

Webbin': A New Way To Manage Networks
Luca Deri

IBM Zurich Research Laboratory1, University of Berne2

Webbin' is a research project at the IBM Zurich Research Laboratory aimed to simplify network management. I've designed
Webbin in late 1994 and started to code it in early 1995 while I was developing the communication infrastructure of an
IBM product for OSI network management. At that time I was very busy testing the infrastructure and I needed a simple
tool able to locate and browse OSI agents running on machines attached on the network. At that time I realised that
management tools were quite difficult to use and required some expertise in order to install and configure them. The thing
that amazed me most was that people didn't complain too much about these tools since they were used to such complexity.
In some ways my past programming experience with Macintosh made me more sensitive to usability and configuration
issues. In my understanding a tool which needs a stack of manuals in order to be used is basically useless. Some people
explained that network management is per se complicated hence tools must be complex. I couldn't believe accept this
thesis, and then I started to think about a new way to manage networks. In late '94 the Web was a very promising
technology but was not very spreaded yet. Nevertheless its incredible growth and the extreme simplicity of this technology
pushed me towards it. Therefore I installed the NCSA HTTP server and I started to write some simple CGI applications
just to learn this technology better and to understand its limitations. Seen that the performance was acceptable and that it
was extremely simple to turn plain text in HTML I coded a couple of CGI applications which were able to visualise some
OSI resources I was interested in for my tests. The result was very encouraging and then I decided to extend to make them
more general and detached from the test environment I used in Zurich. The basic requirements were the following:
• the system has to drive the user and it has to prevent him from performing wrong operations;
• dynamic resource discovery: the resources have to find me and not the other way round;
• the system must use concepts users are familiar with such as folders and files in order to make them feel comfortable

and to prevent them from learning new, unneeded, concepts.

I have coded the first version on AIX, IBM's UNIX, and seen that these CGI applications were working well enough I have
decided to show it around. I have selected the WWW conference in Darmstadt since my application was making extensive
use of Web technologies and then such conference would have been a good place to be. Nevertheless, in order to show a
demo there I would have needed an AIX box. Since I didn't have at that time a portable AIX box but just an IBM ThinkPad
equipped with OS/2, I quickly ported the application to OS/2 and went to the conference where I showed it in the poster
session of the conference. The name I chosen for the application was Webbin' CMIP which has now been turned into
Webbin'. Encouraged by the positive feedback of people who looked at Webbin' I convinced my manager to leave me some
spare time to keep working on it and due to this I have been able to turn that set of CGI applications in a platform for
network management freely available for download which supports CMIP and SNMP and which runs on more that five
platform, including Linux the biggest and more active Webbin' community by far.

Webbin' At A Glance

The core component of Webbin' is Liaison a proxy application which allows CMIP and SNMP resources to be accessed
using the HTTP protocol, the one used by the Web to retrieve multimedia documents. Liaison has substituted the HTTP
server and the CGI application used in the first prototype because the time and the resources necessary to start a CGI
application prevent to have a high-performance application capable of handle many requests per second. Liaison has been
designed to be portable and resource-savvy in order to overcome one problem very common on network management: the
need to purchase specialised software/hardware necessary to run the management applications. In the case of Webbin' the
perspective has been reverted: users should be able to run Webbin' independently from the operating system and from the
computing resources they have. In order to make an efficient use of the computer resources and to enable scalability and
tailoring, Liaison is built upon a compound architecture named Yasmin.

1 IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.

Email: lde@zurich.ibm.com, WWW: http://www.zurich.ibm.com/~lde/.
2 Universität Bern, Institut für Informatik und Angewandte Mathematik, Software Composition Group, Neubrückstrasse 10, CH-

Yasmin's core component are depicted below.

Host Operating System

Personality Layer

Communications

Services

Resource

Manager

Droplet

Manager

Service

Manager

Event

Manager

Collaboration

Services

Kernel
Services

Uses

Legend:

The personality layer allowed to keep the operating system-dependent code separated from the rest of the
application hence to facilitate the porting to different platforms. Currently this layer contains facilities for
loading/unloading shared libraries, thread management, synchronisation (semaphores) and other minor facilities.
Thanks to the personality layers, the other components do not have to be modified when the application is ported to
a different platform hence the code is simpler to maintain and extend. Another core component of Liaison is the
droplet manager which is responsible for managing droplets, a new kind of software components implemented using
shared libraries having the following properties:

• are not statically linked to the application but are loaded at runtime;
• have the ability to be replaced (i.e. a new version of the droplet can replace a previous one) at runtime while

the application is running;
• have a well-defined interface that makes it possible to communicate with other droplets independently from

the type of the services provided.

Since droplets can be replaced and added at runtime, an application which makes use of droplets (for instance Liaison) can
be extended or patched dynamically without having to restart it. This facility is extremely important when the application
has to provide some functionality which need to be available most of the time and also it allows to cleanly separate
through the droplet interface services provided by different droplets hence to remove code cross-dependencies. The service
manager handles the services provided by the droplets (for instance mapping of object identifiers from numeric to symbolic
format) and it collaborates with the droplet manager every time services have to be added/replaced since the corresponding
droplet has been added/modified. The other Yasmin components allow droplets to communicate, to exchange events, to
share computing resources and to collaborate in order to provide a certain functionality.

Liaison's kernel, named Proxy, is very simple and small since it implements Yasmin without including any management
facilities which are implemented inside droplets. This design solution has been chosen since it allows to keep the Proxy
very generic hence to reuse it on different contexts not necessarily related to network management and also to prevent users
from installing and running code which they do not need (for instance droplets for OSI management). Additionally the
smaller is the droplet granularity the better it is since it facilitates service reuse and it allows droplets complexity/size to be
kept small. In fact the use of droplets is important not only at runtime but also at compile time. Since droplets are very
small and use services provided by other droplets through the service manager and not directly, they do not include
symbols/datatypes from other droplets hence it is extremely fast to compile and link droplets with major benefits during the
development phase. Liaison comes with a rich set of droplets which range from basic network resource browsing until
complex management using Corba shown in the following picture.

AIX

Liaison

Desktop Integration

Web-based Network Management

Java/C++ Bindings

C Interface

CMIPSNMP

HTML VRML

RAD

Corba

HTTP

Liaison is basically an HTTP server which provides some services implemented inside droplets and accessible through
HTTP. The droplets are divided in two sets according to the protocol they implement SNMP or CMIP3 and they are further
divided in two sets according to the type of services they provide, Web-based network management or support for
application development.

Web-based Network Management
Management of network resources through the use of a Web browser has been the first functionality implemented and
present already in first prototype. Basic management is performed using HTML whereas whenever it is necessary to
combine a lot of information in one screen or when it is necessary to depict topological information VRML can be used
instead. VRML (Virtual Reality Modeling Language) is a simple yet powerful language used to represent 3D information
which is then rendered by a VRML viewer in a way similar to what happens to HTML with Web browsers. Liaison comes
with droplets which allow to browse OSI and SNMP agents and to manipulate the management information from within
the Web-browsers. Additionally it comes with two more droplets which allow to discover the OSI (only when the IBM OSI
stack is used) and SNMP resources present on the network. Basically users connect their Web browser to Liaison and then
browse network resources like if they would browse a set of HTML documents.

Web Browser Proxy Server

HTTP Server

HTTP
Request

[2] CMIP/SNMP

[3] HTTP Response

[1] HTTP Request

If Liaison can process the requests it does it, otherwise the request is forwarded to the local HTTP server, if any. Based on
the requested URL, Liaison checks whether the request can be processed by a local droplet, if it relates to a file or if it
cannot be processed at all. URLs are composed of five elements:
http://<host>/<protocol>/<operation>/<context>?<parameters>, where:

• <host> identifies the host where Liaison runs (Liaison's default port is 1998);
• <protocol> specifies the protocol used (either CMIP or SNMP);
• <operation> specifies the management operation (CREATE, GET, ...);
• <context> specifies the context used, if any;
• <parameters> contains the operation parameters.

For instance, if <protocol> is set to CMIP, <context> contains the agent title and the managed object instance, whereas
for SNMP <context> specifies the object identifier of the attribute. <parameters> contains operation-specific parameters

3 At the moment CMIP is supported only by the AIX and OS/2 versions only since the IBM OSI stack is not currently supported

(e.g. for SNMP SET, <parameters> contains the MIB variable(s) to set and their new values) and other values such as
timeout or name of the host on which the agent is running. Although this mapping is almost straightforward, Liaison
hides it from the user. In fact, Liaison shows the user a starting point and then the user does not have to worry about the
syntax because URLs are dynamically generated by the system. Supposing to run Liaison on the host kae, the starting
point for SNMP is http://kae:1998/SNMP/DISCOVERY/ or http://kae:1998/SNMP/VRML_DISC/ depending if the
output has to be respectively in HTML or VRML format, whereas for CMIP is http://kae:1998/CMIP/DISCOVERY/. In
the case of SNMP Liaison discovers the SNMP agents running on the subnetworks specified on the configuration files
whereas in the case of CMIP all the known OSI stacks are shown. The picture below shows how the VRML discovery
looks like.

<PASTE HERE THE PICTURE OF SNMP VRML (USE THE ONE ON MISA)>

Notice that in the discovery configuration file it’s specified the subnet type (ring, star or bus) which is then represented in
VRML. Using these starting points is then possible to start the navigation and to manage the resources simply following
the HTML links like if we were using static HTML files.

The picture above shows a the content of a CMIP instance of class customer. Notice that users can only perform the
actions allowed by Liaison, this is in order to avoid errors (in the example, the attribute package cannot be set hence the
SET button has not been displayed. Unfortunately Liaison cannot prevent all the errors but also in this case the Liaison
helps the user by showing a (relatively) simple error message suggesting possible solutions to the problem as shown
below.

Through the Web, users have full control over the managed resources and can perform basically every operation.
Nevertheless in some this is not enough. For instance in dynamic situations where the managed resources change state
quite frequently or when users need more advanced or specialised tools it is necessary to create real applications the limits of
HTML and VRML have been reached. In order to support application development, some external bindings have been
created this is in order to allow users to create their own management application or their custom HTML/VRML pages
tuned for the user’s environment.

Network Management Application Development
Besides the droplets used to manage CMIP/SNMP resources using HTML/VRML, Liaison provides the external bindings,
a set of C++/Java classes and C functions that communicate with further droplets by enabling programmers to develop
decentralised management applications/applets based on the services provided by Liaison. An application based on the
bindings, transparently issues HTTP requests to Liaison which maps them in management requests and then returns the

response(s) to the management application. The application deals only with classes/functions and all these communications
are hidden by the bindings.

HTTP

CMIP/SNMP

to the remote

OSI/SNMP Agent

Liaison

Application

DLL
[Bindings]

As these bindings are simple classes/functions which build URLs sent to Liaison and handle the responses, they are quite
light (about 20 Kbytes in total). Hence they enable the creation of very light applications based on the services provided by
a remote Liaison. Depending on the complexity of the final application and on the user requirements, three different
solutions based on the external bindings are offered:
• HTML/VRML,
• Java,
• other scripting languages such as TCL, Python or Perl.

In the first case the application is composed of several HTML/VRML pages that allow people to manage network resources
using a basic user interface. End-users interact with HTML elements such as buttons and menus, and an HTTP server
application interprets the user commands which have been mapped transparently to URLs. In case a management operation
has to be performed, developers can create simple C/C++ applications using the bindings or exploit the shell commands
(snmpget, snmpset...) provided by Liaison which are then integrated inside CGI applications.
Java has the advantage that it is platform independent hence this solution has to be considered when portability is a must or
when the management application has to be integrated in a HTML page and retrieved from remote. In this case the Java
bindings are used.
TCL and other scripting languages allow average skilled programmers to quickly develop small yet powerful applications
with a nice graphical user interface (for instance, if Tk is used). Since TCL allows external C functions to be called, in this
case it is preferable to employ the C external bindings.

Once described the different techniques for application development, it is now time to see how to use the external bindings.
In order to simplify the application and to hide differences between different datatype, external bindings are based on strings.
Every type such as Integer and IPAddress is mapped to strings. Therefore the IP address 9.4.33.38 is mapped to “9.4.33.38”
and not to a 4 byte long. The conversion from strings to real types is performed transparently by Liaison. In order to do
this, Liaison uses some metadata which in the case of SNMP are data files which associate a type to each object identifier
which identifies a MIB variable (for instance sysDescr.0 has associated the OctetString type). The mapping to strings
not only simplified the user application but also allowed almost every programming language to be used for network
management since the string datatype should be supported by every language. Additionally this simplifies significantly the
usage of the bindings from languages such as TCL, since there are no complicated struct to be passed to/from C/TCL but
only strings.
The Java/C++ bindings are very similar. Owing to space constraints only the Java version is described; similar
considerations can be done for the C++ version. The class hierarchy is quite simple.

java.lang.object

InformationProxy

SNMPObj CMIPObj

The class Proxy is responsible for handing communications with the Proxy application. It transparently sends the requests
and receives the responses. The class Information contains the information relative to the request and to the response(s),
stored in an object of class java.util.Hashtable that are passed as input parameter to an instance of class Proxy.

Subclasses SNMPObj and CMIPObj implement some high level manipulation functions for manipulating the input/output
information and invoking Proxy methods whenever a request has to be issued. These subclasses have been provided to
further simplify the access to the Information and Proxy classes and have to be considered like pure facilities.
Requests can have single or multiple responses returned in case of a CMIP scoped requests or of a SNMP walk. When
multiple responses are returned they are insert in a java.util.Vector that is returned as output parameter. In case of
single response, the returned values replace the actual ones in the input SNMPObj or CMIPObj object. In this way the input
object is transparently updated with the return values.
 If a request fails for whatever reason an exception of class ProxyException is raised: users should not deal with protocol
errors but they should interact with remote objects only using programming constructs. This is very important because
programmers do not have to change their programming style using familiar concepts like exceptions. When an exception is
raised, an error code is returned together with the receiver error response that does not affect the input object which remains
unmodified. The Information class and its subclasses SNMPObj and CMIPObj, greatly simplifies and reduces the code users
have to write:

• a SNMPObj or CMIPObj object represents a hook to an instance or attribute independently from the operation that will
be issued: this allows to issue different operations using the same input object

• parameters such as scope, filter, sync (CMIP) or community (SNMP) are handled transparently: if not present or set
to default they are not sent to the Proxy that will then use the defaults

• default values are expressed using empty ("") values instead of using special flags or data structures.

Additionally, this solution allows to save bandwidth because only the needed attributes are exchanged between the Proxy
and the Java application and because unmodified attributes, for instance objectClass in a CMIP response, are not
transmitted. Classes SNMPObj or CMIPObj other than issuing protocol requests, allow to retrieve metadata information and
to convert object identifiers that can be expressed in both numeric or symbolic form.

Installation and Configuration
Since Webbin’ has been designed to simplify network management, the installation and the configuration of it must be
simple and strightforward. Basically once downladed Webbin, unzipped and untarred we’re almost ready. It is only necessary
to edit the file discovery.cfg where we have to specify the network segments (for instance 9.4.33.*) where are running
the SNMP agents which we intend to discover. Done this, you can start Liaison (./Liaison &) and from your favourite
web browser open the URL http://<your host name:1998/SNMP/DISCOVERY/. As you may have noticed Liaison is
seen as an HTTPd running at the port 1998 (you can modify this value by setting the BASE_PORT environmental variable
from your shell). From that URL you can start the exploration of your SNMP agents and you can also modify some MIB
variables. If you like more VRML instead, you have to use as starting point http://<your host

name:1998/SNMP/VRML_DISC/ which returns a VRML 3D world instead of a simple HTML page. In the standard Liaison
distribution you will also get the C/C++ external bindings (contained the the directory ExternalBindings/), whereas the
Java bindings and the extaernal bindings documentation (in HTML) have to be downloaded separately. This separation has
been done in order to simplify the packaging only. The bindings come with some examples which show how thy are
supposed to be used. Moreover, Liaison comes with simple applications (snmpget for instance) usable from shell which
allow them to be integrated in CGI applications or shell scripts. In one of the coming versions of Liaison (this should be
available by the time you read this article) some CORBA bindings, for CMIP/SNMP management from CORBA will be
released as well. Notice that since the IBM OSI stack is not available on Linux, it is not possible to use Liaison to manage
OSI resources although it is possible to write applications based on the extarnal bindings which talk with a Liaison
running on AIX for instance which has the support for OSI.

Final Remarks
If you have read until here, you should know how Webbin’ works and what you can do with it. I don’t believe in powerful
management tools which do everything since if a tool is really generic then is a browser hence is not extremely flexible for
every situations. The idea behind Webbin’ is to give to people the chanche to manage their networks by either using the
basic browsing facilities provided by Liaison or to write simple yet powerful applications for advanced management. The
era in which “one management platform does everything” is about to end and will be replaced with one that enables
developers to build needed management applications easily. This does not mean that large and powerful management
platforms will disappear because these applications constitute the backbone of corporate management systems. It means
that in the future, end-users will increasingly demand tools that allow them to write the applications they need, tuned to
their environment instead of delegating this task to specialised and expensive developers. One of the reasons for the limited
diffusion of management tools lies with the cost of the tools and their extreme complexity. This work is a small
contribution towards the construction of simple and powerful network management tools that can be used by many people
and not only by rich or large organisations but also by universities and small institutions.

