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Abstract 

The pervasive use of encrypted protocols and new 

communication paradigms based on mobile and home 

IoT devices has obsoleted traffic analysis techniques 

that relied on clear text analysis. This has required 

new monitoring metrics being able to characterise, 

identify, and classify traffic not just in terms of 

network protocols but also behaviour and intended 

use. This paper reports the lessons learnt while 

analysing traffic in both home networks and the 

Internet, and it describes how monitoring metrics 

used in experiments have been implemented on an 

open source toolkit for deep packet inspection (DPI) 

and traffic analysis developed by the authors. The 

validation process confirmed that combining the 

proposed metrics with DPI, it is possible to effectively 

characterise and fingerprint encrypted traffic 

generated by home IoT and non-IoT devices, paving 

the way to next generation DPI toolkit development. 

1. Introduction

Network traffic has changed significantly in terms 

of network protocols and behaviour. Today most of 

the network traffic is encrypted and the reasons are 

manyfold: 

• Changes in company network topologies with the

adoption of multi-cloud architectures require

communications to be protected as they are no

longer limited to trusted LAN network segments

traditionally protected by security devices.

• Devices such as mobile phone and portable PCs

are used on public network and WiFi hotspots

making compulsory to use encrypted

communications in order to safely exchange

sensitive data while preserving privacy on

potentially hostile networks.

• New multi-language cryptographic libraries such

as Amazon s2n and Google Tink made encryption

commodity for programers with respect to

obsolete libraries such as OpenSSL that were large

in size, difficult to use, and affected by severe

problems such as Heartbleed.

• Availability of free and automated X.509

certificates issued by non-profit certificate

authority Let’s Encrypt has driven the adoption of

HTTPS to new highs.

• Computational overhead is no longer a problem

even on low-end devices, thus even home IoT

devices such as virtual assistants and smart home

devices relying on cloud-based services need to

secure their communication with encryption.

As encryption is becoming pervasive with 87% of 

the whole Internet traffic in 2019, it is becoming 

important to provide network visibility in this new 

changed scenario where clear-text protocols are used 

less frequently even though they are still relatively 

popular in LAN networks where obsolete operating 

systems and outdated IoT devices will be used for 

some more years. This means that we need to 

complement existing techniques with new 

measurements metrics able to inspect and characterise 

encrypted traffic for the purpose of identifying threats 

and changes in network traffic behaviour. This is in 

particular because modern enterprises are rethinking 

their network security moving off castle-and-moat 

approaches focusing on defending their perimeter to a 

new zero-trust model where no user is trusted based 

on the principle of “never trust always verify” [6]. In 

home networks the widespread use of IoT and 

healthcare devices that operate using cloud services 

has created new security issues pushing towards the 

zero-trust model as users no longer interact directly 

with the device but only through cloud services. This 

trend towards cloud-based security is present also on 

products manufactured by leading firewall vendors 

that can be accessed solely using a cloud console and 

no longer connecting to the firewall sitting on the 

company premises. 

Providing network visibility is the base on which 

security of modern networks works, as it is 

compulsory to implement mechanisms to enforce 

network policies that enable zero-trust and modern 

home networks to operate. This has been the 

motivation behind this work, being decryption of 

encrypted traffic not practical for various reasons 
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including, but not limited to, ethical and technical 

issues that prevent MITM (Man In The Middle) 

techniques [1] to operate on non-TLS (Transport 

Layer Security) protocols such as SSH, BitTorrent 

and Skype. Contrary to previous research [2, 3, 4], 

goal of this paper is not to define new methods for 

identifying specific threats but rather to classify 

network traffic in a generic way without searching 

specific traffic or malware fingerprints. As specified 

later in this paper, this approach is able to classify 

traffic using specific protocol metrics and also detect 

changes in network behaviour. This fact is effective in 

particular on IoT and home networks, where the 

device behaviour should not change unless it is 

reconfigured or compromised. 

Another objective that has motivated this work, is 

the definition of new metrics and techniques to be 

used with encrypted traffic similar to those used with 

clear text. For instance, in HTTP the User Agent has 

been used [5] to classify devices and identify 

malware: how can this be implemented with 

encrypted traffic? In essence, identify properties in 

encrypted traffic analysis equivalent to those used for 

years in clear text traffic so that it is possible to have 

the same level of visibility without decoding the 

encrypted traffic payload. 

In summary, the main contribution of this paper is 

to show in practice how existing network visibility 

methods and algorithms have been enhanced to take 

into account encrypted traffic and to promote the 

creation of a next generation DPI engine that does 

more than just identifying network protocols decoding 

a few packets. The novelty of this work is the 

combination of existing protocol fingerprint 

techniques coming from DPI with new traffic 

behavioural indicators that allow traffic not only to be 

recognised in terms of application protocol, but also 

to be checked for compliance with the expected 

behavioral model. Doing this it is possible to improve 

application protocol detection, and at the same time 

spot suspicious traffic behaviour in a simple way with 

respect to what popular IDSs can do in a significantly 

more complex fashion [6]. This is to create a 

comprehensive set of algorithms and metrics that can 

be effectively used to monitor both large and 

home/IoT networks as well Internet traffic. As 

described later in this paper, the results of this 

research have been implemented in a popular open 

source deep-packet inspection and traffic 

classification engine named nDPI [7] so that other 

people can benefit from this work. 

The rest of the paper is structured as follows. 

Section 2 analyses encryption protocols and standard 

traffic fingerprint techniques used to classify 

encrypted traffic. Section 3 covers the proposed 

monitoring methodology, metrics and approach. 

Section 4 discusses the tool implementation and 

experiments, and finally Section 5 concludes the 

paper. 

2. Related Work 
 

This section first analyses TLS and SSH (Secure 

Shell), the two leading encryption protocols and it 

describes various traffic analysis and fingerprint 

methods. Then it describes how IoT device traffic is 

analysed and enforced in networks.  

 

2.1. SSL/TLS Fingerprinting 
 

TLS (Transport Security Layer) is the most 

popular cryptographic protocol used to secure 

communications on computer networks. TLS has 

replaced its predecessor SSL (Secure Socket Layer) 

used for years on the Internet and now deprecated, and 

it has been designed to provide privacy and data 

integrity between two communicating applications. 

TLS uses TCP as transport protocol even though there 

is also a variant called DTLS (Datagram TLS) mostly 

used for VPNs and in some mobile applications (e.g. 

the Signal messaging app) that is similar to the QUIC 

protocol promoted by Google. TLS communications 

flow over an encrypted, bidirectional network tunnel 

that is encrypted using some cryptographic keys based 

on shared secrets negotiated at the start of the session 

named TLS handshake. During handshake the two 

communicating peers agree on algorithms, exchange 

certificates and cryptographic options before starting 

encrypted data exchange. In this negotiation phase the 

TLS client sends a ClientHello message that contains 

a list of supported ciphers, compression methods and 

various parameters including options on elliptic-curve 

cryptography used by TLS. The server responds with 

a ServerHello message that contains the chosen TLS 

protocol version, ciphers and compression methods 

selected out of the various options offered by the 

client in the ClientHello message. Then the server 

sends an optional certificate message containing the 

public key used by the server. Handshake messages 

are exchanged in clear, so they can be decoded by 

dissecting packets, with the exception of the server 

certificate that in TLS 1.3 is encrypted. 
 

 

 
Figure 1. Simplified TLS Handshake              

(RFC 5246, 2008) 

 

Decoding the initial handshake packets allows 

applications to inspect how data is exchanged and 

disclose information about both the client and server 

configuration as well fingerprint and identify client 
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applications. For instance, a typical misconception 

about TLS is that monitoring applications are unable 

to understand what server name is accessed by the 

client (e.g. whether the client has accessed 

www.google.com or maps.google.com) whereas this 

information named SNI (Server name Indication) is 

part of the ClientHello message and thus it can be 

inspected, not to mention that other techniques based 

on inspection of DNS traffic before TLS exchange 

might also be used. JA3 is a popular client/server 

fingerprinting method, hence named JA3C and JA3S, 

that is based on cryptographic information exchanged 

in ClientHello and ServerHello packets. Both client 

and server fingerprints are 32 character hashes of 

strings obtained concatenating selected fields of the 

Hello packets. In particular the JA3C string is a 

concatenation of TLS version, client accepted ciphers, 

list of TLS extensions, elliptic curves, and elliptic 

curve formats extracted from the ClientHello packet. 

Instead the JA3S string is a concatenation of TLS 

version, accepted cipher, and list of extensions. Both 

JA3 fingerprints ignore non-cryptographic 

information such as the SNI string, or certificate 

information as their goal is basically to fingerprint the 

cryptographic libraries used by the two TLS peers 

rather than to create a unique client/server fingerprint. 

This means that if applications A, B, and C use the 

exact same version of OpenSSL they will have the 

same JA3 fingerprint even though they can be 

different in nature. The consequence is that methods 

based on JA3 fingerprint databases (e.g. 

https://ja3er.com) are “nice to have” but they cannot 

be reliably used for instance to discriminate malware 

from benign applications, or fingerprint a web 

browser. So in essence even though JA3 is very 

popular in the security industry being it be used by 

most IDS (Intrusion Detection Systems) tools, it can 

be considered as just a feature as it leads to false 

positives due to multiple matches for the same 

fingerprint. 

 

2.2. SSH Fingerprinting 

 
SSH is a network protocol used to remotely and 

securely access a system. Initially designed as a telnet 

replacement, SSH provides confidentiality and data 

integrity and thus it is also used to secure other 

existing protocols by tunnelling traffic such as with 

X11, a windowing system used by Unix operating 

systems. The extreme protocol versatility to create 

encrypted tunnels, has often been used to circumvent 

security fences and therefore every monitoring system 

should be able to analyse this traffic in detail. In SSH 

the two initial messages after the 3WH (three-way 

handshake) are plain text strings that identify the 

client and server versions (e.g. SSH-2.0-

OpenSSH_7.8). Then peers exchange the 

SSH_MSG_KEXINIT message for specifying each 

other the preferences and options for data encryption. 

 

 
 

Figure 2. Simplified SSH Handshake 

(RFC 4254, 2006) 

 

Similar to JA3 for TLS, for SSH there is a 

fingerprint named HASSH that is compute on the 

above message to create one hash value for each 

connection peer. This hash is not used to uniquely 

identify a client/server but it rather identifies a 

specific SSH implementation as it only takes in 

account the list of key exchange methods and 

encryptions supported by each peer. In fact the unique 

client/server fingerprint can be obtained by the 

following two key exchange packets that instead are 

ignored by HASSH. 

 
2.3. Additional Protocol Fingerprinting 
 

In addition to JA3 and HASSH there are additional 

fingerprint methods available for additional protocols 

such as CYU for Google QUIC, or RFDP for the 

popular RDP (Remote Desktop Protocol) used to 

remotely connect to Windows hosts. 

2.4. Beyond Protocol Fingerprinting 

 
As stated earlier in this section, these protocol 

fingerprints are not designed to uniquely identify an 

application using it, but their intended use is to have a 

quick way to calculate a fingerprint that can be used 

to spot malware applications when combined with 

additional metrics to create a unique fingerprint. This 

said, fingerprints are a way to identity 

communications originated by the same (set of) 

application(s) by inspecting the first initial packets 

and they are often used by IDSs such as Suricata and 

Zeek that use signatures to identify malware. Mercury 

[8] does not use standard signatures such as JA3 but a 

custom fingerprint to recognised applications. Joy, 

Mercury predecessor, instead used SPLT (Sequence 

of Packet Length and Arrival Time) and bytes entropy 

of the first few packets past the 3WH to create 

malware signatures. 

 

2.5. Statistical Traffic Analysis 

 
Traffic analysis using statistical methods [9, 10] 

has been used for years. In this work we do not use 

statistical methods to detect the network application 

protocol, as DPI [11] proven to be a reliable solution 
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for this problem. Instead, statistical methods can be 

used to classify traffic behaviour (i.e. statistical 

characteristic of the traffic flows) and spot 

misbehaving communications [12]. In this work we 

have data binning techniques to group traffic 

dimensions (e.g. packet length and inter-arrival-time) 

into specific bins. Using Euclidean-distance 

comparison it has been possible to cluster similar 

behaviour as detect when a known behaviour deviates 

from what the system considers as normal. 

Novelty of the work resides in combining data 

binning techniques with state-of-the-art DPI 

techniques and some behavioral indicators such as 

packet payload, packet IAT (Inter Arrival Time), 

payload bytes entropy, connection duration, and new 

connection creation frequency. Contrary to similar 

research in this area [13], our work is not focusing on 

exactly identifying one specific traffic pattern and 

detecting in the wild (e.g. identify a communication 

flow from malware X and label it as malware X) as 

this requires complex and computationally expensive 

models that are not really necessary. In the validation 

section we have analysed several network attack 

traces from public datasets, and the conclusion is that 

using this work we can spot misbehaving hosts by 

leveraging on the score and other methods described 

in this paper. In general, tools able to analyse 

encrypted traffic are designed to detect specific 

patterns and match selected signatures. This means 

that such tools are unable to analyse connection traffic 

past the few initial connection packets, and implement 

visibility looking at the big picture instead to analyse 

a single-flow. In IoT networks for instance, traffic 

patterns are rather static thus host misbehaviour can 

be detected by comparing current with past traffic 

values and not just looking at individual flows. This is 

also a novel contribution, namely that this work that 

implements a lightweight classification model based 

on the concept of score that does not require specific 

training or hundred of features to operate, as it detects 

suspicious behaviour instead of detecting an exact 

behaviour learnt during the training phase. This 

feature is very important as it allows unknown cybers-

security events to be (partially) detected contrary to 

other systems that instead are designed only to 

recognise a set of known behaviours. The following 

section explains how we have extended visibility to 

encrypted traffic and monitored IoT traffic 

successfully. his section first analyses TLS and SSH 

(Secure Shell), the two leading encryption protocols 

and it describes various traffic analysis and fingerprint 

methods. Then it describes how IoT device traffic is 

analysed. 

 

3. Monitoring Encrypted Traffic 
 

Network administrators need to enforce the 

specifie policies that include, but it is not limited to: 

 

• Limit the bandwidth of specific protocols (e.g.  

BitTorrent) and prioritise others (e.g. 

videoconference). 

 

• Block malicious communications that might flow 

over encrypted connections. Modern malware 

such as Danabot use TLS to spread and thus it is 

compulsory to create mechanisms for recognising 

bad behaviour in encrypted communications. 

 

As the goal of a deep packet inspection library 

such as nDPI is to identify application protocols and 

extract relevant metadata, monitoring applications can 

use this information to accomplish the above tasks by: 

 

• Fingerprinting network traffic in order to detect if 

both the protocol (e.g. the certificate) has changed 

or its behaviour. 

 

• Preventing specific traffic flows (e.g. unsafe TLS 

communications) to happen on our network. 

 

• Providing metrics for measuring the nature of 

specific communications (e.g. HTTPS) while not 

being able to inspect the content with MITM 

techniques due to the reasons previously 

discussed. 

 

• Identify malware in network communications for 

instance comparing fingerprints with a database of 

known malware fingerprints, or by other means. 

For instance, a crypto-locker targets Windows 

systems by encrypting data stored on local or 

network attached disks. It can be detected by 

monitoring the traffic towards network storage 

systems searching for anomalous patters such as 

creation/deletion of many files in a short amount 

of time by a single host.  

 

This in essence requires monitoring applications 

being able to monitor traffic overtime and spot 

changes in behaviour that might indicate changes in 

the remote peers configuration or a malware infection. 

During this research work we decided to take into 

account the widespread use of IoT and smart devices 

that nowadays are present in many networks. Most 

devices such as those based on Amazon Echo and 

Google Home do not interact directly with the local 

network but only through the cloud. This means that: 

 

• IoT devices installed in the home network are 

permanently connected to the cloud services they 

use. 

 

• When two devices need to communicate (e.g. 

somebody asks to the home assistant to turn off the 

light in the bedroom), they do not exchange data 

directly but the assistant send to the cloud a 
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message asking to turn off the lights, and the smart 

lightbulb receives a notification from the cloud to 

execute the action. 

 

This is a typical example of modern 

communication patterns where most of these 

communications with the cloud are encrypted. In this 

scenario, monitoring tools need to inspect IoT traffic 

in order to make sure that the devices behave 

normally. As IoT devices have static communication 

patterns, this goal can be achieved in two steps: 

 

• Monitor both the pool of peer addresses 

communicating with the IoT device, and the 

application protocols used to exchange data with 

the cloud: they should not change overtime. 

 

• Identify some encrypted traffic metrics useful to 

verify that data exchanged by the IoT device with 

the cloud does not change in nature. 

 

In non-IoT environments the strategy to provide 

visibility and introspection to encrypted network 

traffic is somehow similar: 

 

• Use DPI techniques to characterise traffic and 

extract relevant metadata that can be used to 

further classify the traffic. 

 

• Compare traffic fingerprints to both databases of 

malicious fingerprints in order to speculate about 

the nature of the communication and detect when 

host fingerprints change. 

 

• Use traffic metrics to understand whether known 

traffic is still matching the previously observed 

behaviour., and if DPI detected application 

protocols are matching the model for that protocol. 

 

Note that the above items can be applied to both 

plain text and encrypted traffic: the fact that the trend 

is towards encrypted traffic does not mean that clear-

text traffic disappeared and thus that it should be 

ignored. For instance, even when a host uses DoH 

(DNS over HTTPS), there is an initial DNS request to 

resolve the DoH server address and that could be very 

useful to traffic analysis analysts. The main difference 

is that with plain text traffic it is possible to dissect the 

payload to interpret the content, whereas with 

encrypted traffic this is not possible and thus it is 

compulsory to use alternative techniques for 

achieving the same goal. This research work has 

combined the use of fingerprints as traffic indicators 

(i.e. not for blocking/alerting traffic in case of a match 

with a fingerprint blacklist) with behavioral traffic 

analysis used to spot changes with respect to past or 

expected behaviour, that are not necessarily an 

indication of compromise or errors, but that are an 

indicator worth to be analysed by network specialists. 

This is implemented by the concept of score for each 

entity (flows, hosts, ASs etc.): a non-negative number 

indicating that such entity has been affected by an 

unexpected behaviour. A zero-flow score means that 

no issue has been reported, whereas a positive value 

indicates the relevance of the issue detected. The flow 

score is then used to increase the host peers score, that 

will then increase the AS score such hosts belong to., 

and so on This way we can easily identify and cluster 

unexpected behaviour not just at flow level, but also 

at entity level, easing for instance the work of network 

analysts that have to interpret data. For instance a 

network/port scan at flow level can look like an 

anomalous individual flow, but when correlated with 

the flow score to the host/network, this fact becomes 

evident without having to implement costly data 

structures that keep track of ports or peers being 

involved in the scan. It is worth to remark that the 

concept of score does not require perfect metrics that 

might be computationally/memory expensive, but 

reliable indicators are enough feed it. For this reason, 

we have used simple bin-based statistics with respect 

to more accurate yet costly Markov-based indictors. 

The same applies to the entropy that has been used to 

understand if a flow is misbehaving, instead of using 

it to monitor more precise information such as the 

nature of the information being exchanged. As 

explained in the validation, this practice is affected by 

false positives that instead we want to avoid.                     

The follow-up section describes the methodology and 

metrics used to provide visibility, and that have been 

implemented in nDPI. It is worth to remark, that this 

research work is based on practical experience coding 

various monitoring applications, and extensive 

validation tests described in the following section.  

 

3.1 TLS-Specific Protocol Fingerprintings 

 
As described in the previous section, JA3 can be 

used to identify the library used by an application 

when it connects with a remote peer using the TLS 

protocol. As already discussed, JA3 fingerprint are 

not unique across applications, hence and two 

applications using the same TLS library can have 

different fingerprints as they have specified different 

library options. In essence using JA3 as a signature-

based indication it is not a good idea, even if it can be 

used for other purposes such as: 

 

• Regardless of the hash value, JA3C can be used to 

uniquely identify an application or a web browser 

plugin. This means that observing the traffic of a 

host for some time, unless the host software 

configuration is modified, the list of known JA3C 

fingerprints must be static. Any new JA3C 

signature means that there is a new/unknown 

application running or that an existing application 

has been modified, or perhaps compromised. As 

on non-IoT devices this can happen when an 
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application is installed or updated, on IoT devices 

any change is an indication of compromise unless 

the device firmware changed. 

 

• As the TLS client specifies what encryption 

options are available, unless the server 

configuration has changed, it must always use the 

same JA3S for a given JA3C, so the tuple <JA3C, 

JA3S> for the same client and server must be 

static. If JA3C does not change but JA3S does, 

then the server software configuration has been 

modified. 

 

• In essence JA3C is the new HTTP User-Agent for 

TLS, as it can be used to fingerprint HTTPS client 

applications same as the User-Agent for plain text 

HTTP. 

 

The previous statement triggers another question: 

how can we differentiate a generic TLS connection 

from HTTPS? This is a very important question to 

answer as TLS can be used for non-web usage such as 

for implementing VPNs for instance, or applications 

that are not web browsers such as malware, and that 

connect to web servers for compromising them. In the 

ClientHello packet there is a TLS extension (not 

effectively used by JA3) named ALPN (Application-

Layer Protocol Negotiation) that it is used by the 

client to tell the server the list of application protocols 

supported such as HTTP/1.1 and HTTP/2.0. As it will 

be explained in detail in the following section, non-

web applications such as a VPN will not declare any 

HTTP protocol in the ALPN. Another TLS extension 

named supported_versions that specifies the list of 

supported TLS versions by the client, can be 

combined with ALPN to fingerprint the web client 

application and thus further characterise the nature of 

a specific TLS connection. 

Another indicator that can be used to fingerprint 

communications in particular for IoT devices, are the 

TLS certificates exchanged by the devices. Up to TLS 

1.2, that is by far the most popular TLS version in use 

today, certificates are exchanged in clear and thus they 

can by inspected by nDPI; unfortunately, with TLS 

1.3 they will be exchanged encrypted hence soon this 

additional check will not be possible. Same as the 

tuple <JA3C,JA3S> discussed earlier, certificate 

fingerprints can be used as change indicators not in 

terms of encryption options but rather of client/server 

configuration. 

 

3.2 SSH-Specific Protocol Fingerprintings 

 
Similar considerations can be applied to SSH 

traffic where HASSH replace JA3, and the SSH keys 

can be used as the TLS certificates. 

 

 

3.3 Combining Misuse with Anomaly 

Detection 

 
As already discussed, protocol fingerprints are 

useful to detect changes in configuration or network 

protocols: as the use only the initial flow bytes, they 

are lightweight and predictable in computation costs. 

The main limitation of fingerprints is that they have 

not been designed to analyse traffic behaviour, and 

thus they need to be complemented with additional 

metrics. When classifying network behaviour there 

are in essence two main strategies: 

 

• Misuse detection: classify good (normal 

operations) and bad behaviour (e.g. malware) and 

match the current behaviour against the model. 

This approach has a few limitations such as being 

able to recognise only what the system has been 

trained for, and also requiring traffic annotation 

that is not something network specialists usually 

like to do.  

 

• Anomaly detection: classify past traffic with a 

comprehensive list of metrics, and check if the 

current traffic matches the traffic model that it has 

been built for a given device. The limitation of this 

approach, is that traffic is classified as good if it’s 

a “déjà vu”, and bad if there is a new traffic pattern 

in the network that needs to be checked for 

maliciousness (i.e. an expected behaviour is not 

malicious per se).  

 

We use the second classification strategy as it fits 

well with IoT devices where their behaviour is mostly 

static, this contrary to a laptop where traffic patterns 

and visited sites are less predictable. Nevertheless, the 

concept of security risk described later in this section, 

can be used to spot misuses at flow level, while the 

score can be used to analyse the behaviour at entity 

level (e.g., host or network). As in an encrypted 

stream it is not possible to inspect the content, the idea 

is to map key connection properties in order to create 

a traffic model for a device traffic. This information 

could be used to complement MUD [14] profiles, that 

describe the intended service a device can 

use/provide, specified in terms of IP addresses and 

ports. Such model is not general to a device but is 

based on the tuple <IP source, IP destination, L3 

protocol, L7 protocol, SNI or host name> because: 

 

• The SNI and host name further characterise the 

protocol that might behave differently according 

to the service the client is connecting to. For 

instance, the traffic model of an Android device 

talking with IP address 172.217.18.98 serving 

googleads.g.doubleclick.net and pagead2.google 

syndication.com over TLS is not compulsory to be 

identical for both services. 
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• As with clear text traffic, the traffic model for 

encrypted traffic differs based on the service being 

requested. This means that in HTTP for instance, 

two requests get_static_image.php and get_json_ 

data.php will also behave differently as the type of 

data can be different. For this reason, the model 

should take this fact into account by creating a 

single model for the above tuple. 

 

The model is created only on the initial connection 

packets and not continuously for the duration of the 

flow because: 

 

• nDPI already contains algorithms for continuously 

inspecting traffic over time such as IAT, packet 

length, and bytes distribution statistics, as well 

goodput and upload/download metrics. They can 

be used to spot changes in network behaviour and, 

for instance, for detecting the nature of a SSH 

connection (i.e. interactive session, file 

upload/download, or protocol tunnel) or spotting 

DoH/DoT (DNS over TLS) on TLS flows. 

 

• Continuous flow metrics computation is not a task 

for a DPI toolkit: it should analyse only the first 

few packets of a connection, while providing 

applications support for computing metrics for the 

duration of the flow. Applications sitting on top of 

nDPI are responsible for continuous traffic 

monitoring by leveraging on the nDPI-provided 

mechanisms. 

 

• Modern protocols such as HTTP/2.0 and QUIC 

multiplex multiple services over the same network 

connection making difficult to create a stable 

model for the duration of a connection, this unless 

the two connection peers always exchange the 

same type of data (e.g. a YouTube video). 

  

The DPI component is used to detect the 

application protocol and so to label the traffic: for 

instance, nDPI classifies traffic as TLS. Instagram 

when observing TLS traffic whose SNI ends with 

cdninstagram.com. For each connection, the 

following metrics are computed for both client-to-

server and server-to-client on the first 256 packets to 

reduce the computational cost of periodically 

recomputing it until the end of the connection: 

 

• Packet payload lengths, past the 3WH for TCP, are 

grouped in 6 bins of size <= 64 bytes, 65-128, 129-

256, 257-512, 513-1024, 1025+. For TLS we have 

run several experiments to find out whether it was 

better to use the TLS encryption block length 

instead of the packet length. Our conclusion is that 

using the block length is more computationally 

expensive (as TLS packets needs to be reordered 

and interpreted in order to extract the block length) 

than using the packet length, and it does not 

produce better results in terms of behaviour 

detection accuracy. For this reason we prefer to 

use packet length for all protocols being it simpler 

to compute. This said in case the TLS encryption 

block length is used, the bin size must be changed 

as TLS blocks can be as long as 16 Kb whereas 

network packets are 1514 long unless jumbo 

frames are used. 

 

• Packet IAT is grouped in 6 bins <= 1 ms, 1-5, 6-

10, 11-50, 51-100, 100+. 

 

• Payload bytes entropy: create a vector of 256 

integers, and for each byte of the payload 

increment the corresponding element. The entropy 

is then calculated on this vector. A high value 

means that the bytes are more spread (high 

variance) with respect to low values where data is 

more predictable. From our experiments we can 

report that 4096 bytes are usually enough to 

reliably compute the flow entropy. hence adding 

additional bytes do not significantly change the 

entropy value. As later described in this section, 

we used the entropy to spot changes in content 

being exchanged on flows. 

 

The motivation behind choosing a small set of bins 

is due to the need to have a compact representation 

that could fit on a 64-byte integer: after normalisation 

each bin value represents the percentage of the traffic 

falling in such bin. For instance, the following bin 

distribution 41,0,5,32,9,14 can be represented as 

0x000029000520090E 64-bit integer, leaving the 

upper two bytes to other uses cases as described below 

in this section where 8 bins are used. Note that two 

different flow bins cannot be compared with a simple 

64-bit value difference but with other means such as 

the Euclidean distance of each value byte. In our 

experiments we have realised that using a larger 

number of bins for detecting changes in behaviour is 

not improving the detection: in fact, our goal is not to 

exactly fingerprint a given communication but rather 

to understand if the behaviour of such communication 

is stable over time. Instead, if the goal would be to 

exactly fingerprint malware X, more sophisticated 

methods are necessary as they need to take into 

account other flow characteristics such as the exact 

sequence of packet length and not just length 

distribution for which bins are used in this work. 

After a few experiments, we have decided to use a 

non-uniform bin size distribution that focuses on the 

bottom size (i.e. short packets and those with small 

IAT) as they map better traffic properties with respect 

to uniform distribution where all packets are treated 

equally. Bins are exported after normalisation, i.e. the 

bin value is reported as percentage with respect to the 

total. This allowed us to keep the detail of the 

time/packet length shape, while accounting for 

differences across flows.  
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In addition to the above metrics, for each tuple 

<host, L7 protocol> there are two additional bins 

defined: 

 

• Connection duration divided in 8 bins, <= 1 sec, 2-

3, 4-5, 6-10, 11-30, 31-60, 61-300, 300+. 

 

• New connection creation frequency also divided 

in 8 bins with the same bin distribution. 

 

The last two metrics can be used to detect changes 

in behaviour. For instance, a host that suddenly 

changes its usual connection duration/creation rate to 

many short-living flows is an indication of a possible 

network/port scan. The use of bins is basically a 

compact way to classify and compare traffic 

properties without an order. This means that for 

instance considering IAT, the following two sequence 

of values 10,50,10,50,10,50 has the same value of 

10,10,10,50,50,50. A simple way to keep track of the 

order of values is to use a Markov chain as some 

behavioral IDS do [15]. In our case the matrix size 

will be a 6x6 grid where each cell contains the number 

of transitions with respect to consecutive connection 

packets. While a Markov chain approach is more 

accurate than binning to report about the flow 

behaviour, this work relies on simple bins as they are 

efficient to compute, simple to implement, compact in 

size, while capturing enough information to model the 

flow behaviour. Instead, Markov chain should be 

preferred when modelling more detailed flow 

properties including detection of bots and malware. In 

other words Markov chains are useful if you want to 

detect an exact behaviour, (but this will move our 

work towards signature-based detection that is not the 

path we want to take). This has been also the 

motivation for selecting a few bin classes with 

respected to having many more classes: when we need 

to decide whether an observed behaviour matches the 

expected model, a few bin classes are enough, 

whereas for exactly fingerprinting a given behaviour 

many more classes a d additional methods are 

necessary. In summary we have preferred a binning 

approach as in this work we do not want to create an 

exact flow fingerprint useful to spot a specific 

malware application, but rather model traffic to create 

a flow score that describes how the observed 

behaviour is far from the expected model. The 

following section describes how the proposed 

methods have been validated with real traffic, and 

how they have been evaluated with both IoT/non-IoT 

traffic.  

 

4. Validation 
 

This work has been developed and validated using 

various methods: 

 

• Real Internet traffic provided by a regional Italian  

ISP captured on various networks with both 

residential and business traffic. This activity lasted 

for about one year until early 2020. It allowed us 

to tune nDPI and develop classification techniques 

described in this paper. 

 

• Over 100 packet traces of network protocols, most 

of which containing encrypted traffic, used to 

continuously test nDPI. 

 

• A realistic cyber defines dataset (CSE-CIC-

IDS2017/18) that included seven attack scenarios 

[17]. This dataset has been used to validate metrics 

for catching cyberattacks such as the heartbleed 

SSL bug. 

 

• A dataset provided by NIST that contains network 

traffic of 16 different types of popular home IoT 

devices This dataset has been complemented with 

additional IoT traces named Sentinel IoT. 

 

• Aposemat IoT-23 dataset, a labeled dataset with  

malicious and benign IoT network traffic provided 

by the Stratosphere IPS project. Unfortunately, 

also this dataset has little TLS traffic. 

 

• A dataset captured in June 2018 on a “smart 

home” with several home IoT devices such as 

smart speakers, home assistant, and smart kitchen 

equipment. This dataset is interesting as it allowed 

us to compare current IoT traffic with the one 

captured two years ago. This is very important to 

validate this idea against devices such as home 

assistant that were already available years ago but 

with a very different hardware and software setup. 

 

The different nature of the above scenarios is 

important as it allowed results to be evaluated in 

different scenarios, with both IoT and non-IoT traffic 

and benign and malicious traffic. In total the traffic 

traces stored in pcap format exceeded 100 GB, this in 

addition to live ISP traffic. Most of the IoT datasets 

containing malicious traffic as those used in this work 

and in other papers [18] contain non-TLS attacks such 

as scans or spoofing, easy to spot with the new 

connection frequency and connection duration bins 

already discussed in this section. Furthermore, nDPI 

extracts metadata that can be used for detecting 

outdated software versions that are good indicators of 

potential compromise. Such metadata is analysed and 

used by nDPI to produce a bitmap called security risk, 

where each bit set identifies a potential security risk, 

that can be used to compute the security score of flow 

peers. For instance, the string “SSH-2.0-libssh-0.5.2” 

identifies a library more than 6 years old and with 

many known vulnerabilities. To date, nDPI security 

risks include, but are not limited to: HTTP (cross-side 

scripting, SQL injection, binary application transfer, 

suspicious user-agent/header, potential remote code 
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execution attempt), port-based (known protocol on 

non-standard port), name-based (suspicious DGA, 

domain generation algorithm, domain), TLS 

(weak/obsolete cipher, self-signed certificate, TLS 

not carrying HTTPS), SSH (obsolete protocol version, 

weak cipher) content-based (malformed packet) risks. 

As explained later in this work, these risk indicators 

can be combined with anomaly and behavioral traffic 

analysis to create a simple yet effective system for 

analysing encrypted traffic. For instance during our 

experiments, we have realised that many modern 

malware such as Dridex, Trickbot and Emotet can be 

spotted as they trigger many security risks supported 

by nDPI 

 

4.1. Protocol Fingerprint Evaluation 

 
TLS traffic is about 90% based on TLS 1.2 for 

Internet traffic. Looking at IoT devices the percentage 

decreases to about 50% with half of the traffic TLS 

1.0 in Sentinel that has been captured in 2018, 

whereas on the more recent NIST dataset TLS 1.2 is 

about 90% as in live ISP traffic. TLS 1.3 slowly but 

steady increasing in terms of adoption. Looking at the 

ALPN flags in live ISP traffic 60% of the client 

advertise only HTTP 1.1 and 40% also support 

HTTP2, whereas going back to 2018 in the Sentinel 

or Stratosphere datasets the HTTP2 protocol is not 

advertised at all even also due to the limited support 

of ALPN in TLS traffic. The TLS extension 

advertising the supported TLS version is less popular 

than ALPN, and it can be found only in recent 2019 

live traffic. The following table show some statistics 

about the above TLS extensions (see Table 1). 

Expectedly, non-web-based applications such as 

the AnyConnect and OpenVPN client do not advertise 

any ALPN, whereas all the other applications do with 

the exception of wget whose source has not been 

refreshed in a while. This confirms that when ALPN 

is specified (as this is its purpose being it designed to 

advertise the protocol that will be used over TLS), the 

client is a web-based application whereas when 

ALPN is not present, nothing can be said about the 

nature of the application that can either be an outdated 

client as wget or a non-web application (e.g. a VPN 

client). This is an interesting property to disclose the 

nature of TLS communications (i.e. Tor vs. web 

surfing) that can also be used to improve JA3 

fingerprinting reliability. For instance a long-standing 

TLS connection with no ALPN can be an indication 

of a non-web related activity such as a VPN or a 

malware. 

Talking about JA3 we have performed some 

experiments to better understand how JA3C 

fingerprints are used. In order to do that we have 

written and eBPF probe for Linux systems based on a 

home-grown open-source library named libebpfflow. 

Thanks to the library it has been possible to track 

JA3C usage according to the application using it. 

Table 1. Advertised ALPN and Supported 

TLS Versions 

 
TLS Client App ALPN Supported TLS 

Versions 

git http/1.1 None 

curl h2, http/1.1 None 

wget None TLS 1.0, 1.1, 1.2, 

1.3 

Brave h2, http/1.1 TLS 1.0, 1.1, 1.2, 

1.3, GREASE 

Firefox h2, http/1.1 TLS 1.0, 1.1, 1.2, 

1.3 

Chrome h2, http/1.1 TLS 1.0, 1.1, 1.2, 

1.3 

Safari h2,h2-14,h2-15,h2-

16,spdy/3,spdy/3.1 

None 

OpenVPN None TLS 1.0, 1.1, 1.2, 

1.3 

AnyConnect None None 

 

 

Table 2. JA3 Fingerprint Distribution 

per Application 
 

Application Number of Different JA3 

Fingerprints 

Dropbox 3 

Telegram 1 

wget 1 

chromium-browser 5 

git-remote-http 1 

thunderbird 2 

cups 1 

 
As shown in the previous table, there are 

applications having only one fingerprint and others 

with more than one. Since TLS configuration, and 

thus JA3 fingerprint, can be manipulated via API calls 

of the encryption library being used, multiple 

fingerprints might indicate that there are different 

entities issuing requests. In the case of a web browser, 

for example, add-on and third-party extensions might 

generate this behaviour. This means that not only 

multiple applications can share the same fingerprint, 

but also that one application can have multiple 

fingerprints. The consequence is that while JA3 can 

be used as indicator of change when the JA3C is 

modified, the experiments confirm that it cannot be 

used as a reliable fingerprint being it affected by false 

positives (see Table 2). 
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4.2 Traffic Behaviour Evaluation  
 

When the JA3 fingerprints do not change, we also 

need to check if the flow behaviour is unchanged with 

respect to the past. Instead of interpreting the protocol 

messages, complicated activity for proprietary 

protocols such as WhatsApp, we have used the 

entropy value computed on the raw packet payload. 

We have conducted two types of experiments in order 

to understand if entropy could reveal the nature of the 

information being exchanged, and if each protocol has 

a typical entropy value. In the first set of experiments, 

we have downloaded various files over HTTPS, using 

the same client and server hosts, in three different 

format. The following table shows the results with 

various file types for each format (i.e. PDFs of one 

page and many pages, with only text or plenty of 

images etc.). 
 

 

Table 3. TLS Payload Entropy per File Type 

 
Byte Entropy PDF PNG TEXT 

Average 6.426 7.009 7.009 

Std Dev 0.007 0.013 0.002 

 

 

The experiment highlights that while PDF 

documents can be distinguished from PNG/TEXT 

files when transferred over TLS, it is not really 

possible to know whether a PNG or TEXT file is 

transfer on top of a TLS connection by simply looking 

at the data entropy, Furthermore, it is worth to remark 

that when changing the cipher used in the experiment 

(e.g. transferring the same files over a different type 

of client and/or server) the entropy values can slightly 

change making the use of this technique unreliable for 

this problem with entropy so close in value (see Table 

3). For this reason, we believe that using the entropy 

for detecting the file type is unfeasible, but instead 

entropy is a good indicator for other use cases as 

described later in this section for hearthbleed. This is 

because each protocol, regardless of the cipher being 

use if encrypted, has a typical entropy that can be used 

to verify both if the information being transfer really 

matches the DPI-detected protocol, and speculate 

about the nature of unknown traffic.  

In another set of experiments where we have 

analysed several hundred of flows and explored 

whether specific protocols have a typical entropy 

value. 
 

 

Table 4. Payload Entropy Distribution 

 
Byte Entropy DNS TLS NetFlow Skype 

VoiceCall 

Average 4.285 7.789 4.079 5.963 

Std Dev 0.272 0.231 0.533 0.055 

The results reported in the previous table are 

interesting as each protocol has a typical value whose 

variance is limited in range. This makes it possible to 

combine DPI application protocol discovery with the 

entropy value to further enforce detection and spot 

outliers and thus potential anomalies. In essence the 

byte entropy can be used as an indicator for anomalies 

as well detecting potential DPI invalid classification. 

For instance, a DNS query with an entropy of 6.5 is 

definitively suspicious (i.e. it can hide potential data 

exfiltration), same as a connection with unknown 

protocol detected and entropy 7.5 can hide a TLS 

stream. Entropy has been an effective metric for 

detecting hearthbleed (see Table 4). Under attack the 

victim host reported for TLS a <client, server> 

entropy of <7.9, 0.0> compared to <7.9, 7.8> when 

not under attack. In another experiment we combined 

entropy information with additional behaviour 

indicators including: 

 

• DPI application protocol (e.g., TLS.Amazon). 

 

• TLS SNI or host name (e.g. 

android.clients.google.com). 

 

• Client-to-server and server-to-client payload bin 

and entropy values. These values are computed on 

the first 256 packets of a flow.  

 

Flows with less than 10 packets are not considered. 

The bin values have been normalised in order to make 

them comparable with other flows regardless of the 

number of packets. 
 
 

Table 5. TLS.OpenVPN Bin and Entropy Distribution 

Between Two Hosts 

 
PacketLen Bin 

Distribution % 

Packet TimeDiff Bin 

Distribution % 

Entropy 

Cli-to-Srv 

Entropy 

Srv-to-Cli 

50,9,0,9,18,14 41,0,5,32,9,14 7.402 7.312 

45,9,0,14,18,14 41,0,5,32,9,14 7.399 7.294 

50,9,0,9,18,14 41,0,5,32,9,14 7.388 7.304 

 

 

Table 5 contains the result of this experiment 

limited to three flows out of several thousand flows: 

this just as a short example to clarify the concept. The 

first column is the packet length bin normalised to 256 

(decimals are not depicted as values have been 

rounded) and the second the normalised packet time 

difference bin. The last two columns represent the 

byte entropy in each traffic direction.  

Using Euclidean distance, nDPI features functions 

for creating the bin centroid (i.e. the arithmetic means 

of the bins) and the maximum distance between the 

centroid and the bins, i.e. <centroid, max distance, 

otherTLS> where otherTLS contains additional 

metrics such as ALPN, JA3C/JA3S, certificate 
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fingerprint that will be empty for non TLS 

communications. This is the expected fingerprint, for 

this communication: we expect that future 

communications will honour this fingerprint and 

discrepancies will be considered as anomalies. As the 

use of bins is very lightweight with respect for 

instance to a machine learning model, it is possible to 

create a fingerprint for each triplet <client IP, server 

IP+SNI+Certificate, destination port>. The use of SNI 

and of the certificate fingerprint is very important as 

the destination IP can serve multiple SNIs whose 

behaviour can be very different. Table 6 shows a 

GoogleHome device that contacts a remote google 

service whose SNI is clients.google.com served by 

host 172.217.7.206 whose traffic was part of the NIST 

dataset containing over 800 flows generated by this 

device.  

 

Table 6. Google Home contacting SNI 

clients.google.com 

 

TLS Certificate 

Fingerprint 

ALPN PacketLen Bin 

Centroid 

Distribution % 

None h2;h2-16;h2-15;h2-

14;spdy/3.1;spdy/3;

http/1.1 

54,17,10,5,3 

DC:30:BA:11:56:E5:65

:7F:CE:40:33:FF:14:2E

:6E:D2:C2:33:4E:E4 

h2;h2-16;h2-15;h2-

14;spdy/3.1;spdy/3;

http/1.1 

0,0,15,43,30 

 

The centroid has been computed using the 

Euclidean distance of the individual bin values as 

computed by nDPI. As you can see, the centroid is 

very different as the TLS certificate fingerprint 

changes; this even though the server IP, SNI and 

destination port and JA3C are the same. This means 

that with our approach we can fingerprint traffic per 

triplet and detect when observed traffic does not 

match the fingerprint as its max distance exceeds the 

one set in the model. A disadvantage of this approach 

is that it cannot generalised for instance to all TLS 

traffic going towards all Google SNIs as each service 

has its own fingerprint. This is not necessarily a 

limitation of this work as a single comprehensive 

model would use many more resources, thus 

jeopardising the advantage of having resource 

effective and fine grained models.  

 

5. Conclusions 
 

This paper has demonstrated that it is possible to 

effectively characterise and fingerprint encrypted 

network traffic by leveraging on existing methods 

complemented with novel techniques described in this 

paper. The ability to fingerprint protocols also in 

terms of behaviour, enables better traffic 

characterisation and detection of changes in traffic 

behaviour with respect to existing techniques. 

The result of this research work has been 

successfully validated on live Internet traffic as well 

on various traffic datasets, and integrated in nDPI, an 

open-source DPI engine developed by the authors, so 

that the whole Internet community can benefit from it. 

 

6. Future Work 
 

In [19] authors propose a solution named “bag of 

system calls” for representing and classifying an 

application behaviour by looking at the sequence of 

system calls an application performs. A bag is a tuple 

that contains <syscall id, frequency> and is computed 

in a sliding time window. When in learning mode, the 

classifier computes the bag tuples on a “normal 

system” in a time window and stores them in memory: 

this iterative process ends as soon as a computed bag 

is similar to a bag that was previously observed. In 

running mode, bags are computed on a time window 

and compared with the list of known bags: if the 

similarity distance between the bag and the list of bags 

computed during learning is above a threshold, the 

system reports this as anomaly. Bags could be 

represented as bins where each bin slot contains the 

observed frequency, and where the bag time windows 

is a flow. A future work item is to evaluate if the 

classification process using bins, centroids and 

similarity, could be replaced with bags: instead of 

having multiple triplet models as already discussed, it 

should be possible to create a model of bags per SNI 

or destination IP that could reduce the number of 

triplets. 
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