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Abstract— Network log events produced by network probes 

are used by security analyzers to detect traffic anomalies and 

threats. While it is relatively trivial for a probe to mark specific 

events as suspicious, it is much more challenging for log 

analyzers to create a comprehensive picture of the overall 

network. Machine learning can potentially help in this, however 

there is no specific solution for analyzing network event logs. 

This paper covers the experiments and design choices that have 

been made to create a machine learning-based tool able to 

analyze network event logs. The tool has been evaluated in the 

Suspicious Network Event Recognition Cup at IEEE BigData 

2019, achieving an AUC (Area Under the Curve) of over 90%, 

making it accurate enough for deployment in real life scenarios. 

Keywords—machine learning, gradient boosting, network 

events, cyber-security 

I. INTRODUCTION 

The architecture of most network security tools is split into 
two main components: a network sensor that produces traffic 
logs, and a log analyser that analyses them. For network 
security events the two most popular tools are Suricata and 
Zeek. [1] is an open-source network IDS (Intrusion Detection 
System) able to create network event traces complemented 
with additional security information produced when matching 
signatures. Zeek, formerly known as Bro, [2] is also a network 
IDS that does not leverage signatures as it is mostly used to 
create network logs that are used by log analysers. While the 
network sensor side is monopolised by these two tools, the 
problem of analysing security event logs is still mostly open. 
In the past few years Machine Learning (ML) techniques have 
been exploited to solve specific problems such as detection of 
malware behind encrypted TLS streams [3]–[5] . Besides this, 
ML has also been used both in research [6], [7] and 
commercial products [8], [9] in order to forecast future usage 
and produce early warnings, and report unexpected changes in 
behaviours due to unusual deviations from past behaviour.   

In order to validate the effectiveness of the most successful 
ML algorithms used in other domains, such as image 
recognition or text analysis, we decided to analyse an 
annotated dataset of network events, which was provided 
through a data mining challenge [10] organised in association 
with the IEEE BigData 2019 conference. Event annotation is 
not common in real life, as security tools only label basic 
events often using simple threshold-based techniques and 
network administrators are not usually keen to perform such 
task. However, annotated data were crucial for our assessment 
since they allowed us to train an ML system and to evaluate 

its results in comparison with those of other participants in the 
same challenge. As reported in table III, this work ranked  14th 
out of 82 scored submissions. If we group submissions by 
score, we note that the top 3 obtained an AUC of more than 
0.92, 6 submissions an AUC of more than 0.91, and then 5 
submissions, including ours, had an AUC over 0.90. 

The rest of this paper is organized as follows. Section II 

describes the challenge for which this tool has been 

developed. Section III covers the various options that have 

been evaluated, as well the architecture of the tool 

developed. Section IV describes the experiments carried on 

validating this work. Section V evaluates the results and 

positions the developed tool against the other challenge 

participants. Finally, Section VI summarizes this work and 

gives an outlook of future work items. 

II. CHALLENGE DESCRIPTION 

The aim of the challenge was to detect suspicious events 
and false alarms analysing network traffic events. In order to 
achieve this goal, the organizers provided an annotated dataset 
of network events, where, for each alert, multiple features 
about network flows were provided such as statistical data, 
information about IP addresses, protocols, ports, etc. The 
dataset was enriched by a set of localized alerts and related log 
events. The challenge lasted three and a half months. 

The evaluation was done using the AUC (Area Under the 
Curve), a metric that measures the area under the ROC 
(Receiver Operating Characteristic curve) curve. The ROC 
shows the performance of a classification model: it plots the 
TPR (True Positive Rate), also known as Recall, versus the 
FPR (False Positive Rate) where TPR and FPR are defined in 
(1) and (2). 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (1) 

 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2) 

 

AUC measures the area underneath the ROC curve from 
the (0,0) to (1,1), and the larger the area, the more accurate is 
the model is. 



In order to provide an immediate feedback on the accuracy 
of each submission, the organizers made available an online 
evaluation tool with a public leader board. This tool was 
available throughout the challenge. This preliminary 
evaluation was done on a small subset of the test set. 

In the following sections we provide a description of the 

data provided, comprising three datasets: aggregated alert 

events, localized alert events and log events. The datasets 

are cross referenced by the alert identifier. 

A.  Aggregated alert events dataset 

The first dataset is a collection of aggregated alert events 
divided into training and test set. They are provided as  
compressed files consisting of records of pipe-separated 
values of 63 fields, extracted by the software described in [11], 
here a summary of the fields: 

• alert_ids: alert identifier. 

• client_code: encrypted client code. 

• notified: the target column with binary values. 

• categoryname: category of the alert. 

• ip, ipcategory_name, ipcategory_scope, 
parent_category, grandparent_category: information 
about the encrypted IP address. 

• overallseverity: estimation of the alert severity. 

• timestamp_dist, start_hour, start_minute, 
start_second, weekday: time information. 

• correlatedcount: number of records denoted by the 
system in an auxiliary table with localized alerts. 

• n1, n2, n3, n4, n5, n6, n7, n8, n9, n10: binary results of 
analytical queries. 

• score: score issued by an autonomous analytical 
model. 

• srcip_cd, dstip_cd, srcport_cd, dstport_cd: numbers of 
different IP addresses (source and destination) and 
network ports (source and destination) in an auxiliary 
table with localized alerts. 

• alerttype_cd: number of triggered alert types in the 
localized alerts. 

• direction_cd, eventname_cd, severity_cd, 
reportingdevice_cd, devicetype_cd, devicevendor_cd, 
domain_cd, protocol_cd, username_cd, 
srcipcategory_cd, dstipcategory_cd: number of 
different fields denoted in an auxiliary table with 
localized alerts. 

• isiptrusted: a binary field indicating whether the IP 
address corresponding to the alert is controlled by the 
customer. 

• untrustscore, flowscore, trustscore, enforcementscore: 
various scores based on the network activity. 

• dstipcategory_dominate, srcipcategory_dominate, 
dstportcategory_dominate, 
srcportcategory_dominate: most frequent information 
about IP addresses and ports denoted in an auxiliary 
table with localized alerts. 

• thrcnt_month, thrcnt_week, thrcnt_day: number of 
records from an auxiliary table with threat watch alerts, 
denoted for the same IP address as the alert, during the 
previous month, week and day. 

• p6, p9, p5m, p5w, p5d, p8m, p8w, p8d: results of 
analytical queries. 

The test set file has the same format as the training set, 
except that the target column “notified” is missing. The 
training set is almost twice the size of the test set, as described 
in TABLE I. Only 5.8% of alerts are labelled as to be notified. 

TABLE I.  Aggregated alert events dataset 

Dataset # Alerts Notified 

Training set 39427 2276 (5.8%) 

Test set 20000 - 

 

B. Localized alert events dataset 

Localized alerts describe intermediate data stored by the 

organizers systems [11] and are related to the alert in the 

training and test set. For each alert there is a list of events, with 

the following fields:  

• alert_ids: alert identifier (‘AAB’, ‘BXm’, ‘EHr’, etc) 

• alerttype: type of the alert (‘Active Scan’, ‘DNS Alert’, 
‘Failed Login High Rate’, ‘Suspicious Outbound 
anomaly - Company’, etc) 

• devicetype: type of the device (‘AAA’, ‘Scan’, ‘AWS 
Flow’, ‘WAF’, etc) 

• reportingdevice_code: reporting device code (‘tMU’, 
‘vMn’, ‘rQE’) 

• devicevendor_code: device vendor code (‘EF’, ‘NB’, 
‘QZ’, etc) 

• srcip: anonymized source IP address 
(‘172.KM.QP.85’, ’10.KT.ZT.17’, ‘AR.XY.10.50’, 
etc) 

• dstip: anonymized destination IP address 
(’FP.ZX.248.10’, ‘PN.ZU.2.16’, ‘DJ.FB.217.116’, 
etc) 

• srcipcategory: category of source IP address 
(‘BENCH’, ‘INTERNET’, ‘PRIV-10’, ‘PRIV-192’, 
‘LINK-LOCAL’, etc) 

• dstipcategory: category of destination IP address 
(‘CURR_NET’, ‘MULTICAST’, ‘PRIV-172’, ‘PRIV-
192’, ‘6TO4’, etc) 

• srcport: source port (0, 443, 33143, 49814, etc) 

• dstport: destination port (0, 443, 80, 8888, 21, 22, etc) 

• srcportcategory: category of the source port (0, 1, 2, 3, 
4) 

• dstportcategory: category of the destination port (0, 1, 
2, 3, 4) 

• direction: direction (0, 1, 2, 3, 4, 5, 6, 7, 8) 

• alerttime: relative alert time (0, 855, 6012, etc) 

• severity: severity score (1, 2, 3, 4, 5, 8, 9) 



• count: count (1, 2, 3, 10, 272, etc) 

• domain:  binary value 

• protocol: network protocol (‘udp/6054’, ‘tcp/9908’, 
‘ssh’, ‘SAMBA’, etc) 

• username: binary value 

• signature: binary value 

  

The number of localized alerts for each aggregated alert is 

highly variable: it ranges from 1 to 916,736. The dataset 

consists of 8,690,705 entries. 

C. Log events dataset 

Log events are individual events logged by security 

system’s software. This dataset was available only to the team 

that achieved a preliminary score greater than 0.85. The 

dataset is composed by the following fields:  alert id, src ip, 

dst ip, src ipcategory, srcport, dst ipcategory, dstport, relative 

timestamp, report device code, device type, device vendor 

code, event name code, usr code, dev id code, dev severity, dev 

rule, object code, srccountrycd code, dstcountrycd code, 

direction, disposition, protocol, asnid code, event code, 

domain code, logontype, targetuser. Again, the number of log 

events for each alert is highly variable. The total number of 

entries is about 4 billion for a total of about 21 GB of 

compressed files. 

III. APPROACH AND IMPLEMENTATION 

We investigated two approaches, the first one based on 

gradient boost algorithm and the second one based on a deep 

learning architecture. 

A. XGboost 

Gradient boosting is a supervised technique that uses 
ensembles of decision trees [12]. This is an iterative method 
that, for each step, the gradient of the cost function is 
calculated with respect to the predicted value of the ensembles 
and the trees which are then added in order to move in the 
direction of the gradient. Extreme Gradient Boosting, better 
known as XGBoost, is a scalable end-to-end tree boosting 
system [13]. It works very well on structured data and it can 
handle missing values. 

The classifier was implemented through the Python library 
XGBoost1. We defined the class Reader, able to read and 
extract features from the aggregated, localized and log events 
datasets. The features were extracted from the pipe-separated 
values files, that are elaborated through the Pandas2 library. 
In this approach we used aggregated data for each sample, so 
we collected multiple features for a single alert. We extracted 
all the features from the aggregated dataset, whereas for the 
other two datasets, we extracted aggregated information, such 
as statistical features. We processed non-numerical variables 
as categorical and we converted them into dummy variables, 
implemented using the Pandas’s function get_dummies3, that 
transforms a categorical feature input into an indicator 
variable. In addition to the fields in the aggregation dataset, 
we created new features, such as the concatenation or the 
normalization of some fields. The features extracted from the 

 
1 https://xgboost.readthedocs.io/en/latest/python/python_intro.html 
2 https://pandas.pydata.org/ 

localized alerts dataset are statistical information about a 
subset of available fields, such as mean, minimum, maximum. 

Considering the large size of the log events dataset, we 
built a script to split the information as requirements a single 
file for each alert. In this way we collected 53472 pipe-
separated files named by the alert id. These files were 
processed by another script able to extract and aggregate 
information in parallel. The result of this processing was a 
single pipe-separated file with the alert id and a list of new 
fields with statistical information, such as the mean, max, min, 
sum of fields; we also added information about the source and 
destination countries involved in the logs, both as a list of 
unique country and as the list of the pair country and number 
of time the this country appear in the logs. For example, for 
the alert id “BpB” the script created three new fields 
“logevents_srccountry”, “logevents_dstcountry”, 
“logevents_countries”: 

• logevents_srccountry: “AM_HD_JJ” means that 
“AM”, “HD” and “JJ” appeared as values in the field 
“srccountrycd_code” of the log events. 

• logevents_dstcountry: “HD_JJ” means that “HD” and 
“JJ” appeared as values in the field 
“dstcountrycd_code” of the log events. 

• logevents_countries: 
“AM+462_HD+19794_JJ+20256” means that “AM” 
appeared 462 times in the fields “srccountrycd_code” 
and “dstcountrycd_code” of the log events. 

 The dataset created was joined with the aggregated alert 
dataset and the localized events dataset. In this way we 
obtained about 9000 features with our best configuration 
described in the section IV.A. 
 

B. Deep learning 

The main idea behind the deep learning approach is to 

build a classifier using network layers capable of 

remembering sequences of data, considering that the 

localized alert events dataset and the log events dataset are 

collections of sequences. We decided to focus on the 

localized alert events dataset, which is more manageable with 

respect to the log events dataset.  

The input is a sequence of localized alerts, where we 

divided the features into numerical and categorical.  

Numerical fields are mapped together into a vector and then 

the sequence of vectors is passed into a LSTM [14] model. 

Categorical fields are mapped into trainable Embeddings 

layers and then passed into LSTM layers. In this way we 

obtained a total of 17 Input fields, 1 for the numerical fields 

and 16 for categorical variables (categorical: alerttype, 

devicetype, reportingdevice_code, devicevendor_code, 

srcipcategory, dstipcategory, srcport, dstport, 

srcportcategory, dstportcategory,  protocol, severity, 

direction, username, signature, domain; numerical: 

alerttime, count). The results of all the LSTM layers are 

concatenated together into a single layer and then passed into 

a Dense layer. We used a binary cross entropy as loss function 

and Adam [15] as optimizer. During the experiments, various 

3 https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.get_dummies.html 

https://xgboost.readthedocs.io/en/latest/python/python_intro.html
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html


models were tested, for example using a bidirectional LSTM 

[16], or introducing intermediate dense layers. 

The classifier was implemented in TensorFlow 2.04, a 

well-known framework for building deep neural networks. 

We used Keras5, a high-level API for building and training 

deep learning models. As in the XGBoost classifier, we 

created a Reader class in order to process the dataset. 

Categorical features were transformed into indexes through 

the LabelEncoder class of Scikit-Learn library; the start value 

of these indexes was one, in order to use the masking function 

of LSTM, implemented in Keras6. Considering the variability 

in length of the sequences, we decided to consider only the 

last part of sequences. 
 

IV. EXPERIMENTS 

In our experiments, we randomly split the dataset into a 
development set (80%) and a test set (20%). The development 
set was split in turn into a training set (80%) and a validation 
set (20%). The training of the models was done using the 
training set and we validated the models through the validation 
set. The test set was used to evaluate the solutions. The results 
were scored using the AUC metric described in the previous 
sections. 

The XGBoost experiments were run on two machines, 
equipped with the processor Intel i7-7700K, respectively with 
32 and 64 GB of RAM. The deep learning experiments were 
conducted on a server equipped with 4 GPUs Nvidia Tesla 
Pascal 100. 

A. XGBoost 

We applied a feature engineering approach, following this 

method: 

• we started the experiments with the aggregated events 
dataset and doing feature engineering, including 
almost all the features available (discarding the “alert 
id”) and creating other new features described in the 
previous section; 

• we did feature selection in order to find the best set of 
features; 

• we added the features extracted from the localized 
events dataset and we continued the feature selection; 

• after having reached the AUC of 0.8800, we 
downloaded the log events dataset and extracted the 
features; 

• we did feature engineering with all the features from 
the three datasets. 

In order to tune the XGBoost hyperparameters we did 

randomized search with stratified k-folds cross validation 

passing the following parameters:  

 

• “min_child_weight” with values [1, 5, 10]; 

• “gamma” with values [0.5, 1, 1.5, 2, 5] 

• “subsample” with values [0.6, 0.8, 1.0]; 

• “colsample_bytree” with values [0.6, 0.8, 1.0]; 

 
4 https://www.tensorflow.org/ 
5 https://www.tensorflow.org/guide/keras 

• “max_depth” with values [3, 4, 5]. 

 

the parameters used are shown in TABLE II, included 

the best values found by the randomized search. 
 

TABLE II.  XGBost parameters used during the experiments 

Parameter Value 

booster dart 

eta 0.02 

objective binary:logisitc 

eval auc 

min_child_weight 1 

gamma 5 

subsample 0.6 

colsample_bytree 0.6 

max_depth 5 

early_stopping_round 250 

epochs 5000 

scale_pos_weight 

#𝑛𝑒𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

#𝑝𝑜𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

37151

2276
= 16.32 

 

 

The “scale_pos_weight” parameter was used in order to 

manage unbalanced dataset: the value was calculated as the 

division of the number of negative samples over the number 

of the positive samples.  We did feature selection by a trial 

and error method, and we found the following best 

configuration: 

• aggregated dataset: all field except for “alert_ids”, 
“start_second”, “start_minute”, “timestamp_dist”, 
“thrcnt_month”, “thrcnt_week”, “thrcnt_day”. We 
added the following features: first element of “ip” 
field; the concatenation of first and second element of 
“ip” field;   

• concatenation of the following fields of the aggregated 
dataset: “protocol_cd” and “srcport_cd”; 
“protocol_cd” and “dstport_cd”; “overallsecurity” and 
“score”; “reportingdevice_cd”, ”devicetype_cd” and  
“devicevendor_cd”; “untrustscore”, “flowscore”, 
“trustscore” and “enforcementscore”; 
“srcportcategory_dominate” and 
“dstportcategory_dominate”; 

• localized dataset: number of entries in the localized set, 
maximum and mean of “alerttime”; maximum, 
minimum and mean of “severity”; sum and mean of 
“count”; mean of “domain”, “signature” and 
“direction”; the dummies values of the following 
fields: “protocol”, “alerttype”, “devicetype”, 
“reportingdevice_code”, “devicevendor_code”, 
“srcportcategory”, “dstportcategory”, “username”, 
“direction”, “srcipcategory”, “dstipcategory”; first 
element of “srcip” field; the concatenation of first and 
second element of “srcip” field; first element of “dstip” 

6 https://www.tensorflow.org/guide/keras/masking_and_padding 

https://www.tensorflow.org/
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras/masking_and_padding


field; the concatenation of first and second element of 
“dstip” field; 

• log events dataset: number of entries. 

B. Deep learning 

The experiments with the deep learning classifier 

involved mostly exploring different neural network 

architectures, in contrast to the XGBoost classifier, in which 

feature engineering was the main activity.  In addition to the 

architecture described in section III.B, as shown in Fig. 1, we 

tried also a Bidirectional LSTM and a version with an added 

convolutional layer on top of the LSTM layer. We do not 

report the results of these architectures since they did not 

improve. In order to handle overfitting we added dropout 

layers [17] and regularization [18]. Unbalanced dataset was 

managed by setting class weights.  

The best score achieved on our test set with a deep 

learning architecture was about 0.62 AUC. We have been 

unable to find a good way to mitigate overfitting issues even 

though in the training phase AUC was about 0.95 on our 

validation set.  Due to a lack of time, this will be an 

investigation we plan to carry on as future work item. 

V. RESULTS 

We submitted our two best solutions achieved on the 

preliminary results with XGBoost classifier. The first one 

with the same configuration described in the experiments 

section, the second one as the first one except for the features 

extracted from aggregated alert events dataset. In addition to 

the excluded fields described, we removed “ip” related and 

network ports. The second one achieved the best solution 

shown in TABLE III. 

 
TABLE III. OFFICIAL RESULTS OF OUR SUBMISSION COMPARED TO THE TOP 

THREE. 

Rank Team Name Score 

1 hieuvq 0.931743 

2 test_123 0.930295 

3 HSOC 0.926885 

14 Pisa 0.902961 

 

VI. FUTURE WORK 

The results of our experiments were encouraging in terms 

of the final ranking achieved using XGBoost. However we 

hoped to achieve even better results with the deep learning 

model, since it is capable of taking into account the ordering 

of events, that might be valuable for improving the accuracy, 

rather than using just the aggregated data exploited 

by gradient boosting. The deep learning model though run 

into overfitting and we did not have time to investigate its 

causes. Our plan is to also evaluate whether combining the 

two approaches used in this work into an ensemble, achieves 

a better score that what we obtained with the one we used in 

this competition. 

VII. CONCLUSIONS 

This paper described the design and implementation of a 

tool developed by the authors for participating to the data 

mining challenge organized in association with the IEEE 

BigData 2019 conference. Our best results were achieved 

using an XGBoost classifier that outperformed an experiment 

carried out with deep learning techniques. With respect with 

other submissions to the challenge, our submission scored in 

the 14th position. 

SOURCE CODE 

The source code of the tool is available at 

https://gitlab.tools.iit.cnr.it/cyberlab/suspicious-network-

event-recognition-2019 and it is released under the GPLv3 

license. 
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