
Using DPI and Statistical Analysis in Encrypted Network

Traffic Monitoring

Luca Deri1, Daniele Sartiano2
1ntop/IIT-CNR

2IIT-CNR/University of Pisa

 Pisa, Italy

Abstract

The pervasive use of encrypted protocols and new

communication paradigms based on mobile and home

IoT devices has obsoleted traffic analysis techniques

that relied on clear text analysis. This has required

new monitoring metrics being able to characterise,

identify, and classify traffic not just in terms of

network protocols but also behaviour and intended

use. This paper reports the lessons learnt while

analysing traffic in both home networks and the

Internet, and it describes how monitoring metrics

used in experiments have been implemented on an

open source toolkit for deep packet inspection (DPI)

and traffic analysis developed by the authors. The

validation process confirmed that combining the

proposed metrics with DPI, it is possible to effectively

characterise and fingerprint encrypted traffic

generated by home IoT and non-IoT devices, paving

the way to next generation DPI toolkit development.

1. Introduction

Network traffic has changed significantly in terms

of network protocols and behaviour. Today most of

the network traffic is encrypted and the reasons are

manyfold:

• Changes in company network topologies with the

adoption of multi-cloud architectures require

communications to be protected as they are no

longer limited to trusted LAN network segments

traditionally protected by security devices.

• Devices such as mobile phone and portable PCs

are used on public network and WiFi hotspots

making compulsory to use encrypted

communications in order to safely exchange

sensitive data while preserving privacy on

potentially hostile networks.

• New multi-language cryptographic libraries such

as Amazon s2n and Google Tink made encryption

commodity for programers with respect to

obsolete libraries such as OpenSSL that were large

in size, difficult to use, and affected by severe

problems such as Heartbleed.

• Availability of free and automated X.509

certificates issued by non-profit certificate

authority Let’s Encrypt has driven the adoption of

HTTPS to new highs.

• Computational overhead is no longer a problem

even on low-end devices, thus even home IoT

devices such as virtual assistants and smart home

devices relying on cloud-based services need to

secure their communication with encryption.

As encryption is becoming pervasive with 87% of

the whole Internet traffic in 2019, it is becoming

important to provide network visibility in this new

changed scenario where clear-text protocols are used

less frequently even though they are still relatively

popular in LAN networks where obsolete operating

systems and outdated IoT devices will be used for

some more years. This means that we need to

complement existing techniques with new

measurements metrics able to inspect and characterise

encrypted traffic for the purpose of identifying threats

and changes in network traffic behaviour. This is in

particular because modern enterprises are rethinking

their network security moving off castle-and-moat

approaches focusing on defending their perimeter to a

new zero-trust model where no user is trusted based

on the principle of “never trust always verify” [6]. In

home networks the widespread use of IoT and

healthcare devices that operate using cloud services

has created new security issues pushing towards the

zero-trust model as users no longer interact directly

with the device but only through cloud services. This

trend towards cloud-based security is present also on

products manufactured by leading firewall vendors

that can be accessed solely using a cloud console and

no longer connecting to the firewall sitting on the

company premises.

Providing network visibility is the base on which

security of modern networks works, as it is

compulsory to implement mechanisms to enforce

network policies that enable zero-trust and modern

home networks to operate. This has been the

motivation behind this work, being decryption of

encrypted traffic not practical for various reasons

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 932

including, but not limited to, ethical and technical

issues that prevent MITM (Man In The Middle)

techniques [1] to operate on non-TLS (Transport

Layer Security) protocols such as SSH, BitTorrent

and Skype. Contrary to previous research [2, 3, 4],

goal of this paper is not to define new methods for

identifying specific threats but rather to classify

network traffic in a generic way without searching

specific traffic or malware fingerprints. As specified

later in this paper, this approach is able to classify

traffic using specific protocol metrics and also detect

changes in network behaviour. This fact is effective in

particular on IoT and home networks, where the

device behaviour should not change unless it is

reconfigured or compromised.

Another objective that has motivated this work, is

the definition of new metrics and techniques to be

used with encrypted traffic similar to those used with

clear text. For instance, in HTTP the User Agent has

been used [5] to classify devices and identify

malware: how can this be implemented with

encrypted traffic? In essence, identify properties in

encrypted traffic analysis equivalent to those used for

years in clear text traffic so that it is possible to have

the same level of visibility without decoding the

encrypted traffic payload.

In summary, the main contribution of this paper is

to show in practice how existing network visibility

methods and algorithms have been enhanced to take

into account encrypted traffic and to promote the

creation of a next generation DPI engine that does

more than just identifying network protocols decoding

a few packets. The novelty of this work is the

combination of existing protocol fingerprint

techniques coming from DPI with new traffic

behavioural indicators that allow traffic not only to be

recognised in terms of application protocol, but also

to be checked for compliance with the expected

behavioral model. Doing this it is possible to improve

application protocol detection, and at the same time

spot suspicious traffic behaviour in a simple way with

respect to what popular IDSs can do in a significantly

more complex fashion [6]. This is to create a

comprehensive set of algorithms and metrics that can

be effectively used to monitor both large and

home/IoT networks as well Internet traffic. As

described later in this paper, the results of this

research have been implemented in a popular open

source deep-packet inspection and traffic

classification engine named nDPI [7] so that other

people can benefit from this work.

The rest of the paper is structured as follows.

Section 2 analyses encryption protocols and standard

traffic fingerprint techniques used to classify

encrypted traffic. Section 3 covers the proposed

monitoring methodology, metrics and approach.

Section 4 discusses the tool implementation and

experiments, and finally Section 5 concludes the

paper.

2. Related Work

This section first analyses TLS and SSH (Secure

Shell), the two leading encryption protocols and it

describes various traffic analysis and fingerprint

methods. Then it describes how IoT device traffic is

analysed and enforced in networks.

2.1. SSL/TLS Fingerprinting

TLS (Transport Security Layer) is the most

popular cryptographic protocol used to secure

communications on computer networks. TLS has

replaced its predecessor SSL (Secure Socket Layer)

used for years on the Internet and now deprecated, and

it has been designed to provide privacy and data

integrity between two communicating applications.

TLS uses TCP as transport protocol even though there

is also a variant called DTLS (Datagram TLS) mostly

used for VPNs and in some mobile applications (e.g.

the Signal messaging app) that is similar to the QUIC

protocol promoted by Google. TLS communications

flow over an encrypted, bidirectional network tunnel

that is encrypted using some cryptographic keys based

on shared secrets negotiated at the start of the session

named TLS handshake. During handshake the two

communicating peers agree on algorithms, exchange

certificates and cryptographic options before starting

encrypted data exchange. In this negotiation phase the

TLS client sends a ClientHello message that contains

a list of supported ciphers, compression methods and

various parameters including options on elliptic-curve

cryptography used by TLS. The server responds with

a ServerHello message that contains the chosen TLS

protocol version, ciphers and compression methods

selected out of the various options offered by the

client in the ClientHello message. Then the server

sends an optional certificate message containing the

public key used by the server. Handshake messages

are exchanged in clear, so they can be decoded by

dissecting packets, with the exception of the server

certificate that in TLS 1.3 is encrypted.

Figure 1. Simplified TLS Handshake

(RFC 5246, 2008)

Decoding the initial handshake packets allows

applications to inspect how data is exchanged and

disclose information about both the client and server

configuration as well fingerprint and identify client

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 933

applications. For instance, a typical misconception

about TLS is that monitoring applications are unable

to understand what server name is accessed by the

client (e.g. whether the client has accessed

www.google.com or maps.google.com) whereas this

information named SNI (Server name Indication) is

part of the ClientHello message and thus it can be

inspected, not to mention that other techniques based

on inspection of DNS traffic before TLS exchange

might also be used. JA3 is a popular client/server

fingerprinting method, hence named JA3C and JA3S,

that is based on cryptographic information exchanged

in ClientHello and ServerHello packets. Both client

and server fingerprints are 32 character hashes of

strings obtained concatenating selected fields of the

Hello packets. In particular the JA3C string is a

concatenation of TLS version, client accepted ciphers,

list of TLS extensions, elliptic curves, and elliptic

curve formats extracted from the ClientHello packet.

Instead the JA3S string is a concatenation of TLS

version, accepted cipher, and list of extensions. Both

JA3 fingerprints ignore non-cryptographic

information such as the SNI string, or certificate

information as their goal is basically to fingerprint the

cryptographic libraries used by the two TLS peers

rather than to create a unique client/server fingerprint.

This means that if applications A, B, and C use the

exact same version of OpenSSL they will have the

same JA3 fingerprint even though they can be

different in nature. The consequence is that methods

based on JA3 fingerprint databases (e.g.

https://ja3er.com) are “nice to have” but they cannot

be reliably used for instance to discriminate malware

from benign applications, or fingerprint a web

browser. So in essence even though JA3 is very

popular in the security industry being it be used by

most IDS (Intrusion Detection Systems) tools, it can

be considered as just a feature as it leads to false

positives due to multiple matches for the same

fingerprint.

2.2. SSH Fingerprinting

SSH is a network protocol used to remotely and

securely access a system. Initially designed as a telnet

replacement, SSH provides confidentiality and data

integrity and thus it is also used to secure other

existing protocols by tunnelling traffic such as with

X11, a windowing system used by Unix operating

systems. The extreme protocol versatility to create

encrypted tunnels, has often been used to circumvent

security fences and therefore every monitoring system

should be able to analyse this traffic in detail. In SSH

the two initial messages after the 3WH (three-way

handshake) are plain text strings that identify the

client and server versions (e.g. SSH-2.0-

OpenSSH_7.8). Then peers exchange the

SSH_MSG_KEXINIT message for specifying each

other the preferences and options for data encryption.

Figure 2. Simplified SSH Handshake

(RFC 4254, 2006)

Similar to JA3 for TLS, for SSH there is a

fingerprint named HASSH that is compute on the

above message to create one hash value for each

connection peer. This hash is not used to uniquely

identify a client/server but it rather identifies a

specific SSH implementation as it only takes in

account the list of key exchange methods and

encryptions supported by each peer. In fact the unique

client/server fingerprint can be obtained by the

following two key exchange packets that instead are

ignored by HASSH.

2.3. Additional Protocol Fingerprinting

In addition to JA3 and HASSH there are additional

fingerprint methods available for additional protocols

such as CYU for Google QUIC, or RFDP for the

popular RDP (Remote Desktop Protocol) used to

remotely connect to Windows hosts.

2.4. Beyond Protocol Fingerprinting

As stated earlier in this section, these protocol

fingerprints are not designed to uniquely identify an

application using it, but their intended use is to have a

quick way to calculate a fingerprint that can be used

to spot malware applications when combined with

additional metrics to create a unique fingerprint. This

said, fingerprints are a way to identity

communications originated by the same (set of)

application(s) by inspecting the first initial packets

and they are often used by IDSs such as Suricata and

Zeek that use signatures to identify malware. Mercury

[8] does not use standard signatures such as JA3 but a

custom fingerprint to recognised applications. Joy,

Mercury predecessor, instead used SPLT (Sequence

of Packet Length and Arrival Time) and bytes entropy

of the first few packets past the 3WH to create

malware signatures.

2.5. Statistical Traffic Analysis

Traffic analysis using statistical methods [9, 10]

has been used for years. In this work we do not use

statistical methods to detect the network application

protocol, as DPI [11] proven to be a reliable solution

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 934

for this problem. Instead, statistical methods can be

used to classify traffic behaviour (i.e. statistical

characteristic of the traffic flows) and spot

misbehaving communications [12]. In this work we

have data binning techniques to group traffic

dimensions (e.g. packet length and inter-arrival-time)

into specific bins. Using Euclidean-distance

comparison it has been possible to cluster similar

behaviour as detect when a known behaviour deviates

from what the system considers as normal.

Novelty of the work resides in combining data

binning techniques with state-of-the-art DPI

techniques and some behavioral indicators such as

packet payload, packet IAT (Inter Arrival Time),

payload bytes entropy, connection duration, and new

connection creation frequency. Contrary to similar

research in this area [13], our work is not focusing on

exactly identifying one specific traffic pattern and

detecting in the wild (e.g. identify a communication

flow from malware X and label it as malware X) as

this requires complex and computationally expensive

models that are not really necessary. In the validation

section we have analysed several network attack

traces from public datasets, and the conclusion is that

using this work we can spot misbehaving hosts by

leveraging on the score and other methods described

in this paper. In general, tools able to analyse

encrypted traffic are designed to detect specific

patterns and match selected signatures. This means

that such tools are unable to analyse connection traffic

past the few initial connection packets, and implement

visibility looking at the big picture instead to analyse

a single-flow. In IoT networks for instance, traffic

patterns are rather static thus host misbehaviour can

be detected by comparing current with past traffic

values and not just looking at individual flows. This is

also a novel contribution, namely that this work that

implements a lightweight classification model based

on the concept of score that does not require specific

training or hundred of features to operate, as it detects

suspicious behaviour instead of detecting an exact

behaviour learnt during the training phase. This

feature is very important as it allows unknown cybers-

security events to be (partially) detected contrary to

other systems that instead are designed only to

recognise a set of known behaviours. The following

section explains how we have extended visibility to

encrypted traffic and monitored IoT traffic

successfully. his section first analyses TLS and SSH

(Secure Shell), the two leading encryption protocols

and it describes various traffic analysis and fingerprint

methods. Then it describes how IoT device traffic is

analysed.

3. Monitoring Encrypted Traffic

Network administrators need to enforce the

specifie policies that include, but it is not limited to:

• Limit the bandwidth of specific protocols (e.g.

BitTorrent) and prioritise others (e.g.

videoconference).

• Block malicious communications that might flow

over encrypted connections. Modern malware

such as Danabot use TLS to spread and thus it is

compulsory to create mechanisms for recognising

bad behaviour in encrypted communications.

As the goal of a deep packet inspection library

such as nDPI is to identify application protocols and

extract relevant metadata, monitoring applications can

use this information to accomplish the above tasks by:

• Fingerprinting network traffic in order to detect if

both the protocol (e.g. the certificate) has changed

or its behaviour.

• Preventing specific traffic flows (e.g. unsafe TLS

communications) to happen on our network.

• Providing metrics for measuring the nature of

specific communications (e.g. HTTPS) while not

being able to inspect the content with MITM

techniques due to the reasons previously

discussed.

• Identify malware in network communications for

instance comparing fingerprints with a database of

known malware fingerprints, or by other means.

For instance, a crypto-locker targets Windows

systems by encrypting data stored on local or

network attached disks. It can be detected by

monitoring the traffic towards network storage

systems searching for anomalous patters such as

creation/deletion of many files in a short amount

of time by a single host.

This in essence requires monitoring applications

being able to monitor traffic overtime and spot

changes in behaviour that might indicate changes in

the remote peers configuration or a malware infection.

During this research work we decided to take into

account the widespread use of IoT and smart devices

that nowadays are present in many networks. Most

devices such as those based on Amazon Echo and

Google Home do not interact directly with the local

network but only through the cloud. This means that:

• IoT devices installed in the home network are

permanently connected to the cloud services they

use.

• When two devices need to communicate (e.g.

somebody asks to the home assistant to turn off the

light in the bedroom), they do not exchange data

directly but the assistant send to the cloud a

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 935

message asking to turn off the lights, and the smart

lightbulb receives a notification from the cloud to

execute the action.

This is a typical example of modern

communication patterns where most of these

communications with the cloud are encrypted. In this

scenario, monitoring tools need to inspect IoT traffic

in order to make sure that the devices behave

normally. As IoT devices have static communication

patterns, this goal can be achieved in two steps:

• Monitor both the pool of peer addresses

communicating with the IoT device, and the

application protocols used to exchange data with

the cloud: they should not change overtime.

• Identify some encrypted traffic metrics useful to

verify that data exchanged by the IoT device with

the cloud does not change in nature.

In non-IoT environments the strategy to provide

visibility and introspection to encrypted network

traffic is somehow similar:

• Use DPI techniques to characterise traffic and

extract relevant metadata that can be used to

further classify the traffic.

• Compare traffic fingerprints to both databases of

malicious fingerprints in order to speculate about

the nature of the communication and detect when

host fingerprints change.

• Use traffic metrics to understand whether known

traffic is still matching the previously observed

behaviour., and if DPI detected application

protocols are matching the model for that protocol.

Note that the above items can be applied to both

plain text and encrypted traffic: the fact that the trend

is towards encrypted traffic does not mean that clear-

text traffic disappeared and thus that it should be

ignored. For instance, even when a host uses DoH

(DNS over HTTPS), there is an initial DNS request to

resolve the DoH server address and that could be very

useful to traffic analysis analysts. The main difference

is that with plain text traffic it is possible to dissect the

payload to interpret the content, whereas with

encrypted traffic this is not possible and thus it is

compulsory to use alternative techniques for

achieving the same goal. This research work has

combined the use of fingerprints as traffic indicators

(i.e. not for blocking/alerting traffic in case of a match

with a fingerprint blacklist) with behavioral traffic

analysis used to spot changes with respect to past or

expected behaviour, that are not necessarily an

indication of compromise or errors, but that are an

indicator worth to be analysed by network specialists.

This is implemented by the concept of score for each

entity (flows, hosts, ASs etc.): a non-negative number

indicating that such entity has been affected by an

unexpected behaviour. A zero-flow score means that

no issue has been reported, whereas a positive value

indicates the relevance of the issue detected. The flow

score is then used to increase the host peers score, that

will then increase the AS score such hosts belong to.,

and so on This way we can easily identify and cluster

unexpected behaviour not just at flow level, but also

at entity level, easing for instance the work of network

analysts that have to interpret data. For instance a

network/port scan at flow level can look like an

anomalous individual flow, but when correlated with

the flow score to the host/network, this fact becomes

evident without having to implement costly data

structures that keep track of ports or peers being

involved in the scan. It is worth to remark that the

concept of score does not require perfect metrics that

might be computationally/memory expensive, but

reliable indicators are enough feed it. For this reason,

we have used simple bin-based statistics with respect

to more accurate yet costly Markov-based indictors.

The same applies to the entropy that has been used to

understand if a flow is misbehaving, instead of using

it to monitor more precise information such as the

nature of the information being exchanged. As

explained in the validation, this practice is affected by

false positives that instead we want to avoid.

The follow-up section describes the methodology and

metrics used to provide visibility, and that have been

implemented in nDPI. It is worth to remark, that this

research work is based on practical experience coding

various monitoring applications, and extensive

validation tests described in the following section.

3.1 TLS-Specific Protocol Fingerprintings

As described in the previous section, JA3 can be

used to identify the library used by an application

when it connects with a remote peer using the TLS

protocol. As already discussed, JA3 fingerprint are

not unique across applications, hence and two

applications using the same TLS library can have

different fingerprints as they have specified different

library options. In essence using JA3 as a signature-

based indication it is not a good idea, even if it can be

used for other purposes such as:

• Regardless of the hash value, JA3C can be used to

uniquely identify an application or a web browser

plugin. This means that observing the traffic of a

host for some time, unless the host software

configuration is modified, the list of known JA3C

fingerprints must be static. Any new JA3C

signature means that there is a new/unknown

application running or that an existing application

has been modified, or perhaps compromised. As

on non-IoT devices this can happen when an

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 936

application is installed or updated, on IoT devices

any change is an indication of compromise unless

the device firmware changed.

• As the TLS client specifies what encryption

options are available, unless the server

configuration has changed, it must always use the

same JA3S for a given JA3C, so the tuple <JA3C,

JA3S> for the same client and server must be

static. If JA3C does not change but JA3S does,

then the server software configuration has been

modified.

• In essence JA3C is the new HTTP User-Agent for

TLS, as it can be used to fingerprint HTTPS client

applications same as the User-Agent for plain text

HTTP.

The previous statement triggers another question:

how can we differentiate a generic TLS connection

from HTTPS? This is a very important question to

answer as TLS can be used for non-web usage such as

for implementing VPNs for instance, or applications

that are not web browsers such as malware, and that

connect to web servers for compromising them. In the

ClientHello packet there is a TLS extension (not

effectively used by JA3) named ALPN (Application-

Layer Protocol Negotiation) that it is used by the

client to tell the server the list of application protocols

supported such as HTTP/1.1 and HTTP/2.0. As it will

be explained in detail in the following section, non-

web applications such as a VPN will not declare any

HTTP protocol in the ALPN. Another TLS extension

named supported_versions that specifies the list of

supported TLS versions by the client, can be

combined with ALPN to fingerprint the web client

application and thus further characterise the nature of

a specific TLS connection.

Another indicator that can be used to fingerprint

communications in particular for IoT devices, are the

TLS certificates exchanged by the devices. Up to TLS

1.2, that is by far the most popular TLS version in use

today, certificates are exchanged in clear and thus they

can by inspected by nDPI; unfortunately, with TLS

1.3 they will be exchanged encrypted hence soon this

additional check will not be possible. Same as the

tuple <JA3C,JA3S> discussed earlier, certificate

fingerprints can be used as change indicators not in

terms of encryption options but rather of client/server

configuration.

3.2 SSH-Specific Protocol Fingerprintings

Similar considerations can be applied to SSH

traffic where HASSH replace JA3, and the SSH keys

can be used as the TLS certificates.

3.3 Combining Misuse with Anomaly

Detection

As already discussed, protocol fingerprints are

useful to detect changes in configuration or network

protocols: as the use only the initial flow bytes, they

are lightweight and predictable in computation costs.

The main limitation of fingerprints is that they have

not been designed to analyse traffic behaviour, and

thus they need to be complemented with additional

metrics. When classifying network behaviour there

are in essence two main strategies:

• Misuse detection: classify good (normal

operations) and bad behaviour (e.g. malware) and

match the current behaviour against the model.

This approach has a few limitations such as being

able to recognise only what the system has been

trained for, and also requiring traffic annotation

that is not something network specialists usually

like to do.

• Anomaly detection: classify past traffic with a

comprehensive list of metrics, and check if the

current traffic matches the traffic model that it has

been built for a given device. The limitation of this

approach, is that traffic is classified as good if it’s

a “déjà vu”, and bad if there is a new traffic pattern

in the network that needs to be checked for

maliciousness (i.e. an expected behaviour is not

malicious per se).

We use the second classification strategy as it fits

well with IoT devices where their behaviour is mostly

static, this contrary to a laptop where traffic patterns

and visited sites are less predictable. Nevertheless, the

concept of security risk described later in this section,

can be used to spot misuses at flow level, while the

score can be used to analyse the behaviour at entity

level (e.g., host or network). As in an encrypted

stream it is not possible to inspect the content, the idea

is to map key connection properties in order to create

a traffic model for a device traffic. This information

could be used to complement MUD [14] profiles, that

describe the intended service a device can

use/provide, specified in terms of IP addresses and

ports. Such model is not general to a device but is

based on the tuple <IP source, IP destination, L3

protocol, L7 protocol, SNI or host name> because:

• The SNI and host name further characterise the

protocol that might behave differently according

to the service the client is connecting to. For

instance, the traffic model of an Android device

talking with IP address 172.217.18.98 serving

googleads.g.doubleclick.net and pagead2.google

syndication.com over TLS is not compulsory to be

identical for both services.

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 937

• As with clear text traffic, the traffic model for

encrypted traffic differs based on the service being

requested. This means that in HTTP for instance,

two requests get_static_image.php and get_json_

data.php will also behave differently as the type of

data can be different. For this reason, the model

should take this fact into account by creating a

single model for the above tuple.

The model is created only on the initial connection

packets and not continuously for the duration of the

flow because:

• nDPI already contains algorithms for continuously

inspecting traffic over time such as IAT, packet

length, and bytes distribution statistics, as well

goodput and upload/download metrics. They can

be used to spot changes in network behaviour and,

for instance, for detecting the nature of a SSH

connection (i.e. interactive session, file

upload/download, or protocol tunnel) or spotting

DoH/DoT (DNS over TLS) on TLS flows.

• Continuous flow metrics computation is not a task

for a DPI toolkit: it should analyse only the first

few packets of a connection, while providing

applications support for computing metrics for the

duration of the flow. Applications sitting on top of

nDPI are responsible for continuous traffic

monitoring by leveraging on the nDPI-provided

mechanisms.

• Modern protocols such as HTTP/2.0 and QUIC

multiplex multiple services over the same network

connection making difficult to create a stable

model for the duration of a connection, this unless

the two connection peers always exchange the

same type of data (e.g. a YouTube video).

The DPI component is used to detect the

application protocol and so to label the traffic: for

instance, nDPI classifies traffic as TLS. Instagram

when observing TLS traffic whose SNI ends with

cdninstagram.com. For each connection, the

following metrics are computed for both client-to-

server and server-to-client on the first 256 packets to

reduce the computational cost of periodically

recomputing it until the end of the connection:

• Packet payload lengths, past the 3WH for TCP, are

grouped in 6 bins of size <= 64 bytes, 65-128, 129-

256, 257-512, 513-1024, 1025+. For TLS we have

run several experiments to find out whether it was

better to use the TLS encryption block length

instead of the packet length. Our conclusion is that

using the block length is more computationally

expensive (as TLS packets needs to be reordered

and interpreted in order to extract the block length)

than using the packet length, and it does not

produce better results in terms of behaviour

detection accuracy. For this reason we prefer to

use packet length for all protocols being it simpler

to compute. This said in case the TLS encryption

block length is used, the bin size must be changed

as TLS blocks can be as long as 16 Kb whereas

network packets are 1514 long unless jumbo

frames are used.

• Packet IAT is grouped in 6 bins <= 1 ms, 1-5, 6-

10, 11-50, 51-100, 100+.

• Payload bytes entropy: create a vector of 256

integers, and for each byte of the payload

increment the corresponding element. The entropy

is then calculated on this vector. A high value

means that the bytes are more spread (high

variance) with respect to low values where data is

more predictable. From our experiments we can

report that 4096 bytes are usually enough to

reliably compute the flow entropy. hence adding

additional bytes do not significantly change the

entropy value. As later described in this section,

we used the entropy to spot changes in content

being exchanged on flows.

The motivation behind choosing a small set of bins

is due to the need to have a compact representation

that could fit on a 64-byte integer: after normalisation

each bin value represents the percentage of the traffic

falling in such bin. For instance, the following bin

distribution 41,0,5,32,9,14 can be represented as

0x000029000520090E 64-bit integer, leaving the

upper two bytes to other uses cases as described below

in this section where 8 bins are used. Note that two

different flow bins cannot be compared with a simple

64-bit value difference but with other means such as

the Euclidean distance of each value byte. In our

experiments we have realised that using a larger

number of bins for detecting changes in behaviour is

not improving the detection: in fact, our goal is not to

exactly fingerprint a given communication but rather

to understand if the behaviour of such communication

is stable over time. Instead, if the goal would be to

exactly fingerprint malware X, more sophisticated

methods are necessary as they need to take into

account other flow characteristics such as the exact

sequence of packet length and not just length

distribution for which bins are used in this work.

After a few experiments, we have decided to use a

non-uniform bin size distribution that focuses on the

bottom size (i.e. short packets and those with small

IAT) as they map better traffic properties with respect

to uniform distribution where all packets are treated

equally. Bins are exported after normalisation, i.e. the

bin value is reported as percentage with respect to the

total. This allowed us to keep the detail of the

time/packet length shape, while accounting for

differences across flows.

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 938

In addition to the above metrics, for each tuple

<host, L7 protocol> there are two additional bins

defined:

• Connection duration divided in 8 bins, <= 1 sec, 2-

3, 4-5, 6-10, 11-30, 31-60, 61-300, 300+.

• New connection creation frequency also divided

in 8 bins with the same bin distribution.

The last two metrics can be used to detect changes

in behaviour. For instance, a host that suddenly

changes its usual connection duration/creation rate to

many short-living flows is an indication of a possible

network/port scan. The use of bins is basically a

compact way to classify and compare traffic

properties without an order. This means that for

instance considering IAT, the following two sequence

of values 10,50,10,50,10,50 has the same value of

10,10,10,50,50,50. A simple way to keep track of the

order of values is to use a Markov chain as some

behavioral IDS do [15]. In our case the matrix size

will be a 6x6 grid where each cell contains the number

of transitions with respect to consecutive connection

packets. While a Markov chain approach is more

accurate than binning to report about the flow

behaviour, this work relies on simple bins as they are

efficient to compute, simple to implement, compact in

size, while capturing enough information to model the

flow behaviour. Instead, Markov chain should be

preferred when modelling more detailed flow

properties including detection of bots and malware. In

other words Markov chains are useful if you want to

detect an exact behaviour, (but this will move our

work towards signature-based detection that is not the

path we want to take). This has been also the

motivation for selecting a few bin classes with

respected to having many more classes: when we need

to decide whether an observed behaviour matches the

expected model, a few bin classes are enough,

whereas for exactly fingerprinting a given behaviour

many more classes a d additional methods are

necessary. In summary we have preferred a binning

approach as in this work we do not want to create an

exact flow fingerprint useful to spot a specific

malware application, but rather model traffic to create

a flow score that describes how the observed

behaviour is far from the expected model. The

following section describes how the proposed

methods have been validated with real traffic, and

how they have been evaluated with both IoT/non-IoT

traffic.

4. Validation

This work has been developed and validated using

various methods:

• Real Internet traffic provided by a regional Italian

ISP captured on various networks with both

residential and business traffic. This activity lasted

for about one year until early 2020. It allowed us

to tune nDPI and develop classification techniques

described in this paper.

• Over 100 packet traces of network protocols, most

of which containing encrypted traffic, used to

continuously test nDPI.

• A realistic cyber defines dataset (CSE-CIC-

IDS2017/18) that included seven attack scenarios

[17]. This dataset has been used to validate metrics

for catching cyberattacks such as the heartbleed

SSL bug.

• A dataset provided by NIST that contains network

traffic of 16 different types of popular home IoT

devices This dataset has been complemented with

additional IoT traces named Sentinel IoT.

• Aposemat IoT-23 dataset, a labeled dataset with

malicious and benign IoT network traffic provided

by the Stratosphere IPS project. Unfortunately,

also this dataset has little TLS traffic.

• A dataset captured in June 2018 on a “smart

home” with several home IoT devices such as

smart speakers, home assistant, and smart kitchen

equipment. This dataset is interesting as it allowed

us to compare current IoT traffic with the one

captured two years ago. This is very important to

validate this idea against devices such as home

assistant that were already available years ago but

with a very different hardware and software setup.

The different nature of the above scenarios is

important as it allowed results to be evaluated in

different scenarios, with both IoT and non-IoT traffic

and benign and malicious traffic. In total the traffic

traces stored in pcap format exceeded 100 GB, this in

addition to live ISP traffic. Most of the IoT datasets

containing malicious traffic as those used in this work

and in other papers [18] contain non-TLS attacks such

as scans or spoofing, easy to spot with the new

connection frequency and connection duration bins

already discussed in this section. Furthermore, nDPI

extracts metadata that can be used for detecting

outdated software versions that are good indicators of

potential compromise. Such metadata is analysed and

used by nDPI to produce a bitmap called security risk,

where each bit set identifies a potential security risk,

that can be used to compute the security score of flow

peers. For instance, the string “SSH-2.0-libssh-0.5.2”

identifies a library more than 6 years old and with

many known vulnerabilities. To date, nDPI security

risks include, but are not limited to: HTTP (cross-side

scripting, SQL injection, binary application transfer,

suspicious user-agent/header, potential remote code

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 939

execution attempt), port-based (known protocol on

non-standard port), name-based (suspicious DGA,

domain generation algorithm, domain), TLS

(weak/obsolete cipher, self-signed certificate, TLS

not carrying HTTPS), SSH (obsolete protocol version,

weak cipher) content-based (malformed packet) risks.

As explained later in this work, these risk indicators

can be combined with anomaly and behavioral traffic

analysis to create a simple yet effective system for

analysing encrypted traffic. For instance during our

experiments, we have realised that many modern

malware such as Dridex, Trickbot and Emotet can be

spotted as they trigger many security risks supported

by nDPI

4.1. Protocol Fingerprint Evaluation

TLS traffic is about 90% based on TLS 1.2 for

Internet traffic. Looking at IoT devices the percentage

decreases to about 50% with half of the traffic TLS

1.0 in Sentinel that has been captured in 2018,

whereas on the more recent NIST dataset TLS 1.2 is

about 90% as in live ISP traffic. TLS 1.3 slowly but

steady increasing in terms of adoption. Looking at the

ALPN flags in live ISP traffic 60% of the client

advertise only HTTP 1.1 and 40% also support

HTTP2, whereas going back to 2018 in the Sentinel

or Stratosphere datasets the HTTP2 protocol is not

advertised at all even also due to the limited support

of ALPN in TLS traffic. The TLS extension

advertising the supported TLS version is less popular

than ALPN, and it can be found only in recent 2019

live traffic. The following table show some statistics

about the above TLS extensions (see Table 1).

Expectedly, non-web-based applications such as

the AnyConnect and OpenVPN client do not advertise

any ALPN, whereas all the other applications do with

the exception of wget whose source has not been

refreshed in a while. This confirms that when ALPN

is specified (as this is its purpose being it designed to

advertise the protocol that will be used over TLS), the

client is a web-based application whereas when

ALPN is not present, nothing can be said about the

nature of the application that can either be an outdated

client as wget or a non-web application (e.g. a VPN

client). This is an interesting property to disclose the

nature of TLS communications (i.e. Tor vs. web

surfing) that can also be used to improve JA3

fingerprinting reliability. For instance a long-standing

TLS connection with no ALPN can be an indication

of a non-web related activity such as a VPN or a

malware.

Talking about JA3 we have performed some

experiments to better understand how JA3C

fingerprints are used. In order to do that we have

written and eBPF probe for Linux systems based on a

home-grown open-source library named libebpfflow.

Thanks to the library it has been possible to track

JA3C usage according to the application using it.

Table 1. Advertised ALPN and Supported

TLS Versions

TLS Client App ALPN Supported TLS

Versions

git http/1.1 None

curl h2, http/1.1 None

wget None TLS 1.0, 1.1, 1.2,

1.3

Brave h2, http/1.1 TLS 1.0, 1.1, 1.2,

1.3, GREASE

Firefox h2, http/1.1 TLS 1.0, 1.1, 1.2,

1.3

Chrome h2, http/1.1 TLS 1.0, 1.1, 1.2,

1.3

Safari h2,h2-14,h2-15,h2-

16,spdy/3,spdy/3.1

None

OpenVPN None TLS 1.0, 1.1, 1.2,

1.3

AnyConnect None None

Table 2. JA3 Fingerprint Distribution

per Application

Application Number of Different JA3

Fingerprints

Dropbox 3

Telegram 1

wget 1

chromium-browser 5

git-remote-http 1

thunderbird 2

cups 1

As shown in the previous table, there are

applications having only one fingerprint and others

with more than one. Since TLS configuration, and

thus JA3 fingerprint, can be manipulated via API calls

of the encryption library being used, multiple

fingerprints might indicate that there are different

entities issuing requests. In the case of a web browser,

for example, add-on and third-party extensions might

generate this behaviour. This means that not only

multiple applications can share the same fingerprint,

but also that one application can have multiple

fingerprints. The consequence is that while JA3 can

be used as indicator of change when the JA3C is

modified, the experiments confirm that it cannot be

used as a reliable fingerprint being it affected by false

positives (see Table 2).

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 940

4.2 Traffic Behaviour Evaluation

When the JA3 fingerprints do not change, we also

need to check if the flow behaviour is unchanged with

respect to the past. Instead of interpreting the protocol

messages, complicated activity for proprietary

protocols such as WhatsApp, we have used the

entropy value computed on the raw packet payload.

We have conducted two types of experiments in order

to understand if entropy could reveal the nature of the

information being exchanged, and if each protocol has

a typical entropy value. In the first set of experiments,

we have downloaded various files over HTTPS, using

the same client and server hosts, in three different

format. The following table shows the results with

various file types for each format (i.e. PDFs of one

page and many pages, with only text or plenty of

images etc.).

Table 3. TLS Payload Entropy per File Type

Byte Entropy PDF PNG TEXT

Average 6.426 7.009 7.009

Std Dev 0.007 0.013 0.002

The experiment highlights that while PDF

documents can be distinguished from PNG/TEXT

files when transferred over TLS, it is not really

possible to know whether a PNG or TEXT file is

transfer on top of a TLS connection by simply looking

at the data entropy, Furthermore, it is worth to remark

that when changing the cipher used in the experiment

(e.g. transferring the same files over a different type

of client and/or server) the entropy values can slightly

change making the use of this technique unreliable for

this problem with entropy so close in value (see Table

3). For this reason, we believe that using the entropy

for detecting the file type is unfeasible, but instead

entropy is a good indicator for other use cases as

described later in this section for hearthbleed. This is

because each protocol, regardless of the cipher being

use if encrypted, has a typical entropy that can be used

to verify both if the information being transfer really

matches the DPI-detected protocol, and speculate

about the nature of unknown traffic.

In another set of experiments where we have

analysed several hundred of flows and explored

whether specific protocols have a typical entropy

value.

Table 4. Payload Entropy Distribution

Byte Entropy DNS TLS NetFlow Skype

VoiceCall

Average 4.285 7.789 4.079 5.963

Std Dev 0.272 0.231 0.533 0.055

The results reported in the previous table are

interesting as each protocol has a typical value whose

variance is limited in range. This makes it possible to

combine DPI application protocol discovery with the

entropy value to further enforce detection and spot

outliers and thus potential anomalies. In essence the

byte entropy can be used as an indicator for anomalies

as well detecting potential DPI invalid classification.

For instance, a DNS query with an entropy of 6.5 is

definitively suspicious (i.e. it can hide potential data

exfiltration), same as a connection with unknown

protocol detected and entropy 7.5 can hide a TLS

stream. Entropy has been an effective metric for

detecting hearthbleed (see Table 4). Under attack the

victim host reported for TLS a <client, server>

entropy of <7.9, 0.0> compared to <7.9, 7.8> when

not under attack. In another experiment we combined

entropy information with additional behaviour

indicators including:

• DPI application protocol (e.g., TLS.Amazon).

• TLS SNI or host name (e.g.

android.clients.google.com).

• Client-to-server and server-to-client payload bin

and entropy values. These values are computed on

the first 256 packets of a flow.

Flows with less than 10 packets are not considered.

The bin values have been normalised in order to make

them comparable with other flows regardless of the

number of packets.

Table 5. TLS.OpenVPN Bin and Entropy Distribution

Between Two Hosts

PacketLen Bin

Distribution %

Packet TimeDiff Bin

Distribution %

Entropy

Cli-to-Srv

Entropy

Srv-to-Cli

50,9,0,9,18,14 41,0,5,32,9,14 7.402 7.312

45,9,0,14,18,14 41,0,5,32,9,14 7.399 7.294

50,9,0,9,18,14 41,0,5,32,9,14 7.388 7.304

Table 5 contains the result of this experiment

limited to three flows out of several thousand flows:

this just as a short example to clarify the concept. The

first column is the packet length bin normalised to 256

(decimals are not depicted as values have been

rounded) and the second the normalised packet time

difference bin. The last two columns represent the

byte entropy in each traffic direction.

Using Euclidean distance, nDPI features functions

for creating the bin centroid (i.e. the arithmetic means

of the bins) and the maximum distance between the

centroid and the bins, i.e. <centroid, max distance,

otherTLS> where otherTLS contains additional

metrics such as ALPN, JA3C/JA3S, certificate

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 941

fingerprint that will be empty for non TLS

communications. This is the expected fingerprint, for

this communication: we expect that future

communications will honour this fingerprint and

discrepancies will be considered as anomalies. As the

use of bins is very lightweight with respect for

instance to a machine learning model, it is possible to

create a fingerprint for each triplet <client IP, server

IP+SNI+Certificate, destination port>. The use of SNI

and of the certificate fingerprint is very important as

the destination IP can serve multiple SNIs whose

behaviour can be very different. Table 6 shows a

GoogleHome device that contacts a remote google

service whose SNI is clients.google.com served by

host 172.217.7.206 whose traffic was part of the NIST

dataset containing over 800 flows generated by this

device.

Table 6. Google Home contacting SNI

clients.google.com

TLS Certificate

Fingerprint

ALPN PacketLen Bin

Centroid

Distribution %

None h2;h2-16;h2-15;h2-

14;spdy/3.1;spdy/3;

http/1.1

54,17,10,5,3

DC:30:BA:11:56:E5:65

:7F:CE:40:33:FF:14:2E

:6E:D2:C2:33:4E:E4

h2;h2-16;h2-15;h2-

14;spdy/3.1;spdy/3;

http/1.1

0,0,15,43,30

The centroid has been computed using the

Euclidean distance of the individual bin values as

computed by nDPI. As you can see, the centroid is

very different as the TLS certificate fingerprint

changes; this even though the server IP, SNI and

destination port and JA3C are the same. This means

that with our approach we can fingerprint traffic per

triplet and detect when observed traffic does not

match the fingerprint as its max distance exceeds the

one set in the model. A disadvantage of this approach

is that it cannot generalised for instance to all TLS

traffic going towards all Google SNIs as each service

has its own fingerprint. This is not necessarily a

limitation of this work as a single comprehensive

model would use many more resources, thus

jeopardising the advantage of having resource

effective and fine grained models.

5. Conclusions

This paper has demonstrated that it is possible to

effectively characterise and fingerprint encrypted

network traffic by leveraging on existing methods

complemented with novel techniques described in this

paper. The ability to fingerprint protocols also in

terms of behaviour, enables better traffic

characterisation and detection of changes in traffic

behaviour with respect to existing techniques.

The result of this research work has been

successfully validated on live Internet traffic as well

on various traffic datasets, and integrated in nDPI, an

open-source DPI engine developed by the authors, so

that the whole Internet community can benefit from it.

6. Future Work

In [19] authors propose a solution named “bag of

system calls” for representing and classifying an

application behaviour by looking at the sequence of

system calls an application performs. A bag is a tuple

that contains <syscall id, frequency> and is computed

in a sliding time window. When in learning mode, the

classifier computes the bag tuples on a “normal

system” in a time window and stores them in memory:

this iterative process ends as soon as a computed bag

is similar to a bag that was previously observed. In

running mode, bags are computed on a time window

and compared with the list of known bags: if the

similarity distance between the bag and the list of bags

computed during learning is above a threshold, the

system reports this as anomaly. Bags could be

represented as bins where each bin slot contains the

observed frequency, and where the bag time windows

is a flow. A future work item is to evaluate if the

classification process using bins, centroids and

similarity, could be replaced with bags: instead of

having multiple triplet models as already discussed, it

should be possible to create a model of bags per SNI

or destination IP that could reduce the number of

triplets.

7. References

[1] S. Rezaei, L. Xin, "Deep learning for encrypted traffic

classification: An overview." IEEE communications

magazine 57.5 (2019): 76-81.

[2] B. Anderson, D. McGrew, "Identifying encrypted

malware traffic with contextual flow data”, Proceedings of

the 2016 ACM workshop on artificial intelligence and

security, 2016.

[3] D. McGrew and B. Anderson, “Enhanced Telemetry for

Encrypted Threat Analytics”, Proceedings of ICNP

NetworkML Workshop, IEEE, 2016.

[4] Y. Bakhdlaghi, “Snort and SSL/TLS Inspection”, SANS

Institute, 2020.

[5] M. Grill, M. Rehák. "Malware detection using http user-

agent discrepancy identification”, 2014 IEEE International

Workshop on Information Forensics and Security (WIFS).

IEEE, 2014.

[6] S. Patel, A. Sonker. "Internet protocol identification

number based ideal stealth port scan detection using snort."

Proceedings of CICN Conference, IEEE, 2016.

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 942

[7] L. Deri, "nDPI: Open-Source High-Speed Deep Packet

Inspection”, 2014 International Wireless Communications

and Mobile Computing Conference (IWCMC). IEEE, 2014.

[8] D. McGrew, B. Enright, B. Anderson, S. Acharya, and

A. Weller, “Mercury”, https://github.com/cisco/mercury,

2019.

[9] J. Zhang, et al., "Robust network traffic classification”,

IEEE/ACM transactions on networking 23.4 (2014): 1257-

1270.

[10] M. Crotti, et al., "A statistical approach to IP-level

classification of network traffic”, Proceedings of 2006 IEEE

International Conference on Communications. Vol. 1.

IEEE, 2006.

[11] J. Ai Truong, “Evaluating the dissection accuracy of

JA3 and JA3S in security monitoring of SSL

communication”, Master’s Thesis, Tallin University of

Technology, 2019.

[12] L. Shu Yun, and A. Jones, "Network anomaly detection

system: The state of art of network behaviour analysis”,

Proceedings of 2008 International Conference on

Convergence and Hybrid Information Technology. IEEE,

2008.

[13] A. Moore, M. Crogan, A. W. Moore, Q. Mary, D. Zuev,

D. Zuev, and M. L. Crogan. “Discriminators for use in flow-

based classification”, Technical Report RR-05-13, Dept. of

Computer Science, Queen Mary University of London,

Aug. 2005.

[14] E. Lear, R. Droms, D. Romanascu, “Manufacturer

Usage Description Specification,” RFC 8520, March 2019.

[15] S. Garcia. "Modelling the network behavior of malware

to block malicious patterns." The Stratosphere Project: A

behavioral IPS, DOI 10 (2015).

[16] M. Miettinen et all, "IoT sentinel: Automated device-

type identification for security enforcement in IoT”,

proceedings of 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS). IEEE, 2017.

[17] I. Sharafaldin, A. H. Lashkari, Ali A. Ghorbani,

"Toward generating a new intrusion detection dataset and

intrusion traffic characterization”, Proceedings of ICISSP.

2018.

[18] A. Hamza, et all, "Detecting volumetric attacks on loT

devices via SDN-based monitoring of MUD activity."

Proceedings of the 2019 ACM Symposium on SDN

Research. 2019.

[19] D. Fuller and V. Honavar, “Learning classifiers for

misuse and anomaly detection using a bag of system calls

representation” Proceedings of the Sixth Annual IEEE

Systems, Man and Cybernetics (SMC) Information

Assurance Workshop. IEEE, 2005, pp. 118–125.

International Journal for Information Security Research (IJISR), Volume 10, Issue 1, 2020

Copyright © 2020, Infonomics Society 943

