Monitoring Network Traffic using ntopng

Luca Deri <deri@ntop.org>
Outlook

• What are the main activities of ntop.org?
• ntop’s view on network monitoring.
• From ntop to ntopng.
• ntopng architecture and design.
• Using ntopng.
• Advanced monitoring with ntopng.
• Future roadmap items.
About ntop.org [1/2]

• Private company devoted to development of open source network traffic monitoring applications.

• ntop (circa 1998) is the first app we released and it is a web-based network monitoring application.

• Today our products range from traffic monitoring, high-speed packet processing, deep-packet inspection, and IDS/IPS acceleration.
About ntop.org [2/2]

• Our software is powering many commercial products...
ntop Goals

• Provide better, yet price effective, traffic monitoring solution by enabling users to have increased traffic visibility.
• Go beyond standard metrics and increase traffic visibility by analysing key protocols in detail.
• Provide users comprehensive and accurate traffic reports able to offer at a fraction of price what many commercial products do together.
• Promote open-source software, while protecting selected IPRs.
ntop’s Approach to Traffic Monitoring

• Ability to capture, process and (optionally) transmit traffic at line rate, any packet size.
• Leverage on modern multi-core/NUMA architectures in order to promote scalability.
• Use commodity hardware for producing affordable, long-living (no vendor lock), scalable (use new hardware by the time it is becoming available) monitoring solutions.
• Use open-source to spread the software, and let the community test it on unchartered places.
Some History

• In 1998, the original ntop has been created.
• It was a C-based app embedding a web server able to capture traffic and analyse it.
• Contrary to many tools available at that time, ntop used a web GUI to report traffic activities.
• It is available for Unix and Windows under GPL.
ntop Architecture

HTTP/HTTPS RRD Cisco NetFlow
 InMon sFlow

<table>
<thead>
<tr>
<th>Report Engine</th>
<th>Plugins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Analyser</td>
<td>Traffic Rules</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet Sniffer</td>
<td></td>
</tr>
</tbody>
</table>

ntop for WAP

Top Senders
- 131.114.20.3
- ibook
- 312.5KB

Top Receivers
- 192.168.1.104
- 991.4

Stats:

Options

© 2013 - ntop.org
Why was ntop obsolete?

• Its original LAN-oriented design prevented ntop from handling more than a few hundred Mbit.
• The GUI was an old (no fancy HTML 5) monolithic piece written in C so changing/ extending a page required a programmer.
• ntop could not be used as web-less monitoring engine to be integrated with other apps.
• Many components were designed in 1998, and it was time to start over (spaghetti code).
ntopng Design Goals

- Clean separation between the monitoring engine and the reporting facilities.
- Robust, crash-free engine (ntop was not really so).
- Platform scriptability for enabling extensions or changes at runtime without restart.
- Realtime: most monitoring tools aggregate data (5 mins usually) and present it when it’s too late.
- Many new features including HTML 5-based dynamic GUI, categorization, DPI.
ntopng Architecture

• Three different and self-contained components, communicating with clean API calls.
ntopng Monitoring Engine

• Coded in C++ and based the concept of flow (set of packets with the same 6-tuple).
• Flows are inspected with a home-grown DPI-library named nDPI aiming to discover the “real” application protocol (no ports are used).
• Information is clustered per:
 • (Capture) Network Device
 • Flow
 • Host
 • High-level Aggregations
Information Lifecycle

• All information (e.g. hosts and flows) is stored in memory.
• Using command line options, users can specify how many hosts/flows can be kept in memory.
• Idle flows are periodically purged in order to free memory.
• Hosts are serialised and stored in JSON format in Redis for 1 hour, so that in case new traffic is detected ntopng can restore them from cache.
Packet Processing Journey

1. Packet capture: PF_RING (Linux) or libpcap.
2. Packet decoding: no IP traffic is accounted.
3. IPv4/v6 Traffic only:
 1. Map the packet to a 6-tuple flow and increment stats.
 2. Identify source/destination hosts and increment stats.
 3. Use nDPI to identify the flow application protocol
 1. UDP flows are identified in no more than 2 packets.
 2. TCP Flows can be identified in up to 15 packets in total, otherwise the flow is marked as “Unknown”.
4. Move to the next packet.
The need for DPI in Monitoring [1/2]

- Limit traffic analysis at packet header level it is no longer enough (nor cool).
- Network administrators want to know the real protocol without relying on the port being used.
- Selected protocols can be “precisely dissected” (e.g. HTTP) in order to extract information, but on the rest of the traffic it is necessary to tell network administrators what is the protocol flowing in their network.
The need for DPI in Monitoring [2/2]

• DPI (Deep Packet Inspection) is a technique for inspecting the packet payload for the purpose of extracting metadata (e.g. protocol).

• There are many DPI toolkits available but they are not what we looked for as:
 ◦ They are proprietary (you need to sign an NDA to use them), and costly for both purchase and maintenance.
 ◦ Adding a new protocol requires vendor support (i.e. it has a high cost and might need time until the vendor supports it) = you’re locked-in.

• On a nutshell DPI is a requirement but the market does not offer an alternative for open-source.
Say hello to nDPI

• ntop has decided to develop its own GPL DPI toolkit in order to build an open DPI layer for ntop and third party applications.

• Supported protocols (~170) include:
 ◦ P2P (Skype, BitTorrent)
 ◦ Messaging (Viber, Whatsapp, MSN, The Facebook)
 ◦ Multimedia (YouTube, Last.gm, iTunes)
 ◦ Conferencing (Webex, CitrixOnLine)
 ◦ Streaming (Zattoo, Icecast, Shoutcast, Netflix)
 ◦ Business (VNC, RDP, Citrix, *SQL)
nDPI on ntopng: Sample Report

Protocol Overview

<table>
<thead>
<tr>
<th>Application Protocol</th>
<th>Total (since ntopng startup)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>684 Bytes</td>
<td>0.01 %</td>
</tr>
<tr>
<td>DHCPV6</td>
<td>770 Bytes</td>
<td>0.01 %</td>
</tr>
<tr>
<td>DNS</td>
<td>335.33 KB</td>
<td>3.95 %</td>
</tr>
<tr>
<td>DropBox</td>
<td>396.99 KB</td>
<td>4.68 %</td>
</tr>
<tr>
<td>Google</td>
<td>28.21 KB</td>
<td>0.33 %</td>
</tr>
<tr>
<td>HTTP</td>
<td>2.75 MB</td>
<td>33.11 %</td>
</tr>
</tbody>
</table>
ntopng and Redis

• Redis is an open source key-value in-memory database.

• ntop uses it to cache data such as:
 ◦ Configuration and user preferences information.
 ◦ DNS name resolution (numeric to symbolic).
 ◦ Volatile monitoring data (e.g. hosts JSON representation).

• Some information is persistent (e.g. preferences) and some is volatile: ntopng can tell redis how long a given value must be kept in cache.
Welcome to the MicroCloud
Lua-based ntopng Scriptability [1/3]

• A design principle of ntopng has been the clean separation of the GUI from engine (in ntop it was all mixed).
• This means that ntopng can (also) be used (via HTTP) to feed data into third party apps such as Nagios or OpenNMS.
• All data export from the engine happens via Lua.
• Lua methods invoke the ntopng C++ API in order to interact with the monitoring engine.
Lua-based ntopng Scriptability [2/3]

- /scripts/callback/ scripts are executed periodically to perform specific actions.
- /scripts/lua/ scripts are executed only by the web GUI.
- Example:
 http://ntopng:3000/lua/flow_stats.lua
Lua-based ntopng Scriptability [3/3]

- ntopng defines (in C++) two Lua classes:
 - interface
 - Hook to objects that describe flows and hosts.
 - Access to live monitoring data.
 - ntop
 - General functions used to interact with ntopng configuration.
- Lua objects are usually in “read-only” mode
 - C++ sets their data, Lua reads data (e.g. host.name).
 - Some Lua methods (e.g. interface.restoreHost()) can however modify the information stored in the engine.
Using ntopng
Logging into ntopng

Welcome to ntopng

admin

.....

Login

If you find ntopng useful, please support us by making a small donation. Your funding will help to run and foster the development of this project. Thank you.

© ntop.org - ntopng is released under GPLv3.

Hint: the default user and password are admin
Dashboard

Top Flow Talkers

- 212.69.173.191
- 212.69.171.251
- 212.69.171.57
- 212.69.173.181
- 93.190.236.154
- 93.190.236.163

© 1998-2013 - ntop.org
Generated by ntopng v.1.0.1 (r6749) for user admin and interface eth5

26.08 Mbps [33,317 pps]
Ø Uptime: 1 day, 2 hours, 3 min, 27 sec
1,359 hosts 155,636 flows
Available Menu Items

- Home
- Flows
- Hc
- About ntopng
- ntop Blog
- Dashboard
- Logout

- Hosts
- Interfaces
- Hosts List
- Top Hosts (Local)
- Aggregations
- Interactions
- Geo Map
- Tree Map
- Local Matrix

- Interfaces
- Admin
- Search Host
- Available Interfaces
 - eth4
 - eth5

- Admin
- Search Host
- Manage Users
- Export Data
Dynamic Web Interface

6.06 Mbps [4,857 pps]
Ο Uptime: 1 day, 2 hours, 18 min, 27 sec
38,257 hosts 158,961 flows

<table>
<thead>
<tr>
<th>Throughput</th>
<th>Total Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.09 Kbit</td>
<td>94.23 MB</td>
</tr>
<tr>
<td>5.59 Kbit</td>
<td>60.15 MB</td>
</tr>
<tr>
<td>5.16 Kbit</td>
<td>60.15 MB</td>
</tr>
</tbody>
</table>

Applications:
- DHCP
- DHCPV6
- HTTP
- ICMP
- ICMPV6
- IGMP
- MDNS
- OSPF
- Unknown
- VRRP
- Whois-DAS
Flows Monitoring [1/2]

Active Flows

<table>
<thead>
<tr>
<th>Info</th>
<th>Application</th>
<th>L4 Proto</th>
<th>Client</th>
<th>Server</th>
<th>Duration</th>
<th>Breakdown</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>VRRP</td>
<td>VRRP</td>
<td>fe80::192:12:192:7</td>
<td>ff02::12</td>
<td>1 day, 2 hours, 4 min, 19 sec</td>
<td>Client</td>
<td>8.09 Kbit</td>
</tr>
<tr>
<td>Info</td>
<td>VRRP</td>
<td>VRRP</td>
<td>192.12.192.7</td>
<td>224.0.0.18</td>
<td>1 day, 2 hours, 4 min, 19 sec</td>
<td>Client</td>
<td>5.59 Kbit</td>
</tr>
<tr>
<td>Info</td>
<td>VRRP</td>
<td>VRRP</td>
<td>192.168.18.7</td>
<td>224.0.0.18</td>
<td>1 day, 2 hours, 4 min, 19 sec</td>
<td>Client</td>
<td>5.16 Kbit</td>
</tr>
<tr>
<td>Info</td>
<td>DHCP</td>
<td>UDP</td>
<td>0.0.0.0:68</td>
<td>255.255.255.67</td>
<td>1 day, 2 hours, 3 min, 57 sec</td>
<td>Client</td>
<td>0 bps</td>
</tr>
<tr>
<td>Info</td>
<td>OSPF</td>
<td>89</td>
<td>192.12.192.7</td>
<td>224.0.0.5</td>
<td>1 day, 2 hours, 4 min, 13 sec</td>
<td>Client</td>
<td>0 bps</td>
</tr>
<tr>
<td>Info</td>
<td>OSPF</td>
<td>89</td>
<td>192.168.18.7</td>
<td>224.0.0.5</td>
<td>1 day, 2 hours, 4 min, 7 sec</td>
<td>Client</td>
<td>359.83 bps</td>
</tr>
<tr>
<td>Info</td>
<td>OSPF</td>
<td>89</td>
<td>192.168.18.9</td>
<td>224.0.0.5</td>
<td>1 day, 2 hours, 4 min, 14 sec</td>
<td>Client</td>
<td>359.83 bps</td>
</tr>
<tr>
<td>Info</td>
<td>OSPF</td>
<td>89</td>
<td>192.12.192.9</td>
<td>224.0.0.5</td>
<td>1 day, 2 hours, 4 min, 16 sec</td>
<td>Client</td>
<td>0 bps</td>
</tr>
<tr>
<td>Info</td>
<td>OSPF</td>
<td>89</td>
<td>192.168.18.34</td>
<td>224.0.0.5</td>
<td>1 day, 2 hours, 4 min, 7 sec</td>
<td>Client</td>
<td>0 bps</td>
</tr>
<tr>
<td>Info</td>
<td>OSPF</td>
<td>89</td>
<td>192.12.192.34</td>
<td>224.0.0.5</td>
<td>1 day, 2 hours, 4 min, 7 sec</td>
<td>Client</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 151325 rows
Flows Monitoring [2/2]

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>web-r1.nic.it:53060</td>
</tr>
<tr>
<td>Server</td>
<td>whois.nic.it:5043</td>
</tr>
<tr>
<td>Application Protocol</td>
<td>HTTP</td>
</tr>
<tr>
<td>First Seen</td>
<td>11/10/2013 13:45:26 [6 min, 54 sec ago]</td>
</tr>
<tr>
<td>Last Seen</td>
<td>11/10/2013 13:52:12 [8 sec ago]</td>
</tr>
<tr>
<td>Total Traffic Volume</td>
<td>7.03 KB</td>
</tr>
<tr>
<td>Client vs Server Traffic Breakdown</td>
<td>192.12.192.237</td>
</tr>
<tr>
<td>Client to Server Traffic</td>
<td>63 Pkts / 7.03 KB</td>
</tr>
<tr>
<td>Server to Client Traffic</td>
<td>0 Pkts / 0 Bytes</td>
</tr>
<tr>
<td>Actual Throughput</td>
<td>0 bps</td>
</tr>
<tr>
<td>TCP Flags</td>
<td>SYN, PUSH, ACK</td>
</tr>
</tbody>
</table>

© 1998-2013 - ntop.org
Generated by ntopng v.1.0.1 (r6749)
for user admin and interface eth5

© 2013 - ntop.org

193.98 Kbps [260 pps]
● Uptime: 1 day, 2 hours, 4 min, 49 sec
 1,272 hosts 153,747 flows
Host Monitoring [1/3]

Hosts List

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Location</th>
<th>Symbolic Name</th>
<th>Seen Since</th>
<th>ASN</th>
<th>Breakdown</th>
<th>Throughput</th>
<th>Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.12.192.230</td>
<td>Local</td>
<td>das.nic.it</td>
<td>1 day, 2 hours, 4 min, 49 sec</td>
<td>2597</td>
<td>Rovd</td>
<td>13.57 Kbit</td>
<td>51.27 GB</td>
</tr>
<tr>
<td>192.165.67.192</td>
<td>Remote</td>
<td>192.165.67.192</td>
<td>1 day, 2 hours, 4 min, 31 sec</td>
<td>34971</td>
<td>Sent</td>
<td>0 bps</td>
<td>9.62 GB</td>
</tr>
<tr>
<td>192.165.67.166</td>
<td>Remote</td>
<td>192.165.67.166</td>
<td>1 day, 2 hours, 4 min, 31 sec</td>
<td>34971</td>
<td>Sent</td>
<td>659.95 Kbps</td>
<td>9.18 GB</td>
</tr>
<tr>
<td>78.46.216.98</td>
<td>Remote</td>
<td>78.46.216.98</td>
<td>1 day, 2 hours, 4 min, 48 sec</td>
<td>24940</td>
<td>Sent</td>
<td>219.98 Kbps</td>
<td>7.87 GB</td>
</tr>
<tr>
<td>192.165.67.22</td>
<td>Remote</td>
<td>192.165.67.22</td>
<td>1 day, 2 hours, 4 min, 30 sec</td>
<td>34971</td>
<td>Sent</td>
<td>0 bps</td>
<td>7.81 GB</td>
</tr>
<tr>
<td>78.47.50.132</td>
<td>Remote</td>
<td>78.47.50.132</td>
<td>1 day, 2 hours, 4 min, 48 sec</td>
<td>24940</td>
<td>Sent</td>
<td>879.93 Kbps</td>
<td>7.18 GB</td>
</tr>
<tr>
<td>62.149.189.11</td>
<td>Remote</td>
<td>62.149.189.11</td>
<td>1 day, 2 hours, 4 min, 35 sec</td>
<td>31034</td>
<td>Sent</td>
<td>0 bps</td>
<td>1.44 GB</td>
</tr>
<tr>
<td>192.12.192.242</td>
<td>Local</td>
<td>whois.nic.it</td>
<td>1 day, 2 hours, 4 min, 49 sec</td>
<td>2597</td>
<td>Rovd</td>
<td>84.86 Kbit</td>
<td>964.02 MB</td>
</tr>
<tr>
<td>224.0.0.18</td>
<td>Remote</td>
<td>vrrp.mcast.net</td>
<td>1 day, 2 hours, 4 min, 49 sec</td>
<td>2597</td>
<td>Rovd</td>
<td>8.81 Kbit</td>
<td>120.35 MB</td>
</tr>
<tr>
<td>213.154.243.80</td>
<td>Remote</td>
<td>213.154.243.80</td>
<td>18 hours, 57 min, 57 sec</td>
<td>12859</td>
<td>Sent</td>
<td>4.51 Kbit</td>
<td>116.72 MB</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 1275 rows
Host Monitoring [2/3]

![Host Monitoring Dashboard](image)

Details of Host 192.12.192.230

<table>
<thead>
<tr>
<th>(Router) MAC Address</th>
<th>00:1B:21:30:81:D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>192.12.192.230</td>
</tr>
<tr>
<td>ASN</td>
<td>2597 [Registry of ccTLD it - IIT-CNR]</td>
</tr>
<tr>
<td>Name</td>
<td>das.nic.it [Local]</td>
</tr>
<tr>
<td>First Seen</td>
<td>10/10/2013 11:47:36 [1 day, 2 hours, 5 min, 14 sec ago]</td>
</tr>
<tr>
<td>Sent vs Received Traffic Breakdown</td>
<td>Sent: 39,290 Pkts / 2.27 MB Received: 746,704,852 Pkts / 51.27 GB</td>
</tr>
<tr>
<td>Traffic Sent</td>
<td>39,290 Pkts / 2.27 MB</td>
</tr>
<tr>
<td>Traffic Received</td>
<td>746,704,852 Pkts / 51.27 GB</td>
</tr>
</tbody>
</table>

Activity Map

![Activity Map](image)
Host Monitoring [3/3]
Activity Map

• 1 second resolution host and aggregation activity
• Compressed bitmap

> ls -l client14.dropbox.com
4 -rw-rw-rw- 1 nobody nogroup 24 Oct 11 02:31 client14.dropbox.com

• Saved persistently on disk (Local Hosts only)
Traffic Aggregations [1/2]

• nDPI extracts specific attributes from traffic that ntopng aggregates (if configured):
 ◦ DNS/Whois responses
 ◦ HTTP host names
 ◦ Operating System (from HTTP headers)

• Aggregations can be enabled (they are off by default) and are handled just as flows and hosts.
Traffic Aggregations [2/2]

Aggregations

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Seen Since</th>
<th>Last Seen</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>dnsmon.nic.it</td>
<td>HTTP</td>
<td>1 day, 46 min, 20 sec</td>
<td>4 sec</td>
<td></td>
</tr>
<tr>
<td>Linux x64_64</td>
<td>Operating System</td>
<td>1 day, 46 min, 20 sec</td>
<td>4 sec</td>
<td></td>
</tr>
<tr>
<td>daisy.ubuntu.com</td>
<td>DNS</td>
<td>1 day, 46 min, 16 sec</td>
<td>28 sec</td>
<td>13,613</td>
</tr>
<tr>
<td>i7.ntop.org</td>
<td>HTTP</td>
<td>11 sec</td>
<td>1 sec</td>
<td>26</td>
</tr>
<tr>
<td>Intel Mac OS X 10.8.5</td>
<td>Operating System</td>
<td>11 sec</td>
<td>1 sec</td>
<td>26</td>
</tr>
<tr>
<td>www.google.com</td>
<td>DNS</td>
<td>1 min, 30 sec</td>
<td>39 sec</td>
<td>15</td>
</tr>
<tr>
<td>prinptfoqm.nic.it</td>
<td>DNS</td>
<td>39 sec</td>
<td>39 sec</td>
<td>2</td>
</tr>
<tr>
<td>tdkoxonul.nic.it</td>
<td>DNS</td>
<td>40 sec</td>
<td>40 sec</td>
<td>2</td>
</tr>
<tr>
<td>ilkomppxne.nic.it</td>
<td>DNS</td>
<td>39 sec</td>
<td>39 sec</td>
<td>2</td>
</tr>
<tr>
<td>checkip.dyndns.com</td>
<td>DNS</td>
<td>40 sec</td>
<td>40 sec</td>
<td>2</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 20 rows

Activity Map

- **Name**: daisy.ubuntu.com
- **Family**: DNS
- **First Seen**: 10/10/2013 15:05:05 [1 day, 46 min, 43 sec ago]
- **Last Seen**: 11/10/2013 15:51:33 [30 sec ago]
- **Contacts Received**: 13,622

© 2013 - ntop.org
Hosts and Aggregations Interaction

NOTE
1. This map is centered on host 192.12.193.5. Clicking on this host you will visualize its details.
2. Color map: local, remote, aggregation, focus host.
3. Click is enabled only for hosts that have not been purged from memory.
Geolocation

Hosts GeoMap

Maxmind GeoIP

Map Centered Using HTML 5 Geolocation

NOTE
1. Browser reported home map location (Latitude: 43.71949459086955, Longitude: 10.4219399273913)
2. In order to visualize maps you must:
 1. Have a working Internet connection.
 2. Have compiled ntopng with geolocation and started with it.
 3. Have active flows between peers with public IP addresses.
3. HTML browser geolocation is used to place on map hosts based on unknown locations.
Live Host Activities

Top Hosts (Local)

© 2013 - ntop.org
Historical Activities

• All relevant counters are saved on disk in RRD.
• Interface counters are saved with 1 second resolution. Hosts counters every 5 minutes.

RRD values correlated with top talkers

Ajax-based charts (no RRD graphs)
Using ntopng as a Live Data Source

- ntopng is a server able to serve data to third-party applications via HTTP.
- Data is exported via JSON.
- This mechanism can be extended via Lua scripts.
Using ntopng with NetFlow/sFlow

• ntopng can handle flows (Net/sFlow) via nProbe.

• Data Collector (ntopng)
 ○ ntopng -i tcp://127.0.0.1:5556

• Probe (nProbe)
 ○ nprobe --zmq "tcp://*:5556" -i eth1 -n none (probe mode)
 ○ nprobe --zmq "tcp://*:5556" -i none -n none --collector-port 2055 (sFlow/NetFlow collector mode)
Embedding ntopng [1/2]

• Historically we have started our first embed attempt in 2003 with the Cyclades TS100.
• The nBox was used to analyse traffic then sent to ntop for representation.
• After 10 years we tried again with ntopng.
Embedding ntopng [2/2]

• The ntopng code compiles smoothly for cheap (36 Euro) boxes such as the BeagleBone Black.
• You can now create your personal/cheap traffic analyser without having to use a PC.
• Post 1.1 release we will optimise support for these devices (cloud).
Final Remarks

• Over the past 15 years ntop created a software framework for efficiently monitoring traffic.
• “We have a story to tell you, not just hacks”.
• Commodity hardware, with adequate software, can now match the performance and flexibility that markets require. With the freedom of open source.
• Available under GNU GPLv3 from http://www.ntop.org/.