

Suspicious Network Event Recognition Leveraging

on Machine Learning

Daniele Sartiano

IIT/CNR and

Dipartimento di Informatica

Università di Pisa

Via Moruzzi 1

Pisa, Italy

daniele.sartiano@iit.cnr.it

Maurizio Martinelli

IIT/CNR

Via Moruzzi 1

Pisa, Italy

maurizio.martinelli@iit.cnr.it

Giuseppe Attardi

Dipartimento di Informatica

Università di Pisa

Largo B. Pontecorvo 3

Pisa, Italy

attardi@di.unipi.it

Luca Deri

 IIT/CNR and

 Dipartimento di Informatica

 Università di Pisa

 Via Moruzzi 1

 Pisa Italy

 luca.deri@iit.cnr.it

Abstract— Network log events produced by network probes

are used by security analyzers to detect traffic anomalies and

threats. While it is relatively trivial for a probe to mark specific

events as suspicious, it is much more challenging for log

analyzers to create a comprehensive picture of the overall

network. Machine learning can potentially help in this, however

there is no specific solution for analyzing network event logs.

This paper covers the experiments and design choices that have

been made to create a machine learning-based tool able to

analyze network event logs. The tool has been evaluated in the

Suspicious Network Event Recognition Cup at IEEE BigData

2019, achieving an AUC (Area Under the Curve) of over 90%,

making it accurate enough for deployment in real life scenarios.

Keywords—machine learning, gradient boosting, network

events, cyber-security

I. INTRODUCTION

The architecture of most network security tools is split into
two main components: a network sensor that produces traffic
logs, and a log analyser that analyses them. For network
security events the two most popular tools are Suricata and
Zeek. [1] is an open-source network IDS (Intrusion Detection
System) able to create network event traces complemented
with additional security information produced when matching
signatures. Zeek, formerly known as Bro, [2] is also a network
IDS that does not leverage signatures as it is mostly used to
create network logs that are used by log analysers. While the
network sensor side is monopolised by these two tools, the
problem of analysing security event logs is still mostly open.
In the past few years Machine Learning (ML) techniques have
been exploited to solve specific problems such as detection of
malware behind encrypted TLS streams [3]–[5] . Besides this,
ML has also been used both in research [6], [7] and
commercial products [8], [9] in order to forecast future usage
and produce early warnings, and report unexpected changes in
behaviours due to unusual deviations from past behaviour.

In order to validate the effectiveness of the most successful
ML algorithms used in other domains, such as image
recognition or text analysis, we decided to analyse an
annotated dataset of network events, which was provided
through a data mining challenge [10] organised in association
with the IEEE BigData 2019 conference. Event annotation is
not common in real life, as security tools only label basic
events often using simple threshold-based techniques and
network administrators are not usually keen to perform such
task. However, annotated data were crucial for our assessment
since they allowed us to train an ML system and to evaluate

its results in comparison with those of other participants in the
same challenge. As reported in table III, this work ranked 14th
out of 82 scored submissions. If we group submissions by
score, we note that the top 3 obtained an AUC of more than
0.92, 6 submissions an AUC of more than 0.91, and then 5
submissions, including ours, had an AUC over 0.90.

The rest of this paper is organized as follows. Section II

describes the challenge for which this tool has been

developed. Section III covers the various options that have

been evaluated, as well the architecture of the tool

developed. Section IV describes the experiments carried on

validating this work. Section V evaluates the results and

positions the developed tool against the other challenge

participants. Finally, Section VI summarizes this work and

gives an outlook of future work items.

II. CHALLENGE DESCRIPTION

The aim of the challenge was to detect suspicious events
and false alarms analysing network traffic events. In order to
achieve this goal, the organizers provided an annotated dataset
of network events, where, for each alert, multiple features
about network flows were provided such as statistical data,
information about IP addresses, protocols, ports, etc. The
dataset was enriched by a set of localized alerts and related log
events. The challenge lasted three and a half months.

The evaluation was done using the AUC (Area Under the
Curve), a metric that measures the area under the ROC
(Receiver Operating Characteristic curve) curve. The ROC
shows the performance of a classification model: it plots the
TPR (True Positive Rate), also known as Recall, versus the
FPR (False Positive Rate) where TPR and FPR are defined in
(1) and (2).

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (1)

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2)

AUC measures the area underneath the ROC curve from
the (0,0) to (1,1), and the larger the area, the more accurate is
the model is.

In order to provide an immediate feedback on the accuracy
of each submission, the organizers made available an online
evaluation tool with a public leader board. This tool was
available throughout the challenge. This preliminary
evaluation was done on a small subset of the test set.

In the following sections we provide a description of the

data provided, comprising three datasets: aggregated alert

events, localized alert events and log events. The datasets

are cross referenced by the alert identifier.

A. Aggregated alert events dataset

The first dataset is a collection of aggregated alert events
divided into training and test set. They are provided as
compressed files consisting of records of pipe-separated
values of 63 fields, extracted by the software described in [11],
here a summary of the fields:

• alert_ids: alert identifier.

• client_code: encrypted client code.

• notified: the target column with binary values.

• categoryname: category of the alert.

• ip, ipcategory_name, ipcategory_scope,
parent_category, grandparent_category: information
about the encrypted IP address.

• overallseverity: estimation of the alert severity.

• timestamp_dist, start_hour, start_minute,
start_second, weekday: time information.

• correlatedcount: number of records denoted by the
system in an auxiliary table with localized alerts.

• n1, n2, n3, n4, n5, n6, n7, n8, n9, n10: binary results of
analytical queries.

• score: score issued by an autonomous analytical
model.

• srcip_cd, dstip_cd, srcport_cd, dstport_cd: numbers of
different IP addresses (source and destination) and
network ports (source and destination) in an auxiliary
table with localized alerts.

• alerttype_cd: number of triggered alert types in the
localized alerts.

• direction_cd, eventname_cd, severity_cd,
reportingdevice_cd, devicetype_cd, devicevendor_cd,
domain_cd, protocol_cd, username_cd,
srcipcategory_cd, dstipcategory_cd: number of
different fields denoted in an auxiliary table with
localized alerts.

• isiptrusted: a binary field indicating whether the IP
address corresponding to the alert is controlled by the
customer.

• untrustscore, flowscore, trustscore, enforcementscore:
various scores based on the network activity.

• dstipcategory_dominate, srcipcategory_dominate,
dstportcategory_dominate,
srcportcategory_dominate: most frequent information
about IP addresses and ports denoted in an auxiliary
table with localized alerts.

• thrcnt_month, thrcnt_week, thrcnt_day: number of
records from an auxiliary table with threat watch alerts,
denoted for the same IP address as the alert, during the
previous month, week and day.

• p6, p9, p5m, p5w, p5d, p8m, p8w, p8d: results of
analytical queries.

The test set file has the same format as the training set,
except that the target column “notified” is missing. The
training set is almost twice the size of the test set, as described
in TABLE I. Only 5.8% of alerts are labelled as to be notified.

TABLE I. Aggregated alert events dataset

Dataset # Alerts Notified

Training set 39427 2276 (5.8%)

Test set 20000 -

B. Localized alert events dataset

Localized alerts describe intermediate data stored by the

organizers systems [11] and are related to the alert in the

training and test set. For each alert there is a list of events, with

the following fields:

• alert_ids: alert identifier (‘AAB’, ‘BXm’, ‘EHr’, etc)

• alerttype: type of the alert (‘Active Scan’, ‘DNS Alert’,
‘Failed Login High Rate’, ‘Suspicious Outbound
anomaly - Company’, etc)

• devicetype: type of the device (‘AAA’, ‘Scan’, ‘AWS
Flow’, ‘WAF’, etc)

• reportingdevice_code: reporting device code (‘tMU’,
‘vMn’, ‘rQE’)

• devicevendor_code: device vendor code (‘EF’, ‘NB’,
‘QZ’, etc)

• srcip: anonymized source IP address
(‘172.KM.QP.85’, ’10.KT.ZT.17’, ‘AR.XY.10.50’,
etc)

• dstip: anonymized destination IP address
(’FP.ZX.248.10’, ‘PN.ZU.2.16’, ‘DJ.FB.217.116’,
etc)

• srcipcategory: category of source IP address
(‘BENCH’, ‘INTERNET’, ‘PRIV-10’, ‘PRIV-192’,
‘LINK-LOCAL’, etc)

• dstipcategory: category of destination IP address
(‘CURR_NET’, ‘MULTICAST’, ‘PRIV-172’, ‘PRIV-
192’, ‘6TO4’, etc)

• srcport: source port (0, 443, 33143, 49814, etc)

• dstport: destination port (0, 443, 80, 8888, 21, 22, etc)

• srcportcategory: category of the source port (0, 1, 2, 3,
4)

• dstportcategory: category of the destination port (0, 1,
2, 3, 4)

• direction: direction (0, 1, 2, 3, 4, 5, 6, 7, 8)

• alerttime: relative alert time (0, 855, 6012, etc)

• severity: severity score (1, 2, 3, 4, 5, 8, 9)

• count: count (1, 2, 3, 10, 272, etc)

• domain: binary value

• protocol: network protocol (‘udp/6054’, ‘tcp/9908’,
‘ssh’, ‘SAMBA’, etc)

• username: binary value

• signature: binary value

The number of localized alerts for each aggregated alert is

highly variable: it ranges from 1 to 916,736. The dataset

consists of 8,690,705 entries.

C. Log events dataset

Log events are individual events logged by security

system’s software. This dataset was available only to the team

that achieved a preliminary score greater than 0.85. The

dataset is composed by the following fields: alert id, src ip,

dst ip, src ipcategory, srcport, dst ipcategory, dstport, relative

timestamp, report device code, device type, device vendor

code, event name code, usr code, dev id code, dev severity, dev

rule, object code, srccountrycd code, dstcountrycd code,

direction, disposition, protocol, asnid code, event code,

domain code, logontype, targetuser. Again, the number of log

events for each alert is highly variable. The total number of

entries is about 4 billion for a total of about 21 GB of

compressed files.

III. APPROACH AND IMPLEMENTATION

We investigated two approaches, the first one based on

gradient boost algorithm and the second one based on a deep

learning architecture.

A. XGboost

Gradient boosting is a supervised technique that uses
ensembles of decision trees [12]. This is an iterative method
that, for each step, the gradient of the cost function is
calculated with respect to the predicted value of the ensembles
and the trees which are then added in order to move in the
direction of the gradient. Extreme Gradient Boosting, better
known as XGBoost, is a scalable end-to-end tree boosting
system [13]. It works very well on structured data and it can
handle missing values.

The classifier was implemented through the Python library
XGBoost1. We defined the class Reader, able to read and
extract features from the aggregated, localized and log events
datasets. The features were extracted from the pipe-separated
values files, that are elaborated through the Pandas2 library.
In this approach we used aggregated data for each sample, so
we collected multiple features for a single alert. We extracted
all the features from the aggregated dataset, whereas for the
other two datasets, we extracted aggregated information, such
as statistical features. We processed non-numerical variables
as categorical and we converted them into dummy variables,
implemented using the Pandas’s function get_dummies3, that
transforms a categorical feature input into an indicator
variable. In addition to the fields in the aggregation dataset,
we created new features, such as the concatenation or the
normalization of some fields. The features extracted from the

1 https://xgboost.readthedocs.io/en/latest/python/python_intro.html
2 https://pandas.pydata.org/

localized alerts dataset are statistical information about a
subset of available fields, such as mean, minimum, maximum.

Considering the large size of the log events dataset, we
built a script to split the information as requirements a single
file for each alert. In this way we collected 53472 pipe-
separated files named by the alert id. These files were
processed by another script able to extract and aggregate
information in parallel. The result of this processing was a
single pipe-separated file with the alert id and a list of new
fields with statistical information, such as the mean, max, min,
sum of fields; we also added information about the source and
destination countries involved in the logs, both as a list of
unique country and as the list of the pair country and number
of time the this country appear in the logs. For example, for
the alert id “BpB” the script created three new fields
“logevents_srccountry”, “logevents_dstcountry”,
“logevents_countries”:

• logevents_srccountry: “AM_HD_JJ” means that
“AM”, “HD” and “JJ” appeared as values in the field
“srccountrycd_code” of the log events.

• logevents_dstcountry: “HD_JJ” means that “HD” and
“JJ” appeared as values in the field
“dstcountrycd_code” of the log events.

• logevents_countries:
“AM+462_HD+19794_JJ+20256” means that “AM”
appeared 462 times in the fields “srccountrycd_code”
and “dstcountrycd_code” of the log events.

 The dataset created was joined with the aggregated alert
dataset and the localized events dataset. In this way we
obtained about 9000 features with our best configuration
described in the section IV.A.

B. Deep learning

The main idea behind the deep learning approach is to

build a classifier using network layers capable of

remembering sequences of data, considering that the

localized alert events dataset and the log events dataset are

collections of sequences. We decided to focus on the

localized alert events dataset, which is more manageable with

respect to the log events dataset.

The input is a sequence of localized alerts, where we

divided the features into numerical and categorical.

Numerical fields are mapped together into a vector and then

the sequence of vectors is passed into a LSTM [14] model.

Categorical fields are mapped into trainable Embeddings

layers and then passed into LSTM layers. In this way we

obtained a total of 17 Input fields, 1 for the numerical fields

and 16 for categorical variables (categorical: alerttype,

devicetype, reportingdevice_code, devicevendor_code,

srcipcategory, dstipcategory, srcport, dstport,

srcportcategory, dstportcategory, protocol, severity,

direction, username, signature, domain; numerical:

alerttime, count). The results of all the LSTM layers are

concatenated together into a single layer and then passed into

a Dense layer. We used a binary cross entropy as loss function

and Adam [15] as optimizer. During the experiments, various

3 https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.get_dummies.html

https://xgboost.readthedocs.io/en/latest/python/python_intro.html
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html

models were tested, for example using a bidirectional LSTM

[16], or introducing intermediate dense layers.

The classifier was implemented in TensorFlow 2.04, a

well-known framework for building deep neural networks.

We used Keras5, a high-level API for building and training

deep learning models. As in the XGBoost classifier, we

created a Reader class in order to process the dataset.

Categorical features were transformed into indexes through

the LabelEncoder class of Scikit-Learn library; the start value

of these indexes was one, in order to use the masking function

of LSTM, implemented in Keras6. Considering the variability

in length of the sequences, we decided to consider only the

last part of sequences.

IV. EXPERIMENTS

In our experiments, we randomly split the dataset into a
development set (80%) and a test set (20%). The development
set was split in turn into a training set (80%) and a validation
set (20%). The training of the models was done using the
training set and we validated the models through the validation
set. The test set was used to evaluate the solutions. The results
were scored using the AUC metric described in the previous
sections.

The XGBoost experiments were run on two machines,
equipped with the processor Intel i7-7700K, respectively with
32 and 64 GB of RAM. The deep learning experiments were
conducted on a server equipped with 4 GPUs Nvidia Tesla
Pascal 100.

A. XGBoost

We applied a feature engineering approach, following this

method:

• we started the experiments with the aggregated events
dataset and doing feature engineering, including
almost all the features available (discarding the “alert
id”) and creating other new features described in the
previous section;

• we did feature selection in order to find the best set of
features;

• we added the features extracted from the localized
events dataset and we continued the feature selection;

• after having reached the AUC of 0.8800, we
downloaded the log events dataset and extracted the
features;

• we did feature engineering with all the features from
the three datasets.

In order to tune the XGBoost hyperparameters we did

randomized search with stratified k-folds cross validation

passing the following parameters:

• “min_child_weight” with values [1, 5, 10];

• “gamma” with values [0.5, 1, 1.5, 2, 5]

• “subsample” with values [0.6, 0.8, 1.0];

• “colsample_bytree” with values [0.6, 0.8, 1.0];

4 https://www.tensorflow.org/
5 https://www.tensorflow.org/guide/keras

• “max_depth” with values [3, 4, 5].

the parameters used are shown in TABLE II, included

the best values found by the randomized search.

TABLE II. XGBost parameters used during the experiments

Parameter Value

booster dart

eta 0.02

objective binary:logisitc

eval auc

min_child_weight 1

gamma 5

subsample 0.6

colsample_bytree 0.6

max_depth 5

early_stopping_round 250

epochs 5000

scale_pos_weight

#𝑛𝑒𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

#𝑝𝑜𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

37151

2276
= 16.32

The “scale_pos_weight” parameter was used in order to

manage unbalanced dataset: the value was calculated as the

division of the number of negative samples over the number

of the positive samples. We did feature selection by a trial

and error method, and we found the following best

configuration:

• aggregated dataset: all field except for “alert_ids”,
“start_second”, “start_minute”, “timestamp_dist”,
“thrcnt_month”, “thrcnt_week”, “thrcnt_day”. We
added the following features: first element of “ip”
field; the concatenation of first and second element of
“ip” field;

• concatenation of the following fields of the aggregated
dataset: “protocol_cd” and “srcport_cd”;
“protocol_cd” and “dstport_cd”; “overallsecurity” and
“score”; “reportingdevice_cd”, ”devicetype_cd” and
“devicevendor_cd”; “untrustscore”, “flowscore”,
“trustscore” and “enforcementscore”;
“srcportcategory_dominate” and
“dstportcategory_dominate”;

• localized dataset: number of entries in the localized set,
maximum and mean of “alerttime”; maximum,
minimum and mean of “severity”; sum and mean of
“count”; mean of “domain”, “signature” and
“direction”; the dummies values of the following
fields: “protocol”, “alerttype”, “devicetype”,
“reportingdevice_code”, “devicevendor_code”,
“srcportcategory”, “dstportcategory”, “username”,
“direction”, “srcipcategory”, “dstipcategory”; first
element of “srcip” field; the concatenation of first and
second element of “srcip” field; first element of “dstip”

6 https://www.tensorflow.org/guide/keras/masking_and_padding

https://www.tensorflow.org/
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras/masking_and_padding

field; the concatenation of first and second element of
“dstip” field;

• log events dataset: number of entries.

B. Deep learning

The experiments with the deep learning classifier

involved mostly exploring different neural network

architectures, in contrast to the XGBoost classifier, in which

feature engineering was the main activity. In addition to the

architecture described in section III.B, as shown in Fig. 1, we

tried also a Bidirectional LSTM and a version with an added

convolutional layer on top of the LSTM layer. We do not

report the results of these architectures since they did not

improve. In order to handle overfitting we added dropout

layers [17] and regularization [18]. Unbalanced dataset was

managed by setting class weights.

The best score achieved on our test set with a deep

learning architecture was about 0.62 AUC. We have been

unable to find a good way to mitigate overfitting issues even

though in the training phase AUC was about 0.95 on our

validation set. Due to a lack of time, this will be an

investigation we plan to carry on as future work item.

V. RESULTS

We submitted our two best solutions achieved on the

preliminary results with XGBoost classifier. The first one

with the same configuration described in the experiments

section, the second one as the first one except for the features

extracted from aggregated alert events dataset. In addition to

the excluded fields described, we removed “ip” related and

network ports. The second one achieved the best solution

shown in TABLE III.

TABLE III. OFFICIAL RESULTS OF OUR SUBMISSION COMPARED TO THE TOP

THREE.

Rank Team Name Score

1 hieuvq 0.931743

2 test_123 0.930295

3 HSOC 0.926885

14 Pisa 0.902961

VI. FUTURE WORK

The results of our experiments were encouraging in terms

of the final ranking achieved using XGBoost. However we

hoped to achieve even better results with the deep learning

model, since it is capable of taking into account the ordering

of events, that might be valuable for improving the accuracy,

rather than using just the aggregated data exploited

by gradient boosting. The deep learning model though run

into overfitting and we did not have time to investigate its

causes. Our plan is to also evaluate whether combining the

two approaches used in this work into an ensemble, achieves

a better score that what we obtained with the one we used in

this competition.

VII. CONCLUSIONS

This paper described the design and implementation of a

tool developed by the authors for participating to the data

mining challenge organized in association with the IEEE

BigData 2019 conference. Our best results were achieved

using an XGBoost classifier that outperformed an experiment

carried out with deep learning techniques. With respect with

other submissions to the challenge, our submission scored in

the 14th position.

SOURCE CODE

The source code of the tool is available at

https://gitlab.tools.iit.cnr.it/cyberlab/suspicious-network-

event-recognition-2019 and it is released under the GPLv3

license.

ACKNOWLEDGMENTS

The experiments were conducted on a server with 4 Nvidia
Tesla Pascal 100 GPUs, acquired with partial funding from
Grandi Attrezzature 2016 by the Università di Pisa.

REFERENCES

[1] W. Park and S. Ahn, “Performance comparison and detection analysis
in snort and suricata environment,” Wirel. Pers. Commun., vol. 94, no.
2, pp. 241–252, 2017.

[2] V. Paxson, S. Campbell, J. Lee, and others, “Bro intrusion detection
system,” 2006.

[3] D. Bekerman, B. Shapira, L. Rokach, and A. Bar, “Unknown malware
detection using network traffic classification,” in 2015 IEEE
Conference on Communications and Network Security (CNS), 2015,
pp. 134–142.

[4] Y. Yang, C. Kang, G. Gou, Z. Li, and G. Xiong, “TLS/SSL Encrypted
Traffic Classification with Autoencoder and Convolutional Neural
Network,” in 2018 IEEE 20th International Conference on High
Performance Computing and Communications; IEEE 16th
International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS),
2018, pp. 362–369.

[5] B. Anderson, S. Paul, and D. McGrew, “Deciphering malware’s use of
TLS (without decryption),” J. Comput. Virol. Hacking Tech., vol. 14,
no. 3, pp. 195–211, 2018.

[6] V. Gustavsson, “Machine Learning for a Network-based Intrusion
Detection System: An application using Zeek and the CICIDS2017
dataset.” 2019.

Fig. 1 Deep Learning Classifier

[7] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization.,” in ICISSP, 2018, pp. 108–116.

[8] Splunk Inc, “Machine Learning Toolkit and Advisory Program,” 2019.
[Online]. Available: https://www.splunk.com/en_us/software/splunk-
enterprise/machine-learning.html.

[9] Steve Dodson, “Introducing Machine Learning for the Elastic Stack.”
[Online]. Available: https://www.elastic.co/blog/introducing-machine-
learning-for-the-elastic-stack.

[10] A. Janusz, D. Kałuża, Chądzyńska-Krasowska, B. Konarski, J.
Holland, and D. Ślęzak, “IEEE BigData 2019 Cup: Suspicious
Network Event Recognition,” in 2019 {IEEE} International
Conference on Big Data, BigData 2019, Los Angeles, CA, USA,
December 9-12, 2019, 2019.

[11] D. Ślezak, A. Chadzyńska-Krasowska, J. Holland, P. Synak, R. Glick,
and M. Perkowski, “Scalable cyber-security analytics with a new
summary-based approximate query engine,” in 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp. 1840–
1849.

[12] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Ann. Stat., pp. 1189–1232, 2001.

[13] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv Prepr. arXiv1412.6980, 2014.

[16] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–
2681, 1997.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[18] A. Y. Ng, “Feature selection, L 1 vs. L 2 regularization, and rotational
invariance,” in Proceedings of the twenty-first international conference
on Machine learning, 2004, p. 78.

