
Using Deep Packet Inspection in CyberTraffic Analysis

Abstract—In recent years we have observed an escalation of
cybersecurity attacks, which are becoming more sophisticated
and harder to detect as they use more advanced evasion
techniques and encrypted communications. The research
community has often proposed the use of machine learning
techniques to overcome the limitations of traditional
cybersecurity approaches based on rules and signatures, which
are hard to maintain, require constant updates, and do not solve
the problems of zero-day attacks. Unfortunately, machine
learning is not the holy grail of cybersecurity: machine learning-
based techniques are hard to develop due to the lack of annotated
data, are often computationally intensive, they can be target of
hard to detect adversarial attacks, and more importantly are
often not able to provide explanations for the predicted outcomes. 
In this paper, we describe a novel approach to cybersecurity
detection leveraging on the concept of security score. Our
approach demonstrates that extracting signals via deep packet
inspections paves the way for efficient detection using traffic
analysis. This work has been validated against various traffic
datasets containing network attacks, showing that it can
effectively detect network threats without the complexity of
machine learning-based solutions.

Keywords—Deep packet inspection, Encrypted traffic analysis,
Open-source.

I. INTRODUCTION
In the last decade, the Internet became ubiquitous and

pervasive with millions of people connected to it all the time
via smartphones and millions of IoT devices, both for industrial
customers and residential customers. Our dependency on
Internet services combined with the availability of always-on
and high-bandwidth Internet connections offered new
opportunities for cybercriminals. Modern cybersecurity
criminals belong to well organised and well founded
organisations as an economical reward for cyber crimes are
constantly growing. Not surprisingly the level of sophistication
of current cybersecurity attacks is constantly increasing and it
is causing an arms race between attackers and responders.
Timely detection of cybersecurity attacks is fundamental to
protect organisations and their data from intruders. Detecting
complex attacks such as Advanced Persistent Threats (APT) is
extremely challenging and it usually requires dedicated teams
of security experts who use their experience to identify
suspicious network activities. Traditional intrusion detection
systems, which are usually based on signatures and rule-based
approaches, have shown their limitations in detection
capability, especially when attackers and the infected hosts
heavily rely on encryption to obfuscate communications and in
all the cases when new threats appear for the first time. In
order to improve upon rules and signatures, machine learning
approaches are currently used in existing products to overcome
those limitations. Machine learning promises to improve the
detection capabilities for previously unseen threats, such as
zero-day attacks, and also to reduce the problem of maintaining

and updating a set of rules and fingerprints. While we do
believe that machine learning technologies are playing and will
play in the future an important role in cybersecurity, we
strongly believe that domain knowledge and feature
engineering have tremendous value for any detection problem.

In this paper, we highlight that despite the always
increasing adoption of encryption technologies, deep packet
inspection can still be used to extract very strong signals from
the raw traffic. While one could feed those signals to machine
learning based detectors, we highlight that when strong signals
are available, one can greatly profit from them even with less
sophisticated data processing technologies. By manually
inspecting a large collection of malware traces, we observed
that many suspicious activities related to malware can be easily
detected in malware traffic, even when encrypted. We have
implemented a system that detects many of those activities in
real-time using deep packet inspection and exploits them to
associate a reputation score to local and remote hosts.

We highlight that while the system still requires further
validation in the field, our approach raises the bar for
cyberattack detections for multiple reasons. Compared to
machine learning systems, where the outcomes are usually hard
to explain, our approach gives operators clear explanations of
the reasons why a system can be considered suspicious.
Additionally, it is efficient and does not require annotated data.

II. CYBERSECURITY AS A PROCESS

A. Motivation
Network traffic has changed dramatically in the past

decade:
• Today most local and Internet network traffic is encrypted

[1] not only because more recent protocols are using
encryption by default, but also because traditional protocols
that are as old as the Internet have been modified to support
encryption [2].

• Hardening features typical of mobile devices [3] are
deployed in desktop operating systems, making computer
interactions more secure.

• The increased adoption of cloud-based services has
drastically changed the communication patterns within
enterprise networks. While more and more services such as
email, backups, and name resolution are moving to cloud-
based offerings, some north-south traffic communications
are replacing former east-west communications. Therefore,
on the Internet link, it is possible to observe traffic (mostly
encrypted) that used to be exchanged in LAN in
unencrypted form.

• Cloud-based IoT devices such as Google and Alexa-
controlled devices have access to privileged physical
resources (e.g. a gate, a power plug, or a video camera) and

Luca Deri
ntop

Pisa, Italy
Email: deri@ntop.org

Francesco Fusco
IBM Research

Zûrich, Switzerland
Email: ffu@zurich.ibm.com

need to be protected in order to avoid that breaches could
expose sensitive information to intruders.
From the network traffic standpoint, these changes in

communication patterns have an impact on network security
tools as they have to deal with the reality that encrypted traffic
is replacing Internet protocols that were traditionally simple to
observe and monitor. While the transition towards new
encrypted communications protocols happens at a high pace,
popular open-source Intrusion Detection Systems (IDS) such
as Suricata and Snort are still using outdated techniques to
detect intrusions, which are at the same time error-prone and
computationally intensive.

a l e r t t c p a n y a n y < > a n y 4 4 3
(msg:"APT.Backdoor.MSIL.SUNBURST"; content:"|
16 03|"; depth:2; content:"|55 04 03|";
distance:0; content:"digitalcollege.org";
within:50; sid:77600846; rev:1;)

1. Example of a Snort/Suricata rule for detecting Sunburst Malware

Above we report a simple rule for detecting a popular 1

malware. This rule is used to detect TLS (Transport Layer
Securi ty) communicat ions towards domain name
digitalcollege.org. Instead of specifying something like
“proto=TLS and SNI=digitalcollege.org" this rule searches for
specific patterns in the packet payload (0x16 0x03 is the
beginning of a TLS encryption block) at specific offsets that
make it inefficient and subject to false positives. This is an
example of limitations of popular tools that have been designed
more than a decade ago where most traffic was exchanged in
cleartext, IP addresses and service ports were relatively static
(i.e. TCP/80 means HTTP, and no HTTP traffic on any other
port different than 80) with no indirect cloud-based
communications that make IP-address based rule ineffective as
in the above example.

This work builds upon our practical security-oriented
network traffic monitoring experience. The goal of this paper is
to describe what are the techniques and methods that have been
developed and deployed to effectively detect network attacks,
and report suspicious communication patterns. Learned
lessons, metrics, and methods have been implemented in the
open-source tools nDPI and companion tools that have been
made available to the Internet community for further extending
this research work and providing practical tools to use in
everyday life.

The main contribution of this work is to show how to
implement robust traffic classification methods that allow
cybersecurity threats to be identified. As described later in this
paper, authors have not decided to follow a generic approach
based on a plethora of features selected through a machine
learning algorithm [6], but instead from traffic observation,
they have created specialised metrics and simple statistical
based models that enable behaviour modeling with ease thus
reducing overall application complexity. This enabled the
creation of fine-grained network models simple enough to be
deployed with limited computational costs and able to fit into
small processing units as those that can be found on modern
network devices, this to implement pervasive security that
would not be possible with complex traditional models.

B. From Cleartext to Deep Packet Inspection (DPI)
The migration from cleartext to encrypted communications

and dynamic port usage has been a big change for many
security tools as they were layered on the principle “one port,
one protocol” (e.g. TCP/443 means TLS). Popular 2020's
malware and trojans such as Dridex, Trickbot, and Emotet [4],
use non-standard protocol ports to avoid IDS and thus hiding
infection traffic. They leverage malspam (Malware Spam) or
phishing to trigger the download of the trojan that then spreads
inside the network to harvest information that is then sent back
to the attackers on remote servers. The need to inspect and
identify traffic regardless of the port being used, has been the
main motivation to develop traffic inspection techniques based
on DPI. As DPI toolkits are expensive, closed-source, and thus
with limited extensibility, we have decided to create our own
open source DPI toolkit named nDPI where we have
implemented the traffic inspection techniques described later in
this paper. The use of DPI in cybersecurity has several
advantages as it conceptually splits the development of
monitoring applications into two main blocks. The DPI layer is
responsible for dissecting traffic and extracting metadata such
as the HTTP URL or the TLS certificate, which are used to
characterise traffic regardless of the IP and port the traffic is
flowing to. The traffic analysis layer that sits on top of DPI can
be simplified as filtering rules as those shown in Fig. 1 can be
rewritten in a simpler format as already discussed, and also
because this block does not have to deal with low-level
protocol details but instead implement the business logic of the
security application.

nDPI is not just yet another DPI toolkit capable of
dissecting application protocols and extracting the
corresponding metadata. nDPI can also extract from encrypted
traffic several industry-standard traffic markers for encrypted
communication. A popular client/server fingerprinting method
is JA3 [5] (hence the variant names JA3C and JA3S), which is
based on cryptographic information exchanged in ClientHello
and ServerHello TLS packets. JA3, and its SSH counterpart
named HASSH, is used by most cybersecurity applications to
fingerprint the security toolkit used by a certain tool (e.g.
OpenSSL vs. LibreSSL). Fingerprints extracted from JA3 and
HASSH can help identify specific communications, but
unfortunately, one can still observe false positives. For this
reason in addition to industry-standard fingerprints, we have
introduced in nDPI additional methods to uniquely fingerprint
encrypted traffic as described in the following section.
C. Fingerprinting Encrypted Traffic

A great difference in methodology when analysing
encrypted traffic with respect to clear-text is the inability to
inspect the payload content and thus to characterise the nature
of the communication. This means for instance that it is not
possible to see if a cloud-initiated command requests our smart
lamp to be turned on or off. For this reason, the best approach
that can be adopted is to develop a reliable method for
identifying similar traffic streams produced by the same
(malware) application. This is to reduce the problem of
detecting encrypted traffic streams to a malware signature. This
is still the main approach used by popular IDSs despite
intrinsic limitations of this methodology such as being unable
to detect new threats and zero-days. Cisco Joy [7] has

 https://raw.githubusercontent.com/fireeye/sunburst_countermeasures/main/all-snort.rules1

pioneered encrypted traffic fingerprinting by using a model
making use of more than hundreds of generic traffic features
including SPLT (Sequence of Packet Length and Times), bytes
distribution (that is a Markov chain of bytes within a flow), and
IDP (Initial Data Packet) that is a fingerprint of the initial flow
packets.

III. FROM FINGERPRINTING TO LIGHTWEIGHT MODELLING
As already discussed, signature-based approaches as the

one listed above, are only effective when large fingerprint
databases are maintained and continuously updated. Therefore,
signature-based approaches are only effective when there are
large companies such as Cisco who are willing to dedicate
entire teams to fingerprint suspicious traffic. In our case, we
have decided to follow a different path. Instead of
fingerprinting network traffic and comparing it against a
database of known malware fingerprints, we have built a
lightweight traffic model for each monitored host and
continuously compared the observed traffic against the model.
There are two families of devices we model:

• Single-purpose devices such as smart IoT devices,
multimedia, printers, and NAS (Network Attached Storage)
that carry on a well-defined task.

• General-purpose computers such as laptops and tablets that
have not necessarily a predefined behavior.
For both families, we have created a model based on the

observation of the device traffic for a period of time long
enough to be able to map all possible communication flows. In
our experiment, a day of observation is usually enough to grasp
most communications but sometimes there are periodic weekly
behaviours (e.g. a backup) that need to be added to an existing
model. Such a model is based on three key observations all
leveraging nDPI and described this section.
A. Service Map
East-west communications, i.e. interactions of the host with
other hosts belonging to the same network.

!
2. Service map for intra-LAN communications

In this model, the nodes are local hosts and the arcs are the
triplets <DPI protocol, source/destination IP/VLAN,
destination port> where for DHCP-based networks we use the
MAC instead of the IP address.

As we expect future communications to comply with this
model, in case a new edge/node is added, a notice is triggered
so that this model discrepancy can be analysed by a security
analyst. In case of a positive decision about the discrepancy,
the model can be extended with this new edge/node, otherwise
an alert is triggered. Each edge can also be characterised by
additional properties such as the flow creation frequency or the
service name in case of encrypted communications, to enforce
the checks of live traffic when compared to the existing model.
The following section will report how the service map
simplifies the detection of lateral movement caused by
malware or unauthorised monitoring applications. According to
our experience, the service map is much more effective yet
simpler than other more sophisticated flow-based techniques.
B. Periodicity Map

Malicious applications often use beaconing techniques [8,
10] to connect with peers. Beacon messages are usually
periodic communications. Being able to detect beacon traffic is
a fundamental step to reveal the presence of suspicious
communications. Detecting periodic communications is helpful
in particular with low-volume conversations that can be easily
hidden inside the overall traffic. Instead of using complex AI
techniques [9] we have developed a simple algorithm for
detecting periodic communications. Whenever a new flow is
detected, we keep track of the quadruplet <source/destination
IP, destination port, layer 4 protocol> and store it on a hash
table. If a new flow with the same quadruplet is observed, we
start checking the periodicity. Entries idle for too long
(currently we limit our analysis to one hour periodicity to put
an upper bound to resource utilisation) are periodically purged,
as well entries that show a periodicity drift greater than double
the reported periodicity. For instance, if the system detected a
periodicity of 60 seconds, as soon as a periodicity
measurement exceeded 120 seconds, the entry is marked as
non-periodic and discarded. Quadruplet updates observed with
less frequency not exceeding one second are ignored as we
consider these flows as part of the same communication, a
typical event for many protocols such as HTTP for instance.
Combining periodicity with DPI enabled us to quickly identify
malicious beaconing by checking the application protocol
bound to this periodicity. For instance, periodic
communications using unknown (i.e. a protocol that was not
recognised by the DPI engine) or potentially malicious (e.g.
IRC) protocols can be used to immediately raise an alarm.

C. Security Risks
As previously discussed, nDPI has been extended to report

more than the application protocol and metadata information
typical of DPI libraries. In particular, every detected protocol is
classified into categories (e.g. file transfer but also mining and
banned sites just to name a few) based on static protocol
knowledge (e.g. Facebook is classified as a social network) and
lists freely available on the Internet (e.g. EmergingThreats
provides a constantly updated list of malware sites). In addition
to all this, nDPI implements the concept of security risk, that is
a score assigned to a DPI-detected flow that indicates how
malicious is such communication based on the security issues
that have been detected. The list of supported risks has been
created by analysing several network traces publicly available
on the Internet to spot the most popular techniques used by 2

 In particular in this work we have used many traces available at https://www.malware-traffic-analysis.net and https://www.netresec.com/.2

malware applications. To date nDPI supports the following
security risks:
• Possible XSS (Cross Side Scripting) attack, SQL Injection,

RCE (Remote Code Execution) Attempt.
• Binary application transfer (e.g. when downloading or

uploading executable applications).
• Known protocol on a non-standard port (e.g. when using

TLS on a port other than 443).
• TLS and QUIC: obsolete protocol version, weak cipher,

certificate expired/mismatch/self-signed, TLS not
transporting HTTPS (this is detected using the ALPN TLS
extension) and TLS without SNI (Server Name Indication)
that definitively indicates something wrong with this
communication. Additionally for TLS nDPI detected the
usage of ESNI (Encrypted SNI) which is a potential method
for hiding the server name a client is connecting to.

• HTTP: suspicious user agent, numeric IP host, suspicious
URL, or protocol header. Furthermore, nDPI reports about
suspicious content that is triggered whenever the exchanged
data is not compliant with the advertised Content-Type
header. Many malware [11] in particular when exfiltrating
data towards a remote site, perform HTTP POST using
Content-Types such as text/plain or x-www-form-
urlencoded but the exported data is in binary format.

• Suspicious DGA (Domain Generated Algorithm) domain
name. This is implemented using a lightweight bigram-
based technique inside the library.

• Malformed protocol traffic (e.g. DNS packets jeopardised
to implement data transfer such as a VPN-over-DNS).

• SSH: obsolete client/server application version or weak/
obsolete cipher. Contrary to TLS, in SSH the list of popular
implementations is rather short and nDPI includes a list of
popular SSH implementation versions that can be checked
for obsolescence.

• SMB (Server Message Block, popular protocol used mostly
on Windows-based networks for sharing data across
systems) insecure version.

• Unsafe protocol: used when a detected protocol is either
insecure (e.g. POP3 is unsafe as it exists a corresponding
encrypted protocol named POP3S), potentially dangerous
(examples include Tor, Stealthnet, HotspotShield), or
definitively dangerous (e.g. SMBv1) when detected on a
network. In particular, SMBv1 is well known for being
vulnerable to attacks and thus compulsory to spot and
upgrade or isolate hosts using it.

The concept of security risk is defined at the level of
individual flow, and it does not take into account other higher-
level indicators such as host’s reputation or behaviour. In this
work, we rely on the concept of reputation score, which can be
applied to hosts, subnets, autonomous systems, countries, etc.
For this reason, we use external trusted feeds (e.g. IP blacklist
maintained by Emerging Threats) to complement network
traffic knowledge with host reputation. This allowed us to
implement additional security risks whenever we observe
network communications with hosts present in blacklists.

D. Mapping Security Risks to Score
As already discussed most IDSs (e.g. Suricata and Zeek)

report information at flow level, just as nDPI does, but without
using DPI methods to detect the application protocol. This
approach is a good foundation for detecting suspicious
behaviour but it needs to be consolidated in a few dimensions:

• Time: is the detected behaviour steady or it changes over
time? Strong changes in behaviour can indicate that
something suddenly changed as it happens when a resource
is under attack.

• Resource: a flow score cannot have a static severity but it
needs to be interpreted within a context. For instance,
suppose the system detected a client that connects to a
server over TLS issuing requests with weak ciphers and no
SNI. This severity associated with this fact cannot be
uniform, but it must be higher on the client that performed
the action, and less severe on the server that just received
the request. On the other hand, on a flow where a client
contacts a server using an expired TLS certificate, the latter
should have a higher severity with respect to the client.
In order to add weight to detected risks and consolidate

them, we introduce the concept of score. The risk score is a
numerical value which indicates how suspicious a behavior is.
High score values corresponds to high risk, zero means no risk.
For every flow we define:

• Flow score: a numerical indicator that indicates the risk
associated with the flow. It is computed as the sum of all
the individual security risks detected for the flow.

• Client and server score: numerical indicator used to bind
the individual security risks to flow client/server. As
already discussed earlier in the section, the flow score is
split between the client/server according to the severity
associated with the attacker/victim detected risk.

The score is updated every minute and corresponds to the
sum of the individual active flow scores of the host. Within a
minute, a host with no invalid behaviour reports has a zero
score, which instead increments as flows with a non-null flow
risk and active in such a minute are observed. This way the
score is a numerical value that can increase and decrease over
time, and that indicates how bad is the detected host behaviour
within such a minute. It is possible to consolidate the score at a
higher level such as subnet or autonomous system, by simply
summing the observed client/server score according to all the
hosts belonging to such subnet and autonomous system. This is
a simple yet effective technique to consolidate threats at a
higher granularity than individual hosts with an absolute (i.e.
not normalised) value indicating the risk of groups of hosts in
the network.

As discussed in the following section, the score is effective
as long as invalid signals are ignored. For example, it is
unfortunately not uncommon in IoT setups to keep in networks
outdated or insecure devices which are impossible to upgrade
or replace. Those devices are usually deployed in hardened
networks to isolate the main networks from them. In this case,
the flow risk for these IoT devices must be interpreted with a
correction factor that assigns a lower severity for known issues
or completely ignores such well-known issues at all. This
correction step is performed as soon as the monitoring system
is deployed: it can be very specific (e.g. ignore specific risks

for specific devices) or coarse (e.g. don’t consider any risk
produced by host X). In our experience, network administrators
often prefer to ignore specific hosts as this is simpler to
configure instead of selectively ignoring specific risk/host
combinations, even though this is not a practice we encourage
as the system is completely blind with respect to security
threats affecting those devices that have been put on a
whitelist.

IV. VALIDATION
 This work has been validated by using it in real traffic

scenarios including the network of a large University campus
and several business networks, not to mention the
improvements and testing done by the open source community
that used it in various heterogeneous networks. The goal of this
section is to show how the tools described in this paper have
been used to successfully identify malware traffic and
effectively spot the attacker and the attacked hosts.
Unfortunately due to privacy constraints and regulations we are
not allowed to make this traffic available to the research
community. Therefore, in this section, we will report only the
results of some experiments based on publicly accessible
datasets that can be used to reproduce the findings reported in
this paper.

A. Trickbot Analysis
Trickbot is a popular banking trojan and malware targeting

Windows systems. Using nDPI toolkit we have analysed a
trickbot trace that is about one hour long. Out of the 279 flows 3

contained in the trace, nDPI has identified 242 flows with risk
including: obsolete TLS protocol, known protocol on non
standard port, HTTP requests with numeric IP address, and
self-signed TLS certificate. Furthermore three additional flows
are even more suspicious as nDPI has detected a binary
application transfer that is when trickbot infects other
computers. As previously explained, we have assigned a
numerical score to each of the nDPI risks based on the severity
of the identified issue: for instance a binary application transfer
in HTTP has a high score when compared to obsolete TLS
version. The flow risks have been complemented with
additional indicators that are based on blacklists such as JA3
fingerprint blacklist (https://sslbl.abuse.ch/blacklist/
ja3_fingerprints.csv) and snort IP blacklist (https://snort.org/
documents/ip-blacklist). Accounting the reputation score based
on the flow risks, makes it evident that host 10.9.25.10 is the
infected host as it accounts a client score of 7,940. Using data
binning techniques it is possible to further expand our analysis
and better fingerprint this traffic malware. Whenever a
compromised host has been identified, it is compulsory to see
if in the network there are other similar traffic flows that have
not yet been marked as infected. Below you can find an
example of TLS traffic from the infected hosts that shows how
nDPI fingerprints the traffic.
10.9.25.101:49469 <-> 5.53.125.13:447|3,1,1,1,1,1|
8,0,0,0,0,0|2.406|6734f37431670b3ab4292b8f60f29984|
623de93db17d313345d7ea481e7443cf|DD:EB:4A:36:6A:2B:50:DA:
5F:B5:DB:07:55:9A:92:B0:A3:52:5C:AD

10.9.25.101:49482 <-> 185.90.61.116:447|3,1,1,1,1,1|
8,0,0,0,0,0|2.406|6734f37431670b3ab4292b8f60f29984|

623de93db17d313345d7ea481e7443cf|DD:EB:4A:36:6A:2B:50:DA:
5F:B5:DB:07:55:9A:92:B0:A3:52:5C:AD

10.9.25.101:49498 <-> 195.123.221.104:447|3,1,1,1,1,1|
8,0,0,0,0,0|2.406|6734f37431670b3ab4292b8f60f29984|
623de93db17d313345d7ea481e7443cf|DD:EB:4A:36:6A:2B:50:DA:
5F:B5:DB:07:55:9A:92:B0:A3:52:5C:AD

3. nDPI's Trickbot flow analysis

The first column contains the flow IP and ports, the second
one the packet length bins, then the packet inter-arrival bins,
the bytes entropy, the JA3C/JA3S and finally the server
certificate hash. As you can see they are identical flows all
originated by the same infected host. The use of bins allowed
us to create a fingerprint key, that solves the problem of
uniquely identify trickbot flows, that was the limitation of JA3
due to the fact that, as already discussed, JA3 is affected by
false positives. Furthermore the unique tuple JA3S/certificate
fingerprint leads us to the conclusion that the above servers are
part of the trickbot network. This technique is effective also
with other datasets as described in the following section. The
score based on security risks allowed us to easily cluster hosts
that are under attack.

B. CSE-CIC-IDS2018
The above experiment has demonstrated how the use of

score allows attackers/attacked hosts to be identified. Being the
experiment based on a one hour long trace, it has not taken into
account all the techniques described in this work such as the
service map. In this experiment we have analysed the popular
CSE-CIC-IDS2018 dataset that includes several traces in total 4

about 10 days long. In [12] the dataset has been analysed using
a complex machine-learning based system, and in this
experiment we want to position this work against it. As this
dataset has been annotated by the authors, we have the ability
to check the reported results; due to space constraints we report
results for one day of traffic in the following picture..

!
4. CSE-CIC-IDS2018: Tuesday-20-02-2018 Traffic Analysis

The bubble chart above depicts on the X axis the host client
score, and on the Y axis the host server score. Each bubble
represents a host whose size is the host score: the larger is the
bubble, the highest is the host score. As you can see the
attacker and victim hosts can be easily spotted as they are far
away from origin where most hosts reside. This result matches
exactly (no false positives or negatives) the expected results
reported in the dataset annotation using a much simpler
approach that does not requires hundred of features or an
annotated dataset for training a model.

 The trace is available in pcap format at https://www.malware-traffic-analysis.net/2019/09/25/3

 The dataset is freely available at https://www.unb.ca/cic/datasets/ids-2018.html4

C. nDPI Performance and Memory Evaluation

nDPI analyses the first few connection packets in order to
detect the application protocol and perform flow analysis. For
UDP-based protocols such as DNS two packets (one for the
request and one for the response) are sufficient, whereas for
TCP-based protocols the number of packets depends on the
protocol ranging from a minimum of 6 packets for HTTP to
about 13 for TLS 1.2 where the protocol negotiation phase is
longer due to the TLS hello and certificate exchange. As DPI is
involved only during the initial flow analysis, its overhead is
proportional to the number of flows, and, only for the first few
packets. During protocol detection, nDPI needs to allocate a
2.4 KB temporary datastructure used to store temporary flow
information until the dissection is completed producing
metadata and reporting the application protocol. This means
that both the memory and CPU overhead is accounted only for
the first flow packets as once dissection is over, nDPI flow
memory can be freed and no further nDPI traffic processing is
necessary. Application protocol dissectors are sequentially run
by nDPI based on the matching probability (e.g. for TCP/80
the first dissector to test is the one for HTTP and non-TCP
dissectors are immediately discarded) until a match is found or
no protocol matched. Hence the worst performance case is with
synthetic traffic as no dissectors will match and nDPI will need
to try all the potentially matching dissectors. In this case the
ndpiReader tool can process per core ~40 Kpps with respect to
~1.8 Mpps that we have observed with real traffic captured on
a public Internet link corresponding to about 10 Gbit/s.

D. Score Evaluation
The work presented in this paper has demonstrated to be

effective and able to detect real-life threats without the need to
train a model on the target network, hence to be able to
potentially spot zero-day threats. For example, the recent attack
on MS Exchange servers [13] could be spot by using the
service map to detect unexpected movements of Exchange
servers as well unveil new periodic communications towards
remote locations using the periodicity map. However the
concept of score can sometimes lead to false positives when
traffic contains unexpected flows. Typical examples are flows
that have a non zero score but that are not malicious (e.g. for
some reason the systems cannot be upgraded and they have
been protected with strict ACLs) including insecure IoT
devices that perform potentially malicious operations over
HTTP, or a local web server that uses a self-signed certificate.
Our work is based on the principle that non-zero flow score
indicates a problem, hence the above examples must be
manually labeled as exceptions via rules. Such rules can be
compiled by running our tool on the monitored network for
some time (e.g. one day), looking at the reported alerts and
configuring exceptions for flows that are not supposed to be
used for computing the score. This approach gives network
administrator the flexibility to deal with hardware devices or
legacy applications that cannot be modified.

V. CONCLUSIONS
This paper has covered the design and implementation of a

novel approach to cybersecurity based on deep packet
inspection and traffic analysis methods. This work originated
from the experience gained while developing open source
traffic monitoring software: it has been applied to real traffic as
well publicly available datasets. In this paper we have

described an approach that is simple to implement and
computationally efficient both in memory and processing time,
as well effective in detecting modern malware, ransomware
and trojans using encryption. The software developed in this
research work has been released as open-source, enabling
security researchers to reproduce our results and to build more
advanced solutions on top of our extractors.

CODE AVAILABILITY
The nDPI source code is available under LGPLv3 license at

https://github.com/ntop/nDPI. It includes all the traffic analysis
algorithms, flow risk and encrypted traffic analysis described
in this paper. The code that implements the risk score is part of
ntopng released under GPLv3 and available at https://
github.com/ntop/ntopng.

ACKNOWLEDGMENT
The authors would like to thank Braintrace Inc. that

supported the development of nDPI and provided a playground
for testing the techniques and algorithms described in this
paper. We also would like to thank Alessio Perugini, and the
ntop team for comments, suggestions, and evaluating the
techniques, code and algorithms described in this paper.

REFERENCES
1. M. Meeker, “Internet Trends 2019”, https://www.bondcap.com/report/

itr19, Bond Inc, June 2019.
2. P. Hoffman, and P. McManus, “DNS Queries over HTTPS (DoH)", RFC

8484, October 2018.
3. Dawson, Maurice & Wright, Jorja & Omar, Marwan. (2016). “Mobile

Devices: The Case for Cyber Security Hardened Systems”. In New
Threats and Countermeasures in Digital Crime and Cyber Terrorism, IGI
Global, 10.4018/978-1-4666-8751-6.ch047.

4. C. Patsakis, and A. Chrysanthou, “Analysing the fall 2020 Emotet
Campaign”, Tchnical Report, University of Piraeus and Neurosoft,
https://arxiv.org/pdf/2011.06479.pdf, November 2020.

5. J. Althouse, "TLS Fingerprinting with JA3 and JA3S”, https://
engineering.salesforce.com/tls-f ingerprinting-with-ja3-and-
ja3s-247362855967, Salesforce Engineering, 2019.

6. H. Hindy et al., “A Taxonomy of Network Threats and the Effect of
Current Datasets on Intrusion Detection Systems”, IEEE Access (2020).

7. B. Anderson, D. McGrew, "Identifying encrypted malware traffic with
contextual flow data”, Proceedings of the 2016 ACM workshop on
Artificial Intelligence and Security, 2016.

8. M. Haffey, M. Arlitt, and C. Williamson. "Modeling, Analysis, and
Characterization of Periodic Traffic on a Campus Edge Network.”,
Proceedings of 2018 IEEE 26th International Symposium MASCOTS.
IEEE, 2018.

9. Y. Borchani, "Advanced malicious beaconing detection through AI."
Network Security 2020.3 (2020): 8-14.

10. B. AsSadhan, J. M. F. Moura and D. Lapsley, "Periodic Behavior in
Botnet Command and Control Channels Traffic," GLOBECOM 2009 -
2009 IEEE Global Telecommunications Conference, Honolulu, HI,
2009, pp. 1-6, doi: 10.1109/GLOCOM.2009.5426172.

11. H. Poston, “Network traffic analysis for IR (Incident Response): Content
deobfuscation”, INFOSEC, https://resources.infosecinstitute.com/topic/
network-traffic-analysis-for-ir-content-deobfuscation/, October 2019.

12. I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, “Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization”, Proceedings of 4th International Conference on
Information Systems Security and Privacy (ICISSP), 2018.

13. T. Lee, I. Ahl, and D. Hanzlik, “Detecting and Defeating China Chopper
Web Shell”, https://www.fireeye.com/content/dam/fireeye-www/global/
en/current-threats/pdfs/rpt-china-chopper.pdf, FireEye Labs, 2021.

