
IM 2009 - June 2009 1

Modern Packet Capture and Analysis:
Multi-Core, Multi-Gigabit, and Beyond

Luca Deri <deri@ntop.org>

IM 2009 - June 2009

Overview

• Accelerating packet capture and analysis:
PF_RING.

• Layer 7 kernel packet filtering and processing.

• Direct NIC Access: PF_RING DNA.

• Towards 10 Gbit packet capture using commodity
hardware.

• Strong Multicore NIC: Tilera Tile64

2

IM 2009 - June 2009

Accelerating Packet Capture
and Analysis: PF_RING

3

IM 2009 - June 2009 4

Packet Capture: Open Issues

• Monitoring low speed (100 Mbit) networks is already possible using
commodity hardware and tools based on libpcap.

• Sometimes even at 100 Mbit there is some (severe) packet loss: we
have to shift from thinking in term of speed to number of packets/
second that can be captured analyzed.

• Problem statement: monitor high speed (1 Gbit and above)
networks with common PCs (64 bit/66 Mhz PCI/X/Express bus)
without the need to purchase custom capture cards or
measurement boxes.

• Challenge: how to improve packet capture performance without
having to buy dedicated/costly network cards?

IM 2009 - June 2009

Packet Capture Goals

• Use commodity hardware for capturing packets
at wire speed with no loss under any traffic
condition.

• Be able to have spare CPU cycles for analyzing
packets for various purposes (e.g. traffic
monitoring and security).

• Enable the creation of software probes that sport
the same performance of hardware probes at a
fraction of cost.

5

IM 2009 - June 2009 6

Socket Packet Ring (PF_RING)

Read
Index

Write
Index

Incoming Packets

Outgoing Packets Userspace

Kernel

Socket
(ring)

Network
Adapter

mmap()

Socket
(ring)

PF_RING

Application A Application Z

IM 2009 - June 2009

PF_RING Internals

7

Circular Buffer

B
u
ff
e
r

S
lo

ts

Device Driver

dev_queue_xmit()
netif_rx() - No NAPI

netif_receive_skb() - NAPI

Linux Kernel

Read from
PF_RING Userland

Kernel

http://en.wikipedia.org/wiki/Circular_buffer

http://en.wikipedia.org/wiki/Circular_buffer
http://en.wikipedia.org/wiki/Circular_buffer

IM 2009 - June 2009

PF_RING Packet Journey [1/2]

8

Packet Received Parse Packet (up to layer 4)

Defragment packet (optional)

Added the packet to PF_RING
sockets that potentially match it

(packet and socket device match)

Same as above for PF_RING
socket clusters

Return control to the kernel

IM 2009 - June 2009

PF_RING Packet Journey [2/2]

9

Add Packet to PF_RING Packet Filtering

Sampling Rate Check

PF_RING Reflector Check
Queue Packet

on PF_RING

Back to PF_RING

IM 2009 - June 2009

PF_RING: Benefits

• It creates a straight path for incoming packets in order to
make them first-class citizens.

• No need to use custom network cards: any card is
supported.

• Transparent to applications: legacy applications need to be
recompiled in order to use it.

• Basic kernel (no low-level programming) knowledge
required.

• Developers familiar with network applications can
immediately take advantage of it without having to learn new
APIs.

10

IM 2009 - June 2009

PF_RING: Performance Evaluation

11

Pkt Size Kpps Mbps % CPU Idle Wire-Speed

250 259.23 518 > 90% Yes

250 462.9 925.9 88% Yes

128 355.1 363.6 86% Yes

128 844.6 864.8 82% Yes

Test setup: pfcount, full packet size, 3.2 GHz Celeron (single-core) - IXIA 400 Traffic Generator

IM 2009 - June 2009 12

Socket Packet Ring:
Packet Capture Evaluation

• Ability to capture over 1.1 Mpps on commodity hardware with
minimal packet sizes (64 bytes).

• Available for Linux 2.4 and 2.6 kernel series.

• Hardware independent: runs on i386, 64bit, MIPS.

• Available for PCs and embedded devices (e.g. OpenWrt,
MikroTik routers)

IM 2009 - June 2009 13

PF_RING on Embedded Devices

http://nst.sourceforge.net/nst/docs/user/ch09s02.html

IM 2009 - June 2009

PF_RING Socket Clustering [1/2]

• In order to exploit modern computer architectures either
multiprocessing or threading have to be used.

• Often computer programs are monolithic and hard to split into
several concurrent and collaborating elements.

• In other cases (proprietary applications) source code is not
available hence the application cannot be modified and split.

• There are hardware products (e.g. see cPacket’s cTap) that split/
balance network traffic across network hosts.

• What is lacking at the operating system level is the concept of
distributing sockets across applications. This is because
network sockets are proprietary to an application/address-
space.

14

IM 2009 - June 2009

PF_RING Socket Clustering [2/2]

• Socket clustering is the ability to federate PF_RING sockets similar,
but opposite, to network interface bonding.

• The idea is simple:
– Run several monitoring applications, each analyzing a portion of the

overall traffic.
and/or

– Create multithreaded applications that instead of competing for
packets coming from the same socket, have private per-thread
sockets.

15

IM 2009 - June 2009 16

PF_RING Clustering: Threads

PF_RING
Socket

Thread Thread Thread Thread

Compete
for

Packets

Mutexes
and

Locking
is Needed

Clustered
PF_RING

Socket

Thread Thread Thread Thread

No Locking
Needed

Clustered
PF_RING

Socket

Clustered
PF_RING

Socket

Clustered
PF_RING

Socket

PF_RING

Vanilla PF_RING Application PF_RING Socket Cluster

IM 2009 - June 2009

• Same as clustering with threads, but across address spaces.

• PF_RING allows clustering to be enabled seamlessly both at thread and
application level.

17

PF_RING Clustering: Applications

Clustered
PF_RING
Socket

Application Application Application Application

Clustered
PF_RING
Socket

Clustered
PF_RING
Socket

Clustered
PF_RING
Socket

PF_RING

IM 2009 - June 2009

PF_RING Clustering: Code Example
if((pd = pfring_open(device, promisc, snaplen, 0)) == NULL) {

 printf("pfring_open error\n");

 return(-1);

 } else {

 u_int32_t version;

 pfring_version(pd, &version);

 printf("Using PF_RING v.%d.%d.%d\n",

 (version & 0xFFFF0000) >> 16, (version & 0x0000FF00) >> 8,

 version & 0x000000FF);

 }

 if(clusterId > 0) {

 int rc = pfring_set_cluster(pd, clusterId);

 printf("pfring_set_cluster returned %d\n", rc);

 }

18

IM 2009 - June 2009

PF_RING Clustering: Summary
• Network traffic balancing policy across socket clusters

– Per-flow (default)

– Round-Robin

• Advantages:
– No locking required when threads are used

– Ability to distribute the load across multiple applications

– Very fast as clustering happens into the kernel.

• Socket clustering has been the first attempt to make PF_RING more multi-
processing/core friendly.

19

IM 2009 - June 2009

PF_RING: Packet Filtering [1/2]

• PF_RING has addressed the problem of accelerating packet
capture.

• Packet filtering instead is still based on the “ancient” BPF
code.

• This means that:

– Each socket can have up to one filter defined.

– The packet needs to be parsed in order to match the filter,
but the parsing information is not passed to user-space.

– The BPF filter length can change significantly even if the
filter is slightly changed.

20

IM 2009 - June 2009

PF_RING: Packet Filtering [2/2]

21

tcpdump -d "udp"

(000) ldh [12]

(001) jeq #0x800 jt 2 jf 5

(002) ldb [23]

(003) jeq #0x11jt 4 jf 5

(004) ret #96

(005) ret #0

tcpdump -d "udp and port 53"

(000) ldh [12]

(001) jeq #0x800 jt 2 jf 12

(002) ldb [23]

(003) jeq #0x11jt 4 jf 12

(004) ldh [20]

(005) jset #0x1fff jt 12 jf 6

(006) ldxb 4*([14]&0xf)

(007) ldh [x + 14]

(008) jeq #0x35jt 11 jf 9

(009) ldh [x + 16]

(010) jeq #0x35jt 11 jf 12

(011) ret #96

(012) ret #0

IM 2009 - June 2009

Beyond BPF Filtering [1/2]

• VoIP and Lawful Interception traffic is usually very little
compared to the rest of traffic (i.e. there is a lot of incoming
traffic but very few packets match the filters).

• Capture starts from filtering signaling protocols and then
intercepting voice payload.

• BPF-like filtering is not effective (one filter only).

• It is necessary to add/remove filters on the fly with hundred
active filters.

22

IM 2009 - June 2009 23

Beyond BPF Filtering [2/2]

Solution

– Filter packets directly on device drivers (initial release) and
PF_RING (second release).

– Implement hash/bloom based filtering (limited false
positives) but not BPF at all.

– Memory effective (doesn’t grow as filters are added).

– Implemented on Linux on Intel GE cards. Great
performance (virtually no packet loss at 1 Gbit).

– No much difference between PF_RING and driver filtering
hence the code has been moved to PF_RING.

IM 2009 - June 2009

Dynamic Bloom Filtering [1/4]
• An empty bloom is a bit array of m bits all set to zero.

• k hash different functions are used to map a key to an array position
(0...m-1 hash function range).

• n is the number of elements insert into the dictionary.

• How to add an element: for each k hash function set to 1 the array bit that
corresponds to the hash value.

• How to test if an element belongs to the set: for each hash function
calculate the hash element value. The element belongs to the set if and
only if all the k bits of the hash values are set to 1.

• How to remove an element: fully rebuild the dictionary or use counting
blooms.

• False positive rate:

• Optimal number of hash functions: k = (m/n) log(2)

24

IM 2009 - June 2009

Dynamic Bloom Filtering [2/4]

25

Insert: hash_1(X), hash_2(X)....hash_n(X)

Check for inclusion

IM 2009 - June 2009

Dynamic Bloom Filtering [3/4]

26

• Ability to specify a thousand different IP packet filters

• Ability to dynamically add/remove filters without having to
interrupt existing applications.

• Only “precise” filters (e.g. host X and port Y) are supported.

• The filter processing speed and memory being used is
independent from the number of filters.

• The “false positive rate” instead depends on the filters
number.

IM 2009 - June 2009 27

Dynamic Bloom Filtering [4/4]

• Available into PF_RING (in 3.x series up to 3.7.x).

• Ability to set per-socket bloom filters

Dynamic Filtering

BPF Filtering (Optional)

Packet Consumption

U
s
e
r

S
p
a
c
e

K
e
rn

e
l

S
p
a
c
e

N
e
tw

o
rk

D
e
v
ic

e
D

ri
v
e
r

IM 2009 - June 2009

PF_RING Packet Parsing [1/2]
• Contrary to BPF that basically does parse packets while filtering them,

PF_RING filtering requires packet to be parsed first.

• Parsing information is propagated up to the userland.

• The basic PF_RING engine contains parsing up to TCP/UDP.

28

struct pkt_parsing_info {
 /* Core fields (also used by NetFlow) */
 u_int16_t eth_type; /* Ethernet type */
 u_int16_t vlan_id; /* VLAN Id or NO_VLAN */
 u_int8_t l3_proto, ipv4_tos; /* Layer 3 protocol/TOS */
 u_int32_t ipv4_src, ipv4_dst; /* IPv4 src/dst IP addresses */
 u_int16_t l4_src_port, l4_dst_port; /* Layer 4 src/dst ports */
 u_int8_t tcp_flags; /* TCP flags (0 if not available) */
 [...]
};

Ba
si

c
Pa

rs
in

g

IM 2009 - June 2009

PF_RING Packet Parsing [2/2]
• The decision to always parse the packet is motivated as follows:

– Packet parsing is very cheap (in terms of computation) and its slow-down is
negligible.

– Beside rare exceptions (e.g. for packet-to-disk applications), user space
applications will need to parse packets.

• PF_RING does not natively include layer-7 packet filtering as this is
delegated by plugins as shown later in this presentation.

29

struct pfring_pkthdr {
 struct timeval ts; /* time stamp */
 u_int32_t caplen; /* length of portion present */
 u_int32_t len; /* length this packet (off wire) */
 struct pkt_parsing_info parsed_pkt; /* packet parsing info */
 u_int16_t parsed_header_len; /* Extra parsing data before packet */
};Ex

te
nd

ed
 P

ar
si

ng

Plugin-based Parsing

ts caplen len parsed_pkt l7 parsing
parsed

len
Payload

(Optional)

IM 2009 - June 2009

PF_RING: Bloom Evaluation

30

• Tests performed using a dual Xeon 3.2 GHz CPU
injecting traffic with an IXIA 400 traffic generator with
1:256 match rate.

• Packet loss only above 1.8 Mpps (2 x 1 Gbit NICs).
• Ability to specify thousand of filters with no

performance degradation with respect to a single
filter (only false positive rate increases).

IM 2009 - June 2009

Bloom Filters Limitations [1/2]

• Bloom filtering has shown to be a very interesting technology
for “precise” packet filtering.

• Unfortunately many application require some features that
cannot be easily supported by blooms:

– port ranges

– negative expressions (not <expression>)

– IP address/mask (where mask != /32)

– in case of match, know what rule(s) matched the filter

31

IM 2009 - June 2009

Bloom Filters Limitations [2/2]

• Possible workarounds
– Support ranges by calculating the hash on various combinations

• 5-tuple for perfect matching (proto, ip/port src, ip/port dst)

• multiple bloom dictionaries for /32, /24, /16, and /8 networks for
network match

• Note that as bloom matching is not exact, using a bloom dictionary
for storing negative values (i.e. for implementing the not) is not a good
idea. This is because not(false positive) means that a packet might be
discarded as the filter is not match although this packet passed the
filter.

• In a nutshell:

– Bloom filters are a fantastic technology for exact packet matching

– PF_RING must also offer support for ‘partial’ filtering.

32

IM 2009 - June 2009

Extended PF_RING Filters [1/2]

The author has made a survey of network applications and created a list of
desirable features, that have then been implemented into PF_RING:

• “Wildcard-ed” filters (e.g. TCP and port 80). Each rule has a rule-id and
rules are evaluated according to it.

• Precise 5-tuple filters (VLAN, protocol, IP src/dst, port src/dst).

• Precise filters (e.g. best match) have priority over (e.g. generic) wilcard-ed
filters.

• Support of filter ranges (IP and port ranges) for reducing the number of
filters.

• Support of mono or bi-directional filters, yet for reducing number of filters.

• Ability to filter both on standard 5-tuple fields and on L7 fields (e.g. HTTP
method=GET).

33

IM 2009 - June 2009

Extended PF_RING Filters [2/2]

• Parsing information (including L7 information) need to be returned to
user-space (i.e. do not parse the packet twice) and to all PF_RING
components that for various reasons (e.g. due to socket clustering)
need to have accessed to this information.

• Per-filter policy in case of match:

– Stop filtering rule evaluation and drop/forward packet to user-space.

– Update filtering rule status (e.g. statistics) and stop/continue rule
evaluation without forwarding packet to user-space.

– Execute action and continue rule evaluation (via PF_RING plugins).

• Filtering rules can pass to user-space both captured packets or
statistics/packet digests (this for those apps who need pre-computed
values and not just raw packets).

34

IM 2009 - June 2009

PF_RING: Exact Filters [1/2]
• Exact filters (called hash filtering rules) are used whenever all the

filtering criteria are present in the filter.

• Exact filters are stored in a hash table whose
key is calculated on the filter values.

• When a packet is received, the key is calculated
and searched into the filter hash.

35

typedef struct {
 u_int16_t vlan_id;
 u_int8_t proto;
 u_int32_t host_peer_a, host_peer_b;
 u_int16_t port_peer_a, port_peer_b;

 [...]
} hash_filtering_rule;

Fi
lte

r E
le

m
en

ts

Parse Filter Expression

Calculate Filter Hash Key

Insert the Key into
the Filter Hash

IM 2009 - June 2009

• Filters can have a rule associated to it such as:

– Pass packet to userland in case of match.

– Drop packet in case of match.

– Execute the action associated with the packet.

• Actions are implemented into plugins. Typical action include:
– Add/delete filtering rule

– Increment specific traffic counters.

– Interact with the Linux kernel for performing specific actions.

36

typedef struct {
 [...]

 rule_action_behaviour rule_action; /* What to do in case of match */
 filtering_rule_plugin_action plugin_action;
 unsigned long jiffies_last_match;
} hash_filtering_rule;

PF_RING: Exact Filters [2/2]

Fi
lte

r A
ct

io
ns

IM 2009 - June 2009

PF_RING: Wildcard-ed Filters [1/2]
• This filter family has to be used whenever:

– Not all filter elements are set to a specific value.

– The filter contains value ranges.

• Filters are bi-directional (i.e. they are checked on both source and
destinations fields.

• Filtering rules have a unique (in the PF_RING socket) numeric identifier that
also identifies the rule evaluation order.

37

typedef struct {
 u_int8_t proto; /* Use 0 for 'any' protocol */
 u_int16_t vlan_id; /* Use '0' for any vlan */
 u_int32_t host_low, host_high; /* User '0' for any host. This is applied to both source
 and destination. */
 u_int16_t port_low, port_high; /* All ports between port_low...port_high
 0 means 'any' port. This is applied to both source
 and destination. This means that
 (proto, sip, sport, dip, dport) matches the rule if
 one in "sip & sport", "sip & dport" "dip & sport"
 match. */
} filtering_rule_core_fields;

IM 2009 - June 2009

PF_RING: Wildcard-ed Filters [2/2]
• Filters can optionally contain some extended fields used for:

– Matching packet payload

– Implementing more complex packet filtering by means of plugins (see later).

• User-space PF_RING library allows plugins to specify some parameters to
be passed to filters (e.g. pass only HTTP packets with method POST).

38

typedef struct {
 char payload_pattern[32]; /* If strlen(payload_pattern) > 0, the packet payload
 must match the specified pattern */
 u_int16_t filter_plugin_id; /* If > 0 identifies a plugin to which the data structure
 below will be passed for matching */
 char filter_plugin_data[FILTER_PLUGIN_DATA_LEN];
/* Opaque data structure that is interpreted by the
 specified plugin and that specifies a filtering
 criteria to be checked for match. Usually this data
 is re-casted to a more meaningful data structure
*/
} filtering_rule_extended_fields;

IM 2009 - June 2009

Combining Filtering with Balancing [1/4]

• PF_RING clustering allows socket to be grouped so that they
be used for effectively sharing load across threads and
processes.

• Clustering works at PF_RING socket level and it’s basically a
mechanism for balancing traffic across packet consumers.

• PF_RING filtering rules combine the best of these
technologies by implementing traffic balancing for those
packets that match a certain filter.

• The idea is to have the same filter specified for various
sockets that are the grouped together. Packets matching the
filter are then forwarded only to one of the sockets.

39

IM 2009 - June 2009 40

Combining Filtering with Balancing [2/4]

Incoming Packet

Parse packet
(once for all sockets/filters)

Return control to Caller

Loop through the filters

Loop through the PF_RING sockets

Match found ?

Balance

IM 2009 - June 2009

• Filtered packets are balanced across sockets as follows

41

Combining Filtering with Balancing [3/4]

typedef struct {
 [...]
 u_int8_t balance_id, balance_pool; /* If balance_pool > 0, then pass the
 packet to PF_RING caller only if
 (hash(proto, sip, sport, dip, dport) %
 balance_pool) = balance_id */
 [...]
} filtering_rule;

Filter match found

Compute balance Value
hash(proto, sip, sport, dip, dport) % balance_pool

Is balance Value == balance_id ?
(i.e. per-flow balancing)

Pass the Packet Drop the Packet

IM 2009 - June 2009

• Using balancing for distributing load across applications/threads is very
effective for exploiting multi-processor/core architectures.

42

Combining Filtering with Balancing [4/4]

PF_ RIN G
Socket

A pplication A pplication A pplication A pplication

PF_ RIN G
Socket

PF_ RIN G
Socket

PF_ RIN G
Socket

PF_ RIN G

Filtering Rule

b alance_ id =0
b alance_ pool=4

Filtering Rule

b alance_ id =1
b alance_ pool=4

Filtering Rule

b alance_ id =2
b alance_ pool=4

Filtering Rule

b alance_ id =3
b alance_ pool=4

IM 2009 - June 2009

PF_RING Packet Reflection [1/3]
• Often, monitoring applications need to forward filtered packets to remote

systems or applications.

• Traffic balancers for instance are basically a “filter & forward” application.

• Moving packets from the kernel to userland and then back to the kernel
(for packet forwarding) is not very efficient as:

– Too many actors are involved.

– The packet journey is definitively too long.

• PF_RING packet reflection is a way to forward packets that matched a
certain filter towards a remote destination on a specific NIC (that can be
different from the one on which the packet has been received).

• Packet reflection is configured from userland at startup.

• All forwarding is performed inside the kernel without any application
intervention at all.

43

IM 2009 - June 2009 44

PF_RING Packet Reflection [2/3]
 /* open devices */
 if((pd = pfring_open(in_dev, promisc, 1500, 0)) == NULL)
 {
 printf("pfring_open error for %s\n", in_dev);
 return -1;
 } else
 pfring_set_application_name(pd, "forwarder");

 if ((td = pfring_open(out_dev, promisc, 1500, 0)) == NULL) {
 printf("pfring_open error for %s\n", out_dev);
 return -1;
 } else
 pfring_set_application_name(td, "forwarder");

 /* set reflector */
 if (pfring_set_reflector(pd, out_dev) != 0)
 {
 printf("pfring_set_reflector error for %s\n", out_dev);
 return -1;
 }

 /* Enable rings */
 pfring_enable_ring(pd);
 pfring_enable_ring(td);

 while(1) sleep(60); /* Loop forever */

IM 2009 - June 2009

• PF_RING packet reflection allows easily and efficiently to implement:

– Filtering packet balancers

– (Filtering) Network bridges

• In a nutshell this technique allows to easily implement the “divide and
conquer” principle and to combine it with techniques just presented.

45

PF_RING Packet Reflection [3/3]

PF_RING-based
Traffic Balancer

PF_RING-based
Monitoring Application

PF_RING-based
Monitoring Application

PF_RING-based
Monitoring Application

PF_RING-based
Monitoring Application

Host
Incoming Traffic

(e.g. 10 Gbit)

Outgoing Traffic
(e.g. 1 Gbit)

IM 2009 - June 2009

PF_RING Kernel Plugins [1/3]
• Implementing into the kernel is usually more efficient than doing the

same in userland because:
– Packets do not need to travel from kernel to userland.

– If a packet is supposed to be received by multiple applications it is not
duplicated on the various sockets, but processed once into the kernel

• For packet filtering, it is important to filter as low as possible in the
networking stack, as this prevents packet not matching the filter to be
propagated and the discarded later on.

• PF_RING plugins allow developers to code small software modules that
are executed by PF_RING when incoming packets are received.

• Plugins can be loaded and unloaded dynamically via insmod/rmmod
commands.

46

IM 2009 - June 2009

• Each plugin need to declare a data structure according to the format
below.

• The various pfring_plugin_* variables are pointers to functions that are
called by PF_RING when:

– A packet has to be filtered.

– An incoming packet has been received and needs to be processed.

– A userland application wants to know stats about this plugin.

– A filtering rule will be removed and the memory allocated by the plugin needs
to be released.

47

PF_RING Kernel Plugins [2/3]

struct pfring_plugin_registration {
 u_int16_t plugin_id;
 char name[16]; /* Unique plugin name (e.g. sip, udp) */
 char description[64]; /* Short plugin description */
 plugin_filter_skb pfring_plugin_filter_skb; /* Filter skb: 1=match, 0=no match */
 plugin_handle_skb pfring_plugin_handle_skb;
 plugin_get_stats pfring_plugin_get_stats;
 plugin_free_ring_mem pfring_plugin_free_ring_mem;
};

IM 2009 - June 2009

PF_RING Kernel Plugins [3/3]
• Plugins are associated with filtering rules and are triggered whenever a

packet matches the rule.

• If the plugin has a filter function, then this function is called in order to
check whether a packet passing the header filter will also pass other
criteria. For instance:

– ‘tcp and port 80’ is a rule filter used to select http traffic

– The HTTP plugin can check the packet payload (via DPI) to verify that the
packet is really http and it’s not another protocol that hides itself on the http
port.

• In order to perform complex checks, rules need to be stateful hence to
allocate some memory, private to the plugin, that is used to keep the
state.

• PF_RING delegates to the plugin the duty of managing this opaque
memory that is released by PF_RING when a rule is deleted, by calling the
plugin callback.

48

IM 2009 - June 2009

Efficient Layer 7
Packet Analysis

49

IM 2009 - June 2009

Using PF_RING Filters: HTTP Monitoring [1/5]
• Goal

– Passively produce HTTP traffic logs similar to those produced by Apache/
Squid/W3C.

• Solution
– Implement plugin that filters HTTP traffic.

– Forward to userspace only those packets containing HTTP requests for all
known methods (e.g. GET, POST, HEAD) and responses (e.g. HTTP 200 OK).

– All other HTTP packets beside those listed above are filtered and not returned
to userspace.

– HTTP response length is computed based on the “Content-Length” HTTP
response header attribute.

50

static int __init http_plugin_init(void)
{
 int rc;

 printk("Welcome to HTTP plugin for PF_RING\n");

 reg.plugin_id = HTTP_PLUGIN_ID;
 reg.pfring_plugin_filter_skb = http_plugin_plugin_filter_skb;
 reg.pfring_plugin_handle_skb = NULL;
 reg.pfring_plugin_get_stats = NULL;

 snprintf(reg.name, sizeof(reg.name)-1, "http");
 snprintf(reg.description, sizeof(reg.description)-1, "HTTP protocol analyzer");

 rc = do_register_pfring_plugin(®);

 printk("HTTP plugin registered [id=%d][rc=%d]\n", reg.plugin_id, rc);

 return(0);
}

IM 2009 - June 2009

Plugin Registration

51

Using PF_RING Filters: HTTP Monitoring [2/5]

static int http_plugin_plugin_filter_skb(filtering_rule_element *rule,
 struct pfring_pkthdr *hdr, struct sk_buff *skb,
 struct parse_buffer **parse_memory)
{
 struct http_filter *rule_filter = (struct http_filter*)rule-
>rule.extended_fields.filter_plugin_data;
 struct http_parse *packet_parsed_filter;

 if((*parse_memory) == NULL) {
 /* Allocate (contiguous) parsing information memory */
 (*parse_memory) = kmalloc(sizeof(struct parse_buffer*), GFP_KERNEL);
 if(*parse_memory) {
 (*parse_memory)->mem_len = sizeof(struct http_parse);
 (*parse_memory)->mem = kcalloc(1, (*parse_memory)->mem_len, GFP_KERNEL);
 if((*parse_memory)->mem == NULL) return(0); /* no match */
 }

 packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);
 parse_http_packet(packet_parsed_filter, hdr, skb);
 } else {
 /* Packet already parsed: multiple HTTP rules, parse packet once */
 packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);
 }

 return((rule_filter->the_method & packet_parsed_filter->the_method) ? 1 /* match */ : 0);
}

IM 2009 - June 2009

Plugin Packet Filtering

52

Using PF_RING Filters: HTTP Monitoring [3/5]

static void parse_http_packet(struct http_parse *packet_parsed,
 struct pfring_pkthdr *hdr,
 struct sk_buff *skb) {
 u_int offset = hdr->parsed_pkt.pkt_detail.offset.payload_offset; /* Use PF_RING Parsing */
 char *payload = &skb->data[offset];

 /* Fill PF_RING parsing information datastructure just allocated */
 if((hdr->caplen > offset) && !memcmp(payload, "OPTIONS", 7)) packet_parsed->the_method = method_options;
 else if((hdr->caplen > offset) && !memcmp(payload, "GET", 3)) packet_parsed->the_method = method_get;
 else if((hdr->caplen > offset) && !memcmp(payload, "HEAD", 4)) packet_parsed->the_method = method_head;
 else if((hdr->caplen > offset) && !memcmp(payload, "POST", 4)) packet_parsed->the_method = method_post;
 else if((hdr->caplen > offset) && !memcmp(payload, "PUT", 3)) packet_parsed->the_method = method_put;
 else if((hdr->caplen > offset) && !memcmp(payload, "DELETE", 6)) packet_parsed->the_method = method_delete;
 else if((hdr->caplen > offset) && !memcmp(payload, "TRACE", 5)) packet_parsed->the_method = method_trace;
 else if((hdr->caplen > offset) && !memcmp(payload, "CONNECT", 7)) packet_parsed->the_method = method_connect;
 else if((hdr->caplen > offset) && !memcmp(payload, "HTTP ", 4)) packet_parsed->the_method =
method_http_status_code;
 else packet_parsed->the_method = method_other;
}

IM 2009 - June 2009

Plugin Packet Parsing

53

Using PF_RING Filters: HTTP Monitoring [4/5]

 if((pd = pfring_open(device, promisc, 0)) == NULL) { printf("pfring_open error\n"); return(-1); }

 pfring_toggle_filtering_policy(pd, 0); /* Default to drop */

 memset(&rule, 0, sizeof(rule));
 rule.rule_id = 5, rule.rule_action = forward_packet_and_stop_rule_evaluation;
 rule.core_fields.proto = 6 /* tcp */;
 rule.core_fields.port_low = 80, rule.core_fields.port_high = 80;
 rule.plugin_action.plugin_id = HTTP_PLUGIN_ID; /* HTTP plugin */
 rule.extended_fields.filter_plugin_id = HTTP_PLUGIN_ID; /* Enable packet parsing/filtering */
 filter = (struct http_filter*)rule.extended_fields.filter_plugin_data;
 filter->the_method = method_get | method_http_status_code;

 if(pfring_add_filtering_rule(pd, &rule) < 0) {
printf("pfring_add_filtering_rule() failed\n");
return(-1); }

 while(1) {
 u_char buffer[2048];
 struct pfring_pkthdr hdr;

 if(pfring_recv(pd, (char*)buffer, sizeof(buffer), &hdr, 1) > 0)
 dummyProcesssPacket(&hdr, buffer);
 }

 pfring_close(pd);

IM 2009 - June 2009

Userland application

54

Using PF_RING Filters: HTTP Monitoring [5/5]

IM 2009 - June 2009

YouTube Monitoring [1/2]

• YouTube monitoring is an extension of the HTTP plugin.

• HTTP is used by YouTube to transport videos usually encoded in H.
264 or Flash Video.

• The HTTP plugin can be used for monitoring, from the network
point of view, the YouTube traffic and detecting whether the
network quality is adequate or if the user should have experienced
unstable playback.

• Video streams are tracked by checking the URL (e.g. GET /
get_video?video_id=...) and the server host (www.youtube.com).

• Whenever a YouTube video stream is detected, the HTTP plugin
adds an exact matching rule on the hash, used to track the
stream, with the YouTube plugin specified as rule action.

55

http://www.youtube.com
http://www.youtube.com

IM 2009 - June 2009

YouTube Monitoring [2/2]
• The YouTube plugin is able to measure some stream statistics such as

throughput, jitter, bandwidth used.

• When a stream is over, the plugin return to userland a packet with the
stream statistics.

• Note that all stream packets are not returned to userland, but just the
statistics, that contributes to reduce load on the probe and improve
performance.

56

struct youtube_http_stats {
 u_int32_t initialTimestamp, lastTimestamp, lastSample; /* Packet Timestamps [jiffies] */
 struct timeval initial_tv;
 u_int32_t tot_pkts, tot_bytes, cur_bytes;
 u_int32_t num_samples;
 u_int8_t signaling_stream; /* 1=signaling, 2=real video stream */
 char url[URL_LEN];
 char video_id[VIDEO_ID_LEN], video_playback_id[VIDEO_ID_LEN];
 u_int32_t min_thpt, avg_thpt, max_thpt; /* bps */
 u_int32_t min_jitter, avg_jitter, max_jitter; /* jiffies */
 u_int32_t duration_ms;
 char content_type[CONTENT_TYPE_LEN];
 u_int32_t tot_jitter, num_jitter_samples;
};

IM 2009 - June 2009

Advanced PF_RING Filtering: NetFlow [1/5]
• Goal

– Using PF_RING for packet capture and processing in user space, the target
performance (just packet capture, not flow generation) is:
• Standard Intel driver: 550 Mpps

• Enhanced Intel driver (see later in this presentation): 950 Mpps

– Ability to compute NetFlow/IPFIX flows at wire speed at 1 Gbit regardless of
the CPU being used and packet size.

• Solution

– Use PF_RING plugin to “pack” packets belonging to the same flow. This acts
as level-1 NetFlow cache.

– Periodically (e.g. once every 1-5 sec) flush cache flows by forwarding packet
digest to userspace via PF_RING.

– Forwarded packets contains a header, used for computing flows, but not the
packet as this is unnecessary. Each PF_RING slot can host several packets/
flows if needed.

57

IM 2009 - June 2009

Advanced PF_RING Filtering: NetFlow [2/5]
• Each PF_RING cache entry contains exactly the same information

necessary to generate flows.

• NetFlow cache is walked (for searching expired flows) by user-space
application through a dummy call to pfring_purge_idle_hash_rules()
that allows to keep kernel code simple as there’s no need to spawn a
kernel thread for walking the cache.

58

struct pkt_aggregation_info {
 u_int32_t num_pkts, num_bytes;
 struct timeval first_seen, last_seen;
};

struct netflow_l1_pf_ring_packet_cache {
 /* Standard PF_RING fields */
 u_int16_t eth_type; /* Ethernet type */
 u_int16_t vlan_id; /* VLAN Id or NO_VLAN */
 u_int8_t l3_proto, ipv4_tos; /* Layer 3 protocol/TOS */
 u_int32_t ipv4_src, ipv4_dst; /* IPv4 src/dst IP addresses */
 u_int16_t l4_src_port, l4_dst_port; /* Layer 4 src/dst ports */
 u_int8_t tcp_flags; /* TCP flags (0 if not available) */

 struct pkt_aggregation_info aggregation; /* NetFlow */
};

Device Driver

Packet
Cache

nProbe

DMA

PF_RING

Userland

Aggregated Packets

Flows

IM 2009 - June 2009

Advanced PF_RING Filtering: NetFlow [3/5]
• The PF_RING cache has (by default) 4096 entries and it is implemented as

an array (i.e. hash buckets are not a linked list) for keeping code simple.

• User-space application can modify cache policy/size when PF_RING is
instrumented.

• The plugin is activated with a wildcard-ed rule of ‘any’ so that any IP
packet matching the filter can be computed.

• Modus Operandi
– When an incoming packet is received, PF_RING parses it, and then it is passes

to the plugin.

– Using parsing information the packet is searched in the cache
• If found the cache entry is updated

• if not found the packet is added to the cache (i.e. a filtering rule is added). In case
the cache slot where the packet is supposed to be stored is already occupied, the
slot is flushed (i.e. the entry is forwarded to the userland) and the packet is
accommodated.

59

IM 2009 - June 2009

Advanced PF_RING Filtering: NetFlow [4/5]
• Using the kernel cache, packets are “merged” in kernel without any

userland application intervention.

• In-kernel packet merging does not require any memory/packet copy and
it’s very fast as the packet is already in the CPU cache (thanks to Intel RSS/
DCA, see later in this presentation).

• The “merging rate” increases (in efficiency) with flows speed. In other terms
the cache is more efficient as flows are faster. Example:
– 1 Gbit (1.48 Mpps) flow with minimal packets.

– Kernel cache duration of 3 sec (i.e. flows older than this duration are exported)

– “Vanilla” PF_RING: in 3 sec the application receives 4.44 Million packets (3 x
1.48 Mpps).

– In-kernel cache generates 1 flow for the same amount of traffic.

60

IM 2009 - June 2009

Advanced PF_RING Filtering: NetFlow [5/5]
• Performance Evaluation

– Testbed: 1.86 GHz Intel CoreDuo (cost < 100 Euro), IXIA 400 Traffic generator,
minimal packet size (64 bytes), Intel e1000 driver, Full 1 Gbit stream, with packet
rotation, nProbe (home grown NetFlow probe) used as probe.

• Vanilla PF_RING + nProbe: 100% CPU, ~600 Kpps processed with no loss.

• Kernel NetFlow PF_RING plugin + nProbe: ~60-70% CPU used, wire-rate
with no packet-loss.

• Comparison:

– spare CPU cycles compared to vanilla PF_RING.

– wire-speed.

– not suitable (yet) for generating flows with packet payload information
(e.g. HTTP URL).

61

IM 2009 - June 2009

Dynamic PF_RING Filtering: VoIP [1/6]
• Goal

– Track VoIP (SIP+RTP) calls at any rate on a Gbit link using commodity
hardware.

– Track RTP streams and calculate call quality information such as jitter, packet
loss,without having to handle packets in userland.

• Solution

– Code a PF_RING plugin for tracking SIP methods and filter-out:
• Uninteresting (e.g. SIP Options) SIP methods

• Not well-formed SIP packets

• Dummy/self calls (i.e. calls used to keep the line open but that do not result in a
real call).

– Code a RTP plugin for computing in-kernel call statistics (no pkt forwarding).

– The SIP plugin adds/removes a precise RTP PF_RING filtering rule whenever a
call starts/ends.

62

IM 2009 - June 2009

Dynamic PF_RING Filtering: VoIP [2/6]
– Before removing the RTP rule though PF_RING library calls, call information is

read and then the rule is deleted.

– Keeping the call state in userland and do not forwarding RTP packets, allows
the code of VoIP monitoring applications to be greatly simplified.

– Furthermore as SIP packets are very few compared to RTP packets, the
outcome is that most packets are not forwarded to userland contributing to
reduce the overall system load.

63

(user space)

(kernel space)

RTP media
SIP signaling

SIP filter RTP
analyzer

 VoIP Monitor
RTP packets
Add/remove flow

SIP packets

RTP statistics (poll)

IM 2009 - June 2009

Dynamic PF_RING Filtering: VoIP [3/6]
• SIP Plugin

– It allows to set filters based on SIP fields (e.g. From, To, Via, CallID)

– Some fields are not parsed but the plugin returns an offset inside the SIP
packet (e.g. SDP offset, used to find out the IP:port that will be used for
carrying the RTP/RTCP streams).

– Forwarded packets contain parsing information in addition to SIP payload.

• RTP Plugin
– It tracks RTP (mono/by-directional) flows.

– The following, per-flow, statistics are computed: jitter, packet loss, malformed
packets, out of order, transit time, max packet delta.

– Developers can decide not to forward packets (this is the default behavior) or
to forward them (usually not needed unless activities like lawful interception
need to be carried on).

64

IM 2009 - June 2009

Dynamic PF_RING Filtering: VoIP [4/6]
• Validation

– A SIP test tool and traffic generator (sipp) is used to create synthetic SIP/RTP
traffic.

– A test application has been developed: it receives SIP packets (signaling) and
based on them it computes RTP stats.

– A traffic generator (IXIA 400) is used to generate noise in the line and fill it up.
As RTP packets are 100 bytes in average, all tests are run with 128 bytes
packets.

– The test code runs on a cheap single-core Celeron 3.2 GHz (cost < 40 Euro).

– In order to evaluate the speed gain due to PF_RING kernel modules, the same
test application code is tested:
• Forwarding SIP/RTP packets to userland without exploiting kernel modules (i.e. the

code uses the standard PF_RING).

• RTP packets are not forwarded, SIP packets are parsed/filtered in kernel.

65

IM 2009 - June 2009

Dynamic PF_RING Filtering: VoIP [5/6]

66

0

5

10

15

20

1000 10’000 20’000 30’000 40’000 50’000

% Idle CPU [128 bytes packets]

RTP Plugin
RTP stats computed in userland
PF_RING capture only (no RTP analysis)

0

175

350

525

700

1000 10’000 20’000 30’000 40’000 50’000

Max Throughput (Mbps) with no loss [128 bytes packets]

Kernel
Rules

Kernel
Rules

IM 2009 - June 2009

Dynamic PF_RING Filtering: VoIP [6/6]
• Validation Evaluation

– In-kernel acceleration has demonstrated that until 40K rules, kernel plugins
are faster than a dummy application that simply captures packets without any
processing.

– On a Gbit link it is possible to have up to ~10K concurrent calls with G.711 (872
Mbit) or ~30K calls with G.729 (936 Mbit). This means that with the current
setup and a slow processor, it is basically possible to monitor a medium/
large ISP.

• Future Work Items

– The plugins are currently used as building blocks glued together by means of
the user-space applications.

– The SIP plugin can dynamically add/remove RTP rules, so that it is possible to
avoid (even for SIP) packet forwarding and send to userland just VoIP statistics
for even better performance figures.

67

IM 2009 - June 2009 68

PF_RING Content Inspection

• PF_RING allows filtering to be combined with packet
inspection.

• Ability to (in kernel) search multiple string patterns
into packet payload.

• Algorithm based on Aho-Corasick work.
• Ideal for fields like lawful interception and security

(including IDSs).
• Major performance improvement with respect to

conventional pcap-based applications.

IM 2009 - June 2009

L7 Analysis: Summary

• The use of kernel plugins allows packets to have a short journey
towards the application.

• In-kernel processing is very efficient and it avoids the bottleneck
of several userland application threads competing for packets.

• As PF_RING requires minimal locking (when the filtering rule is
accessed and updated), packets are processed concurrently
without any intervention from userland applications.

• As the Linux kernel concurrently fetches packets from adapters,
this is a simple way to exploit multi-processing/core without
having to code specific (multithreaded) userland applications
and serialize packets on (PF_RING) sockets.

69

IM 2009 - June 2009

Direct Access to NICs

70

IM 2009 - June 2009

Direct NIC Access: Introduction
• Commercial accelerated NICs are accelerated either using ASIC (rare) or

FPGAs (often) chips.

• Accelerators improve common activities such as packet filtering and are
also responsible of pushing packets to memory with very limited (< 1%)
load on the main CPU.

• Applications access packets directly without any kernel intervention at all.

• A kernel-mapped DMA memory allows the application to manipulate
card registers and to read packets from this memory where incoming
packets are copied by the hardware accelerators.

• Cards falling in this category include:

– Endace DAG

– Napatech

– NetFPGA

71

IM 2009 - June 2009

Direct NIC Access: Comparison [1/2]

72

Device Driver

Application

DMA

PF_RING

Userland

Kernel

Circular
Buffer

NAPI
Polling

PF_RING
Polling

Hardware AccelerationPF_RING

Device Driver

Application

DMA

Accelerated
Cards

Userland

Kernel

NIC
Memory

Map FPGA

Application
Polling

IM 2009 - June 2009

Direct NIC Access: Comparison [2/2]
• The reason why accelerated cards are so efficient are:

– The FPGA polls packets as fast as possible without any intervention from
the main CPU. In Linux the main CPU has to periodically read packets
through NAPI from the NIC.

– Received packets are copied on a pre-allocated large memory buffer so
no per-packet allocation/deallocation is necessary at all, as it happens in
vanilla Linux.

– Similar to PF_RING, packets are read from circular buffer without any
kernel interaction (beside packet polling).

• Limitations

– As applications access packets directly, if they improperly manipulate
card’s memory the whole system might crash.

– FPGA filtering is very limited and not as rich as PF_RING.

– Contrary to PF_RING, only one application at time can read packets from
the ring.

73

IM 2009 - June 2009

Welcome to nCap (Circa 2003)

Standard

TCP/IP

Stack

Enhanced libpcap

Accelerated Device Driver

PF_RING

Monitoring

Application

Monitoring

Application

Monitoring

Application

Ethernet

nCap

Legacy

S
tr

a
ig

h
t

C
a

p
tu

re

U
s
e
rl
a
n
d

K
e
rn
e
l

74

IM 2009 - June 2009

nCap Features

Packet
Capture

Acceleration

Wire Speed

Packet
Capture

Number of
Applications

per Adapter

Standard TCP/IP Stack

with accelerated driver

Limited No Unlimited

PF_RING

with accelerated driver

Great Almost Unlimited

Straight Capture Extreme Yes One

75

IM 2009 - June 2009

nCap Internals

• nCap maps at userland the card registers and memory.

• The card is accessed by means of a device /dev/ncap/ethX

• If the device is closed it behaves as a “normal” NIC.

• When the device is open, it is completely controlled by

userland the application.

• A packet is sent by copying it to the TX ring.

• A packet is received by reading it from the RX ring.

• Interrupts are disabled unless the userland application wait

for packets (poll()).

• On NIC packet filtering (MAC Address/VLAN only).

76

IM 2009 - June 2009

nCap Evaluation

• It currently supports Intel 1 GE copper/fiber cards.

• GE Wire speed (1.48 Mpps) full packet capture starting
from P4 HT 3 GHz.

• Better results (multiple NICs on the same PC) can be
achieved using Opteron machines (HyperTransport
makes the difference).

• The nCap speed is limited by the speed applications
fetch packets from the NIC, and the PCI bus.

77

IM 2009 - June 2009

nCap Comparison (1 Gbit)

Source Cesnet (http://luca.ntop.org/ncap-evaluation.pdf)

Maximum

Packet Loss

at Wire Speed

Estimated

Card

Price

Manufacturer

DAG 0% > 5-7 K Euro Endace.com

nCap 0.8% 100 Euro

Combo 6 (Xilinx) 5% > 7-10 K Euro Liberouter.com

78

http://luca.ntop.org/ncap-eval.pdf
http://luca.ntop.org/ncap-eval.pdf

IM 2009 - June 2009

Further nCap Features

• High-speed traffic generation: cheap trafgen as
fast as a hardware trafgen (>> 25’000 Euro)

• Precise packet generation.
• Precise packet time-stamping on transmission

(no kernel interaction): suitable for precise active
monitoring.

• Enhanced driver currently supports Intel cards
(1 Gb Ethernet).

79

IM 2009 - June 2009

Beyond PF_RING
• PF_RING has shown to be an excellent packet capture acceleration

technology compared to vanilla Linux.

• It has reduced the cost of packet capture and forward to userland.

• However it has some design limitations as it requires two actors for
capturing packets that result in sub-optimal performance:

– kernel: copy packet from NIC to ring.

– userland: read packet from ring and process it.

• PF_RING kernel modules demonstrated that limiting packet processing in
user-space by moving it to kernel results in major performance
improvements.

• A possible solution is to map a NIC to user-space and prevent the kernel
from using it.

80

IM 2009 - June 2009

PF_RING DNA (Direct NIC Access)

• PF_RING DNA is an extension for PF_RING that allows NICs to be
accessed in direct mode fully bypassing Linux NAPI.

• Based on the lessons learnt while developing nCap, DNA is a
technology developed in clean-room that has been designed to
be NIC-neutral in order to allows various NICs to be supported.

• The NIC mapping is driver dependent hence it requires some
driver modifications in order to:
– Disable NAPI when the NIC is accessed in DNA mode.

– Contiguously allocate RX card’s memory in one shot (and not per
packet).

– Register the NIC with PF_RING so the card is accessed seamlessly
from PF_RING applications without the need to know the NIC internals
and its memory layout.

81

IM 2009 - June 2009

PF_RING DNA (De)Registration

82

/* Register with PF_RING */
do_ring_dna_device_handler(add_device_mapping,
 adapter->tnapi.dma_mem.packet_memory,
 adapter->tnapi.dma_mem.packet_num_slots,
 adapter->tnapi.dma_mem.packet_slot_len,
 adapter->tnapi.dma_mem.tot_packet_memory,
 rx_ring->desc,
 rx_ring->count, /* # of items */
 sizeof(struct e1000_rx_desc),
 rx_ring->size, /* tot len (bytes) */
 0, /* Channel Id */
 (void*)netdev->mem_start,
 netdev->mem_end,
 netdev,
 intel_e1000,
 &adapter->tnapi.packet_waitqueue,
 &adapter->tnapi.interrupt_received,
 (void*)adapter,
 wait_packet_function_ptr);

NIC Memory
Pointers

NIC DMA Ring

NIC Registers
Memory

Packet Polling

IM 2009 - June 2009

PF_RING DNA: Current Status
• As of today, DNA is available for Intel 1 Gbit NICs (e1000 driver).

• it is planned to support more modern 1G NICs later this year.

• Any modern dual-core (or better) system can achieve wire rate packet
capture at any packet size using DNA.

• A userland library used to manipulate card registers has been integrated
into PF_RING.

• Applications do not need to do anything different from standard PF_RING
with the exception that the ring memory has to be open using
pfring_open_dna() instead of the standard pfring_open().

• When an application opens the adapter in DNA mode, other applications
using the same adapter in non-DNA mode will stop receiving packets
until the application quits.

83

IM 2009 - June 2009

Towards 10 Gbit Packet Capture
Using Commodity Hardware

84

IM 2009 - June 2009

Enhanced NIC Drivers [1/4]

• The current trend in computer architecture is towards multi-core systems.

• Currently 4-core CPUs are relatively cheap and rather common on the
market. Intel announced Xeon Nehalem-EX with 16 threads (8 cores) for
late 2009. The core rush is not yet over.

• Exploiting multi-core in userland applications is relatively simple by using
threads.

• Exploiting multi-core in kernel networking code is much more complex.

• Linux kernel networking drivers are single-threaded and the model is still
the same since many years.

• It’s not possible to achieve good networking performance unless NIC
drivers are also accelerated and exploit multi-core.

85

IM 2009 - June 2009

Enhanced NIC Drivers [2/4]

Intel has recently introduced a few innovations in the Xeon 5000 chipset
series that have been designed to accelerate networking applications:

• I/O Acceleration Technology (I/OAT)

– Direct Cache Access (DCA) asynchronously move packets from NIC directly on
CPU’s cache in DMA.

– Multiple TX/RX queues (one per core) that improve system throughput and
utilization.

— MSI-X, low latency interrupts and load balancing across multiple RX queues.

— RSS (Receive-Side Scaling) balances (network flow affinity) packets across RX
queue/cores.

— Low-latency with adaptive and flexible interrupt moderation.

In a nutshell: increase performance by distributing workloads across available CPU
cores.

86

IM 2009 - June 2009

Enhanced NIC Drivers [3/4]

87

IM 2009 - June 2009

Enhanced NIC Drivers: Linux NAPI [4/4]

88

RX
Queue

RX
Queue

RX
Queue

RX
Queue

RSS (Resource Side Scaling)

10 Gbit PHY

Networking Stack

Monitoring
Application

NAPI
Sequential RX
Ring Polling

IM 2009 - June 2009

Linux NAPI Limitations [1/2]

89

IM 2009 - June 2009

Linux NAPI Limitations [2/2]

• Multiple-RX queues are not fully exploited by Linux as NAPI polls
them in sequence and not concurrently

• Interrupts are enabled/disabled globally (i.e. for all queues at the
same time) whereas they should be managed queue-per-queue
as not all queues have the same amount of traffic (it depends on
how balance-able is the ingress traffic).

• Original queue index (that can be used as flow identifier) is lost
when the packet is propagated inside the kernel and then to
userland.

• Userland applications see the NIC as a single entity and not as a
collection of queues as it should be. This is a problem as the
software could take advantage of multiple queues by avoiding
threads competing for incoming packets all coming from the same
NIC but from different queues.

90

IM 2009 - June 2009

Example of Multi-Queue NIC Statistics

91

ethtool -S eth5
NIC statistics:
 rx_packets: 161216
 tx_packets: 0
 rx_bytes: 11606251
 tx_bytes: 0
 lsc_int: 1
 tx_busy: 0
 non_eop_descs: 0
 rx_errors: 0
 tx_errors: 0
 rx_dropped: 0
 tx_dropped: 0
 multicast: 4
 broadcast: 1
 rx_no_buffer_count: 2
 collisions: 0
 rx_over_errors: 0
 rx_crc_errors: 0
 rx_frame_errors: 0
 rx_fifo_errors: 0
 rx_missed_errors: 0
 tx_aborted_errors: 0
 tx_carrier_errors: 0
 tx_fifo_errors: 0

 tx_heartbeat_errors: 0
 tx_timeout_count: 0
 tx_restart_queue: 0
 rx_long_length_errors: 0
 rx_short_length_errors: 0
 tx_tcp4_seg_ctxt: 0
 tx_tcp6_seg_ctxt: 0
 tx_flow_control_xon: 0
 rx_flow_control_xon: 0
 tx_flow_control_xoff: 0
 rx_flow_control_xoff: 0
 rx_csum_offload_good: 153902
 rx_csum_offload_errors: 79
 tx_csum_offload_ctxt: 0
 rx_header_split: 73914
 low_latency_interrupt: 0
 alloc_rx_page_failed: 0
 alloc_rx_buff_failed: 0
 lro_flushed: 0
 lro_coal: 0
 tx_queue_0_packets: 0
 tx_queue_0_bytes: 0
 rx_queue_0_packets: 79589
 rx_queue_0_bytes: 5721731
 rx_queue_1_packets: 81627
 rx_queue_1_bytes: 5884520

IM 2009 - June 2009

Memory Allocation Life Cycle [1/5]
• Incoming packets are stored into kernel’s memory that has been

previously allocated by the driver.

• As soon that a packet is received, the NIC NPU (Network Process Unit)
checks if there’s an empty slot and if so it copies the packet in the slot.

• The slot is removed from the RX buffer and propagated through the
kernel.

• A new bucket is allocated and places on the same position of the old slot.

92

Read Index
(NIC Device Driver)

Write Index
(Network Process Unit)

NIC RX Buffer
(one per RX Queue)

IM 2009 - June 2009

• The consequence of this allocation policy is that:
– Every new packet requires one slow allocation (and later-on a free).

– As the traffic rate increases, increasing allocations/free will happen.

– In particular at 10 Gbit, if there’s a traffic spike or a traffic shot, the system
may run out of memory as incoming packets:
• require memory hence the memory allocator does its best to allocate new

slots.

• are stuck in the network kernel queue because the packet consumers cannot
keep-up with the ingress traffic rate.

– When the system runs in low memory it tries to free cached memory in
order to free some space.

– Unfortunately when the ingress rate is very high, the memory recover
process does not have enough time hence the system runs out of
memory and the result is that Linux’s OOM (Out Of Memory) killer has to
kill some processes in order to recover some memory.

93

Memory Allocation Life Cycle [2/5]

IM 2009 - June 2009

Memory Allocation Life Cycle [3/5]

94

 if(rx_desc->status & E1000_RXD_STAT_DD) {
 /* A packet has been received */
#if defined (CONFIG_RING) || defined(CONFIG_RING_MODULE)
 handle_ring_skb ring_handler = get_skb_ring_handler();

 if(ring_handler && adapter->soncap.soncap_enabled) {
 ring_handler(skb, 0, 1, (hash_value % MAX_NUM_CHANNELS));
 } else {
#endif

[.....]
 if (++i == rx_ring->count) i = 0;
 next_rxd = E1000_RX_DESC(*rx_ring, i);
 prefetch(next_rxd);
 next_buffer = &rx_ring->buffer_info[i];
 cleaned = TRUE;
 cleaned_count++;
 pci_unmap_single(pdev, buffer_info->dma, PAGE_SIZE, PCI_DMA_FROMDEVICE);
 [.....]
 skb = netdev_alloc_skb(netdev, bufsz);
 buffer_info->dma = pci_map_single(pdev,
 skb->data,
 adapter->rx_buffer_len,
 PCI_DMA_FROMDEVICE);
 [.....]

IM 2009 - June 2009 95

Memory Allocation Life Cycle [4/5]

Read Index Write Index

netif_rx()

Linux Kernel
RX Queue

pci_unmap_single

netdev_alloc_skb
pci_map_single

P
F

_
R

IN
G

R
X

 R
in

g

memcpy()
No kmalloc/kfree

NAPI

PF_RING

IM 2009 - June 2009

Memory Allocation Life Cycle [5/5]
• Avoiding memory allocation/deallocation has several advantages:

– No need to allocate/free buffers

– No need to map memory though the PCI bus

– In case of too much incoming traffic, as the kernel has more priority than
userland applications, there’s no risk to run out of memory as it happens with
standard NAPI.

• The last advantage of doing a packet copy to the PF_RING buffer is the
speed. Depending on the setup, the packet capture performance can be
increased of 10-20% with respect to standard NAPI.

96

IM 2009 - June 2009

Enhanced NIC Drivers: TNAPI [1/8]

• In order to enhance and accelerate packet capture under Linux, a new
Linux driver for Intel 1 and 10 Gbit cards has been developed. Main
features are:

– Multithreaded capture (one thread per RX queue, per NIC adapter). The
number of rings is the number of cores (i.e. a 4 core system has 4 RX rings)

– RX packet balancing across cores based on RSS: one core, one RX ring.

– Driver-based packet filtering (PF_RING filters port into the driver) for stopping
unwanted packets at the source.

– Development drivers for Intel 82598/9 (10G) and 82575/6 (1G) ethernet
controllers.

• For this reason the driver has been called TNAPI (Threaded NAPI).

97

IM 2009 - June 2009

Enhanced NIC Drivers: TNAPI [2/8]

98

Thread Thread Thread Thread

RX
Queue

RX
Queue

RX
Queue

RX
Queue

PF_RING

RSS (Resource Side Scaling)
[Hardware per-flow Balancing]

1 Gbit / 10 Gbit NIC

Userland

Threaded
Polling

Virtual PF_RING
Ethernet Queue

No Mutex
Needed

TNAPI

IM 2009 - June 2009

• Packet capture has been greatly accelerated thanks to TNAPI
as:
– Each RX queue is finally independent (interrupts are turned on/off

per queue and not per card)

– Each RX queue has a thread associated and mapped on the
same CPU core as the one used for RSS (i.e. cache is not
invalidated)

– The kernel thread pushes packets as fast as possible up on the
networking stack.

– Packets are copied from the NIC directly into PF_RING (allocation/
deallocation of skbuffers is avoided).

– Userland applications can capture packets from a virtual ethernet
NIC that maps the RX ring directly into userspace via PF_RING.

99

Enhanced NIC Drivers: TNAPI [3/8]

IM 2009 - June 2009

• TNAPI Issues: CPU Monopolization

– As the thread pushes packets onto PF_RING, it should be avoided that this
thread monopolizes. This is because of the all CPU is used by the kernel for
receiving packets, then packet loss won’t happen in kernel but in userspace
(i.e. the packet loss problem is not solved, but just moved).

– Solution: every X polling cycles, the thread has to give away some CPU cycles.
This is implemented as follow rx_budget that’s consumed whenever a packet
is received and sent to PF_RING.

100

Enhanced NIC Drivers: TNAPI [4/8]

 while(<polling packets from RX queue X>) {
 /* Avoid CPU monopolization */

 if(rx_budget > 0)
 rx_budget--;
 else {
 rx_budget = DEFAULT_RX_BUDGET;
 yield();
 }
 }

IM 2009 - June 2009

• TNAPI Issues: Interrupts and Cores Allocation

– RX ring interrupts must be sent to the right core that’s manipulating the queue
in order to preserve cache coherency.

– The userland application that’s fetching packets from queue X, should also be
mapped to core X.

– As interrupts are now sent per-queue (and not per-nic as it used to be) we
must make sure that they are sent to the same core that’s fetching packets.

101

Enhanced NIC Drivers: TNAPI [5/8]

cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
191: 1 1 2656 1 2 2 1 2 PCI-MSI-edge eth3
192: 1 4 0 0 2655 3 1 2 PCI-MSI-edge eth2
193: 78634 14 7 13 9 13 13 18 PCI-MSI-edge eth1
194: 3 15964 6 3 3 5 3 5 PCI-MSI-edge eth0
195: 0 0 0 0 0 0 0 0 PCI-MSI-edge eth7:lsc
196: 1 2 2 0 0 2658 1 0 PCI-MSI-edge eth7:v8-Tx
197: 1 0 2 0 1 0 1 5309 PCI-MSI-edge eth7:v7-Rx
198: 1 0 0 5309 1 2 0 1 PCI-MSI-edge eth7:v6-Rx
199: 0 1 0 1 0 1 2 5309 PCI-MSI-edge eth7:v5-Rx
200: 0 1 1 5307 2 2 1 0 PCI-MSI-edge eth7:v4-Rx
201: 1 0 1 2 1 5307 2 0 PCI-MSI-edge eth7:v3-Rx
202: 2 2 0 1 1 0 5307 1 PCI-MSI-edge eth7:v2-Rx
203: 0 1 5309 1 1 1 0 1 PCI-MSI-edge eth7:v1-Rx
204: 2 2 1 0 5307 1 1 0 PCI-MSI-edge eth7:v0-Rx

IM 2009 - June 2009

Enhanced NIC Drivers: TNAPI [6/8]
• Example:

– RX ring 6 and 4 use the same CPU 3.

– We want to move RX ring 6 to CPU 1

– How to map a process to a CPU/core

102

cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
198: 1 0 0 5309 1 2 0 1 PCI-MSI-edge eth7:v6-Rx
200: 0 1 1 5307 2 2 1 0 PCI-MSI-edge eth7:v4-Rx

cat /proc/irq/198/smp_affinity
00000008
echo 2 > /proc/irq/198/smp_affinity [00000010 where 1 = CPU 1]
cat /proc/irq/198/smp_affinity
00000002
cat /proc/interrupts |grep "eth7:v6-Rx"
198: 0 67 0 5309 1 2 0 1 PCI-MSI-edge eth7:v6-Rx

unsigned long mask = 7; /* processors 0, 1, and 2 */

unsigned int len = sizeof(mask);

if (sched_setaffinity(0, len, &mask) < 0) {

 perror("sched_setaffinity");

}

IM 2009 - June 2009

Enhanced NIC Drivers: TNAPI [7/8]

103

Test Type Max Packet Capture SpeedMax Packet Capture Speed

PF_RING
300K pps 560K pps

PF_RING+TNAPI
Mono RX queue

750K pps 920K pps

PF_RING+TNAPI
Multi RX queue

860K pps
Wire Rate (1 Gbit)

~ 3 Million pps (10 Gbit)
~ 5 Million pps (10 Gbit - 2 x Xeon)

Intel Core2Duo 1.86 GHz (Dual
Core)

No Intel I/OAT

CPU Intel Xeon 2.4 GHz (Quad Core)
Intel 5000 chipset (I/OAT support)

IM 2009 - June 2009

• Additional Performance results:

– 10 Gbit
• The testbed is a 4 x 1 G ports IXIA 400 traffic generator that are mixed into a 10G

stream using a HP ProCurve 3400cl-24 switch.

• A dual 4-core 3 GHz Xeon has been used for testing.

• Using the accelerated driver it is possible to driver-filter 512 bytes packets at 7 Gbps
with a 1:256 packet forward rate to user-space with no loss.

– 1 Gbit
• The same testbed for 10G has been used.

• The same packet filtering policy applied to 2 x 1 Gbit ports works with no loss and
with minimal (~10%) CPU load.

• The performance improvement also affects packet capture. For instance with a
Core 2 Duo 1.86 GHz, packet capture improved from 580 Kpps to around 900
Kpps.

104

Enhanced NIC Drivers: TNAPI [8/8]

IM 2009 - June 2009

RX Multi-Queue and DNA
• As previously explained, DNA is an excellent technology for those

application developers who need wire speed packet capture, but that do
not need features such as:
– packet filtering

– multiple application packet consumers.

• DNA so far has been ported to the Intel mono-queue 1 Gbit driver (e1000).

• Currently the port of DNA to 1 Gbit RX multi-queue driver (igb) is in
progress and it will be available later this year.

• Combining DNA with multi-queue allows applications to be split into
concurrent execution threads that enables multicore architectures to be
further exploited.

• Additionally by exploiting hardware traffic balancing, it allows flow-based
applications such as netflow probes, to be further accelerated.

105

IM 2009 - June 2009

SNORT
1 (a)

CORE
1

CORE
2

CORE
8

RAM

INVERSE
MULTIPLEXER

BUFFER COLOR OR DROP

HASH FUNCTION

10GbE
INTERFACE

LOAD BALANCE

 Σ

SNORT
1 (a)
App. ‘A’
1

CLONING
FUNCTION

Monitoring
application

CLONE AND I-
MUX

PACKET FILTERS

Userland

Kernel

106

Multi-Queue on Accelerated NICs

Monitoring
application

Monitoring
application

•Direct NIC Access
•Multicore support

IM 2009 - June 2009

Exploiting PF_RING Multi-Queue: nProbe

107

RX
Queue

RX
Queue

RX
Queue

RX
Queue

MSI-X

RSS (Resource Side Scaling)

10 Gbit PHY

Polling
Thread

Polling
Thread

Polling
Thread

Polling
Thread

Packet
Cache

Packet
Cache

Packet
Cache

Packet
Cache

nProbe nProbe

DMA DMA

PF_RING

TNAPI

Userland
Flow-like Packets

Flows Flows

- Packet balancing
across cores.

- Peak nProbe
performance: 1.48 Mpps
(packet rate) x 2 Cores.

IM 2009 - June 2009

Strong Multicore NICs:
Tilera Tile64

108

IM 2009 - June 2009

Towards Strong Multicore [1/2]

General Perception is that people usually think that
multicore is a good idea, although difficult to
implement.

• General PC market
— Input data is unstructured, sequential
— Billions of lines of sequential applications
— Hard to migrate it to parallel code

• Embedded market
— Data is inherently parallel
— Engineers have designed parallel applications
— Their main challenge is complexity of design

109

IM 2009 - June 2009

• Some applications are naturally parallel as in networking where a
network pipe is a multiplex of many “flows” or distinct streams.

• The only barriers towards adopting strong multicore are:
– Design the application program so that it can take advantage of multicore

without sequentially performing activities that could be carried on in parallel.

– Entry ticket for learning multicore development tools.

– Low-level programming required to take advantage of the technology.

110

Towards Strong Multicore [2/2]

Network
Pipe

IM 2009 - June 2009

Programming Paradigms

111

 Run to completion model
— Sequential C/C++ applications
— Run multiple application instances one/core
— Use load balancer library for distribution
— Use tools to tune performance

 Parallel programming
— Parallelize application with pthreads shared

memory
— Run on multiple cores
— Use communication libraries to optimize
— Use tools to tune performance

Sequential
code

Load
Balancer

Sequential
code

Sequential
code

N tiles

Load
Balancer

Parallel
code

N groups

Multiple tiles
working on a
flow/stream

Parallel
code

Parallel
code

IM 2009 - June 2009

Parallel Processing Without Parallel Programming

112

• Standard model in the embedded world
— Facilitates immediate results using off-the-self code

• Simple architecture
— Each core runs complete application and handles one or multiple flows or

channels
— I/O management and load distribution
— Most embedded applications fit this category
— Large numbers of flows, frames channels, streams, etc…
— Most inputs are completely orthogonal

Sequential
code

Load
Balancer Get next data

Get next data

Get next data Sequential
code

Sequential
code

N Cores

IM 2009 - June 2009

Tilera TILExpress64
• 64-core CPU.

• Linux-based 2.6 operating system running on board.

• Programmable in C/C++.

• Eclipse Integration for easing software development and
debugging.

113

IM 2009 - June 2009 114

TILE64 Architecture [1/2]

IM 2009 - June 2009 115

38 terabits of on-chip bandwidth

2 Dimensional iMesh connects tilesTile = Processor + Cache + Switch

Each tile is a complete processor

Processor

Cache + MMU

Terabit
Switch

TILE64 Architecture [2/2]

IM 2009 - June 2009

Tilera Advantages

• No need to capture packets as it happens with PCs.

• 12 x 1 Gbit, or 6 x 1 Gbit and 1 x 10 Gbit Interfaces
(XAUI connector).

• Ability to boot from flash for creating stand-alone
products.

• Standard Linux development tools available including
libpcap for packet capture.

• Application porting is very quick and simple: less
than 100 lines of code changed in nProbe.

116

IM 2009 - June 2009 117

Porting Exiting Applications to Tile64: nProbe

Ingress Packet Processor
on 1, 2, 3, or 4 tiles

Off-the-shelf nProbe

Tilera provided Lib NetIO
Interface to packet processor

Standard Packet Capture Module
Lib Pcap

Standard get packet interface

One tile
Running
nProbe

XAUI 10GbE MAC

Header parsing and verification

Header 5-tuple hashing

Load balancing and pkt distribution

Network Packets

Buffer management
Tile A

Tile B
Tile C

IM 2009 - June 2009

nProbe Performance on Tile64

118

0

2500.0

5000.0

7500.0

10000.0

0 15 30 45 60

nProbe Throughput on TILExpressPro-20G at 700 MHz
Ze

ro
-D

ro
p

Th
ro

ug
pu

t (
M

bp
s)

nProbe Tiles

UDP 200B, 400K Flows UDP 100B, 400K Flows
UDP 300B, 400K Flows

IM 2009 - June 2009

Final Remarks

119

IM 2009 - June 2009

Programming for Multicore [1/4]
• Multicore is not the solution to all performance and scalability

problems.

• Actually it can decrease the performance of poorly designed
applications.

• Like it or not, multicore is the future of CPUs, and
programmers have to face with it.

• From author’s experience before adding threads and
semaphores to parallelize an existing program, it’s worth to
think if instead the basic algorithm used are compatible with
multicore.

120

IM 2009 - June 2009

Programming for Multicore [2/4]
• When multiple cores are used, efficient memory caching is the way to

improve application performance.

• Hardware CPU caches are rather sophisticated, however they cannot
work optimally without programmer’s assistance.

• Cache coherence can be rather costly if programs invalidate it when not
necessary.

• False sharing (when a system participant attempts to periodically access
data that will never be altered by another party, but that data shares a
cache block with data that is altered, the caching protocol may force the
first participant to reload the whole unit despite a lack of logical necessity)
is just an example of performance degrading due to poor programming.

• Reference
– U. Drepped, What Every Programmer Should Know About Memory,

http://people.redhat.com/drepper/cpumemory.pdf, RedHat 2007.

121

http://people.redhat.com/drepper/cpumemory.pdf
http://people.redhat.com/drepper/cpumemory.pdf

IM 2009 - June 2009 122

Programming for Multicore [3/4]

Incoming
Packets

ThreadThreadThread Thread

Hashtable

Multi-bucket
Lock

Multi-bucket
Lock

Multi-bucket
Lock

Hash Bucket

•Bad Application Design
•Unable to scale
•Too much locking

IM 2009 - June 2009 123

Incoming
Packets

ThreadThreadThread Thread

Hash Table

Incoming
Packets

Incoming
Packets

Incoming
Packets

Hash TableHash TableHash Table

RX
Queue

RX
Queue

RX
Queue

RX
Queue

NIC

Programming for Multicore [4/4]

•Great Application Design
•Exploit Native Multicore
•Fully Lockless Hash

 http://video.google.com/videoplay?docid=2139967204534450862
Lockeless hashes:

http://video.google.com/videoplay?docid=2139967204534450862
http://video.google.com/videoplay?docid=2139967204534450862

IM 2009 - June 2009

Memory Allocation [1/2]
Limit Memory Allocation (if not necessary)

• Multithreaded programs often do not scale because the heap is a
bottleneck.

• When multiple threads simultaneously allocate or deallocate memory
from the allocator, the allocator will serialize them.

• Programs making intensive
use of the allocator actually
slow down as the number
of processors increases.

124

IM 2009 - June 2009

• Programs should avoid, if possible, allocating/deallocations memory too
often and in particular whenever a packet is received.

• In the Linux kernel there are available kernel/driver patches for recycling
skbuff (kernel memory used to store incoming/outgoing packets).

• Using PF_RING (into the driver) for copying packets from the NIC to the
circular buffer without any memory allocation increases the capture
performance (around 10%) and reduces congestion issues.

References:

– A Comparison of Memory Allocators
http://developers.sun.com/solaris/articles/multiproc/multiproc.html

– The Hoard Memory Allocator
http://www.hoard.org/

125

Memory Allocation [2/2]

http://developers.sun.com/solaris/articles/multiproc/multiproc.html
http://developers.sun.com/solaris/articles/multiproc/multiproc.html
http://www.hoard.org
http://www.hoard.org

IM 2009 - June 2009 126

References

• http://www.ntop.org/

• http://www.intel.com/cd/network/connectivity/emea/eng/226275.htm

• http://www.tilera.com

Email: Luca Deri <deri@ntop.org>

http://www.ntop.org/nProbe.html
http://www.ntop.org/nProbe.html
http://www.tilera.com
http://www.tilera.com
mailto:deri@ntop.org
mailto:deri@ntop.org

