
IM 2009 - June 2009 1

Modern Packet Capture and Analysis: 
Multi-Core, Multi-Gigabit, and Beyond

Luca Deri <deri@ntop.org>



IM 2009 - June 2009

Overview

• Accelerating packet capture and analysis: 
PF_RING.

• Layer 7 kernel packet filtering and processing.

• Direct NIC Access: PF_RING DNA.

• Towards 10 Gbit packet capture using commodity 
hardware.

• Strong Multicore NIC: Tilera Tile64

2
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Accelerating Packet Capture 
and Analysis: PF_RING
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Packet Capture: Open Issues

• Monitoring low speed (100 Mbit) networks is already possible using 
commodity hardware and tools based on libpcap.

• Sometimes even at 100 Mbit there is some (severe) packet loss: we 
have to shift from thinking in term of speed to number of packets/
second that can be captured analyzed.

• Problem statement: monitor high speed (1 Gbit and above) 
networks with common PCs (64 bit/66 Mhz PCI/X/Express bus) 
without the need to purchase custom capture cards or 
measurement boxes.

• Challenge: how to improve packet capture performance without 
having to buy dedicated/costly network cards?
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Packet Capture Goals

• Use commodity hardware for capturing packets 
at wire speed with no loss under any traffic 
condition.

• Be able to have spare CPU cycles for analyzing 
packets for various purposes (e.g. traffic 
monitoring and security).

• Enable the creation of software probes that sport 
the same performance of hardware probes at a 
fraction of cost.

5
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PF_RING Internals
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PF_RING Packet Journey [1/2]
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Packet Received Parse Packet (up to layer 4)

Defragment packet (optional)

Added the packet to PF_RING
sockets that potentially match it

(packet and socket device match)

Same as above for PF_RING
socket clusters

Return control to the kernel
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PF_RING Packet Journey [2/2]
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on PF_RING

Back to PF_RING
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PF_RING: Benefits

• It creates a straight path for incoming packets in order to 
make them first-class citizens.

• No need to use custom network cards: any card is 
supported.

• Transparent to applications: legacy applications need to be 
recompiled in order to use it.

• Basic kernel (no low-level programming) knowledge 
required.

• Developers familiar with network applications can 
immediately take advantage of it without having to learn new 
APIs.

10
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PF_RING: Performance Evaluation
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Pkt Size Kpps Mbps % CPU Idle Wire-Speed

250 259.23 518 > 90% Yes

250 462.9 925.9 88% Yes

128 355.1 363.6 86% Yes

128 844.6 864.8 82% Yes

Test setup: pfcount, full packet size, 3.2 GHz Celeron (single-core) - IXIA 400 Traffic Generator
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Socket Packet Ring: 
Packet Capture Evaluation

• Ability to capture over 1.1 Mpps on commodity hardware with 
minimal packet sizes (64 bytes).

• Available for Linux 2.4 and 2.6 kernel series.

• Hardware independent: runs on i386, 64bit, MIPS.

• Available for PCs and embedded devices (e.g. OpenWrt, 
MikroTik routers)
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PF_RING on Embedded Devices

http://nst.sourceforge.net/nst/docs/user/ch09s02.html



IM 2009 - June 2009

PF_RING Socket Clustering [1/2]

• In order to exploit modern computer architectures either 
multiprocessing or threading have to be used.

• Often computer programs are monolithic and hard to split into 
several concurrent and collaborating elements.

• In other cases (proprietary applications) source code is not 
available hence the application cannot be modified and split.

• There are hardware products (e.g. see cPacket’s cTap) that split/
balance network traffic across network hosts. 

• What is lacking at the operating system level is the concept of 
distributing sockets across applications. This is because 
network sockets are proprietary to an application/address-
space.

14
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PF_RING Socket Clustering [2/2]

• Socket clustering is the ability to federate PF_RING sockets similar, 
but opposite, to network interface bonding.

• The idea is simple:
– Run several monitoring applications, each analyzing a portion of the 

overall traffic.
and/or

– Create multithreaded applications that instead of competing for 
packets coming from the same socket, have private per-thread 
sockets.

15
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PF_RING Clustering: Threads
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• Same as clustering with threads, but across address spaces.

• PF_RING allows clustering to be enabled seamlessly both at thread and 
application level.
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PF_RING Clustering: Applications
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PF_RING Clustering: Code Example
if((pd = pfring_open(device, promisc, snaplen, 0)) == NULL) {

    printf("pfring_open error\n");

    return(-1);

  } else {

    u_int32_t version;

    pfring_version(pd, &version);

    printf("Using PF_RING v.%d.%d.%d\n",

           (version & 0xFFFF0000) >> 16,  (version & 0x0000FF00) >> 8,

           version & 0x000000FF);

  }

  if(clusterId > 0)  {

    int rc = pfring_set_cluster(pd, clusterId);

    printf("pfring_set_cluster returned %d\n", rc);

  }

18
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PF_RING Clustering: Summary
• Network traffic balancing policy across socket clusters

– Per-flow (default)

– Round-Robin

• Advantages:
– No locking required when threads are used

– Ability to distribute the load across multiple applications

– Very fast as clustering happens into the kernel.

• Socket clustering has been the first attempt to make PF_RING more multi-
processing/core friendly.

19
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PF_RING: Packet Filtering [1/2]

• PF_RING has addressed the problem of accelerating packet 
capture.

• Packet filtering instead is still based on the “ancient” BPF 
code.

• This means that:

– Each socket can have up to one filter defined.

– The packet needs to be parsed in order to match the filter, 
but the parsing information is not passed to user-space.

– The BPF filter length can change significantly even if the 
filter is slightly changed.

20
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PF_RING: Packet Filtering [2/2]
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# tcpdump -d "udp"

(000) ldh      [12]

(001) jeq      #0x800           jt 2 jf 5

(002) ldb      [23]

(003) jeq      #0x11jt 4 jf 5

(004) ret      #96

(005) ret      #0

# tcpdump -d "udp and port 53"

(000) ldh      [12]

(001) jeq      #0x800           jt 2 jf 12

(002) ldb      [23]

(003) jeq      #0x11jt 4 jf 12

(004) ldh      [20]

(005) jset     #0x1fff          jt 12 jf 6

(006) ldxb     4*([14]&0xf)

(007) ldh      [x + 14]

(008) jeq      #0x35jt 11 jf 9

(009) ldh      [x + 16]

(010) jeq      #0x35jt 11 jf 12

(011) ret      #96

(012) ret      #0
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Beyond BPF Filtering [1/2]

• VoIP and Lawful Interception traffic is usually very little 
compared to the rest of traffic (i.e. there is a lot of incoming 
traffic but very few packets match the filters). 

• Capture starts from filtering signaling protocols and then 
intercepting voice payload.

• BPF-like filtering is not effective (one filter only).

• It is necessary to add/remove filters on the fly with hundred 
active filters.

22
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Beyond BPF Filtering [2/2]

Solution

– Filter packets directly on device drivers (initial release) and 
PF_RING (second release).

– Implement hash/bloom based filtering (limited false 
positives) but not BPF at all.

– Memory effective (doesn’t grow as filters are added).

– Implemented on Linux on Intel GE cards. Great 
performance (virtually no packet loss at 1 Gbit).

– No much difference between PF_RING and driver filtering 
hence the code has been moved to PF_RING.
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Dynamic Bloom Filtering [1/4]
• An empty bloom is a bit array of m bits all set to zero. 

• k hash different functions are used to map a key to an array position 
(0...m-1 hash function range).

• n is the number of elements insert into the dictionary.

• How to add an element: for each k hash function set to 1 the array bit that 
corresponds to the hash value.

• How to test if an element belongs to the set: for each hash function 
calculate the hash element value. The element belongs to the set if and 
only if all the k bits of the hash values are set to 1.

• How to remove an element: fully rebuild the dictionary or use counting 
blooms.

• False positive rate: 

• Optimal number of hash functions: k = (m/n) log(2)

24
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Dynamic Bloom Filtering [2/4]

25

Insert: hash_1(X), hash_2(X)....hash_n(X)

Check for inclusion
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Dynamic Bloom Filtering [3/4]

26

• Ability to specify a thousand different IP packet filters

• Ability to dynamically add/remove filters without having to 
interrupt existing applications.

• Only “precise” filters (e.g. host X and port Y) are supported.

• The filter processing speed and memory being used is 
independent from the number of filters.

• The “false positive rate” instead depends on the filters 
number.
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Dynamic Bloom Filtering [4/4]

 

• Available into PF_RING (in 3.x series up to 3.7.x).

• Ability to set per-socket bloom filters
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PF_RING Packet Parsing [1/2]
• Contrary to BPF that basically does parse packets while filtering them, 

PF_RING filtering requires packet to be parsed first.

• Parsing information is propagated up to the userland.

• The basic PF_RING engine contains parsing up to TCP/UDP.

28

struct pkt_parsing_info {
  /* Core fields (also used by NetFlow) */
  u_int16_t eth_type;   /* Ethernet type */
  u_int16_t vlan_id;    /* VLAN Id or NO_VLAN */
  u_int8_t  l3_proto, ipv4_tos;   /* Layer 3 protocol/TOS */
  u_int32_t ipv4_src, ipv4_dst;   /* IPv4 src/dst IP addresses */
  u_int16_t l4_src_port, l4_dst_port; /* Layer 4 src/dst ports */
  u_int8_t tcp_flags;   /* TCP flags (0 if not available) */
  [...]
};
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PF_RING Packet Parsing [2/2]
• The decision to always parse the packet is motivated as follows:

– Packet parsing is very cheap (in terms of computation) and its slow-down is 
negligible.

– Beside rare exceptions (e.g. for packet-to-disk applications), user space 
applications will need to parse packets.

• PF_RING does not natively include layer-7 packet filtering as this is 
delegated by plugins as shown later in this presentation.

29

struct pfring_pkthdr {
  struct timeval ts;    /* time stamp */
  u_int32_t caplen;     /* length of portion present */
  u_int32_t len;        /* length this packet (off wire) */
  struct pkt_parsing_info parsed_pkt; /* packet parsing info */
  u_int16_t parsed_header_len; /* Extra parsing data before packet */
};Ex
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PF_RING: Bloom Evaluation

30

• Tests performed using a dual Xeon 3.2 GHz CPU 
injecting traffic with an IXIA 400 traffic generator with 
1:256 match rate.

• Packet loss only above 1.8 Mpps (2 x 1 Gbit NICs).
• Ability to specify thousand of filters with no 

performance degradation with respect to a single 
filter (only false positive rate increases).
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Bloom Filters Limitations [1/2]

• Bloom filtering has shown to be a very interesting technology 
for “precise” packet filtering.

• Unfortunately many application require some features that 
cannot be easily supported by blooms:

– port ranges

– negative expressions (not <expression>)

– IP address/mask (where mask != /32)

– in case of match, know what rule(s) matched the filter

31
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Bloom Filters Limitations [2/2]

• Possible workarounds
– Support ranges by calculating the hash on various combinations

• 5-tuple for perfect matching (proto, ip/port src, ip/port dst)

• multiple bloom dictionaries for /32, /24, /16, and /8 networks for 
network match

• Note that as bloom matching is not exact, using a bloom dictionary 
for storing negative values (i.e. for implementing the not) is not a good 
idea. This is because not(false positive) means that a packet might be 
discarded as the filter is not match although this packet passed the 
filter.

• In a nutshell:

– Bloom filters are a fantastic technology for exact packet matching

– PF_RING must also offer support for ‘partial’ filtering.

32
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Extended PF_RING Filters [1/2]

The author has made a survey of network applications and created a list of 
desirable features, that have then been implemented into PF_RING:

• “Wildcard-ed” filters (e.g. TCP and port 80). Each rule has a rule-id and 
rules are evaluated according to it.

• Precise 5-tuple filters (VLAN, protocol, IP src/dst, port src/dst).

• Precise filters (e.g. best match) have priority over (e.g. generic) wilcard-ed 
filters.

• Support of filter ranges (IP and port ranges) for reducing the number of 
filters.

• Support of mono or bi-directional filters, yet for reducing number of filters.

• Ability to filter both on standard 5-tuple fields and on L7 fields (e.g. HTTP 
method=GET).

33
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Extended PF_RING Filters [2/2]

• Parsing information (including L7 information) need to be returned to 
user-space (i.e. do not parse the packet twice) and to all PF_RING 
components that for various reasons (e.g. due to socket clustering) 
need to have accessed to this information.

• Per-filter policy in case of match:

– Stop filtering rule evaluation and drop/forward packet to user-space.

– Update filtering rule status (e.g. statistics) and stop/continue rule 
evaluation without  forwarding packet to user-space.

– Execute action and continue rule evaluation (via PF_RING plugins).

• Filtering rules can pass to user-space both captured packets or 
statistics/packet digests (this for those apps who need pre-computed 
values and not just raw packets).

34
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PF_RING: Exact Filters [1/2]
• Exact filters (called hash filtering rules) are used whenever all the 

filtering criteria are present in the filter.

• Exact filters are stored in a hash table whose
key is calculated on the filter values.

• When a packet is received, the key is calculated
and searched into the filter hash.

35

typedef struct {
  u_int16_t vlan_id;
  u_int8_t  proto;
  u_int32_t host_peer_a, host_peer_b;
  u_int16_t port_peer_a, port_peer_b;

  [...]
} hash_filtering_rule;
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• Filters can have a rule associated to it such as:

– Pass packet to userland in case of match.

– Drop packet in case of match.

– Execute the action associated with the packet.

• Actions are implemented into plugins. Typical action include:
– Add/delete filtering rule

– Increment specific traffic counters.

– Interact with the Linux kernel for performing specific actions.

36

typedef struct { 
  [...]

  rule_action_behaviour rule_action; /* What to do in case of match */
  filtering_rule_plugin_action plugin_action;
  unsigned long jiffies_last_match;
} hash_filtering_rule;

PF_RING: Exact Filters [2/2]
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PF_RING: Wildcard-ed Filters [1/2]
• This filter family has to be used whenever:

– Not all filter elements are set to a specific value.

– The filter contains value ranges.

• Filters are bi-directional (i.e. they are checked on both source and 
destinations fields.

• Filtering rules have a unique (in the PF_RING socket) numeric identifier that 
also identifies the rule evaluation order.

37

typedef struct {
  u_int8_t  proto;       /* Use 0 for 'any' protocol */
  u_int16_t vlan_id;     /* Use '0' for any vlan */
  u_int32_t host_low, host_high;     /* User '0' for any host. This is applied to both source
    and destination. */
  u_int16_t port_low, port_high;     /* All ports between port_low...port_high   
    0 means 'any' port. This is applied to both source   
    and destination. This means that         
    (proto, sip, sport, dip, dport) matches the rule if  
    one in "sip & sport", "sip & dport" "dip & sport"    
    match. */
} filtering_rule_core_fields;
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PF_RING: Wildcard-ed Filters [2/2]
• Filters can optionally contain some extended fields used for:

– Matching packet payload

– Implementing more complex packet filtering by means of plugins (see later).

• User-space PF_RING library allows plugins to specify some parameters to 
be passed to filters (e.g. pass only HTTP packets with method POST).

38

typedef struct {
  char payload_pattern[32];         /* If strlen(payload_pattern) > 0, the packet payload    
   must match the specified pattern */
  u_int16_t filter_plugin_id;       /* If > 0 identifies a plugin to which the data structure 
   below will be passed for matching */
  char      filter_plugin_data[FILTER_PLUGIN_DATA_LEN];
/* Opaque data structure that is interpreted by the       
   specified plugin and that specifies a filtering       
   criteria to be checked for match. Usually this data   
   is re-casted to a more meaningful data structure       
*/
} filtering_rule_extended_fields;
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Combining Filtering with Balancing [1/4]

• PF_RING clustering allows socket to be grouped so that they 
be used for effectively sharing load across threads and 
processes.

• Clustering works at PF_RING socket level and it’s basically a 
mechanism for balancing traffic across packet consumers.

• PF_RING filtering rules combine the best of these 
technologies by implementing traffic balancing for those 
packets that match a certain filter.

• The idea is to have the same filter specified for various 
sockets that are the grouped together. Packets matching the 
filter are then forwarded only to one of the sockets.

39
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Combining Filtering with Balancing [2/4]

Incoming Packet

Parse packet
(once for all sockets/filters)

Return control to Caller

Loop through the filters

Loop through the PF_RING sockets

Match found ?

Balance
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• Filtered packets are balanced across sockets as follows

41

Combining Filtering with Balancing [3/4]

typedef struct {
  [...] 
  u_int8_t balance_id, balance_pool; /* If balance_pool > 0, then pass the 
    packet to PF_RING caller only if     
    (hash(proto, sip, sport, dip, dport) %
    balance_pool) = balance_id */  
  [...]
} filtering_rule;

Filter match found

Compute balance Value
hash(proto, sip, sport, dip, dport) % balance_pool

Is balance Value == balance_id ?
(i.e. per-flow balancing)

Pass the Packet Drop the Packet
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• Using balancing for distributing load across applications/threads is very 
effective for exploiting multi-processor/core architectures.

42

Combining Filtering with Balancing [4/4]
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PF_RING Packet Reflection [1/3]
• Often, monitoring applications need to forward filtered packets to remote 

systems or applications.

• Traffic balancers for instance are basically a “filter & forward” application.

• Moving packets from the kernel to userland and then back to the kernel 
(for packet forwarding) is not very efficient as:

– Too many actors are involved.

– The packet journey is definitively too long.

• PF_RING packet reflection is a way to forward packets that matched a 
certain filter towards a remote destination on a specific NIC (that can be 
different from the one on which the packet has been received).

• Packet reflection is configured from userland at startup.

• All forwarding is performed inside the kernel without any application 
intervention at all.

43
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PF_RING Packet Reflection [2/3]
 /* open devices */
  if((pd = pfring_open(in_dev, promisc, 1500, 0)) == NULL)
  {
    printf("pfring_open error for %s\n", in_dev);
    return -1;
  }  else
    pfring_set_application_name(pd, "forwarder");

  if ((td = pfring_open(out_dev, promisc, 1500, 0)) == NULL) {
    printf("pfring_open error for %s\n", out_dev);
    return -1;
  } else
    pfring_set_application_name(td, "forwarder");

  /* set reflector */
  if (pfring_set_reflector(pd, out_dev) != 0)
  {
    printf("pfring_set_reflector error for %s\n", out_dev);
    return -1;
  }

  /* Enable rings */
  pfring_enable_ring(pd);
  pfring_enable_ring(td);

  while(1) sleep(60); /* Loop forever */
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• PF_RING packet reflection allows easily and efficiently to implement:

– Filtering packet balancers

– (Filtering) Network bridges

• In a nutshell this technique allows to easily implement the “divide and 
conquer” principle and to combine it with techniques just presented.

45

PF_RING Packet Reflection [3/3]
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PF_RING Kernel Plugins [1/3]
• Implementing into the kernel is usually more efficient than doing the 

same in userland because:
– Packets do not need to travel from kernel to userland.

– If a packet is supposed to be received by multiple applications it is not 
duplicated on the various sockets, but processed once into the kernel

• For packet filtering, it is important to filter as low as possible in the 
networking stack, as this prevents packet not matching the filter to be 
propagated and the discarded later on.

• PF_RING plugins allow developers to code small software modules that 
are executed by PF_RING when incoming packets are received.

• Plugins can be loaded and unloaded dynamically via insmod/rmmod 
commands.

46
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• Each plugin need to declare a data structure according to the format 
below.

• The various pfring_plugin_* variables are pointers to functions that are 
called by PF_RING when:

– A packet has to be filtered.

– An incoming packet has been received and needs to be processed.

– A userland application wants to know stats about this plugin.

– A filtering rule will be removed and the memory allocated by the plugin needs 
to be released.

47

PF_RING Kernel Plugins [2/3]

struct pfring_plugin_registration {
  u_int16_t plugin_id;
  char name[16];          /* Unique plugin name (e.g. sip, udp) */
  char description[64];   /* Short plugin description */
  plugin_filter_skb    pfring_plugin_filter_skb; /* Filter skb: 1=match, 0=no match */
  plugin_handle_skb    pfring_plugin_handle_skb;
  plugin_get_stats     pfring_plugin_get_stats;
  plugin_free_ring_mem pfring_plugin_free_ring_mem;
};
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PF_RING Kernel Plugins [3/3]
• Plugins are associated with filtering rules and are triggered whenever a 

packet matches the rule.

• If the plugin has a filter function, then this function is called in order to 
check whether a packet passing the header filter will also pass other 
criteria. For instance:

– ‘tcp and port 80’ is a rule filter used to select http traffic

– The HTTP plugin can check the packet payload (via DPI) to verify that the 
packet is really http and it’s not another protocol that hides itself on the http 
port. 

• In order to perform complex checks, rules need to be stateful hence to 
allocate some memory, private to the plugin, that is used to keep the 
state.

• PF_RING delegates to the plugin the duty of managing this opaque 
memory that is released by PF_RING when a rule is deleted, by calling the 
plugin callback. 

48
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Efficient Layer 7
Packet Analysis

49
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Using PF_RING Filters: HTTP Monitoring [1/5]
• Goal

– Passively produce HTTP traffic logs similar to those produced by Apache/
Squid/W3C.

• Solution
– Implement plugin that filters HTTP traffic.

– Forward to userspace only those packets containing HTTP requests for all 
known methods (e.g. GET, POST, HEAD) and responses (e.g. HTTP 200 OK).

– All other HTTP packets beside those listed above are filtered and not returned 
to userspace.

– HTTP response length is computed based on the “Content-Length” HTTP 
response header attribute.

50



static int __init http_plugin_init(void)
{
  int rc;

  printk("Welcome to HTTP plugin for PF_RING\n");

  reg.plugin_id    = HTTP_PLUGIN_ID;
  reg.pfring_plugin_filter_skb = http_plugin_plugin_filter_skb;
  reg.pfring_plugin_handle_skb = NULL;
  reg.pfring_plugin_get_stats  = NULL;

  snprintf(reg.name, sizeof(reg.name)-1, "http");
  snprintf(reg.description, sizeof(reg.description)-1, "HTTP protocol analyzer");

  rc = do_register_pfring_plugin(&reg);

  printk("HTTP plugin registered [id=%d][rc=%d]\n", reg.plugin_id, rc);

  return(0);
}
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static int http_plugin_plugin_filter_skb(filtering_rule_element *rule,
     struct pfring_pkthdr *hdr, struct sk_buff *skb,
     struct parse_buffer **parse_memory)
{
  struct http_filter *rule_filter = (struct http_filter*)rule-
>rule.extended_fields.filter_plugin_data;
  struct http_parse *packet_parsed_filter;

  if((*parse_memory) == NULL) {
    /* Allocate (contiguous) parsing information memory */
    (*parse_memory) = kmalloc(sizeof(struct parse_buffer*), GFP_KERNEL);
    if(*parse_memory) {
      (*parse_memory)->mem_len = sizeof(struct http_parse);
      (*parse_memory)->mem = kcalloc(1, (*parse_memory)->mem_len, GFP_KERNEL);
      if((*parse_memory)->mem == NULL) return(0); /* no match */
    }

    packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);
    parse_http_packet(packet_parsed_filter, hdr, skb);
  } else {
    /* Packet already parsed: multiple HTTP rules, parse packet once */
    packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);
  }

  return((rule_filter->the_method & packet_parsed_filter->the_method) ? 1 /* match */ : 0);
}
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static void parse_http_packet(struct http_parse *packet_parsed,
      struct pfring_pkthdr *hdr,
      struct sk_buff *skb) {
  u_int offset = hdr->parsed_pkt.pkt_detail.offset.payload_offset; /* Use PF_RING Parsing */
  char *payload = &skb->data[offset];

  /* Fill PF_RING parsing information datastructure just allocated */
  if((hdr->caplen > offset) && !memcmp(payload, "OPTIONS", 7))      packet_parsed->the_method = method_options;
  else if((hdr->caplen > offset) && !memcmp(payload, "GET", 3))       packet_parsed->the_method = method_get;
  else if((hdr->caplen > offset) && !memcmp(payload, "HEAD", 4))    packet_parsed->the_method = method_head;
  else if((hdr->caplen > offset) && !memcmp(payload, "POST", 4))    packet_parsed->the_method = method_post;
  else if((hdr->caplen > offset) && !memcmp(payload, "PUT", 3))      packet_parsed->the_method = method_put;
  else if((hdr->caplen > offset) && !memcmp(payload, "DELETE", 6))  packet_parsed->the_method = method_delete;
  else if((hdr->caplen > offset) && !memcmp(payload, "TRACE", 5))   packet_parsed->the_method = method_trace;
  else if((hdr->caplen > offset) && !memcmp(payload, "CONNECT", 7)) packet_parsed->the_method = method_connect;
  else if((hdr->caplen > offset) && !memcmp(payload, "HTTP ", 4))   packet_parsed->the_method = 
method_http_status_code;
  else packet_parsed->the_method = method_other;
}
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  if((pd = pfring_open(device, promisc, 0)) == NULL) { printf("pfring_open error\n"); return(-1); }

  pfring_toggle_filtering_policy(pd, 0); /* Default to drop */

  memset(&rule, 0, sizeof(rule));
  rule.rule_id = 5, rule.rule_action = forward_packet_and_stop_rule_evaluation;
  rule.core_fields.proto =  6 /* tcp */;
  rule.core_fields.port_low = 80, rule.core_fields.port_high = 80;
  rule.plugin_action.plugin_id = HTTP_PLUGIN_ID; /* HTTP plugin */
  rule.extended_fields.filter_plugin_id = HTTP_PLUGIN_ID; /* Enable packet parsing/filtering */
  filter = (struct http_filter*)rule.extended_fields.filter_plugin_data;
  filter->the_method = method_get | method_http_status_code;

   if(pfring_add_filtering_rule(pd, &rule) < 0) { 
printf("pfring_add_filtering_rule() failed\n");
return(-1); }

   while(1) {
    u_char buffer[2048];
    struct pfring_pkthdr hdr;

    if(pfring_recv(pd, (char*)buffer, sizeof(buffer), &hdr, 1) > 0)
      dummyProcesssPacket(&hdr, buffer);
  }

  pfring_close(pd);
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YouTube Monitoring [1/2]

• YouTube monitoring is an extension of the HTTP plugin.

• HTTP is used by YouTube to transport videos usually encoded in H.
264 or Flash Video.

• The HTTP plugin can be used for monitoring, from the network 
point of view, the YouTube traffic and detecting whether the 
network quality is adequate or if the user should have experienced 
unstable playback. 

• Video streams are tracked by checking the URL (e.g. GET /
get_video?video_id=...) and the server host (www.youtube.com).

• Whenever a YouTube video stream is detected, the HTTP plugin 
adds an exact matching rule on the hash, used to track the 
stream, with the YouTube plugin specified as rule action.
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YouTube Monitoring [2/2]
• The YouTube plugin is able to measure some stream statistics such as 

throughput, jitter, bandwidth used.

• When a stream is over, the plugin return to userland a packet with the 
stream statistics.

• Note that all stream packets are not returned to userland, but just the 
statistics, that contributes to reduce load on the probe and improve 
performance.
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struct youtube_http_stats {
  u_int32_t initialTimestamp, lastTimestamp, lastSample; /* Packet Timestamps [jiffies] */
  struct timeval initial_tv;
  u_int32_t tot_pkts, tot_bytes, cur_bytes;
  u_int32_t num_samples;
  u_int8_t signaling_stream; /* 1=signaling, 2=real video stream */
  char url[URL_LEN];
  char video_id[VIDEO_ID_LEN], video_playback_id[VIDEO_ID_LEN];
  u_int32_t min_thpt, avg_thpt, max_thpt;       /* bps */
  u_int32_t min_jitter, avg_jitter, max_jitter; /* jiffies */
  u_int32_t duration_ms;
  char content_type[CONTENT_TYPE_LEN];
   u_int32_t tot_jitter, num_jitter_samples;
};
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Advanced PF_RING Filtering: NetFlow [1/5]
• Goal

– Using PF_RING for packet capture and processing in user space, the target 
performance (just packet capture, not flow generation) is:
• Standard Intel driver: 550 Mpps

• Enhanced Intel driver (see later in this presentation): 950 Mpps 

– Ability to compute NetFlow/IPFIX flows at wire speed at 1 Gbit regardless of 
the CPU being used and packet size.

• Solution

– Use PF_RING plugin to “pack” packets belonging to the same flow. This acts 
as level-1 NetFlow cache.

– Periodically (e.g. once every 1-5 sec) flush cache flows by forwarding packet 
digest to userspace via PF_RING.

– Forwarded packets contains a header, used for computing flows, but not the 
packet as this is unnecessary. Each PF_RING slot can host several packets/
flows if needed.
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Advanced PF_RING Filtering: NetFlow [2/5]
• Each PF_RING cache entry contains exactly the same information 

necessary to generate flows.

• NetFlow cache is walked (for searching expired flows) by user-space 
application through a dummy call to pfring_purge_idle_hash_rules() 
that allows to keep kernel code simple as there’s no need to spawn a 
kernel thread for walking the cache.
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struct pkt_aggregation_info {
  u_int32_t num_pkts, num_bytes;
  struct timeval first_seen, last_seen;
};

struct netflow_l1_pf_ring_packet_cache {
  /* Standard PF_RING fields */
  u_int16_t eth_type;   /* Ethernet type */
  u_int16_t vlan_id;    /* VLAN Id or NO_VLAN */
  u_int8_t  l3_proto, ipv4_tos;   /* Layer 3 protocol/TOS */
  u_int32_t ipv4_src, ipv4_dst;   /* IPv4 src/dst IP addresses */
  u_int16_t l4_src_port, l4_dst_port; /* Layer 4 src/dst ports */
  u_int8_t tcp_flags;   /* TCP flags (0 if not available) */

    struct pkt_aggregation_info aggregation; /* NetFlow */
};

Device Driver

Packet
Cache

nProbe

DMA

PF_RING

Userland
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Advanced PF_RING Filtering: NetFlow [3/5]
• The PF_RING cache has (by default) 4096 entries and it is implemented as 

an array (i.e. hash buckets are not a linked list) for keeping code simple.

• User-space application can modify cache policy/size when PF_RING is 
instrumented.

• The plugin is activated with a wildcard-ed rule of ‘any’ so that any IP 
packet matching the filter can be computed.

• Modus Operandi
– When an incoming packet is received, PF_RING parses it, and then it is passes 

to the plugin.

– Using parsing information the packet is searched in the cache
• If found the cache entry is updated

• if not found the packet is added to the cache (i.e. a filtering rule is added). In case 
the cache slot where the packet is supposed to be stored is already occupied, the 
slot is flushed (i.e. the entry is forwarded to the userland) and the packet is 
accommodated.
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Advanced PF_RING Filtering: NetFlow [4/5]
• Using the kernel cache, packets are “merged” in kernel without any 

userland application intervention.

• In-kernel packet merging does not require any memory/packet copy and 
it’s very fast as the packet is already in the CPU cache (thanks to Intel RSS/
DCA, see later in this presentation).

• The “merging rate” increases (in efficiency) with flows speed. In other terms 
the cache is more efficient as flows are faster. Example:
– 1 Gbit (1.48 Mpps) flow with minimal packets.

– Kernel cache duration of 3 sec (i.e. flows older than this duration are exported)

– “Vanilla” PF_RING: in 3 sec the application receives 4.44 Million packets (3 x 
1.48 Mpps).

– In-kernel cache generates 1 flow for the same amount of traffic.
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Advanced PF_RING Filtering: NetFlow [5/5]
• Performance Evaluation

– Testbed: 1.86 GHz Intel CoreDuo (cost < 100 Euro), IXIA 400 Traffic generator, 
minimal packet size (64 bytes), Intel e1000 driver, Full 1 Gbit stream, with packet 
rotation, nProbe (home grown NetFlow probe) used as probe.

• Vanilla PF_RING + nProbe: 100% CPU, ~600 Kpps processed with no loss.

• Kernel NetFlow PF_RING plugin + nProbe: ~60-70% CPU used, wire-rate 
with no packet-loss.

• Comparison:

– spare CPU cycles compared to vanilla PF_RING.

– wire-speed.

– not suitable (yet) for generating flows with packet payload information
(e.g. HTTP URL).
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Dynamic PF_RING Filtering: VoIP [1/6]
• Goal

– Track VoIP (SIP+RTP) calls at any rate on a Gbit link using commodity 
hardware.

– Track RTP streams and calculate call quality information such as jitter, packet 
loss,without having to handle packets in userland.

• Solution

– Code a PF_RING plugin for tracking SIP methods and filter-out:
• Uninteresting (e.g. SIP Options) SIP methods

• Not well-formed SIP packets

• Dummy/self calls (i.e. calls used to keep the line open but that do not result in a 
real call).

– Code a RTP plugin for computing in-kernel call statistics (no pkt forwarding).

– The SIP plugin adds/removes a precise RTP PF_RING filtering rule whenever a 
call starts/ends.
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Dynamic PF_RING Filtering: VoIP [2/6]
– Before removing the RTP rule though PF_RING library calls, call information is 

read and then the rule is deleted.

– Keeping the call state in userland and do not forwarding RTP packets, allows 
the code of VoIP monitoring applications to be greatly simplified.

– Furthermore as SIP packets are very few compared to RTP packets, the 
outcome is that most packets are not forwarded to userland contributing to 
reduce the overall system load.
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Dynamic PF_RING Filtering: VoIP [3/6]
• SIP Plugin

– It allows to set filters based on SIP fields (e.g. From, To, Via, CallID)

– Some fields are not parsed but the plugin returns an offset inside the SIP 
packet (e.g. SDP offset, used to find out the IP:port that will be used for 
carrying the RTP/RTCP streams).

– Forwarded packets contain parsing information in addition to SIP payload.

• RTP Plugin
– It tracks RTP (mono/by-directional) flows.

– The following, per-flow, statistics are computed: jitter, packet loss, malformed 
packets, out of order, transit time, max packet delta.

– Developers can decide not to forward packets (this is the default behavior) or 
to forward them (usually not needed unless activities like lawful interception 
need to be carried on).
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Dynamic PF_RING Filtering: VoIP [4/6]
• Validation

– A SIP test tool and traffic generator (sipp) is used to create synthetic SIP/RTP 
traffic.

– A test application has been developed: it receives SIP packets (signaling) and 
based on them it computes RTP stats.

– A traffic generator (IXIA 400) is used to generate noise in the line and fill it up. 
As RTP packets are 100 bytes in average, all tests are run with 128 bytes 
packets.

– The test code runs on a cheap single-core Celeron 3.2 GHz (cost < 40 Euro).

– In order to evaluate the speed gain due to PF_RING kernel modules, the same 
test application code is tested:
• Forwarding SIP/RTP packets to userland without exploiting kernel modules (i.e. the 

code uses the standard PF_RING).

• RTP packets are not forwarded, SIP packets are parsed/filtered in kernel. 
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Dynamic PF_RING Filtering: VoIP [5/6]
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Dynamic PF_RING Filtering: VoIP [6/6]
• Validation Evaluation

– In-kernel acceleration has demonstrated that until 40K rules, kernel plugins 
are faster than a dummy application that simply captures packets without any 
processing.

– On a Gbit link it is possible to have up to ~10K concurrent calls with G.711 (872 
Mbit) or ~30K calls with G.729 (936 Mbit). This means that with the current 
setup and a slow processor, it is basically possible to monitor a medium/
large ISP.

• Future Work Items

– The plugins are currently used as building blocks glued together by means of 
the user-space applications.

– The SIP plugin can dynamically add/remove RTP rules, so that it is possible to 
avoid (even for SIP) packet forwarding and send to userland just VoIP statistics 
for even better performance figures. 
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PF_RING Content Inspection

• PF_RING allows filtering to be combined with packet 
inspection.

• Ability to (in kernel) search multiple string patterns 
into packet payload.

• Algorithm based on Aho-Corasick work.
• Ideal for fields like lawful interception and security 

(including IDSs).
• Major performance improvement with respect to 

conventional pcap-based applications.
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L7 Analysis: Summary

• The use of kernel plugins allows packets to have a short journey 
towards the application.

• In-kernel processing is very efficient and it avoids the bottleneck 
of several userland application threads competing for packets.

• As PF_RING requires minimal locking (when the filtering rule is 
accessed and updated), packets are processed concurrently 
without any intervention from userland applications.

• As the Linux kernel concurrently fetches packets from adapters, 
this is a simple way to exploit multi-processing/core without 
having to code specific (multithreaded) userland applications 
and serialize packets on (PF_RING) sockets.
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Direct Access to NICs
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Direct NIC Access: Introduction
• Commercial accelerated NICs are accelerated either using ASIC (rare) or 

FPGAs (often) chips.

• Accelerators improve common activities such as packet filtering and are 
also responsible of pushing packets to memory with very limited (< 1%) 
load on the main CPU.

• Applications access packets directly without any kernel intervention at all.

• A kernel-mapped DMA memory allows the application to manipulate 
card registers and to read packets from this memory where incoming 
packets are copied by the hardware accelerators.

• Cards falling in this category include:

– Endace DAG

– Napatech

– NetFPGA
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Direct NIC Access: Comparison [1/2]
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Direct NIC Access: Comparison [2/2]
• The reason why accelerated cards are so efficient are:

– The FPGA polls packets as fast as possible without any intervention from 
the main CPU. In Linux the main CPU has to periodically read packets 
through NAPI from the NIC.

– Received packets are copied on a pre-allocated large memory buffer so 
no per-packet allocation/deallocation is necessary at all, as it happens in 
vanilla Linux.

– Similar to PF_RING, packets are read from circular buffer without any 
kernel interaction (beside packet polling).

• Limitations

– As applications access packets directly, if they improperly manipulate 
card’s memory the whole system might crash.

– FPGA filtering is very limited and not as rich as PF_RING.

– Contrary to PF_RING, only  one application at time can read packets from  
the ring.
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nCap Features

 

Packet 
Capture

Acceleration

Wire Speed

Packet 
Capture

Number of 
Applications

per Adapter

Standard TCP/IP Stack

with accelerated driver

Limited No Unlimited

PF_RING

with accelerated driver

Great Almost Unlimited

Straight Capture Extreme Yes One
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nCap Internals

• nCap maps at userland the card registers and memory.

• The card is accessed by means of a device /dev/ncap/ethX

• If the device is closed it behaves as a “normal” NIC.

• When the device is open, it is completely controlled by 

userland the application.

• A packet is sent by copying it to the TX ring.

• A packet is received by reading it from the RX ring.

• Interrupts are disabled unless the userland application wait 

for packets (poll()).

• On NIC packet filtering (MAC Address/VLAN only).
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nCap Evaluation

• It currently supports Intel 1 GE copper/fiber cards.

• GE Wire speed (1.48 Mpps) full packet capture starting 
from P4 HT 3 GHz.

• Better results (multiple NICs on the same PC) can be 
achieved using Opteron machines (HyperTransport 
makes the difference).

• The nCap speed is limited by the speed applications 
fetch packets from the NIC, and the PCI bus.
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nCap Comparison (1 Gbit)

Source Cesnet (http://luca.ntop.org/ncap-evaluation.pdf)

Maximum

Packet Loss

at Wire Speed

Estimated

Card

Price

Manufacturer

DAG 0% > 5-7 K Euro Endace.com

nCap 0.8% 100 Euro

Combo 6 (Xilinx) 5% > 7-10 K Euro Liberouter.com
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Further nCap Features

• High-speed traffic generation: cheap trafgen as 
fast as a hardware trafgen (>> 25’000 Euro)

• Precise packet generation.
• Precise packet time-stamping on transmission 

(no kernel interaction): suitable for precise active 
monitoring.

• Enhanced driver currently supports Intel cards
(1 Gb Ethernet).
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Beyond PF_RING
• PF_RING has shown to be an excellent packet capture acceleration 

technology compared to vanilla Linux.

• It has reduced the cost of packet capture and forward to userland.

• However it has some design limitations as it requires two actors for 
capturing packets that result in sub-optimal performance:

– kernel: copy packet from NIC to ring.

– userland: read packet from ring and process it.

• PF_RING kernel modules demonstrated that limiting packet processing in 
user-space by moving it to kernel results in major performance 
improvements.

• A possible solution is to map a NIC to user-space and prevent the kernel 
from using it.
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PF_RING DNA (Direct NIC Access)

• PF_RING DNA is an extension for PF_RING that allows NICs to be 
accessed in direct mode fully bypassing Linux NAPI.

• Based on the lessons learnt while developing nCap, DNA is a 
technology developed in clean-room that has been designed to 
be NIC-neutral in order to allows various NICs to be supported.

• The NIC mapping is driver dependent hence it requires some 
driver modifications in order to:
– Disable NAPI when the NIC is accessed in DNA mode.

– Contiguously allocate RX card’s memory in one shot (and not per 
packet).

– Register the NIC with PF_RING so the card is accessed seamlessly 
from PF_RING applications without the need to know the NIC internals 
and its memory layout.
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PF_RING DNA (De)Registration
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/* Register with PF_RING */
do_ring_dna_device_handler(add_device_mapping,
   adapter->tnapi.dma_mem.packet_memory,
   adapter->tnapi.dma_mem.packet_num_slots,
   adapter->tnapi.dma_mem.packet_slot_len,
   adapter->tnapi.dma_mem.tot_packet_memory,
   rx_ring->desc,
   rx_ring->count, /* # of items */
   sizeof(struct e1000_rx_desc),
   rx_ring->size, /* tot len (bytes) */
   0, /* Channel Id */
   (void*)netdev->mem_start,
   netdev->mem_end,
   netdev,
   intel_e1000,
   &adapter->tnapi.packet_waitqueue,
   &adapter->tnapi.interrupt_received,
   (void*)adapter,
   wait_packet_function_ptr);
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PF_RING DNA: Current Status
• As of today, DNA is available for Intel 1 Gbit NICs (e1000 driver).

• it is planned to support more modern 1G NICs later this year.

• Any modern dual-core (or better) system can achieve wire rate packet 
capture at any packet size using DNA.

• A userland library used to manipulate card registers has been integrated 
into PF_RING.

• Applications do not need to do anything different from standard PF_RING 
with the exception that the ring memory has to be open using 
pfring_open_dna() instead of the standard pfring_open().

• When an application opens the adapter in DNA mode, other applications 
using the same adapter in non-DNA mode will stop receiving packets 
until the application quits.
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Towards 10 Gbit Packet Capture 
Using Commodity Hardware
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Enhanced NIC Drivers [1/4]

• The current trend in computer architecture is towards multi-core systems.

• Currently 4-core CPUs are relatively cheap and rather common on the 
market. Intel announced Xeon Nehalem-EX with 16 threads (8 cores) for 
late 2009. The core rush is not yet over.

• Exploiting multi-core in userland applications is relatively simple by using 
threads.

• Exploiting multi-core in kernel networking code is much more complex.

• Linux kernel networking drivers are single-threaded and the model is still 
the same since many years.

• It’s not possible to achieve good networking performance unless NIC 
drivers are also accelerated and exploit multi-core.
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Enhanced NIC Drivers [2/4]

Intel has recently introduced a few innovations in the Xeon 5000 chipset 
series that have been designed to accelerate networking applications:

• I/O Acceleration Technology (I/OAT)

– Direct Cache Access (DCA) asynchronously move packets from NIC directly on 
CPU’s cache in DMA.

– Multiple TX/RX queues (one per core) that improve system throughput and 
utilization.

— MSI-X, low latency interrupts and load balancing across multiple RX queues.

— RSS (Receive-Side Scaling) balances (network flow affinity) packets across RX 
queue/cores.

— Low-latency with adaptive and flexible interrupt moderation.

In a nutshell: increase performance by distributing workloads across available CPU 
cores.
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Enhanced NIC Drivers [3/4]
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Enhanced NIC Drivers: Linux NAPI [4/4]
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Linux NAPI Limitations [1/2]
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Linux NAPI Limitations [2/2]

• Multiple-RX queues are not fully exploited by Linux as NAPI polls 
them in sequence and not concurrently

• Interrupts are enabled/disabled globally (i.e. for all queues at the 
same time) whereas they should be managed queue-per-queue 
as not all queues have the same amount of traffic (it depends on 
how balance-able is the ingress traffic).

• Original queue index (that can be used as flow identifier) is lost 
when the packet is propagated inside the kernel and then to 
userland.

• Userland applications see the NIC as a single entity and not as a 
collection of queues as it should be. This is a problem as the 
software could take advantage of multiple queues by avoiding 
threads competing for incoming packets all coming from the same 
NIC but from different queues.
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Example of Multi-Queue NIC Statistics
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# ethtool -S eth5
NIC statistics:
     rx_packets: 161216
     tx_packets: 0
     rx_bytes: 11606251
     tx_bytes: 0
     lsc_int: 1
     tx_busy: 0
     non_eop_descs: 0
     rx_errors: 0
     tx_errors: 0
     rx_dropped: 0
     tx_dropped: 0
     multicast: 4
     broadcast: 1
     rx_no_buffer_count: 2
     collisions: 0
     rx_over_errors: 0
     rx_crc_errors: 0
     rx_frame_errors: 0
     rx_fifo_errors: 0
     rx_missed_errors: 0
     tx_aborted_errors: 0
     tx_carrier_errors: 0
     tx_fifo_errors: 0
    

     tx_heartbeat_errors: 0
     tx_timeout_count: 0
     tx_restart_queue: 0
     rx_long_length_errors: 0
     rx_short_length_errors: 0
     tx_tcp4_seg_ctxt: 0
     tx_tcp6_seg_ctxt: 0
     tx_flow_control_xon: 0
     rx_flow_control_xon: 0
     tx_flow_control_xoff: 0
     rx_flow_control_xoff: 0
     rx_csum_offload_good: 153902
     rx_csum_offload_errors: 79
     tx_csum_offload_ctxt: 0
     rx_header_split: 73914
     low_latency_interrupt: 0
     alloc_rx_page_failed: 0
     alloc_rx_buff_failed: 0
     lro_flushed: 0
     lro_coal: 0
     tx_queue_0_packets: 0
     tx_queue_0_bytes: 0
     rx_queue_0_packets: 79589
     rx_queue_0_bytes: 5721731
     rx_queue_1_packets: 81627
     rx_queue_1_bytes: 5884520
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Memory Allocation Life Cycle [1/5]
• Incoming packets are stored into kernel’s memory that has been 

previously allocated by the driver.

• As soon that a packet is received, the NIC NPU (Network Process Unit) 
checks if there’s an empty slot and if so it copies the packet in the slot.

• The slot is removed from the RX buffer and propagated through the 
kernel.

• A new bucket is allocated and places on the same position of the old slot.
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• The consequence of this allocation policy is that:
– Every new packet requires one slow allocation (and later-on a free).

– As the traffic rate increases, increasing allocations/free will happen.

– In particular at 10 Gbit, if there’s a traffic spike or a traffic shot, the system 
may run out of memory as incoming packets:
• require memory hence the memory allocator does its best to allocate new 

slots.

• are stuck in the network kernel queue because the packet consumers cannot 
keep-up with the ingress traffic rate.

– When the system runs in low memory it tries to free cached memory in 
order to free some space.

– Unfortunately when the ingress rate is very high, the memory recover 
process does not have enough time hence the system runs out of 
memory and the result is that Linux’s OOM (Out Of Memory) killer has to 
kill some processes in order to recover some memory.
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Memory Allocation Life Cycle [2/5]
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Memory Allocation Life Cycle [3/5]
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  if(rx_desc->status & E1000_RXD_STAT_DD) {
       /* A packet has been received */
#if defined (CONFIG_RING) || defined(CONFIG_RING_MODULE)
          handle_ring_skb ring_handler = get_skb_ring_handler();

          if(ring_handler && adapter->soncap.soncap_enabled) {
            ring_handler(skb, 0, 1, (hash_value % MAX_NUM_CHANNELS));
          } else {
#endif

[.....]
              if (++i == rx_ring->count) i = 0;
              next_rxd = E1000_RX_DESC(*rx_ring, i);
              prefetch(next_rxd);
              next_buffer = &rx_ring->buffer_info[i];
              cleaned = TRUE;
              cleaned_count++;
              pci_unmap_single(pdev, buffer_info->dma, PAGE_SIZE, PCI_DMA_FROMDEVICE);
              [.....]
              skb = netdev_alloc_skb(netdev, bufsz); 
              buffer_info->dma = pci_map_single(pdev,
                                                skb->data,
                                                adapter->rx_buffer_len,
                                                PCI_DMA_FROMDEVICE);
              [.....]
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Memory Allocation Life Cycle [4/5]
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Memory Allocation Life Cycle [5/5]
• Avoiding memory allocation/deallocation has several advantages:

– No need to allocate/free buffers

– No need to map memory though the PCI bus

– In case of too much incoming traffic, as the kernel has more priority than 
userland applications, there’s no risk to run out of memory as it happens with 
standard NAPI.

• The last advantage of doing a packet copy to the PF_RING buffer is the 
speed. Depending on the setup, the packet capture performance can be 
increased of 10-20% with respect to standard NAPI.
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Enhanced NIC Drivers: TNAPI [1/8]

• In order to enhance and accelerate packet capture under Linux, a new 
Linux driver for Intel 1 and 10 Gbit cards has been developed. Main 
features are:

– Multithreaded capture (one thread per RX queue, per NIC adapter). The 
number of rings is the number of cores (i.e. a 4 core system has 4 RX rings)

– RX packet balancing across cores based on RSS: one core, one RX ring.

– Driver-based packet filtering (PF_RING filters port into the driver) for stopping 
unwanted packets at the source.

– Development drivers for Intel 82598/9 (10G) and 82575/6 (1G) ethernet 
controllers.

• For this reason the driver has been called TNAPI (Threaded NAPI).
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Enhanced NIC Drivers: TNAPI [2/8]
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• Packet capture has been greatly accelerated thanks to TNAPI 
as:
– Each RX queue is finally independent (interrupts are turned on/off 

per queue and not per card)

– Each RX queue has a thread associated and mapped on the 
same CPU core as the one used for RSS (i.e. cache is not 
invalidated)

– The kernel thread pushes packets as fast as possible up on the 
networking stack.

– Packets are copied from the NIC directly into PF_RING (allocation/
deallocation of skbuffers is avoided).

– Userland applications can capture packets from a virtual ethernet 
NIC that maps the RX ring directly into userspace via PF_RING.
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Enhanced NIC Drivers: TNAPI [3/8]
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• TNAPI Issues: CPU Monopolization

– As the thread pushes packets onto PF_RING, it should be avoided that this 
thread monopolizes. This is because of the all CPU is used by the kernel for 
receiving packets, then packet loss won’t happen in kernel but in userspace 
(i.e. the packet loss problem is not solved, but just moved).

– Solution: every X polling cycles, the thread has to give away some CPU cycles. 
This is implemented as follow rx_budget that’s consumed whenever a packet 
is received and sent to PF_RING.
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Enhanced NIC Drivers: TNAPI [4/8]

     while(<polling packets from RX queue X>) {
   /* Avoid CPU monopolization */

        if(rx_budget > 0)
          rx_budget--;
        else {
          rx_budget = DEFAULT_RX_BUDGET;
          yield();
        }
     }



IM 2009 - June 2009

• TNAPI Issues: Interrupts and Cores Allocation

– RX ring interrupts must be sent to the right core that’s manipulating the queue 
in order to preserve cache coherency.

– The userland application that’s fetching packets from queue X, should also be 
mapped to core X.

– As interrupts are now sent per-queue (and not per-nic as it used to be) we 
must make sure that they are sent to the same core that’s fetching packets.
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Enhanced NIC Drivers: TNAPI [5/8]

# cat /proc/interrupts 
           CPU0       CPU1       CPU2       CPU3       CPU4       CPU5       CPU6       CPU7       
191:          1          1       2656          1          2          2          1          2   PCI-MSI-edge      eth3
192:          1          4          0          0       2655          3          1          2   PCI-MSI-edge      eth2
193:      78634         14          7         13          9         13         13         18   PCI-MSI-edge      eth1
194:          3      15964          6          3          3          5          3          5   PCI-MSI-edge      eth0
195:          0          0          0          0          0          0          0          0   PCI-MSI-edge      eth7:lsc
196:          1          2          2          0          0       2658          1          0   PCI-MSI-edge      eth7:v8-Tx
197:          1          0          2          0          1          0          1       5309   PCI-MSI-edge      eth7:v7-Rx
198:          1          0          0       5309          1          2          0          1   PCI-MSI-edge      eth7:v6-Rx
199:          0          1          0          1          0          1          2       5309   PCI-MSI-edge      eth7:v5-Rx
200:          0          1          1       5307          2          2          1          0   PCI-MSI-edge      eth7:v4-Rx
201:          1          0          1          2          1       5307          2          0   PCI-MSI-edge      eth7:v3-Rx
202:          2          2          0          1          1          0       5307          1   PCI-MSI-edge      eth7:v2-Rx
203:          0          1       5309          1          1          1          0          1   PCI-MSI-edge      eth7:v1-Rx
204:          2          2          1          0       5307          1          1          0   PCI-MSI-edge      eth7:v0-Rx
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Enhanced NIC Drivers: TNAPI [6/8]
• Example:

– RX ring 6 and 4 use the same CPU 3.

– We want to move RX ring 6 to CPU 1

– How to map a process to a CPU/core
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# cat /proc/interrupts 
           CPU0       CPU1       CPU2       CPU3       CPU4       CPU5       CPU6       CPU7       
198:          1          0          0       5309          1          2          0          1   PCI-MSI-edge      eth7:v6-Rx
200:          0          1          1       5307          2          2          1          0   PCI-MSI-edge      eth7:v4-Rx

# cat /proc/irq/198/smp_affinity 
00000008
# echo 2 > /proc/irq/198/smp_affinity [00000010 where 1 = CPU 1]
# cat /proc/irq/198/smp_affinity 
00000002
# cat /proc/interrupts |grep "eth7:v6-Rx"
198:         0         67          0       5309          1          2          0          1   PCI-MSI-edge      eth7:v6-Rx

unsigned long mask = 7; /* processors 0, 1, and 2 */

unsigned int len = sizeof(mask);

if (sched_setaffinity(0, len, &mask) < 0) {

    perror("sched_setaffinity");

}
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Enhanced NIC Drivers: TNAPI [7/8]
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Test Type Max Packet Capture SpeedMax Packet Capture Speed

PF_RING
300K pps 560K pps

PF_RING+TNAPI
Mono RX queue

750K pps 920K pps

PF_RING+TNAPI
Multi RX queue

860K pps
Wire Rate (1 Gbit)

~ 3 Million pps (10 Gbit)
~ 5 Million pps (10 Gbit - 2 x Xeon)

Intel Core2Duo 1.86 GHz (Dual 
Core)

No Intel I/OAT

CPU Intel Xeon 2.4 GHz (Quad Core)
Intel 5000 chipset (I/OAT support)
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• Additional Performance results:

– 10 Gbit
• The testbed is a 4 x 1 G ports IXIA 400 traffic generator that are mixed into a 10G 

stream using a HP ProCurve 3400cl-24 switch.

• A dual 4-core 3 GHz Xeon has been used for testing. 

• Using the accelerated driver it is possible to driver-filter 512 bytes packets at 7 Gbps 
with a 1:256 packet forward rate to user-space with no loss.

– 1 Gbit
• The same testbed for 10G has been used.

• The same packet filtering policy applied to 2 x 1 Gbit ports works with no loss and 
with minimal (~10%) CPU load.

• The performance improvement also affects packet capture. For instance with a 
Core 2 Duo 1.86 GHz, packet capture improved from 580 Kpps to around 900 
Kpps. 
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RX Multi-Queue and DNA
• As previously explained, DNA is an excellent technology for those 

application developers who need wire speed packet capture, but that do 
not need features such as:
– packet filtering

– multiple application packet consumers.

• DNA so far has been ported to the Intel mono-queue 1 Gbit driver (e1000).

• Currently the port of DNA to 1 Gbit RX multi-queue driver (igb) is in 
progress and it will be available later this year.

• Combining DNA with multi-queue allows applications to be split into 
concurrent execution threads that enables multicore architectures to be 
further exploited.

• Additionally by exploiting hardware traffic balancing, it allows flow-based 
applications such as netflow probes, to be further accelerated.
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Multi-Queue on Accelerated NICs

Monitoring
application

Monitoring
application

•Direct NIC Access
•Multicore support
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Exploiting PF_RING Multi-Queue: nProbe
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Strong Multicore NICs:
Tilera Tile64
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Towards Strong Multicore [1/2]

General Perception is that people usually think that 
multicore is a good idea, although difficult to 
implement.

• General PC market
— Input data is unstructured, sequential 
— Billions of lines of sequential applications
— Hard to migrate it to parallel code

• Embedded market
— Data is inherently parallel
— Engineers have designed parallel applications
— Their main challenge is complexity of design
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• Some applications are naturally parallel as in networking where a 
network pipe is a multiplex of many “flows” or distinct streams.

• The only barriers towards adopting strong multicore are:
– Design the application program so that it can take advantage of multicore 

without sequentially performing activities that could be carried on in parallel.

– Entry ticket for learning multicore development tools.

– Low-level programming required to take advantage of the technology.
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Programming Paradigms

111

 Run to completion model
— Sequential  C/C++ applications 
— Run multiple application instances one/core
— Use load balancer library for distribution
— Use tools to tune performance

 Parallel programming
— Parallelize application with pthreads shared 

memory
— Run on multiple cores
— Use communication libraries to optimize 
— Use tools to tune performance
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Parallel Processing Without Parallel Programming

112

• Standard model in the embedded world
— Facilitates immediate results using off-the-self code

• Simple architecture
— Each core runs complete application and handles one or multiple flows or 

channels
— I/O management and load distribution 
— Most embedded applications fit this category
— Large numbers of flows, frames channels, streams, etc…
— Most inputs are completely orthogonal
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Tilera TILExpress64
• 64-core CPU.

• Linux-based 2.6 operating system running on board.

• Programmable in C/C++.

• Eclipse Integration for easing software development and 
debugging.
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TILE64 Architecture [1/2]
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38 terabits of on-chip bandwidth

2 Dimensional iMesh connects tilesTile = Processor + Cache + Switch

Each tile is a complete processor

Processor

Cache + MMU

Terabit
Switch

TILE64 Architecture [2/2]
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Tilera Advantages

• No need to capture packets as it happens with PCs.

• 12 x 1 Gbit, or 6 x 1 Gbit and 1 x 10 Gbit Interfaces 
(XAUI connector).

• Ability to boot from flash for creating stand-alone 
products.

• Standard Linux development tools available including 
libpcap for packet capture.

• Application porting is very quick and simple: less 
than 100 lines of code changed in nProbe.
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Porting Exiting Applications to Tile64: nProbe

Ingress Packet Processor
on 1, 2, 3, or 4 tiles

Off-the-shelf nProbe

Tilera provided Lib NetIO
Interface to packet processor

Standard Packet Capture Module
Lib Pcap

Standard get packet interface

One tile
Running
nProbe

XAUI 10GbE MAC

Header parsing and verification

Header 5-tuple hashing

Load balancing and pkt distribution

Network Packets

Buffer management
Tile A

Tile B
Tile C
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nProbe Performance on Tile64
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Final Remarks
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Programming for Multicore [1/4]
• Multicore is not the solution to all performance and scalability 

problems.

• Actually it can decrease the performance of poorly designed 
applications.

• Like it or not, multicore is the future of CPUs, and 
programmers have to face with it.

• From author’s experience before adding threads and 
semaphores to parallelize an existing program, it’s worth to 
think if instead the basic algorithm used are compatible with 
multicore.

120



IM 2009 - June 2009

Programming for Multicore [2/4]
• When multiple cores are used, efficient memory caching is the way to 

improve application performance.

• Hardware CPU caches are rather sophisticated, however they cannot 
work optimally without programmer’s assistance.

• Cache coherence can be rather costly if programs invalidate it when not 
necessary.

• False sharing (when a system participant attempts to periodically access 
data that will never be altered by another party, but that data shares a 
cache block with data that is altered, the caching protocol may force the 
first participant to reload the whole unit despite a lack of logical necessity) 
is just an example of performance degrading due to poor programming.

• Reference
– U. Drepped, What Every Programmer Should Know About Memory,

http://people.redhat.com/drepper/cpumemory.pdf, RedHat 2007.
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Programming for Multicore [3/4]
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ThreadThreadThread Thread
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•Bad Application Design
•Unable to scale
•Too much locking
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RX
Queue
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Programming for Multicore [4/4]

•Great Application Design
•Exploit Native Multicore
•Fully Lockless Hash

 http://video.google.com/videoplay?docid=2139967204534450862
Lockeless hashes:

http://video.google.com/videoplay?docid=2139967204534450862
http://video.google.com/videoplay?docid=2139967204534450862
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Memory Allocation [1/2]
Limit Memory Allocation (if not necessary)

• Multithreaded programs often do not scale because the heap is a 
bottleneck.

• When multiple threads simultaneously allocate or deallocate memory 
from the allocator, the allocator will serialize them. 

• Programs making intensive 
use of the allocator actually 
slow down as the number 
of processors increases.
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• Programs should avoid, if possible, allocating/deallocations memory too 
often and in particular whenever a packet is received.

• In the Linux kernel there are available kernel/driver patches for recycling 
skbuff (kernel memory used to store incoming/outgoing packets).

• Using PF_RING (into the driver) for copying packets from the NIC to the 
circular buffer without any memory allocation increases the capture 
performance (around 10%) and reduces congestion issues.

References:

– A Comparison of Memory Allocators
http://developers.sun.com/solaris/articles/multiproc/multiproc.html

– The Hoard Memory Allocator
http://www.hoard.org/
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Memory Allocation [2/2]
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