, per NIC adapter).

The number of rings is the number of cores (i.e. a 4 core system has
4 RX rings)

- RX packet balancing across cores based on RSS: one core, one RX
ring.

- Driver-based packet filtering (PF_RING filters port into the driver) for
stopping unwanted packets at the source.

- Development drivers for Intel 82598/9 (10G) and 82575/6 (1G)
ethernet controllers.

e For this reason the driver has been called TNAPI (Threaded NAPI).

2nd TMA PhD School - June 2011 @ 91
open Source

Enhanced NIC Drivers: TNAPI [2/8]

(Thread) (Thread) (Thread > (Thread)
No Mutex :

Needed % % % %
Virtual PF_RING

Userland Ethernet Queue
PF_RING Threaded
Polling
RX RX RX RX
Queue Queue Queue Queue

RSS (Resource Side Scaling)
[Hardware per-flow Balancing]

1 Gbit / 10 Gbit NIC

<t+— TNAPI

o5 2nd TMA PhD School - June 2011 0 92

., o Taa
m ' OpEn SOUME

UNIVERSITA DI PISA

Enhanced NIC Drivers: TNAPI [3/8]

e Packet capture has been greaily accelerated thanks to TNAPI as:

- Each RX queue is finally independent (interrupts are turned on/off per
gueue and not per card)

- Each RX queue has a thread associated and mapped on the same CPU
core as the one used for RSS (i.e. cache is not invalidated)

- The kernel thread pushes packets as fast as possible up on the
networking stack.

- Packets are copied from the NIC directly into PF_RING (allocation/
deallocation of skbuffers is avoided).

- Userland applications can capture packets from a virtual ethernet NIC
that maps the RX ring directly into userspace via PF_RING.

2nd TMA PhD School - June 2011

19

93

Enhanced NIC Drivers: TNAPI [4/8]

e TNAPI Issues: CPU Monopolization

- As the thread pushes packets onto PF_RING, it should be avoided
that this thread monopolizes. This is because of the all CPU is
used by the kernel for receiving packets, then packet loss won't
happen in kernel but in userspace (i.e. the packet loss problem is
not solved, but just moved).

while (<polling packets from RX queue X>) {
/* Avoid CPU monopolization */
1f (rx budget > 0)
rx budget--;
else {
rx budget = DEFAULT RX BUDGET;
yvield() ;
}
}

- Solution: every X polling cycles, the thread has to give away some
CPU cycles. This is implemented as follow rx_budget that's
consumed whenever a packet is received and sent to PF_RING.

2nd TMA PhD School - June 2011 @ 94
open Source

Enhanced NIC Drivers: TNAPI [5/8]

o TNAPI Issues: Interrupts and Cores Allocation

- RX ring interrupts must be sent to the right core that’s
manipulating the queue in order to preserve cache coherency.

- The userland application that's fetching packets from queue X,
should also be mapped to core X.

- As interrupts are now sent per-queue (and not per-nic as it used to
be) we must make sure that they are sent to the same core that's
fetching packets.

cat /proc/interrupts
CPUO CPU1 CPU2 CPU3 CPU4 CPUbS CPUG CPU7

191: 1 1 2656 1 2 2 1 2 PCI-MSI-edge eth3

192: 1 4 0 0 2655 3 1 2 PCI-MSI-edge eth2

193: 78634 14 7 13 9 13 13 18 PCI-MSI-edge ethl

194: 3 15964 6 3 3 5 3 5 PCI-MSI-edge ethO

195: 0 0 0 0 0 0 0 0 PCI-MSI-edge eth7:1sc
196: 1 2 2 0 0 2658 1 0 PCI-MSI-edge eth7:v8-Tx
197: 1 0 2 0 1 0 1 5309 PCI-MSI-edge eth7:v7-Rx
198: 1 0 0 5309 1 2 0 1 PCI-MSI-edge eth7:v6-Rx
199: 0 1 0 1 0 1 2 5309 PCI-MSI-edge eth7:v5-Rx
200: 0 1 1 5307 2 2 1 0 PCI-MSI-edge eth7:v4-Rx
201: 1 0 1 2 1 5307 2 0 PCI-MSI-edge eth7:v3-Rx
202: 2 2 0 1 1 0 5307 1 PCI-MSI-edge eth7:v2-Rx
203: 0 1 5309 1 1 1 0 1 PCI-MSI-edge eth7:v1-Rx
204: 2 2 1 0 5307 1 1 0 PCI-MSI-edge eth7:v0-Rx

',,‘ 2nd TMA PhD School - June 2011 o 95
open Source

Enhanced NIC Drivers: TNAPI [6/8]

e Example:

-RX ring 6 and 4 use the same CPU 3.
- We want to move RX ring 6 to CPU 1

cat /proc/interrupts

CPUO CPU1 CPU2 CPU3 CpU4 CPUS CPUG6
198: 1 0 0 5309 1 2 0
200: 0 1 1 5307 2 2 1

cat /proc/irq/198/smp_affinity

00000008

echo 2 > /proc/irq/198/smp_affinity [00000010 where 1 = CPU 1]
cat /proc/irq/198/smp_affinity

00000002
cat /proc/interrupts |grep "eth7:v6-Rx"
198: 0 67 0 5309 1 2 0

unsigned long mask = 7; /* processors 0, 1, and 2 */
unsigned int len = sizeof (mask);
1f (sched setaffinity (0, len, é&mask) < 0) {

perror ("sched setaffinity");

-How to map a process to a CPU/core

A 2nd TMA PhD School - June 2011

CPU7
1
0

1

PCI-MSI-edge
PCI-MSI-edge

PCI-MSI-edge

eth7:v6-Rx
eth7:v4-Rx

eth7:v6-Rx

Opn S0Urce

96

Enhanced NIC Drivers: TNAPI [7/8]

Test Type Max Packet Capture Speed

Multi RX queue

PF_RING 300K pps 560K pps
PF_RING+TNAPI 750K pps 920K pps
Mono RX queue

PF_R|NG+TNAP| 860K pps Wire Rate (1 Gblﬂ

~ 3 Million pps (10 Gbit)
~ 5 Million pps (10 Gbit - 2 x Xeon)

Intel Core2Duo 1.86 GHz (Dual Core)
No Intel I/OAT

CPU Intel Xeon 2.4 GHz (Quad Core)
Intel 5000 chipset (I/OAT support)

P

2nd TMA PhD School - June 2011

Opn S0Urce

Enhanced NIC Drivers: TNAPI [8/8]

Kpps

Packet Capture Comparison

7000

5250

3500

1750

B pfcount/NAPI

128

256 512 1024

M pfcount_multichannel/NAPI
pfcount_multichannel/TNAPI

UNIVERSITA DI PISA

Testbed: Xeon X3450 @ 2.67GHz

2nd TMA PhD School - June 2011

Packet Size

Bpen SOUrcE

98

RX Multi-Queue and DNA

As previously explained, DNA is an excellent technology for those application
developers who need wire speed packet capture, but that do not need
features such as:

- packet filtering
- multiple application packet consumers.

DNA so far has been ported to the Intel mono-queue 1 Gbit driver (€1000) and
multi-queue 10 Gbit driver (ixgbe).

Currently the port of DNA to 1 Gbit RX multi-queue driver (igb) is in progress
and it will be available later this year.

Combining DNA with multi-queue allows applications to be split into
concurrent execution threads that enables multicore architectures to be further

exploited.

Additionally by exploiting hardware traffic balancing, it allows flow-based
applications such as netflow probes, to be further accelerated.

2nd TMA PhD School - June 2011 @ 99
open Source

Multi-Queue on Accelerated NICs

Monitoring onitoring onitoring
application application N applicatio
Userland

Kernel

®Direct NIC Access
e Multicore support

10GbE <€<-->
INTERFACE
HASH FUNCTION : LOOK
> - > wp
TAB
>

% PACKET FILTERS

A/endace 0 aeamsy 5
N,

power to see all

L———————

2nd TMA PhD School - June 2011 o

- Open SOUME
UNIVERSITA DI PISA

100

Exploiting PF_RING Multi-Queue: nProbe

Packet balancing
ACross cores.

Peak nProbe
performance: 1.48 Mpps
(packet rate) x 2 Cores.

Flow-like Packets
Userland " pmaA / DMA *,

Flows Flows
- nProbe nProbe — D

PF_RING

|
: Polling Polling Polling Polling
: Thread Thread Thread Thread
: TNAPI
RX RX RX RX
Queue Queue Queue Queue
MSI-X

RSS (Resource Side Scaling)

10 Gbit PHY

2nd TMA PhD School - June 2011

UNIVERSITA DI PISA

Bpen SOUrcE

101

Strong Multicore NICs:
Tilera Tile64

Towards Strong Multicore [1/2]

General Perception is that people usually think that
multicore is a good ideaq, although difficult to implement.

» General PC market
— Input data is unstructured, sequential
— Billions of lines of sequential applications
— Hard to migrate it to parallel code

- Embedded market

— Data is inherently parallel
— Engineers have designed parallel applications
— Their main challenge is complexity of design

2nd TMA PhD School - June 2011 @ 103

Towards Strong Multicore [2/2]

e Some applications are naturally parallel as in networking where a
network pipe is a multiplex of many “flows” or distinct streams.

S I e

Pipe

e The only barriers towards adopting strong multicore are:

- Design the application program so that it can take advantage of
multicore without sequentially performing activities that could be
carried on in parallel.

- Entry ticket for learning multicore development tools.
- Low-level programming required to take advantage of the technology.

2nd TMA PhD School - June 2011 o 104
open Source

Programming Paradigms

* Run to completion model

— Sequennql C/C-l"l.- oppllc.o’nons __— Sequertl
— Run multiple application instances one/core i . [ssaveni
! Balancer [code
— Use load balancer library for distribution f \ e
— Use tools to tune performance Sequenfa
* Parallel programming P
— Parallelize application with pthreads shared | wokingona - feeme
: “yUl code |/ |
memory ; e
1 E Load /E'ﬂ E
— Run on multiple cores i) phoad [Porale

- U code i
— Use communication libraries to optimize § \ N groups!
— Use tools to tune performance Parcle

2nd TMA PhD School - June 2011 @ 105
open Source

Parallel Processing Without Parallel Programming

- Standard model in the embedded world
— Facilitates immediate results using off-the-self code

- Simple architecture

— Each core runs complete application and handles one or multiple
flows or channels

— /0 management and load distribution

— Most embedded applications fit this category
— Large numbers of flows, frames channels, streams, etc...
— Most inputs are completely orthogonal

Sequential
code

waﬁdpx)

- Sequential

G t data code

et nex
N Cores
) |
"%, ;
Q Sequential

code

Ge

Load
- - Balancer

2nd TMA PhD School - June 2011 o 106
open Source

Tilera TILExpress64

64-core CPU.
Linux-based 2.6 operating system running on board.
Programmable in C/C++.

Eclipse Integration for easing software development and
debugging.

\‘ o
e
o Ao"‘o
“)
DO
>

2nd TMA PhD School - June 2011 o 107
UNIVERSITA DI PISA Ope SOUMCE

TILE64 Architecture [1/2]

Compact
1 r
1 C
DDR2 On-Board

Flexible 1/0,
GPIO
XAUI
XAUI

TWI
Port || —20
E"IgE : PCle HPI

DDR2 SO-DIMM
e SPI I Temp

" |‘ @ 2nd TMA PhD School - June 2011 o 108
UNIVERSI SA

Bpen SOUrcE

RGMII

PCle

TILE64 Architecture [2/2]

? Dimensional iMesh connects tiles

Tile = Processor + Cache + Switch

AL AAAAS

-
O
n
0
Q
O
O
S
a

Cache + MMU

VIVYYY

38 terabits of on-chip bandwidth

Each tile is a complete processor

109

2nd TMA PhD School - June 2011

Bpen SOUrcE

Tilera Advantages

No need to capture packets as it happens with PCs.

12 x 1 Gbit, or 6 x 1Gbit and 1 x 10 Gbit Interfaces (XAUI
connector).

Ability o boot from flash for creating stand-alone
products.

Standard Linux development tools available including
libpcap for packet capture.

Application porting is very quick and simple: less than
100 lines of code changed in nProbe.

2nd TMA PhD School - June 2011 @ 10

Porting Exiting Applications to Tile64: nProbe

Network Packets ————— e

|

XAUI T0GbE MAC

Off-the-shelf nProbe

Ingress Packet Processor
onl, 2, 3, or 4 tiles

Header parsing and verification

1 L e e e e e e e — I

Standard get packet interface
Header 5-tuple hashing

One tile
| Standard Packet Capture Module RunNing
Load balancing and pkt distribution Lib Peap nProbe
Tilera provided Lib NetlO
Buffer management Interface to packet processor
Tile A
Tile B
Tile C
3, 2nd TMA PhD School - June 2011 @ m

Opn S0Urce

nProbe Performance on Tile64

nProbe Throughput on TILExpressPro-20G at 700 MHz

10000.0

7500.0

5000.0

2500.0

Zero-Drop Througput (Mbps)

.—

15

30
nProbe Tiles

45 60

UDP 200B, 400K Flows

UDP 100B, 400K Flows

& UDP 3008, 400K Flows

P

2nd TMA PhD School - June 2011

®

Opn S0Urce

112

%

Final Remarks

2nd TMA PhD School - June 2011 o n3
open Source

Programming for Multicore [1/4]

e Multicore is not the solution to all performance and scalability
problems.

e Actually it can decrease the performance of poorly designed
applications.

e Like it or not, multicore is the future of CPUs, and
programmers have to face with it.

e From author’s experience before adding threads and
semaphores to parallelize an existing program, it's worth to
think if instead the basic algorithm used are compatible with
multicore.

2nd TMA PhD School - June 2011 @ 114

Programming for Multicore [2/4]

When multiple cores are used, efficient memory caching is the way to improve
application performance.

Hardware CPU caches are rather sophisticated, however they cannot work
optimally without programmer’s assistance.

Cache coherence can be rather costly if programs invalidate it when not
necessary.

False sharing (when a system participant attempts to periodically access data
that will never be altered by another party, but that data shares a cache block
with data that is altered, the caching protocol may force the first participant to
reload the whole unit despite a lack of logical necessity) is just an example of
performance degrading due to poor programming.

Reference

- U. Drepped, What Every Programmer Should Know About Memory,
http://people.redhat.com/drepper/cpumemory.pdf, RedHat 2007.

2nd TMA PhD School - June 2011

19

115

http://people.redhat.com/drepper/cpumemory.pdf
http://people.redhat.com/drepper/cpumemory.pdf

Programming for Multicore [3/4]

Hashtable

Multi-bucket
Lock

I\/\UITLi;)tZLIicket —>D ID ID

Hash Bucket

Multi-bucket

Lock
eBad Application Design
eUnable to scale
®Too much locking

Incoming

Packets

2nd TMA PhD School - June 2011 16

19

Programming for Multicore [4/4]

Lockeless hashes:

Hash Table

Hash Table Hash Table

Hash Table

soge

Incoming
Packets

Incoming | | Incoming
Packets Packets

Incoming
Packets

UNIV

3

A DI PISA

2nd TMA PhD School - June 2011

RX RX RX RX
Queue Queue Queue Queue
NIC

http://video.google.com/videoplay?docid=2139967204534450862

eGreat Application Design
®Exploit Native Multicore
®Fully Lockless Hash

0. N7

Bpen SOUrcE

http://video.google.com/videoplay?docid=2139967204534450862
http://video.google.com/videoplay?docid=2139967204534450862

Memory Allocation [1/2]

Limit Memory Allocation (if not necessary)
e Multithreaded programs often do not scale because the heap is a bottleneck.

e When multiple threads simultaneously allocate or deallocate memory from the
allocator, the allocator will serialize them.

e Programs making intensive

use of the allocator actually 33
slow down as the number 30 l
: e
of processors increases. % e
8 23 M
220 [Jmalloc
g 18 Emtmalloc
= 15 M [Jptmalloc
Hoard
.§ i Elibouamem
= 10
[
L 8 f
w s
- IHITHITHITHATGATE
0 -

1 2 4 6 = 10
Number of Threads

A 2nd TMA PhD School - June 2011 o 118

Memory Allocation [2/2]

e Programs should avoid, if possible, allocating/deallocations memory too
often and in particular whenever a packet is received.

e |In the Linux kernel there are available kernel/driver patches for recycling
skbuff (kernel memory used to store incoming/outgoing packets).

e Using PF_RING (into the driver) for copying packets from the NIC to the
circular buffer without any memory allocation increases the capture
performance (around 10%) and reduces congestion issues.

References:

- A Comparison of Memory Allocators
http://developers.sun.com/solaris/articles/multiproc/multiproc.html

- The Hoard Memory Allocator
http://www.hoard.org/

2nd TMA PhD School - June 2011

19

19

http://developers.sun.com/solaris/articles/multiproc/multiproc.html
http://developers.sun.com/solaris/articles/multiproc/multiproc.html
http://www.hoard.org
http://www.hoard.org

PF RING on VMs [1/4]

Open Issues
roplcation e Long packet journey from
— NIC to the VM.
achine retwork Stack e Various packet copies are
o involved.
Device Driver .
0 — e Packets replicated on all
Hypervisor Virtual Network Card VMS .

——————————— povma e Overhead due to the
Jal Bridge .
; rJ abstraction level.
Host [
Opera’rin(;SSystem ‘ Virtual Device N—D Driver
- Goal

Network Card

— e Implement straight capture
to the VM.

A 2nd TMA PhD School - June 2011 o 120
ITA DI PISA open s

PF RING on VMs [2/4]

VNPlug
e Itimplements a shared
VM
QMU rop. memory area (host <->VM)
,’mmcp() _/’ : : user-space hOT lS mOpped GS G dummy
['{_ T Tfj'eV\Vn})Bng """""" kernel ~ > .
- S S v Cl device
icarnon vNPlug-Dev \‘ \‘ I I vnplug.ko . .
pack-end) | S| * Host->Guest signaling by
rarp_alloc_from_pitr() ' — : . .
S 0 S I I prmmn s emulating interrupts.
immap) + | | T T~--- L |-+ irtual Device
e Guest->Host signaling by
— 0 writing on PCl registers that
£opl Bockend are monitored via ioeventfd.
Host Kernel

,,‘ 2nd TMA PhD School - June 2011 o 121
1T \ open source

Packet rate (Kpps)

PF RING on VMs [3/4]

2976 - Generated traffic
2500 - - _
five PF_RING
2000 1
VirtualWF_RING
| I
1500 1t : !
| I
I I
' I
! I
I I
1000 t l |
: | i
|
: | |
1 | |
I : I
500 r : I :
I : I :
l | i i —a
- itio-Net VHostNet
W 1 1 1 1 L L L L *I
64 128 256 400 512 600 700 800 900 1K
Packet size (Bytes)
5 2nd TMA PhD School - June 2011 o 122

UNIVERSITA DI PISA

[4/4]

PF RING on VMs

400

2
| 1= 3
slle =
21 1= = |

1001

90T

30 T
20 1
10

[[[1
o o o o
N O LN <

80T

SIPI %

600 700 800 900

512

256

Packet size (Bytes)

123

2nd TMA PhD School - June 2011

Bpen SOUrcE

ERSITA DI PISA

UNTY

References

e hitp://www.ntop.org/
e hitp://www.intel.com/cd/network/connectivity/emea/eng/226275.htm

e hitp://www tilera.com

Email: Luca Deri <deri@ntop.org>

2nd TMA PhD School - June 2011

19

124

http://www.ntop.org/nProbe.html
http://www.ntop.org/nProbe.html
http://www.tilera.com
http://www.tilera.com
mailto:deri@ntop.org
mailto:deri@ntop.org

High-Speed Traffic Capture and Analysis
Using Open-Source Software and
Commodity Hardware

Part 2: Traffic Monitoring

Luca Deri <deri@ntop.org>

{5 2nd TMA PhD School - June 2011 Q. 125

- - e
m) open Source
UNIVERSITA DI PISA

mailto:deri@ntop.org
mailto:deri@ntop.org

Monitoring Goals

e Analysis of LAN and WAN Traffic

e Unaggregated raw data storage for the near past
(-3 days) and long-term data aggregation on
selected network traffic metrics (limit: available disk
space)

e Data navigation by means of a web 2.0 GUI

e Geolocation of network flows and their aggregation
based on their geographical source.

e Integration with routing information in order to
provide accurate traffic path analysis.

2nd TMA PhD School - June 2011 @
open Source

Traffic Collection Architecture [1/2]

e Available Options

1.Exploit network equipment (routers and switches)

- Advantages:
e Maximize investment.

e Avoid adding extra network equipment/complexity in the

network.
eNo additional point of Failure

- Disadvantages:

eOften is necessary to buy costly neft

oW engines

eHave fo survive with bugs (e.g. Juniper have issues with

AS information)

2nd TMA PhD School - June 2011

@. 127

Traffic Collection Architecture [2/2]

2.Custom Network Probes
e Advantages

- Ability to avoid limitations of commercial equipment
- (Often) Faster and more flexible than hw probes

e Disadvantages 4

- Add complexity to the net

Mirror / Network Tap
>

Packet Copy

v

- Need to mirror/wiretap traffic

2nd TMA PhD School - June 2011

Netflow
Probe

@. 128

Introduction to Cisco NetFlow

e Flow: “Set of network packets with some properties in
common”. Typically (IP src/dst, Port src/dst, Proto,
TOS, VLAN).

e Network Flows contain:
Application

—Peers: flow source and destination.

—Counters: packets, bytes, time. Flow
Collector

—Routing information: AS, network
mask, interfaces.

2nd TMA PhD School - June 2011 @ 129

Collection Architectures [1/2]

U\ ﬁ%
Backbone
S g

E/i? flow-capture Flow Archive
(=<
W% flow enabled router

Live feed

\

— flow-rsync transfer

— NetFlow export

o 2nd TMA PhD School - June 2011

nrop 2 0. 130
UNIVERSITA DI PISA Open SOUMEe

Collection Architectures [2/2]

Enterprise Remote-Branch

Enterprise Campus

Server

Export from Remote Site to Central Server

L5 2nd TMA PhD School - June 2011 0 131

W "
m ' open source

UNIVERSITA DI PISA

Flow Journey: Creation

MetFlow Enabled
Device
Traffic i
--'-"--'-'----F--FF- II
____-.--""__-I-mpnct Packet| NetFlow Cache
—
= Source IP address !
— Flow Information | Packets | Bytes/packet
- Destination IP address P
- Source port Address, ports.. | 11000 | 1528
- Destination port / -
« Layer 3 protocol ;
- TOS byte (DSCP) /f [
« Input Interface Create a Flow from the Packet Attributes

UNIVERSITA DI PISA

2nd TMA PhD School - June 2011

Bpen SOUrcE

132

=iel
Fal/0
Fal1/0
a0
Fal/ 0

Srcii

Fal/

Flow Journey: Export

1. Flow Cache—The First Unique Packet Creates a Flow

Src S S Dst Dot Dst
Port Msk AS Port Msk AS

162 /724 163 /24 15

SrelEacid Lt DsiiPsdd Protocod TOS Figs Hkis

173100212 FalvD 10022712 11 80 10 11000

n

17310032 Fa0/0 10022712 L 40 0 2491 15 /26 186 15 24 15
1A T0020 2 FalvD 10022712 11 2 10 10000 161 24 18D 10 bt I
17310062 FalvD 10022712 i 30 0 220 19 /30 180 18 24 15

« Inactive Flow (15 sec is default)
« Long Flow (30 min (1800 sec) is default)

2. Flow Aging Timers
« Flow ends by RST or FIN TCF Flag

m&m&csrcﬂ-&tﬂmﬂm
Port Msk AS Port Msk AS

11000 00AZ /24 5

SrclPadd Dsti DstiPadd Protocol TOS Figs

1773100212 FalV0 10022712 i1 80 10 00AZ2 /24 15

3. Flows Packaged in Export Packet

Non-Aggregated Flows—Export Version S or 8 Export Fj "I'm
4. Transport Flows to Reporting Server Packet (Flows)
{5k 2nd TMA PhD School - June 2011

UNIVERSITA DI PISA

MiastHom

100232
100232
100232
100232

MNaxtHop

100232

Bytes/

Pt
1528
740
1425
10640

BytasS
Pkt

1528

Aciree

it e

4
415 I
1142k 3
245

Actree Idle

------ Bis

Bpen SOUrcE

133

Flow Format: NetFlow v5 vs v9

V9

Flow Format Fixed User Defined
Extensible No Yes (Define new
FlowSet Fields)
Flow Type Unidirectional Bidirectional
Flow Size 48 Bytes It depends on
(fixed) the format
IPv6 Aware No IP v4/v6
MPLS/VLAN No Yes

2nd TMA PhD School - June 2011

19

134

Flow Format: NetFlow v9/IPFIX

— MatFlow Version 9 Header: 32 bits —»
"~ First Tamplate FlowSe
Template Record

«—Template FlowSat: 16 bits—» «— Data FlowSet: 32 hits —
econd Tem plate Flowset i) =U iz
Template Record | PRGN S ol it
Template Record S —— m"‘*;ﬂ
Second Record Flowset 1810 LoUMm = 2
(Template 1D 257) IPv4_SRCADDR (0x0008)
Data Record Length = 4
Data Record I ;'Eﬁf Iiutﬁhﬁ" T"m“:} -
Data Record angen =
Data Racard IPvda_MNEXT_HOP {0xDDOE)
Length = 4
PKTS_32 (0x0002) o
Length = 4
BYTES_32 (0n0001) i
Length = 4
{@ 2nd TMA PhD School - June 2011 om 135
open source

UNIVERSITA DI PISA

InMon sFlow

* Packet header (e.g. MAC,IPv4,IPvé6,IPX,AppleTalk, TCP,UDP, ICMP)

7/~ Sample process parameters (rate, pool efc.)
’ | * Input/output ports

Switch/Router | « Priority (802.1p and TOS)

| * VLAN (802.1Q)
| e Source/destination prefix

sFlow _sFlow Datagram < e Next hop address P

agent e Source AS, Source Peer AS

e Destination AS Path
| e Communities, local preference
ASIC g e User IDs (TACACS/RADIUS) for source/destination
HW Packet | _ °*URL associated with source/destination
Sampling e Interface statistics (RFC 1573, RFC 2233, and RFC 2358)

Network
Traffic

% Sampling Error <= 196 * sqrt(1/ number of samples)
[hitp://www.sflow.org/packetSamplingBasics/]

sFlow

"{‘ 2nd TMA PhD School - June 2011 o 136
S Open SOUME

Integrated Network Monitoring

sElow enabled switches Traffic Anoly5|s.& Accounting
Solutions

ﬂ SFlow > ’. -=.1=-=_==—i1

Core network switches W h oy N | [—

L2/L3 Switches

RMON enabled switches
: RMON >

e Network-wide, continuous surveillance
e 20K+ ports from a single point
NetFlow > e Timely data and alerts
e Real-time top talkers
e Site-wide thresholds and alarms
e Consolidated network-wide historical usage data

NetFlow enabled routers

;‘ 2nd TMA PhD School - June 2011 o 137

Traffic Collection: A Real Scenario

T
L] - / coa
Registro.it)« N S
—

Juniper
Switch
sFlow v5
\
NetFlow v9
Juniper
Router
anifani.nic.it monitor.nic.it

|

2nd TMA PhD School - June 2011 138

19

Heterogeneous Flow Collection

—
—

sFlow v6———» nProbe\ Fastbit

‘L ‘ Web Server

Web Console \

NetFlow v9——»{ nProbe \ Fastbit

v

2nd TMA PhD School - June 2011 139

19

nProbe: sFlow/NF/IPFIX Probe+Collector

sFlow l NetFlow

Packet
Capture Flow Export
> nProbe >

Data Dump

y

]

Raw Files / MySQL / SQlLite / FastBit

2nd TMA PhD School - June 2011 o 140

Problem Statement [1/2]

» NetFlow and sFlow are the current state-of-the-
art standard for network traffic monitoring.

» As the number of generated flows can be quite
high, operators often use sampling in order to
reduce their number.

» Sampling leads to inaccuracy so it cannot
always be used in production networks.

» Thus network operators have to tface the
problem of collecting and analyzing a large
number of flow records.

2nd TMA PhD School - June 2011 @
open Source

Problem Statement [2/2]

Where to store collected flows?

- Relational Databases
ePros: Expressiveness of SQL for data search.

e Cons: Sacrifice flow collection speed and query response
time.

- Raw Disk Archives
ePros: Efficient flow-to-disk collection speed (> 250K flow/s).

eCons: Limited query facilities as well search time
proportional to the amount of collected data (i.e. no
indexing is used).

2nd TMA PhD School - June 2011 @ 142

Towards Column-Oriented Databases [1/3]

e Network flow records are read-only, shouldnt be modified after
collection, and several flow fields have very few unique values.

e B-tree/hash indexes used in relational DBs to accelerate queries,
encounter performance issues with large tables as:

— need to be updated whenever a new flow is stored.

— require a large number of tree-branching operations as they
use slow pointer chases in memory and random disk access
(seek), thus taking a long time.

e Thus with relational DBs it is not possible to do live flow collection/
import as index update will lead to flow loss.

2nd TMA PhD School - June 2011 @ 143

Towards Column-Oriented Databases [2/3]

e A column-oriented database stores its content by column rather
than by row. As each column is stored contiguously, compression

ratios are generally better than row-stores because consecutive
entries in a column are homogeneous to each other.

e Column-stores are more I/0 efficient (than row stores) for read-

only queries since they only have to read from disk (or from
memory) those aftributes accessed by a query.

e Indexes that use bit arrays (called bitmaps) answer queries by
performing bitwise logical operations on these bitmaps.

2nd TMA PhD School - June 2011

19

144

Towards Column-Oriented Databases [3/3]

e Bitmap indexes perform extremely well because the intersection
between the search results on each value is a simple AND
operation over the resulting bitmaps.

e As column data can be individually sorted, bitmap indexes are
also very efficient for range queries (e.g. subnet search) as data is
contiguous hence disk seek is reduced.

e As column-oriented databases with bitmap indexes provide better
performance compared to relational databases, the authors
explored their use in the field of flow monitoring.

2nd TMA PhD School - June 2011 @ 145

nProbe + FasiBit

e FasiBitis not a database but a C++ library that implements
efficient bitmap indexing methods.

e Data is represented as tables with rows and columns.

e Alarge table may be partitioned into many data partitions and
each of them is stored on a distinct directory, with each column
stored as a separated file in raw binary form.

e nProbe natively integrates FastBit support and it automatically
creates the DB schema according to the flow records template.

e Flows are saved in blocks of 4096 records.

e When a partition is fully dumped, columns to be indexed are first
sorted then indexed.

2nd TMA PhD School - June 2011 @ 146

Performance Evaluation: Disk Space

MySQL |No/With Indexes 1.9/4.2
Daily Partition (no/with Indexes) 1.9/34
FastBit
Hourly Partition (no/with Indexes) 1.9/39
nfdump |No indexes 1.9

2nd TMA PhD School - June 2011

Results are in GB

147

Performance Evaluation: Query Time [1/2]

nProbe+FastBit vs MySQL
MySQL nProbe + FastBit nProbe + FastBit
Query Daily Partitions Hourly Partitions
No Index With No Cached No Cached
Indexes Cache Cache
Ql 20.8 22.6 12.8 5.86 10 5.6
Q2 23.4 69 0.3 0.29 1.5 0.5
Q3 796 971 17.6 14.6 32.9 12.5
Q4 1033 1341 62 57.2 55.7 48.2
Q5 1754 2257 445 281 47.3 30.7
Results are in seconds

2nd TMA PhD School - June 2011

o. 148

Opn S0Urce

Performance Evaluation: Query Time [2/2]

nProbe+FastBit vs nfdump

nProbe+FastBit 45 sec

nfdump 1500 sec

SELECT IPV4_SRC_ADDR, L4_SRC_PORT, IPV4_DST_ADDR, L4_DST_PORT, PROTOCOL FROM
NETFLOW WHERE IPV4_SRC_ADDR=X OR IPV4_DST_ADDR=X

worth 19 GB of data (14 hours of collected flows)

nfdump query time = (time to sequentially read the raw data) + (record filtering time)

2nd TMA PhD School - June 2011 149

19

Host Geolocation [1/3]

e Host geolocation is a known problem (vd http://
en.wikipedia.org/wiki/Geoip)

e Need to handle thousand flows/sec (no inline internet query)
e Requirements: IP -> Location e |P -> ASN

gMalend _c ﬂ @ Q

Get ahead -

at is GeolP?

- o ° ‘\
Feature Comparison Locate your Internet visitors pmm .
Purchasing Drive your online bu-,u'-t ith MaxMing's GeolP™ technology. Our

on-u va P l I cala:mscs can provide you with valuable
GeolP License Know c:; "ty l et visitors In real-time
(0

R Solutions IP Intelligence Free / Open Source
14

= Fraud Detection = Geo!P Country = GeoLite Country

s GeolP City s Geolite City
f | M * Pro F 5
s Content Customization ® Proxy Detection ® GeolP APls
Terms of use
“nop- - 2nd TMA PhD School - June 2011 o 150
VERSITA D1 PIS source

Host Geolocation [2/3]

e Interactive Flash™ world map, that displays hosts distribution by
country and by cities of a selected country

e NnProbe + GeolP + Python + Google Visualization. The script
- Cycles through all the hosts seen by ntop

- Gets their GeolP info
— Counts them based on t

neir locas

e Google GeoMap and Vi

o Ajax/JSON communica

on.

sualizas

ion Table

ions with web server for updated data

2nd TMA PhD School - June 2011 @ 151

Host Geolocation [3/3]

Italy

Num Hosts: 3

Num Hosts

1 I

o 2nd TMA PhD School - June 2011 0 152
. Dpen Source

UNIVERSITA DI PISA

How to Add Geolocation Data [1/3]

e Routers are unable to export any geolocation
information.

e NetFlow/IPFIX flows do not contain any information
about geolocation into standard flow formats.

e Solution:

- Let the collector add geolocation information to flows
received by routers

- Let the softprobe export this information to collectors.

2nd TMA PhD School - June 2011 @ 153

How to Add Geolocation Data [2/3]

e NProbe takes advantage of GeolP library (GPL) to

- Add geolocation information to flows

- Map IP addresses to ASN (Autonomous System
Numbers) for adding ASN awareness.

- GeolPASNum.dat (ASN)
- GeoliteCity.dat (GeolLocation)

2nd TMA PhD School - June 2011

19

How to Add Geolocation Data [3/3]

1f (host->ipVersion == 4)
return (GeolIP record by ilpnum(readOnlyGlobals.geo ip city db, host->ipType.ipv4));
#ifdef INETG6
else if (host->ipVersion == 0)
return (GeolIP record by ipnum vb6 (readOnlyGlobals.geo 1p city db, host->1pType.ipvo6));
#endif

char *rsp = NULL;
u int32 t as;

1f (ip.1ipVersion == 4)
rsp = GeolIP name by ipnum(readOnlyGlobals.geo ip asn db, ip.ipType.ipv4);
else {
#ifdef INETG6
rsp = GeolIP name by ipnum vb6 (readOnlyGlobals.geo i1p asn db, 1p.ipType.1pvo);
tendif
}

as = rsp ? atoi(&rspl2]) : 0;
free(rsp)

,,‘ 2nd TMA PhD School - June 2011 o 155
open Source

BGP Data Integration [1/2]

(nProbe) Patricia Tree

TCP

< > gﬂ\ Initial BGP Table Dump

Juniper Live BGP Update

Router BGP Client
(Net-BGP)

2nd TMA PhD School - June 2011 o 156

BGP Data Integration [2/2]

Constructor
Supdate = Net::BGP::

) ;

NLRI

Withdraw

For Net::BGP::
Aggregator
AsPath
AtomicAggregate
Communities
LocalPref

MED

NextHop

Origin

3,

Update->new(

=> [qw(10/8 172.168/16) 1,

=> [qw(192.168.1/24 172.10/16 192.168.2.1/32)
NLRI

=> [64512, '10.0.0.1' 7,

=> [64512, 64513, 64514],

=> 1,

=> [qw(64512:10000 64512:10001) 1,
=> 100,

=> 200,

=> '10.0.0.1",

=> INCOMPLETE,

2nd TMA PhD School - June 2011

Opn S0Urce

157

What if you have no BGP Router? [1/3]

T | (LIR Portal - RIPE About RIPE NCC | Contact | Search | Stemap
R’PE { Quick Links $) (o)
—NCC you are here: home -> RIPE NCC Proects -> RIS
. RELATED TOPICS
— RIS Raw Data
¢ DNS Monitoring
+ RIS Home Page This page links to the raw data collected by the RRCs using Quagga routing software, stored in MRT format. This format is descrbed in an IETF draft. These , prer
R3S Ras D files can be read using libbgpdump, a libeary written in C by Dan Ardedean, currently maintained by the RIPE NCC. A Python lbrary also exists, PyBGPdump
15 Raw Oata which provides access to MRT files via Python ' K-root Name Server
s Documen‘i‘;:é‘u * RRCC
o Analysis CSNRIS Please note that the raw data format recently changed to include support for 4-byte ASNs. .
» Conmtact Us For more information see-hitp/iwww. npe netprojects/ns/docs/asn himl
> BendFecdbock Two sets of files are available for each of the RRC's
» Al BGP packets, created with the Zebra command “dump bgp all ... ". The filenames start with updates and are created every five minutes.
The entire BGP routing table, created with the Zebra command “dump bgp rowtes-mrt ... " These files are created every eight hours, the filenames stant
with bview.
BGP Timer settings since 23 November 2006;
» Keepalives
» B0 seconds
» Holddown:
» 180 seconds
BGP Timer settings between 17 October 2002 and 23 November 2006:
» Keepalives
» 0 (cisabled)
» Holddown
« 0 (Gisabled)
BGP Timer setlings before 17 October 2002:
» Keepalives
» 60 seconds
» Holcdown:
» 180 seconds
Please note that this machine is connected to the Intemet over a link that is loaded during Amstercdam office hours. If you want to download a large number
of fles, please do so at a spread-out rate, preferably at a time outside Amsterdam office hours (08:00 - 18:00 UTC)
Click on a collector to get a list of available files. Files are grouped collector by collector, then month by month
v reQ0.npe . net at RIPE NCC, Amsterdam, collects default free routing updates from pears. From October 1999
» e .ripe net at LINX, London. Collects route updates announced by LINX members. From July 2000
v re02.rica.net at SFINX. Pans. Collected route updates announced by SFINX members from March 2001 until October 2008.
l | | | W I ‘Q 2nd TMA PhD School - June 2011 o 158
UNIVERSITA DI PISA open source

What if you have no BGP Router? [2/3]

Index of /rrc10/2010.06

Name Last modified Size Description
a Parent Directory -
{} bview.20100601.0759.g2 01-Jun-2010 08:00 8.6M
{} bview.20100601.1559.g2 01-Jun-2010 16:00 8.6M
{} bview.20100601.2359.g2 02-Jun-2010 00:00 8.6M
£; bview.20100602.0759.g2 02-Jun-2010 08:00 8.7M {} G Bt Soay ~
{} bview.20100602.1559.g2 02-Jun-2010 16:00 8.7M {} S
{} bview.20100602.2359.g2 03-Jun-2010 00:00 8.7M {} ;view.;0100614.1559.q2
ﬁ bview.20100603.0759.gz2 03-Jun-2010 08:00 8.7M ﬁ updates.20100601.0000-—%
{} bview.20100603.1559.g2 03-Jun-2010 16:00 8.7M {} A G o
{} bview.20100603.2359.g2 04-Jun-2010 00:00 8.6M {} oo Stnta shs e
{} bview.20100604.0759.g2 04-Jun-2010 08:00 8.6M {} e e g s A
bview.20100604.1559.g2 04-Jun-2010 16:00 8.6M {}
'EF bview.20100604.2359.gz 05-Jun-2010 00:00 8.6M 9pdates.20100601.0020.92
Jo ﬁ updates.20100601.0025.qgz
{} updates.20100601.0030.gz
{} updates.20100601.0035.g2
g? updates.20100601.0040.g2
‘ntop" {5} 2nd TMA PhD School - June 2011

UNIVERSITA DI PISA

14-Jun-2010
14-Jun-2010
14-Jun-2010
01-Jun-2010
01-Jun-2010
01-Jun-2010
01-Jun-2010
01-Jun-2010
01-Jun-2010
01-Jun-2010
01-Jun-2010
01-Jun-2010

0.

Bpen SOUrcE

00:
08:
16:
00:
00:
00:
00:
00:
00:
00:
00:
00:

8.6M
8.7M
8.7M
15K
14K
19K
17K
12K
13K
17K
19K
11K

159

What if you have no BGP Router? [3/3]

e libbgpdump can be used to read BGP dump and
updates. | B

e Periodically poll the RIPE RIS exerix: 0, e o™

SEQUENCE: 1321

directory searching for full = e sen a3

ASPATH: 12779 1239 3356 19343 19343 19343 19343
dumps or updates.

e Connect to the probe and - |
refresh the routes according to the values being

read.

e NOTE: always use the BGP dumps for a location near
to you in order to have your view of the Internet.

2nd TMA PhD School - June 2011 @ 160
open Source

Implementing a Web 2.0 GUI

e Web server: Lighttpd (easy and fast), avoid Apache.

e Ajax: use established frameworks
such as jQuery or Prototype.

e Implement class libraries used to read your
monitoring data. Python is used for speed, ease of
use and script compilation.

e Use templates (e.g. Mako) for (
generating (XML-free) pages. liGans

e Web frameworks are perhaps easier to use, but you
will be bound to them forever (pros and cons).

2nd TMA PhD School - June 2011 @
open Source

Storing Historical Data [1/2]

e RRD is the de-facto standard for permanently storing
numerical data.

Srrd = "SdataDir/Sagent-$ifIndex.rrd";
if (! -e Srrd) {
RRDs::create (Srrd, "--start",$now-1, "--step", 20,
"DS:bytesIn:COUNTER:120:0:10000000",

Jabba tape usage (backup fllesysten)

om
™

"DS:bytesOut:COUNTER:120:0:10000000", mnTIG G G e G e (B
"RRA:AVERAGE:0.5:3:288") ; oo o e e

SERROR = RRDs::error;
die "S0: unable to create "Srrd': SERROR\n" if SERROR;

RRDs: :update $rrd, "$now:$ifInOctets:$ifOutOctets";
if (SERROR = RRDs::error) {

die "S$0: unable to update “Srrd': SERROR\n";

06 .‘ {‘ 2nd TMA PhD School - June 2011 o 162

OpEn SOUME
UNIVERSITA DI PISA

Storing Historical Data [2/2]

e RRD has several limitations:

- Only one (quantity one) numerical data can be stored

at each time interval (e.g.

of bytes received).

-You must know ‘in advance’ what you want to store.
For instance you can’t store anything like ‘the name
and amount of traffic sent by the top host': the top
host changes overtime, so you need an rrd per top
host and this is not what you want.

-Sefts or lists of data (e.g. top protocols with bytes on
interval X) cannot be stored in RRD.

2nd TMA PhD School - June 2011 @ 163

Beyond RRD

e Requirements:

- Store network values are tuples (list of
<name>:<value>, where <value> can also be a list).

- Ability to aggregate tuples using a user-detined
function (i.e. not just max/min/average).

- Manipulate values as RRD does: create, update, last,
export, tetch and graph.

- Graph: images are not enough as we have tuples (not
just one value) and also because the user must be
able fo interact with data, not just look at it.

2nd TMA PhD School - June 2011 @ 164

pSWTDB [1/4]

e pSWTDB (Sliding Window Tuple DB).

e python class used to store tuples on disk using data
serialization (called pickle on python).

- Pros:
enative in python
eportable across datatypes (i.e. no need to define the type)

-Cons:
eSlow as RRD (deserialize/update/serialize at each update)

e Same principle of RRD with the exception that here
we use tuples and not numerical values.

2nd TMA PhD School - June 2011 @ 165
open Source

OSWTDB [2/4]

e [t comes with aggregation functions such as:
-Each time interval has a list of (key, value).
-Sum values with same key.

-Sort values

- Discard values ranking after position X (e.g. take the
top/bottom X values).

e Examples

-Top X protocols (list of <proto>:<value>)
-Top X hosts (list of <host>:(<proto>:<value>,...))

2nd TMA PhD School - June 2011 @ 166

OSWTDB [3/4]

e Data are plotted using
SVG/JavaScript.

e Users can interact with
data (pan, zoom, move).

o Multiple criteria can be
plotted at the same
time (e.g. top X hosts
and Y protocols).

e Clicking on data can be
used tfo trigger GUI updates

2%

Aggregation
Mode (Fop Protocols %)
Zoom Hour Day Week Month
Pan Left Right
¥ Unknown
o ww'w
!
Display <t
o
3.5M
M
2.5M
M
1.5M
MM
512k
0 V"‘A/'\f\)\/ A" P
10:00 11:00 12:00 13:00 14:00
Query time: 2,.35686707497 sec
IPV4_SRC_ADDR IPV4_DST_ADDR SUM{IN_BYTES)
192.12.192.5 89.149.209.158 153585348
89.149.209.158 192.12.192.5 122275527
192.12.193.21 81.23.251.109 43858112
78.46.47.139 192.12.192.242 25821168
78.46.47.139 192.12.192.229 23806373
192.12.192.242 78.46.47.139 23759119
192.12.193.12 146.48.98.155 21837485
192.12.192.229 78.46.47.139 21767757
192.12.193.56 74,125.170.208 19601351
192.12.192.242 178.63.254.125 18829579

2nd TMA PhD School - June 2011

—

16:00

15:00

SUM{IN_PKTS)
309352
310295
0
166459
154724
70706
0
69770
0
41672

0.

Bpen SOUrcE

17:00

COUNT(*)

PN b b ch eh ek ke kA

167

OSWTDB [4/4]

deri@Macluca.local 234> cat pupdate.py
#!/usr/bin/python

deri@Macluca.local 233> cat pcreate.py
#!/usr/bin/python

import pSWTDB

t = pSWIDB.pSWTDB ('IT.pkl")

import pSWTDB t.update ('now"',

C — LSHTDE. OSHTDE ('ofest okl { 'keys' : ['APPL PROTOCOL'],
b b ("ptest.pkl’) 'values' : ['SUM PKTS'],
Hearbeat is 5 min . . —
£ te (300 data’ @ |
-create (300) 'das' : (4522726),
, '"domain' : (1706286),
Keep 60 samples, one per minute : . .
£ 2dd b y min c0. €0 whois' : (62838),
.add base aggregation('lmin', ,) twww' i (28699),
'smtp' : 16149),
Keep 50 samples, each aggregating 5 samples 'iitis' .((10892))
of the base aggregation '‘Unknown' : (4934),

t.add aggregation('5min', 5, 50, pSWTDB.sum, '"'))

Keep 60 samples, each aggregating 24 samples H

of the bmin aggregation
t.add aggregation('hour', 24, 60, pSWTDB.sum, 'Smin')

+H= H=

deri@Macluca.local 238> cat pfetch.py
#!/usr/bin/python

Keep 30 samples, each aggregating 12 samples
of the hour aggregation
t.add aggregation('day', 12, 30, pSWTDB.sum, 'hour')

+H= H=

import pSWTDB
import pprint

t = pPpSWIDB.pSWTDB ('IT.pkl")
ret = t.fetch('', 'now-1h', 'now')
print t.plot (ret)

£ 2nd TMA PhD School - June 2011 o 168

Bpen SOUrcE

mailto:deri@MacLuca.local
mailto:deri@MacLuca.local
mailto:deri@MacLuca.local
mailto:deri@MacLuca.local
mailto:deri@MacLuca.local
mailto:deri@MacLuca.local

Traffic Data Analysis [1/4]

Flow collection and storage
in FastBit Archive Format
(5 min timeframe partition)

l

Column data sort and
data indexing

v

Partition data analysis

v S

Metrics persistent storage

2

deri@anifani
total 24

4 -rwxXxr—-xr-x
4 —-rwxXxr—-xr-x
4 —-rwxXr—-xr-x
4 -rwxr—-xr-x
8 —rwxr-xr-x
deridanifani

203> 1s -1L

e e

1

deri
deri
deri
deri
deri

deri 1377
deri 950
deri 2162
deri 2106
deri 4565

204> pwd
/home/deri/nProbe/fastbit/python/partition scripts

2nd TMA PhD School - June 2011

Mar
Mar
May
Mar
May

277
23
22
25
22

12:

23

14

06

121
13:
15:
:32

49
483

cities.py*

flows.py*

top n flows countries.py*
top n 17 protocols.py*
top n proto countries.py*

169
Bpen SOUrcE

Traffic Data Analysis [2/4]

deri@anifani 208> 1s

tot

16 drwxr—-xr—-x 3 root
4 drwxr-xr-x 4 deri
4 drwxr—-xr—-x 6 deri

al 24

deri@anifani 209> 1ls -

agg
tot

20
164
152
216
148
152
100
152

12
200
148
156
308

4

24

que
tot
4 d

regations:

al 34000

- rw-r—--r-—-
- rw—-r—--—-r-—-
- rw-r—--r-—-
- rw—-r—--—-r-—-
- rw-r—--r-—-
- rw—-r—--—-r-—-
- rw-r—--r-—-
- rw-r—--r-—-
- rw—-r—--—-r-—-
- rw-r—--r-—-
- rw—-r—--—-r-—-
- rw-r—--r-—-
- rw—-r—--—-r-—-
- rw-r—--r-—-
drwxXxr—-xr-x

ries:
al 8
rwXr—-xr-x 7/

rrd:

tot
48
12
12
12
48
12

al 144
-rw-r——r-—-
drwxr-xr-x

drwxr-xr-x
drwxr-xr-x
- Irw-r—--r-—-
drwxr-xr-x

root
root
root
root
root
root
root

e e e

root
root
root
root
root
root
root
root

NP R R R PP Re

root
deri
deri

1

1 *

root
root
root
root
root
root
root

root
root
root
root
root
root
root
root

16384 May 25 08:21 aggregations/

4096 Mar 27 12:07 queries/
4096 Mar 18 19:37 rrd/

18768
167641
154778
219872
148012
152841
100615

154259
10101
201469
151246
156071
315311
791
20480

deri deri 4096 May

root
root
root
root
root
root

N EDD O

root
root
root
root
root
root

47128
12288
12288
12288
47128
12288

May
May
May
May
May
May
May

May
May
May
May
May
May
May
May

25
25
25
25
25
25
25

25
25
25
25
25
25
15
22

16:
16:
16:
16:
16:
16:
16:

16:
15:
16:
16:
16:
16:
23:
13:

12
12
12
13
13
13
12

13
13
12
12
12
13
55
57

Al.pkl
A2 .pkl
AD.pkl
AE.pkl
AF.pkl
AG.pkl
AT.pkl

YE.pkl

YT.pkl

ZA.pkl

ZM.pkl

ZW.pkl

all countries.pkl
ne.pkl

top hosts/

1 00:05 2010/

May
May
May
May
May
May

25

16
24
25
12

16:
02:
19:
23:
16:
20:

2nd TMA PhD School - June 2011

13
06
26
36
13
42

bits.rrd
bytes/
country/
flows/
flows.rrd
pkts/

Bpen SOUrcE

170

Traffic Data Analysis [3/4]

rrd/country/CH/mandelspawn.rrd
rrd/country/CH/gds db.rrd
rrd/country/CH/dircproxy.rrd
rrd/country/CH/rmtcfg.rrd
rrd/country/CH/ssh.rrd
rrd/country/CH/isisd.rrd
rrd/country/CH/cfinger.rrd
rrd/country/CH/gris.rrd
rrd/country/CH/daap.rrd
rrd/country/CH/x11.rrd
rrd/country/CH/postgresqgl.rrd
rrd/country/CH/amanda.rrd
rrd/country/CH/zephyr-hm.rrd
rrd/country/CH/gsigatekeeper.rrd
rrd/country/CH/fax.rrd
rrd/country/CH/netbios-ssn.rrd
rrd/country/CH/afs3-fileserver.rrd
rrd/country/CH/cvspserver.rrd
rrd/country/CH/ospf6d.rrd
rrd/country/CH/bpcd.rrd
rrd/country/CH/proofd.rrd
rrd/country/CH/afs3-errors.rrd
rrd/country/CH/ggz.rrd
rrd/country/CH/tproxy.rrd
rrd/country/CH/cfengine.rrd
rrd/country/CH/x11-6.rrd
rrd/country/CH/msp.rrd
rrd/country/CH/rje.rrd
rrd/country/CH/sane-port.rrd
rrd/country/CH/smtp.rrd

%

deri@anifani 213> 1ls queries/2010/05/25/16/00/

total 1172
1164 cities.pkl

2nd TMA PhD School - June 2011

8 top n 17 protocols.pkl

Opn S0Urce

171

Traffic Data Analysis [4/4]

deri@anifani 215> ~/nProbe/fastbit/python/dump.py cities.pkl |m
{'city': [['SRC COUNTRY',
'"SRC CITY',
'"SRC_LATITUDE',
'SRC LONGITUDE',
'SRC REGION',
"COUNT'],
[vv, vv, vv, vv, vv, 15079],
['IT', 'Rome', 41.899999999999999, 12.4832, 'Lazio', 1427],
["KR',
'Seoul',
37.566400000000002,
126.9997,
"Seoul-t'ukpyolsi",
12507,
['RU',
'Moscow',
55.752200000000002,
37.615600000000001,
'"Moscow City',
12437,
["IT',
'Milan',
45.466700000000003,
9.1999999999999993,
'Lombardia’',
936171,

',/‘ 2nd TMA PhD School - June 2011 o 172
UNTVERSITA DI PISA Open SOUME

Remote Probe Deployment [1/2]

e In order to monitor a distributed network it is often
necessary to deploy remote probes.

e Exporting flows towards a central location is not
always possible:

- Limited bandwidth available.

-Need to have a separate/secure network/tunnel as
flows contain sensitive data.

- Interference with other network activities.

- Export of raw flows is much more costly than
exporting the metrics we're interested in.

2nd TMA PhD School - June 2011 @ 173

Remote Probe Deployment [2/2]

e Exporting data on off-peak times is not an option:

- We would introduce latency in data consumption.

-The amount of data to fransfer is not significantly
reduced (zip flows) with respect to live data export.

-Unable to use the system for near-realtime analysis
and alarm generation.

e Better solution

- Create a web service for querying data remotely in
realtime

- Export aggregated metrics (e.g. .pkl files)

2nd TMA PhD School - June 2011 @ 174

Web Interface: Internals [1/3]

Reglstrc.)Hl-

W

Num Hosts

659 | | | RS
() 2009-10 - UT

UNIVERSITA DI PISA

Observation Period (5 min)

d

Display Time Frame: [257057200 15:50 | | 25/06/2010 15:55)

Components Communication

via Ajax/jQuery

B Unknown

domain
www

B hups

Google Maps

Flow Statistics Traffic Statistics ASN Distribution

2nd TMA PhD School - June 2011

wnois

Top Protocols

N

Python Pickle

Bpen SOUrcE

(Historical)

175

Web Interface: Internals [2/3]

Traffic Statistics X

Pro

Begin: now-2d End: | now-1d

Traffic Statistics

-~
120 M
100 M
80 M
N
60 M
40 M
20 M
0

Bits/sec

Mon 00: 00 Mon 12:00
B bits Avg: 17.3M Last: 28.5M

RRD Charts

(Data Context host/time via jQue/ry)
Z

o 2nd TMA PhD School - June 2011 0 176
. Dpen Source

UNIVERSITA DI PISA

Partition /home/deri/fastbit/netflow/2010/05/25/16/00

Protocol | all protocols &)

Web Interface: Internals [2/3]

Live FastBit Query+Aggregation
Python Glue Software

| Distance: 1
ASN AS Name Traffic Flows | Path
- 2597||REGISTRO CCTLD IT - 1.0GB| 100.0%| 1367295
Distance: 2
ASN AS Name Traffic Flows | Path
L!':G Level 3 Communications, LLC 358.3MB| 95.7% 633432 4,
137 |GARR Italian academic and research network 12.0 MB 3.2% 6951|| <4,
12637 Seeweb Srl 3.1 MB 0.8% 2949 < |
21056 \Welcome Italia S.p.A. 468.0 KB 0.1% 1183
21309 |ACANTHO SPA 434.8 KB 0.1% 284 4
648627 216.0KB| 0.1% 270| %
16004 [MIX S.r.L. 9.3KB| 0.0% 20| S
15469 Warinet NOC AS 365.0 bytes 0.0% 1| K
Distance: 3
ASN AS Name Traffic Flows | Path
| 9035Wind Telecomunicazionispa 35.5MB| 143%| 34395
702/[UUNET - Commercial IP service provider in Europe 25.9MB| 10.4% 31974 <
6762/ Telecom Italia international high speed, 21.6 MB| 8.7% 36706 <4, |
3549 [Global Crossing 17.7MB| 7.1%| 22630 %
24940 Hetzner Online AG RZ-Nuernberg 16.0 MB 6.4% 8078,
6453 | Teleglobe Inc. 15.6 MB 6.3 % 2171 & |
12956 ||Telefonica Data Autonomous System 12.4 MB 5.0% 28594 1,
| 1239|Sprint 11.2MB| 45%| 17075 < |
o) g oE 2nd TMA PhD School - June 2011

177

Using Geolocation Data [1/2]

2nd TMA PhD School - June 2011 o 178
open Source

Using Geolocation Data [2/2]

Num Hosts
| | | | | BE

{f 2nd TMA PhD School - June 2011 o 179
% . > wgu-lrm

Disk and Memory Usage

e Collection of ~5k flows netflow/sec

e Each 5 min partition takes ~150 MB in FastBit format
(32 GB/day)

e Partitions with raw data stay 3 days on disk (limited
by available disk space)

e Each tuple archive in pickle format takes up to 400
KB (112 MB in total, almost constant).

e BGP patricia tree (inside the probe) of all routing
tables takes about ~100 MB

2nd TMA PhD School - June 2011

19

Final Remarks

e NetFlow and sFlow are the two leading monitoring
protocols.

e NProbe is an open-source software probe that can
efficiently act as a probe/collector/proxy

e Storing and analyzing large volume of data is
challenging but there are solutions available for
doing it efficiently.

e Geolocation and routing information are useful for
mapping traffic with users.

2nd TMA PhD School - June 2011 181

19

