
Increasing Data Center Network Visibility
with Cisco NetFlow-Lite

Luca Deri
ntop, IIT-CNR

Pisa, Italy
deri@ntop.org

Ellie Chou, Zach Cherian, Kedar Karmarkar
Cisco Systems

San Jose, CA, USA
{wjchou, zcherian, kedark}@cisco.com

Mike Patterson
Plixer Inc

Sanford, ME, USA
mike@plixer.com

ABSTRACT
NetFlow is the de-facto protocol used to collect IP traffic
information by categorizing packets in flows and obtain important
flow information, such as IP address, TCP/UDP ports, byte
counts. With information obtained from NetFlow, IT managers
can gain insights into the activities in the network. NetFlow has
become a key tool for network troubleshooting, capacity planning,
and anomaly detection. Due to its nature to examine every packet,
NetFlow is often implemented on expensive custom ASIC or else
suffer major performance hit for packet forwarding, thus limit the
adoption. NetFlow-Lite bridges the gap as a lower-cost solution,
providing the network visibility similar to those delivered by
NetFlow.

This paper describes the architecture and implementation of
NetFlow-Lite, and how it integrates with nProbe to provide a
scalable and easy-to-adopt solution. The validation phase carried
on Catalyst 4948E switches has demonstrated that NetFlow-Lite
can efficiently monitor high-speed networks and deliver results
similar to those provided by NetFlow with satisfactory accuracy.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—DNS; C.2.3 [Network Operations]: Network
monitoring.

General Terms
Measurement, Performance.

Keywords
NetFlow-Lite, Passive traffic monitoring.

1. INTRODUCTION AND MOTIVATION

1.1 Flow-based Network Monitoring
NetFlow [1] and IPFIX are two popular traffic monitoring
protocols that allow to classify traffic in flows. Within this
context, a flow is defined [2] as a set of IP packets passing
through an observation point during a certain time interval.
Packets belonging to a flow have a set of common header
properties including IP/port source/destination, VLAN,

application protocol and TOS (Type of Service). In both
NetFlow and IPFIX the flow probe, responsible for
aggregating packets into flows, is usually embedded into
the networks device where flows the traffic to be analyzed.
When traffic analysis capabilities are missing from the
network devices, it is also possible to export packets (e.g.
using a span port or a network tap) from the network device
to a PC and run let them be analyzed by a software probe
running on PCs [4] [5].

When flows are expired, either due to timeout or maximum
duration, they are exported out of the device to a flow
collector via UDP/SCTP formatted in NetFlow/IPFIX
format. The flow collector usually runs on a PC, and it
often dumps flows on a database after flow filtering and
aggregation. Unlike SNMP [3], NetFlow/IPFIX are based
on the push paradigm where the probe sends flows to the
collector, without allowing the collector to periodically read
flows from the probe.

As flows are computed on IP packets, thus limiting
NetFlow/IPFIX visibility to the IP protocol. Although flow-
based analysis is quite accurate, it is relatively heavy for
the probe as every packet need to be decoded and also
because the number of active flows increases with the
traffic rate. In order to cope with high-speed traffic analysis
while preventing NetFlow/IPFIX to take over all the
available resources on the monitoring device, often
sampling techniques are used [10]. Sampling can both
happen at packet [6] and flow [7] level. In the former case
reducing the amount of traffic to be analyzed also reduces
the load on the probe, but often not the number of flows
being computed; in the latter case, reducing the number of
exported flows decreases the load on the collector with
little relief on the probe side. Unfortunately the use of
sampling leads to inaccuracy [8] [9], and thus network
operators prefer to avoid if possible.

Although on layer-three routers the use of sampling is not
desirable, monitoring high-speed switches without
sampling is not really feasible. This is because the total
aggregate port traffic can very well exceed 100 Gbit (if not
1 Tbit), thus either monitoring is restricted to a limited set
of ports or some packet sampling techniques have to be
used. Furthermore it is a common misconception that
sampling reduces accuracy of measurements [11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

1.2 Motivation
In today’s complex network environment, applications with
diverse purposes converge on common network
infrastructure, users from different geographic locations
connect to the same physical network through different
methods. As a result of that, having the visibility into the
network activities and application traffic is critical to many
IT managers.

For years people have been using NetFlow to gain insight
into the network traffic. However, NetFlow is not always
an available option. In some places in network, the
networking gear is often not equipped with such capability
due to the architecture design and cost structure to fit into
that specific market, for example data center ToR switches.

Flexible NetFlow is an evolution of NetFlow. It utilizes the
extensible format of NetFlow version 9 or IPFIX and has
the ability to export not only the key fields seen in
traditional NetFlow, but also the new fields such as packet
section. Flexible NetFlow also introduces the concept of
immediate cache which allows immediate export of flow
information without hosting a local cache. NetFlow-lite
[13] is built upon the flexibility of Flexible NetFlow, with
the combination of packet sampling, to offer the visibility
similar to those delivered by NetFlow at a lower price
point, without the use of expensive customer ASIC while
maintaining the packet forwarding performance.

Due to the pervasiveness of NetFlow in many parts of the
network, the solution also needs to be designed to integrate
easily with existing infrastructure that is already monitoring
through NetFlow. In addition, the solution needs to be
scalable in order to accommodate the rapid growth of
today’s network, especially in mega-scale data centers
(MSDCs), where thousands of servers are connected to
provide the application services to scale to the business
needs. One challenge that arises when monitoring
networking devices with a centralized collector/analyzer is
the extra amount of traffic it generates and traverses
through the network. Not only does valuable bandwidth
being taken up, but also the centralized collector might not
be able to scale up to meet the demands.

This is where the NetFlow-lite converter, such as nProbe,
fits in. It bridges the world between NetFlow-lite and
NetFlow. It parses the packet section exported through
NetFlow version 9 or IPFIX format, extracts key
information such as src/dst IP address, TCP/UDP port,
packet length, etc., it constructs temporary flow cache,
extrapolate flow statistics by correlating sampling rate w/
sampled packets, exports aggregated and extrapolated data
to NetFlow collectors in standard IPFIX or NetFlow v5/v9
format. With this solution, the valuable forwarding
bandwidth is conserved by aggregating NetFlow-lite data to
more bandwidth efficient NetFlow export

In a nutshell, NetFlow-Lite is a technology that provides
visibility in the data center as it enables network
administrators to:

• Know what applications are consuming bandwidth, who

is using them, when they are being used, what activities
are prevalent.

• Have visibility and control of the network.

• Gather data for network and capacity planning.

• Troubleshoot issues.

• Implement network forensics.

The rest of the paper is organized as follows. Section two
describes the NetFlow-Lite architecture and flow format.
Section three covers NetFlow-Lite implementation both on
the switch and collector side. Section four describes how
the implementation has been validated against real traffic.
Finally open issues and future work are described on
section five.

2. NETFLOW-LITE

2.1 Architecture
In essence, the NetFlow-lite solution consists of three
elements:

• The switches that supports NetFlow-lite functionality and
churn out NetFlow-lite data.

• The converter that aggregates the data into format
understandable by NetFlow collectors in today’s market
place

• The NetFlow collector that collects and analyzes not only
information originated through NetFlow-lite, but also
NetFlow data gathered from different parts of the
network, all through standard IPFIX format (or NetFlow
version 9).

The converter implements the flow cache by populating it
using the sample packets stored on the received flows, and
not doing a simple 1:1 flow format conversion. It then
exports the flows in standard NetFlow V5/V9/IPFIX to a
standard NetFlow collector. In a nutshell, the NetFlow-Lite
converter acts as a flow collector with respect to the switch
as it collects NetFlow-Lite flows, and as a probe for the
flow collector.

NetFlow-Lite -> NetFlow/IPFIX
Converter

Standard NetFlow/IPFIX Collector

NetFlow-Lite Switch

IPFIX/V9 NetFlow-Lite

IPFIX/V9 /V5

Figure 1. NetFlow-Lite Architecture

In order to preserve bandwidth usage for links on the path
between the switches and the converter, an option is being
provided to specify the number of bytes in the raw packet
section that will be included in the export packet. In
addition, it is preferable that the converter is located near
the switch in order to avoid taking up extra forwarding

bandwidth.

Netflow-Lite
Converter

Any NetFlow
Collector

NetFlow v9 or
 IPFIX ExportNetflow-Lite 1:N

Packet Sampling

Figure 2. NetFlow-Lite Enabled Data Center
Architecture

The figure above shows a NetFlow-lite enabled data center
architecture, where NetFlow-lite samples incoming traffic
on the TOR (top of rack) switches. The converter sits
between NetFlow-lite capable switches and NetFlow
collectors, extracting the information from the raw packet
section, such as IP address, TCP/UDP ports, etc. and
aggregate them into a local flow cache. The flow cache can
be exported to any existing NetFlow collector for analysis
and correlating.

With larger data center, a zonal design is recommended. In
that case, a converter is placed per “zone” to be responsible
for aggregating and converting NetFlow-lite packets within
the zone. Converters from different zones can be feeding
the aggregated NetFlow data into a centralized NetFlow
collector in order to achieve a data center-wide network
visibility.

2.2 Flow Format
A switch with Netflow-lite functionality observes ingress
traffic and sample packets at 1-in-N rate at the monitoring
point, for example, an interface on the switch. The sampled
packets are exported in standard NetFlow version 9 or
IPFIX format. IPFIX and NetFlow version 9 differs from
previous version in that it is template-based. Template
allows the design of extensible record format. Figure 3
shows the NetFlow version 9 format.

Figure 3. NetFlow v9 Format

It consists of:

• Template FlowSet: a collection of one or more template
records that have been grouped together in an export
packet.

• Template record used to define the format of subsequent
data records that may be received in current or future
export packets. It is important to note that a template

record within an export packet does not necessarily
indicate the format of data records within that same
packet. A collector application must cache any template
records received, and then parse any data records it
encounters by locating the appropriate template record
within the cache.

• Data FlowSet: a collection of one or more data records
that have been grouped together in an export packet.

• Data record: it provides information about an IP flow that
exists on the device that produced an export packet. Each
group of data records (that is, each data FlowSet)
references a previously transmitted template ID, which
can be used to parse the data contained within the
records.

• Options template: a special type of template record used
to communicate the format of data related to the NetFlow
process.

• Options data record: a special type of data record (based
on an options template) with a reserved template ID that
provides information about the NetFlow process itself.

One of the capabilities of this extensible design is to allow
the export of raw packet sections in the Data Record, which
facilitates the export of NetFlow-lite sampled packets.

NetFlow-Lite enabled switches exports three different
templates that contain:

• Data template that describes the structure of sampled
packet export by the switch.

• Options template that describes the structure of sampler
configuration data.

• Options template that describes the structure of interface
index mapping data.

The options template describing the sampler configuration
essentially exports the structure of the following pieces of
information:

• An identifier for a given sampler configuration.

• The type of packet sampling algorithm that is employed
(currently 1-in-N packet sampling).

• The length of the packet section extracted from the input
sampled packet.

• The offset in the input sampled packet from where the
packet section is extracted.

Templates are exported by default every 30 minutes, and
they can be packed into a single export packet for reducing
the number of transmitted packets.

L2 Header L3 Header UDP Header Sampled Flow Datagram

42 Bytes (IPv4) / 62 Bytes (IPv6) 84 Bytes + Truncated Sample

Figure 4. NetFlow-Lite Sampled Flow Datagram

From the flow format point of view, NetFlow-Lite flows
are standard V9/IPFIX flows defined using a template. they
contain packet section and other sampling parameters, but
not the traditional fields such as source/destination IP
address. In order to bridge between NetFlow-lite and
NetFlow, and integrate NetFlow-lite into existing NetFlow
solution, a converter is necessary in order to convert the
information contained inside packet section, such as source/
destination IP, TCP port, etc., into format understandable by
the NetFlow collector on the market today.

NetFlow-Lite switches can adapt the sampling rate
according to the switch port. This means that network
managers can provide precise monitoring of selected switch
ports by disabling sampling (i.e. 1-to-1 sampling rate),
while using a higher sampling rate for all remaining ports.
The use of the standard V9/IPFIX format prevents
NetFlow-Lite converters to support a custom export
protocol, while allowing them to be deployed anywhere in
the network as long as they are reachable via IP. Another
advantage is that future changes and extensions to the flow
format, do not require changes on the collector as new
fields can be accommodated into the exported flows simply
my defining them into the exported template.

Flow conversion is transparent to existing NetFlow/IPFIX
collectors and back-end tools. The use of sampling allows
NetFlow-Lite to scale both in terms of number of ports and
packets being monitored. Sampling rate can be adapted
according to various parameters such as the total number of
packets that are collected by a converter and also the
number of switch exporters per converter.

3. IMPLEMENTATION
Due to its probe/converter architecture, supporting
NetFlow-Lite has required both to enhance the switch and
create the converter. No changes have been necessary on
the collector side, as the converter emits standard flows in
v5, v9 and IPFIX format.

3.1 Switch Implementation
On Cisco Catalyst 4948E switch, the sampling rate at
which input packets are sampled is based on user
configuration. The switch supports extremely (low) good
sampling rate which allows for high quality of traffic
monitoring. The sampling and export are both done in
hardware, which does not put heavy load on control plane.
Each sampled packet is exported as a separate NetFlow
data record in NetFlow v9 or IPFIX format.

The switch implements a relatively inexpensive and not so
stateful way of doing packet sampling and netflow export
in hardware. The switch makes copies of the packets
coming in and being forwarded through the switch, using
appropriate rules in the classification engine that identify
packets coming from monitored interfaces. The original
packet undergoes normal forwarding and switching
treatment through the device. The copies undergo a two-
level sampling process.

At the first level, the copies of packets from various
monitored interfaces are generated and sent to a transmit

queue where a credit rate limiting scheme is applied. This
credit rate mechanism is called DBL (Dynamic Buffer
Limiting) and is proprietary to the Cisco Catalyst switches.
DBL is used as an active queue management mechanism
normally on the switch but in this case it is ingeniously
being used for first level selection of sampled packets.

DBL credits are applied to a monitor and refreshed in a
time based fashion that allows enqueue of packets to the
transmit queue such that there are enough packets from a
monitored interface to match the user configured sampling
rate. Whenever a packet from a monitor is enqueued to the
transmit queue, the credits for that monitor get
decremented. The credit lookup is done through a hashing
scheme that can take as input various packet fields and
input port. This effectively provides the ability to sample
packets as if on the input before packets from various
monitors aggregate into the transmit queue.

The DBL credits and refresh frequency take into account
the average packet size observed at a given monitor. Users
may override the observed average packet size at a monitor
and configure an average packet size for a monitor via CLI.
The system will then use that average packet size in
computing credits for traffic seen by that monitor.

Traffic flows from each monitor are isolated from traffic on
other monitors because the DBL hash key masks are based
only on the incoming interface or VLAN ID for port and
vlan monitors respectively.

From the transmit queue the sampled packets are fed to a
FPGA which does final sampling for packets from each
monitor to eliminate extra samples. They are then exported
in NetFlow version 9 or IPFIX format, assisted by the
FPGA.

The combination of high sampling rate and user-
configurable options provide a highly accurate sampling for
NetFlow-lite. The hardware-assisted sampling and export
offer a scalable solution with minimal impact to the control
plane.

3.2 NetFlow-Lite Converter Implementation
The NetFlow-Lite converter has been implemented as an
extension to nProbe [4], an open-source NetFlow/IPFIX
probe/collector developed by one of the authors available
for both Unix and Windows systems. As stated before, the
flows emitted by the switch to the exporter are following
the v9/IPFIX guidelines thus from the flow format point of
view no changes have been necessary. The main changes in
nProbe have been:

• Ability to interpret the received NetFlow-lite flows.

• Extract the packet samples.

• Use samples to populate the flow cache.

In addition to packet samples, the flows emitted by the
switch contain additional information that is necessary to
properly support NetFlow-Lite, including:

• The sampler named and id (configured into the
switch)that has sampled the packet.

• The sampling algorithm and size of the sampling pool,
used by the sampler.

• The original packet length before cutting it to the
specified snaplen.

• The packet offset of the received sample, as the switch
can be configured to emit sampled packet starting from a
specific offset (the default is 0) after the ethernet header.

• The switch interface on which the packet has been
sampled.

Switch samplers are responsible to select packet to sample.
A switch can define many samplers, and thus each switch
port can potentially have a specific sampler. This allows for
instance to have a per-port sampling rate, but it requires the
converter to store this information as the received samples
need to be scaled based on the sampler that has emitted
them.

In order to enhance the exporter performance, it is possible
to configure the switch to send flows to a pool of UDP
ports and not to a single one. The switch sends the flow
templates to the first port of the pool, and flow samples to
the remaining port. Currently the destination ports are
selected in round-robin in order to balance the load on the
collector side.

NetFlow-Lite Switch

NetFlow-Lite
Converter

UDP Ports

1 / 10 Gbit

Figure 5. NetFlow-Lite Collection

This has been an important change as it has allowed the
converter to boost its performance. In fact, NetFlow
collectors usually are designed to handle a limited number
of flows per second [14] that are often dumped to persistent
storage after filtering and aggregation. In the case of the
NetFlow-Lite converter the number of received flows can
be very high and exceeds the rate of 1 million flows/sec,
whereas a high-end NetFlow collector can very seldom
handle sustain rate of a couple of hundred flows/sec. The
number of collected flows can be quite high if the switch is
configured with a 1:1 sampler on a high-traffic port.
Unfortunately as all the templates are send to a single UDP
port, it is not possible to spawn multiple independent
converters, one per UDP port, so that they could each
analyze a portion of the traffic. Furthermore as the switch is
selecting destination ports in round robin, it can happen that
two sampled packets belonging to the same flow are sent to
different UDP ports. The use of 16 multiple collection ports
has allowed nProbe to successfully collect and convert up
~500K flows/sec per switch with a single threaded instance.
Unfortunately this performance has been enough and thus a
different solution had to be developed.

Leveraging on the experience of the PF_RING project [15],
in order to further boost converter performance, we decided
to exploit multi-core computer architectures by developing
a kernel module for expedite operations. The idea is to
perform in-kernel NetFlow-Lite collection driven by the
user-space nProbe converter.

nProbe

RSS (Resource Side Scaling)
[Hardware per-flow Balancing]

10 Gbit NIC (Intel 82599)

Userland

Kernel

PF
_R

IN
G

-a
w

ar
e

D
riv

er PF_RING

RX
Queue

RX
Queue

RX
Queue

RX
Queue NetFlow-Lite

PF_RING
Plugin

Figure 6. NetFlow-Lite PF_RING Plugin

nProbe sets a PF_RING kernel filter for the IPv4/v6 UDP
ports on which flows will be received, that instructs
PF_RING to divert such packets to the kernel plugin
without letting them continue its journey to user-space. The
PF_RING kernel plugin implements flow collection by
maintaining information about the received templates in
kernel memory. Sampled packets are extracted from flows
and sent to nProbe via a PF_RING socket. Along with the
packet header and timestamp, PF_RING adds some
metadata such as sampling information and interface Id,
that have been extracted from received flows. Modern
multi-queue adapters such as Intel 82599 allow cards to be
partitioned into several RX queues, one per processor core.
PF_RING exploits this feature and capitalizes on it by
allowing each queue to work independently, and poll packet
concurrently one per core. By means of a PF_RING-aware
driver that pushes packets to PF_RING without using
Linux kernel queueing mechanisms, packets are copied
from the NIC buffers directly to the NetFlow-Lite plugin.
As there is a single plugin instance, kernel locking has been
carefully avoided when possible, thus each queue extracts
sampled packets without interference from other queues.
The only lock present on the plugin is used when templates
are received and need to be copied in memory. As this
information is shared across all queues, it is necessary to
use a lock in order to avoid that a poller is using a template
while it is updated. Nevertheless as templates are received
very seldom (by default every half an hour) we can assume
that no locking happens. An advantage of this solution,
beside the increased processing speed, is that every
PF_RING-aware network application can use the converted
packet samples to implement monitoring. For instance by
means of libpcap-over-PF_RING, applications such as
tcpdump and wireshark can analyze received packets as if

they were captured from a network interface, this without
being aware of having been received encapsulated in
NetFlow-lite flows.

The use of an external server-based converter can be
detected by a flow collector as flows are sent by nProbe
and not by the switch. In order to make NetFlow-Lite
totally transparent to applications, nProbe has implemented
automatic packet spoofing based on the source IP:port on
which sampled flows have been received. Thus converted
flows are not sent with the IP address of the server on
which nProbe runs, but with the original IP:port of the
switch that has sent the NetFlow-Lite flows. This
information is propagated by the PF_RING kernel module
to nProbe as part of the metadata information associated
with each packet.

3.3 Collector Implementation
The collector receives and stores the NetFlow-Lite
datagrams from the converter. Data is massaged and
formatted then made available to the reporting front end.
The reports are in turn used to optimize network
performance. As previously stated, no change has been
necessary to support NetFlow-Lite on the collector side

The collector listens for the NetFlow-Lite datagrams on
specified UDP ports. The NetFlow-Lite converter leaves
the original source IP address intact when it is forwarded to
the collector. This technique keeps the converters
involvement completely transparent to the collector. Since
the collector could be receiving datagrams from more than
1 source, the datagrams from each switch are saved in
separate tables in the MySQL backend. Before the
datagrams can be saved, a template must be received from
the exporter. Without a template, the datagrams could be
dropped until a template comes in. The templates tell the
collector the contents that can be expected in the
datagrams. Typically the template refresh rate is configured
to once every 1-2 minutes. A less popular method is to
export the template every X datagrams however, this
practice is less common. It is important to note that each
switch could be exporting different details regarding the
flows they are forwarding. Some may include details in the
template on MAC address or VLAN ID. Others may not
include these fields but, may include metrics on VoIP jitter,
packet loss or TCP connection latency. The responsibility
of the templates is critical to the collection process and also
plays a pivotal role when it is time to report on the data.

Reporting on NetFlow-Lite depends largely on the data
received. In addition to traditional NetFlow v5 information,
nProbe can report detailed information about MAC address,
VLAN tags, and tunnels (e.g. GRE/GTP) that have been
part of the original packet sample. The collector makes
certain reports available to the user based on the data that is
available in the template. Before we discuss the reports,
several routines must be run on the data collected. The most
significant processes worth noting for this paper are as
follows:

• Application Identification. Here we identify the likely
application or wellKnownPort of the flow. During this

process, the collector looks at the source (e.g. 5555) and
destination (e.g. 80) transport ports. The lower of the two
ports is compared to a ‘wellKnownPorts’ table. If the
lower port has an entry (e.g. 80 = HTTP) the
wellKnownPort is noted inside the saved flow. If the
lower port is not defined, the higher port is compared. If
it is also not defined, the lower number is saved with the
flow in its native format (e.g. 80).

• Interface throughput: when the collector recognizes a
new device, it immediately SNMP queries the device for
the interface details [12]. The use of transparent IP
spoofing on the nProbe converter, allows collectors to
query the switch and not the converter, thus making it
totally unaware of the conversion happened.

• Rollups. The collector saves 100% of all data in raw
format to the 1 minute conversations tables for each
router. Every hour it creates a new 1 minute interval table
per router. Every 5 minutes, it creates higher intervals
using the smaller intervals. This process is called "roll
ups".

When the roll ups occur for 5 Min, 30 Min, 2 Hr, 12 Hr, 1
Day and 1 week, two tables are created:

• Totals: The total in and out byte counts are saved per
interface before the data for the conversations table is
calculated. This table allows the reporting front end to
display accurate total throughput per interface over time
and allows the front end to operate with no dependency
on SNMP yet still provide accurate total utilization
reporting.

• Conversations: All flows for the time period (e.g. 5
minutes) are aggregated together based on a tuple. Once
all flows are aggregated together, the top 10,000 (i.e.
default) flows based on byte count are saved. The non top
10,000 flows are dropped. Remember: the total tables
ensure a record of the total in / out utilization per
interface over time.

Data is usually aged out over time. Generally the more
granular intervals are saved for shorter periods of time. The
reporting front end determines the intervals displayed based
on the amount of time requested.

 Figure 7. NetFlow-Lite Collector Report

When a report is run on an individual interface within 1
minute intervals, the totals table isn’t needed because the

conversations table contains 100% of the data. When a
report is run on an individual interface with no filters in 5
minute or higher intervals, both the Conversations and
Total tables are used in the report. The Total tables are used
to display the total in and out utilization of the interface.
The top 10 from the Conversations table are then subtracted
out from the total and added back in color. Reporting on
NetFlow and NetFlow-Lite depends largely on the contents
of the templates. As stated earlier, traditional NetFlow v5
contains the aforementioned fields from the flow. NetFlow
v9/IPFIX allow the export of even greater details (e.g.
MAC address, VLAN, VoIP jitter, packet loss, TCP
handshake latency, etc.

The front end of the collector displays only reports that will
work given the types of information available in the
template. Report details on NetFlow-Lite include (but are
not limited to):

• Top Source and Destination Hosts, protocols, and flow
groups.

• Top Domains, Countries and subnets.

• Top VLANs and MAC addresses.

• Hosts or subnets witnessing the most latency.

• Calls suffering from the most jitter or packet loss (Details
include SSRC and Codec).

• Top URLs after specifying filters on domains such as
facebook.com.

Most reports are seldom used at face value (e.g. Top Hosts)
as often times the top reports simply raise more questions.
Collection and reporting utilities generally provide the
ability to filter by including and excluding specific flow
fields. By filtering down to the specific data desired,
problems related to chatty end systems, excessive
bandwidth consumption or even worms, Trojans and
viruses can be tracked down to the source. Leveraging
reports on NetFlow-Lite exports allows administrators to
optimize limited bandwidth resources on busy networks.

4. VALIDATION
In order test and validate the implementation of NetFlow-
Lite, several tests have been performed both in lab and also
on real networks.

Figure 8. NetFlow-Lite Test Lab

Traffic Generator

4948E Switch

nProbe
Converter

NetFlow-Lite Flows

48 x 1 Gbit

Scrutinizer
Collector

10 Gbit

v5/v9 NetFlow
IPFIX

1 Gbit

In order to evaluate the switch implementation and the
converter performance, a high-end IXIA traffic generator
has flooded the switch sending traffic at wire-rate with
minimum packet size on all 48 switch ports. The switch has
been configured to send NetFlow-Lite flows to a 8-core
Xeon server running various Linux versions including
64 bit Ubuntu 10.10 and RedHat ES6. On the server the
nProbe 6.4.3 exporter was sitting on top of PF_RING 4.6.4
and the NetFlow-Lite kernel module. The switch has been
connected to the converter on a 10 Gbit Intel 82599-based
ethernet interface. A 10 Gbit interface has been used to both
test the performance of the exporter when sending flows
from multiple switches, and to flood the collector with
flows. The Plixer Scrutinizer 8.5 flow collector has been
installed on another server connected to the network with a
1 Gbit interface.

The test has confirmed that the sustained conversion rate
sustained per nProbe converter instance has been 500K
flows/sec when receiving flows over UDP, and 1M flows/
sec using the PF_RING kernel module. Converted flows
have been sent to Scrutinizer on various formats including
NetFlow v5/v9 and IPFIX. Various test sessions have
confirmed that collector users are unaware of the NetFlow-
Lite to NetFlow/IPFIX conversion. Please note that on
Windows platform nProbe also features NetFlow-Lite
conversion but just over UDP.

A nice feature of the implementation on 4948E is the ability
to specify different sampling rates based on switch ports.
This is useful as network administrators can decide to
disable sampling for those ports where there are critical
services, and increase sampling rate on ports where no
accurate monitoring is needed. In fact the use of sampling
prevents nProbe from being able to report application
protocol information including application and network
delay (computed on the 3-way-handshake packets), and
HTTP/VoIP traffic monitoring.

5. OPEN ISSUES AND FUTURE WORK
Although the converter performance is enough for many
users, a future work activity is definitively related to how to
improve this conversion. Currently the switch sends flow to
all configured UDP ports in round-robin. The ethernet
interface hashes flow packets using RSS [16], thus
distributing them based on the destination UDP port and
not based on the sampled packet contained in the received
flow. This is not ideal as in order to keep the NetFlow
cache consistent, it is not possible to enhance the converter
performance by spawning one nProbe instance per RX-
queue. This is because RSS does not guarantees that packet
samples belonging to the same flow will be sent to the
same RX queue.

In order to address this issue that limits the converter
performance, we are currently enhancing the PF_RING
NetFlow-Lite plugin so that received samples will be re-
hashed based on the sampled packet and not on RSS. This
will allow one nProbe instance per RX queue to be spawn
thus maximizing performance. Please note that the kernel
plugin keeps track of received templates and thus
guarantees flow conversion consistency also across

multiple switches all sending flows to the same converter
server. This performance enhancement is also compatible
whenever configured switch samplers have a packet offset
greater than 0 (i.e. when the offset is zero the sampled
packet contains the whole ethernet header) but not larger
than 14 bytes (i.e. the length of the ethernet header). This is
because the plugin does not hash samples based on the
ethernet header but rather on the IP header that is also used
as flow key inside the converter cache.

6. FINAL REMARKS
This paper has described the design and implementation of
NetFlow-Lite. By means of it, network administrator can
provide network visibility similar to NetFlow/IPFIX while
maintaining switching performance. The validation phase
has confirmed that the use of a NetFlow-Lite to NetFlow/
IPFIX converter is seamless for the end-user of the flow
collector and that the converter performance is high enough
to allow network administrators to reduce sampling (if any)
on switch ports where critical services are running. The
flexibility of NetFlow-Lite combined with the lack of
changes on the collector side, smooth its adoption and
makes it a good candidate for providing visibility on
switched environments.

7. ACKNOWLEDGMENTS
The authors would like to thank the NetFlow-Lite team and
in particular Manikandan Arumugam for his help and
support throughout the project and testing phase.

8. REFERENCES
[1] B. Claise, Cisco Systems NetFlow Services Export

Version 9, RFC 3954, October 2004.
[2] B. Claise, Specification of the IP Flow Information

Export (IPFIX) Protocol for the Exchange of IP Traffic
Flow Information, RFC 5101, January 2008.

[3] J. Case et al, A Simple Network Management Protocol
(SNMP), RFC 1157, 1990.

[4] L. Deri, nProbe: an Open Source NetFlow Probe for
Gigabit Networks, Proc. of Terena Network
Conference, 2003.

[5] P. Lucente, pmacct: Steps Forward Interface Counters,
Technical Report, 2008.

[6] T. Zseby and others, Sampling and Filtering
Techniques for IP Packet Selection, RFC 5475, March
2009.

[7] N. Duffield, Flow Sampling Under Hard Resource
Constraints, Proc. of SIGMETRICS ’04, 2004.

[8] B. Choi and S. Bhattacharyya, On the Accuracy and
Overhead of Cisco Sampled NetFlow, Proc. of ACM
SIGMETRICS ’05, 2005.

[9] R. Sommer and A. Feldman. NetFlow: Information
Loss or Win, Proc. of ACM SIGCOMM Internet
Measurement Workshop, 2002.

[10] J. Clearly et al., Design Principles for Accurate Passive
Measurement, Proc. of PAM Conference, 2000.

[11] J. Jedwab et al., Traffic Estimation for the Largest
Sources on a Network Using Packet Sampling with
Limited Storage, HP Labs, 1992.

[12] K. McCloghrie and M. Rose, Management Information
Base for Network Management of TCP/IP-based
internets: MIB-II, RFC 1213, 1991.

[13] Cisco Systems, Configuring NetFlow-Lite Software
Configuration Guide, Release 15.0, May 2011.

[14] Y. Fragiadakis et al., User and Test Report of the
NetFlow Collector, Geant II Project, 2009.

[15] L. Deri, Improving Passive Packet Capture: Beyond
Device Polling, Proc. of SANE ’04, 2004.

[16] Microsoft, Scalable Networking: Eliminating the
Receive Processing Bottleneck — Introducing RSS,
WinHEC (Windows Hardware Engineer ing
Conference) 2004.

