
Using Deep Packet Inspection in CyberTraffic Analysis 

Abstract—In recent years we have observed an escalation of 
cybersecurity attacks, which are becoming more sophisticated 
and harder to detect as they use more advanced evasion 
techniques and encrypted communications. The research 
community has often proposed the use of machine learning 
techniques to overcome the limitations of traditional 
cybersecurity approaches based on rules and signatures, which 
are hard to maintain, require constant updates, and do not solve 
the problems of zero-day attacks. Unfortunately, machine 
learning is not the holy grail of cybersecurity: machine learning-
based techniques are hard to develop due to the lack of annotated 
data, are often computationally intensive, they can be target of 
hard to detect adversarial attacks, and more importantly are 
often not able to provide explanations for the predicted outcomes. 
In this paper, we describe a novel approach to cybersecurity 
detection leveraging on the concept of security score. Our 
approach demonstrates that extracting signals via deep packet 
inspections paves the way for efficient detection using traffic 
analysis. This work has been validated against various traffic 
datasets containing network attacks, showing that it can 
effectively detect network threats without the complexity of 
machine learning-based solutions. 

Keywords—Deep packet inspection, Encrypted traffic analysis, 
Open-source. 

I. INTRODUCTION 
In the last decade, the Internet became ubiquitous and 

pervasive with millions of people connected to it all the time 
via smartphones and millions of IoT devices, both for industrial 
customers and residential customers. Our dependency on 
Internet services combined with the availability of always-on 
and high-bandwidth Internet connections offered new 
opportunities for cybercriminals. Modern cybersecurity 
criminals belong to well organised and well founded 
organisations as an economical reward for cyber crimes are 
constantly growing. Not surprisingly the level of sophistication 
of current cybersecurity attacks is constantly increasing and it 
is causing an arms race between attackers and responders. 
Timely detection of cybersecurity attacks is fundamental to 
protect organisations and their data from intruders. Detecting 
complex attacks such as Advanced Persistent Threats (APT) is 
extremely challenging and it usually requires dedicated teams 
of security experts who use their experience to identify 
suspicious network activities. Traditional intrusion detection 
systems, which are usually based on signatures and rule-based 
approaches, have shown their limitations in detection 
capability, especially when attackers and the infected hosts 
heavily rely on encryption to obfuscate communications and in 
all the cases when new threats appear for the first time.  In 
order to improve upon rules and signatures, machine learning 
approaches are currently used in existing products to overcome 
those limitations. Machine learning promises to improve the 
detection capabilities for previously unseen threats, such as 
zero-day attacks, and also to reduce the problem of maintaining 

and updating a set of rules and fingerprints. While we do 
believe that machine learning technologies are playing and will 
play in the future an important role in cybersecurity, we 
strongly believe that domain knowledge and feature 
engineering have tremendous value for any detection problem.

In this paper, we highlight that despite the always 
increasing adoption of encryption technologies, deep packet 
inspection can still be used to extract very strong signals from 
the raw traffic. While one could feed those signals to machine 
learning based detectors, we highlight that when strong signals 
are available, one can greatly profit from them even with less 
sophisticated data processing technologies. By manually 
inspecting a large collection of malware traces, we observed 
that many suspicious activities related to malware can be easily 
detected in malware traffic, even when encrypted. We have 
implemented a system that detects many of those activities in 
real-time using deep packet inspection and exploits them to 
associate a reputation score to local and remote hosts.

We highlight that while the system still requires further 
validation in the field, our approach raises the bar for 
cyberattack detections for multiple reasons. Compared to 
machine learning systems, where the outcomes are usually hard 
to explain, our approach gives operators clear explanations of 
the reasons why a system can be considered suspicious. 
Additionally, it is efficient and does not require annotated data.

II. CYBERSECURITY AS A PROCESS 

A. Motivation 
Network traffic has changed dramatically in the past 

decade: 
• Today most local and Internet network traffic is encrypted 

[1] not only because more recent protocols are using 
encryption by default, but also because traditional protocols 
that are as old as the Internet have been modified to support 
encryption [2]. 

• Hardening features typical of mobile devices [3] are 
deployed in desktop operating systems, making computer 
interactions more secure. 

• The increased adoption of cloud-based services has 
drastically changed the communication patterns within 
enterprise networks. While more and more services such as 
email, backups, and name resolution are moving to cloud-
based offerings, some north-south traffic communications 
are replacing former east-west communications. Therefore, 
on the Internet link, it is possible to observe traffic (mostly 
encrypted) that used to be exchanged in LAN in 
unencrypted form. 

• Cloud-based IoT devices such as Google and Alexa-
controlled devices have access to privileged physical 
resources (e.g. a gate, a power plug, or a video camera) and 
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need to be protected in order to avoid that breaches could 
expose sensitive information to intruders. 
From the network traffic standpoint, these changes in 

communication patterns have an impact on network security 
tools as they have to deal with the reality that encrypted traffic 
is replacing Internet protocols that were traditionally simple to 
observe and monitor. While the transition towards new 
encrypted communications protocols happens at a high pace, 
popular open-source Intrusion Detection Systems (IDS) such 
as Suricata and Snort are still using outdated techniques to 
detect intrusions, which are at the same time error-prone and 
computationally intensive. 

a l e r t t c p a n y a n y < > a n y 4 4 3 
(msg:"APT.Backdoor.MSIL.SUNBURST"; content:"|
16 03|"; depth:2; content:"|55 04 03|"; 
distance:0; content:"digitalcollege.org"; 
within:50; sid:77600846; rev:1;)  

1. Example of a Snort/Suricata rule for detecting Sunburst Malware 

Above we report a simple rule  for detecting a popular 1

malware. This rule is used to detect TLS (Transport Layer 
Securi ty) communicat ions towards domain name 
digitalcollege.org. Instead of specifying something like 
“proto=TLS and SNI=digitalcollege.org" this rule searches for 
specific patterns in the packet payload (0x16 0x03 is the 
beginning of a TLS encryption block) at specific offsets that 
make it inefficient and subject to false positives. This is an 
example of limitations of popular tools that have been designed 
more than a decade ago where most traffic was exchanged in 
cleartext, IP addresses and service ports were relatively static 
(i.e. TCP/80 means HTTP, and no HTTP traffic on any other 
port different than 80) with no indirect cloud-based 
communications that make IP-address based rule ineffective as 
in the above example. 

This work builds upon our practical security-oriented 
network traffic monitoring experience. The goal of this paper is 
to describe what are the techniques and methods that have been 
developed and deployed to effectively detect network attacks, 
and report suspicious communication patterns. Learned 
lessons, metrics, and methods have been implemented in the 
open-source tools nDPI and companion tools that have been 
made available to the Internet community for further extending 
this research work and providing practical tools to use in 
everyday life. 

The main contribution of this work is to show how to 
implement robust traffic classification methods that allow 
cybersecurity threats to be identified. As described later in this 
paper, authors have not decided to follow a generic approach 
based on a plethora of features selected through a machine 
learning algorithm [6], but instead from traffic observation, 
they have created specialised metrics and simple statistical 
based models that enable behaviour modeling with ease thus 
reducing overall application complexity. This enabled the 
creation of fine-grained network models simple enough to be 
deployed with limited computational costs and able to fit into 
small processing units as those that can be found on modern 
network devices, this to implement pervasive security that 
would not be possible with complex traditional models. 

B. From Cleartext to Deep Packet Inspection (DPI) 
The migration from cleartext to encrypted communications 

and dynamic port usage has been a big change for many 
security tools as they were layered on the principle “one port, 
one protocol” (e.g. TCP/443 means TLS). Popular 2020's 
malware and trojans such as Dridex, Trickbot, and Emotet [4], 
use non-standard protocol ports to avoid IDS and thus hiding 
infection traffic. They leverage malspam (Malware Spam) or 
phishing to trigger the download of the trojan that then spreads 
inside the network to harvest information that is then sent back 
to the attackers on remote servers. The need to inspect and 
identify traffic regardless of the port being used, has been the 
main motivation to develop traffic inspection techniques based 
on DPI. As DPI toolkits are expensive, closed-source, and thus 
with limited extensibility, we have decided to create our own 
open source DPI toolkit named nDPI where we have 
implemented the traffic inspection techniques described later in 
this paper. The use of DPI in cybersecurity has several 
advantages as it conceptually splits the development of 
monitoring applications into two main blocks. The DPI layer is 
responsible for dissecting traffic and extracting metadata such 
as the HTTP URL or the TLS certificate, which are used to 
characterise traffic regardless of the IP and port the traffic is 
flowing to. The traffic analysis layer that sits on top of DPI can 
be simplified as filtering rules as those shown in Fig. 1 can be 
rewritten in a simpler format as already discussed, and also 
because this block does not have to deal with low-level 
protocol details but instead implement the business logic of the 
security application. 

nDPI is not just yet another DPI toolkit capable of 
dissecting application protocols and extracting the 
corresponding metadata. nDPI can also extract from encrypted 
traffic several industry-standard traffic markers for encrypted 
communication. A popular client/server fingerprinting method 
is JA3 [5] (hence the variant names JA3C and JA3S), which is 
based on cryptographic information exchanged in ClientHello 
and ServerHello TLS packets. JA3, and its SSH counterpart 
named HASSH, is used by most cybersecurity applications to 
fingerprint the security toolkit used by a certain tool (e.g. 
OpenSSL vs. LibreSSL). Fingerprints extracted from JA3 and 
HASSH can help identify specific communications, but 
unfortunately, one can still observe false positives. For this 
reason in addition to industry-standard fingerprints, we have 
introduced in nDPI additional methods to uniquely fingerprint 
encrypted traffic as described in the following section. 
C. Fingerprinting Encrypted Traffic 

A great difference in methodology when analysing 
encrypted traffic with respect to clear-text is the inability to 
inspect the payload content and thus to characterise the nature 
of the communication. This means for instance that it is not 
possible to see if a cloud-initiated command requests our smart 
lamp to be turned on or off. For this reason, the best approach 
that can be adopted is to develop a reliable method for 
identifying similar traffic streams produced by the same 
(malware) application. This is to reduce the problem of 
detecting encrypted traffic streams to a malware signature. This 
is still the main approach used by popular IDSs despite 
intrinsic limitations of this methodology such as being unable 
to detect new threats and zero-days. Cisco Joy [7] has 

 https://raw.githubusercontent.com/fireeye/sunburst_countermeasures/main/all-snort.rules1



pioneered encrypted traffic fingerprinting by using a model 
making use of more than hundreds of generic traffic features 
including SPLT (Sequence of Packet Length and Times), bytes 
distribution (that is a Markov chain of bytes within a flow), and 
IDP (Initial Data Packet) that is a fingerprint of the initial flow 
packets. 

III. FROM FINGERPRINTING TO LIGHTWEIGHT MODELLING 
As already discussed, signature-based approaches as the 

one listed above, are only effective when large fingerprint 
databases are maintained and continuously updated. Therefore, 
signature-based approaches are only effective when there are 
large companies such as Cisco who are willing to dedicate 
entire teams to fingerprint suspicious traffic. In our case, we 
have decided to follow a different path. Instead of 
fingerprinting network traffic and comparing it against a 
database of known malware fingerprints, we have built a 
lightweight traffic model for each monitored host and 
continuously compared the observed traffic against the model. 
There are two families of devices we model: 

• Single-purpose devices such as smart IoT devices, 
multimedia, printers, and NAS (Network Attached Storage) 
that carry on a well-defined task. 

• General-purpose computers such as laptops and tablets that 
have not necessarily a predefined behavior.  
For both families, we have created a model based on the 

observation of the device traffic for a period of time long 
enough to be able to map all possible communication flows. In 
our experiment, a day of observation is usually enough to grasp 
most communications but sometimes there are periodic weekly 
behaviours (e.g. a backup) that need to be added to an existing 
model. Such a model is based on three key observations all 
leveraging nDPI and described this section. 
A. Service Map 
East-west communications, i.e. interactions of the host with 
other hosts belonging to the same network. 

!  
2. Service map for intra-LAN communications 

In this model, the nodes are local hosts and the arcs are the 
triplets <DPI protocol, source/destination IP/VLAN, 
destination port> where for DHCP-based networks we use the 
MAC instead of the IP address. 

As we expect future communications to comply with this 
model, in case a new edge/node is added, a notice is triggered 
so that this model discrepancy can be analysed by a security 
analyst. In case of a positive decision about the discrepancy, 
the model can be extended with this new edge/node, otherwise 
an alert is triggered. Each edge can also be characterised by 
additional properties such as the flow creation frequency or the 
service name in case of encrypted communications, to enforce 
the checks of live traffic when compared to the existing model. 
The following section will report how the service map 
simplifies the detection of lateral movement caused by 
malware or unauthorised monitoring applications. According to 
our experience, the service map is much more effective yet 
simpler than other more sophisticated flow-based techniques. 
B. Periodicity Map 

Malicious applications often use beaconing techniques [8, 
10] to connect with peers. Beacon messages are usually 
periodic communications. Being able to detect beacon traffic is 
a fundamental step to reveal the presence of suspicious 
communications. Detecting periodic communications is helpful 
in particular with low-volume conversations that can be easily 
hidden inside the overall traffic. Instead of using complex AI 
techniques [9] we have developed a simple algorithm for 
detecting periodic communications. Whenever a new flow is 
detected, we keep track of the quadruplet <source/destination 
IP, destination port, layer 4 protocol> and store it on a hash 
table. If a new flow with the same quadruplet is observed, we 
start checking the periodicity. Entries idle for too long 
(currently we limit our analysis to one hour periodicity to put 
an upper bound to resource utilisation) are periodically purged, 
as well entries that show a periodicity drift greater than double 
the reported periodicity. For instance, if the system detected a 
periodicity of 60 seconds, as soon as a periodicity 
measurement exceeded 120 seconds, the entry is marked as 
non-periodic and discarded. Quadruplet updates observed with 
less frequency not exceeding one second are ignored as we 
consider these flows as part of the same communication, a 
typical event for many protocols such as HTTP for instance. 
Combining periodicity with DPI enabled us to quickly identify 
malicious beaconing by checking the application protocol 
bound to this periodicity. For instance, periodic 
communications using unknown (i.e. a protocol that was not 
recognised by the DPI engine) or potentially malicious (e.g. 
IRC) protocols can be used to immediately raise an alarm. 

C. Security Risks 
As previously discussed, nDPI has been extended to report 

more than the application protocol and metadata information 
typical of DPI libraries. In particular, every detected protocol is 
classified into categories (e.g. file transfer but also mining and 
banned sites just to name a few) based on static protocol 
knowledge (e.g. Facebook is classified as a social network) and 
lists freely available on the Internet (e.g. EmergingThreats 
provides a constantly updated list of malware sites). In addition 
to all this, nDPI implements the concept of security risk, that is 
a score assigned to a DPI-detected flow that indicates how 
malicious is such communication based on the security issues 
that have been detected. The list of supported risks has been 
created by analysing several network traces publicly available 
on the Internet  to spot the most popular techniques used by 2

 In particular in this work we have used many traces available at https://www.malware-traffic-analysis.net and https://www.netresec.com/.2



malware applications. To date nDPI supports the following 
security risks: 
• Possible XSS (Cross Side Scripting) attack, SQL Injection, 

RCE (Remote Code Execution) Attempt. 
• Binary application transfer (e.g. when downloading or 

uploading executable applications). 
• Known protocol on a non-standard port (e.g. when using 

TLS on a port other than 443). 
• TLS and QUIC: obsolete protocol version, weak cipher, 

certificate expired/mismatch/self-signed, TLS not 
transporting HTTPS (this is detected using the ALPN TLS 
extension) and TLS without SNI (Server Name Indication) 
that definitively indicates something wrong with this 
communication. Additionally for TLS nDPI detected the 
usage of ESNI (Encrypted SNI) which is a potential method 
for hiding the server name a client is connecting to. 

• HTTP: suspicious user agent, numeric IP host, suspicious 
URL, or protocol header. Furthermore, nDPI reports about 
suspicious content that is triggered whenever the exchanged 
data is not compliant with the advertised Content-Type 
header. Many malware [11] in particular when exfiltrating 
data towards a remote site, perform HTTP POST using 
Content-Types such as text/plain or x-www-form-
urlencoded but the exported data is in binary format.  

• Suspicious DGA (Domain Generated Algorithm) domain 
name. This is implemented using a lightweight bigram-
based technique inside the library. 

• Malformed protocol traffic (e.g. DNS packets jeopardised 
to implement data transfer such as a VPN-over-DNS). 

• SSH: obsolete client/server application version or weak/
obsolete cipher. Contrary to TLS, in SSH the list of popular 
implementations is rather short and nDPI includes a list of 
popular SSH implementation versions that can be checked 
for obsolescence. 

• SMB (Server Message Block, popular protocol used mostly 
on Windows-based networks for sharing data across 
systems) insecure version. 

• Unsafe protocol: used when a detected protocol is either 
insecure (e.g. POP3 is unsafe as it exists a corresponding 
encrypted protocol named POP3S), potentially dangerous 
(examples include Tor, Stealthnet, HotspotShield), or 
definitively dangerous (e.g. SMBv1) when detected on a 
network. In particular, SMBv1 is well known for being 
vulnerable to attacks and thus compulsory to spot and 
upgrade or isolate hosts using it. 

The concept of security risk is defined at the level of 
individual flow, and it does not take into account other higher-
level indicators such as host’s reputation or behaviour. In this 
work, we rely on the concept of reputation score, which can be 
applied to hosts, subnets, autonomous systems, countries, etc. 
For this reason, we use external trusted feeds (e.g. IP blacklist 
maintained by Emerging Threats) to complement network 
traffic knowledge with host reputation. This allowed us to 
implement additional security risks whenever we observe 
network communications with hosts present in blacklists. 

D. Mapping Security Risks to Score 
As already discussed most IDSs (e.g. Suricata and Zeek) 

report information at flow level, just as nDPI does, but without 
using DPI methods to detect the application protocol. This 
approach is a good foundation for detecting suspicious 
behaviour but it needs to be consolidated in a few dimensions: 

• Time: is the detected behaviour steady or it changes over 
time? Strong changes in behaviour can indicate that 
something suddenly changed as it happens when a resource 
is under attack. 

• Resource: a flow score cannot have a static severity but it 
needs to be interpreted within a context. For instance, 
suppose the system detected a client that connects to a 
server over TLS issuing requests with weak ciphers and no 
SNI. This severity associated with this fact cannot be 
uniform, but it must be higher on the client that performed 
the action, and less severe on the server that just received 
the request. On the other hand, on a flow where a client 
contacts a server using an expired TLS certificate, the latter 
should have a higher severity with respect to the client. 
In order to add weight to detected risks and consolidate 

them, we introduce the concept of score. The risk score is a 
numerical value which indicates how suspicious a behavior is. 
High score values corresponds to high risk, zero means no risk. 
For every flow we define: 

• Flow score: a numerical indicator that indicates the risk 
associated with the flow. It is computed as the sum of all 
the individual security risks detected for the flow. 

• Client and server score: numerical indicator used to bind 
the individual security risks to flow client/server. As 
already discussed earlier in the section, the flow score is 
split between the client/server according to the severity 
associated with the attacker/victim detected risk.  

The score is updated every minute and corresponds to the 
sum of the individual active flow scores of the host. Within a 
minute, a host with no invalid behaviour reports has a zero 
score, which instead increments as flows with a non-null flow 
risk and active in such a minute are observed. This way the 
score is a numerical value that can increase and decrease over 
time, and that indicates how bad is the detected host behaviour 
within such a minute. It is possible to consolidate the score at a 
higher level such as subnet or autonomous system, by simply 
summing the observed client/server score according to all the 
hosts belonging to such subnet and autonomous system. This is  
a simple yet effective technique to consolidate threats at a 
higher granularity than individual hosts with an absolute (i.e. 
not normalised) value indicating the risk of groups of hosts in 
the network. 

As discussed in the following section, the score is effective 
as long as invalid signals are ignored. For example, it is 
unfortunately not uncommon in IoT setups to keep in networks 
outdated or insecure devices which are impossible to upgrade 
or replace. Those devices are usually deployed in hardened 
networks to isolate the main networks from them. In this case, 
the flow risk for these IoT devices must be interpreted with a 
correction factor that assigns a lower severity for known issues 
or completely ignores such well-known issues at all. This 
correction step is performed as soon as the monitoring system 
is deployed: it can be very specific (e.g. ignore specific risks 



for specific devices) or coarse (e.g. don’t consider any risk 
produced by host X). In our experience, network administrators 
often prefer to ignore specific hosts as this is simpler to 
configure instead of selectively ignoring specific risk/host 
combinations, even though this is not a practice we encourage 
as the system is completely blind with respect to security 
threats affecting those devices that have been put on a 
whitelist. 

IV. VALIDATION 
 This work has been validated by using it in real traffic 

scenarios including the network of a large University campus 
and several business networks, not to mention the 
improvements and testing done by the open source community 
that used it in various heterogeneous networks. The goal of this 
section is to show how the tools described in this paper have 
been used to successfully identify malware traffic and 
effectively spot the attacker and the attacked hosts. 
Unfortunately due to privacy constraints and regulations we are 
not allowed to make this traffic available to the research 
community. Therefore, in this section, we will report only the 
results of some experiments based on publicly accessible 
datasets that can be used to reproduce the findings reported in 
this paper. 

A. Trickbot Analysis 
Trickbot is a popular banking trojan and malware targeting 

Windows systems. Using nDPI toolkit we have analysed a 
trickbot trace  that is about one hour long. Out of the 279 flows 3

contained in the trace, nDPI has identified 242 flows with risk 
including: obsolete TLS protocol, known protocol on non 
standard port, HTTP requests with numeric IP address, and 
self-signed TLS certificate. Furthermore three additional flows 
are even more suspicious as nDPI has detected a binary 
application transfer that is when trickbot infects other 
computers. As previously explained, we have assigned a 
numerical score to each of the nDPI risks based on the severity 
of the identified issue: for instance a binary application transfer 
in HTTP has a high score when compared to obsolete TLS 
version. The flow risks have been complemented with 
additional indicators that are based on blacklists such as JA3 
fingerprint blacklist (https://sslbl.abuse.ch/blacklist/
ja3_fingerprints.csv) and snort IP blacklist (https://snort.org/
documents/ip-blacklist). Accounting the reputation score based 
on the flow risks, makes it evident that host 10.9.25.10 is the 
infected host as it accounts a client score of 7,940. Using data 
binning techniques it is possible to further expand our analysis 
and better fingerprint this traffic malware. Whenever a 
compromised host has been identified, it is compulsory to see 
if in the network there are other similar traffic flows that have 
not yet been marked as infected. Below you can find an 
example of TLS traffic from the infected hosts that shows how 
nDPI fingerprints the traffic. 
10.9.25.101:49469 <-> 5.53.125.13:447|3,1,1,1,1,1|
8,0,0,0,0,0|2.406|6734f37431670b3ab4292b8f60f29984| 
623de93db17d313345d7ea481e7443cf|DD:EB:4A:36:6A:2B:50:DA:
5F:B5:DB:07:55:9A:92:B0:A3:52:5C:AD 

10.9.25.101:49482 <-> 185.90.61.116:447|3,1,1,1,1,1|
8,0,0,0,0,0|2.406|6734f37431670b3ab4292b8f60f29984| 

623de93db17d313345d7ea481e7443cf|DD:EB:4A:36:6A:2B:50:DA:
5F:B5:DB:07:55:9A:92:B0:A3:52:5C:AD 

10.9.25.101:49498 <-> 195.123.221.104:447|3,1,1,1,1,1|
8,0,0,0,0,0|2.406|6734f37431670b3ab4292b8f60f29984| 
623de93db17d313345d7ea481e7443cf|DD:EB:4A:36:6A:2B:50:DA:
5F:B5:DB:07:55:9A:92:B0:A3:52:5C:AD 

3. nDPI's Trickbot flow analysis 

The first column contains the flow IP and ports, the second 
one the packet length bins, then the packet inter-arrival bins, 
the bytes entropy, the JA3C/JA3S and finally the server 
certificate hash. As you can see they are identical flows all 
originated by the same infected host. The use of bins allowed 
us to create a fingerprint key, that solves the problem of 
uniquely identify trickbot flows, that was the limitation of JA3 
due to the fact that, as already discussed, JA3 is affected by 
false positives. Furthermore the unique tuple JA3S/certificate 
fingerprint leads us to the conclusion that the above servers are 
part of the trickbot network. This technique is effective also 
with other datasets as described in the following section. The 
score based on security risks allowed us to easily cluster hosts 
that are under attack. 

B. CSE-CIC-IDS2018 
The above experiment has demonstrated how the use of 

score allows attackers/attacked hosts to be identified. Being the 
experiment based on a one hour long trace, it has not taken into 
account all the techniques described in this work such as the 
service map. In this experiment we have analysed the popular 
CSE-CIC-IDS2018 dataset  that includes several traces in total 4

about 10 days long. In [12] the dataset has been analysed using 
a complex machine-learning based system, and in this 
experiment we want to position this work against it. As this 
dataset has been annotated by the authors, we have the ability 
to check the reported results; due to space constraints we report 
results for one day of traffic in the following picture..  

!  
4. CSE-CIC-IDS2018: Tuesday-20-02-2018 Traffic Analysis 

The bubble chart above depicts on the X axis the host client 
score, and on the Y axis the host server score. Each bubble 
represents a host whose size is the host score: the larger is the 
bubble, the highest is the host score. As you can see the 
attacker and victim hosts can be easily spotted as they are far 
away from origin where most hosts reside. This result matches 
exactly (no false positives or negatives) the expected results 
reported in the dataset annotation using a much simpler 
approach that does not requires hundred of features or an 
annotated dataset for training a model. 

 The trace is available in pcap format at https://www.malware-traffic-analysis.net/2019/09/25/3

 The dataset is freely available at https://www.unb.ca/cic/datasets/ids-2018.html4



C. nDPI Performance and Memory Evaluation 

nDPI analyses the first few connection packets in order to 
detect the application protocol and perform flow analysis. For 
UDP-based protocols such as DNS two packets (one for the 
request and one for the response) are sufficient, whereas for 
TCP-based protocols the number of packets depends on the 
protocol ranging from a minimum of 6 packets for HTTP to 
about 13 for TLS 1.2 where the protocol negotiation phase is 
longer due to the TLS hello and certificate exchange. As DPI is 
involved only during the initial flow analysis, its overhead is 
proportional to the number of flows, and, only for the first few 
packets. During protocol detection, nDPI needs to allocate a 
2.4 KB temporary datastructure used to store temporary flow 
information until the dissection is completed producing 
metadata and reporting the application protocol. This means 
that both the memory and CPU overhead is accounted only for 
the first flow packets as once dissection is over, nDPI flow 
memory can be freed and no further nDPI traffic processing is 
necessary. Application protocol dissectors are sequentially run 
by nDPI based on the matching probability (e.g. for TCP/80 
the first dissector to test is the one for HTTP and non-TCP 
dissectors are immediately discarded) until a match is found or 
no protocol matched. Hence the worst performance case is with 
synthetic traffic as no dissectors will match and nDPI will need 
to try all the potentially matching dissectors. In this case the 
ndpiReader tool can process per core ~40 Kpps with respect to 
~1.8 Mpps that we have observed with real traffic captured on 
a public Internet link corresponding to about 10 Gbit/s. 

D. Score Evaluation 
The work presented in this paper has demonstrated to be 

effective and able to detect real-life threats without the need to 
train a model on the target network, hence to be able to 
potentially spot zero-day threats. For example, the recent attack 
on MS Exchange servers [13] could be spot by using the 
service map to detect unexpected movements of Exchange 
servers as well unveil new periodic communications towards 
remote locations using the periodicity map. However the 
concept of score can sometimes lead to false positives when 
traffic contains unexpected flows. Typical examples are flows 
that have a non zero score but that are not malicious (e.g. for 
some reason the systems cannot be upgraded and they have 
been protected with strict ACLs) including insecure IoT 
devices that perform potentially malicious operations over 
HTTP, or a local web server that uses a self-signed certificate. 
Our work is based on the principle that non-zero flow score 
indicates a problem, hence the above examples must be 
manually labeled as exceptions via rules. Such rules can be 
compiled by running our tool on the monitored network for 
some time (e.g. one day), looking at the reported alerts and 
configuring exceptions for flows that are not supposed to be 
used for computing the score. This approach gives network 
administrator the flexibility to deal with hardware devices or 
legacy applications that cannot be modified. 

V. CONCLUSIONS 
This paper has covered the design and implementation of a 

novel approach to cybersecurity based on deep packet 
inspection and traffic analysis methods. This work originated 
from the experience gained while developing open source 
traffic monitoring software: it has been applied to real traffic as 
well publicly available datasets. In this paper we have 

described an approach that is simple to implement and 
computationally efficient both in memory and processing time, 
as well effective in detecting modern malware, ransomware 
and trojans using encryption. The software developed in this 
research work has been released as open-source, enabling 
security researchers to reproduce our results and to build more 
advanced solutions on top of our extractors. 

CODE AVAILABILITY 
The nDPI source code is available under LGPLv3 license at 

https://github.com/ntop/nDPI. It includes all the traffic analysis 
algorithms, flow risk and encrypted traffic analysis described 
in this paper. The code that implements the risk score is part of 
ntopng released under GPLv3 and available at https://
github.com/ntop/ntopng. 
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