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Abstract— The pervasive use of encrypted protocols and new 
communication paradigms based on mobile and home IoT 
devices has obsoleted traffic analysis techniques that relied on 
clear text analysis. This has required new monitoring metrics 
being able to characterise, identify, and classify traffic not just in 
terms of network protocols but also behaviour and intended use. 
This paper reports the lessons learnt while analysing traffic in 
both home networks and the Internet, and it describes how 
monitoring metrics used in experiments have been implemented 
in an open source toolkit for deep packet inspection and traffic 
analysis. The validation process confirmed that combining the 
proposed metrics with deep packet inspection, it is possible to 
effectively characterise and fingerprint encrypted traffic 
generated by home IoT and non-IoT devices. 
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I. INTRODUCTION 
Network traffic has changed significantly in terms of 

network protocols and behaviour. Today most of the network 
traffic is encrypted. As encryption is now pervasive in Internet 
traffic, it is becoming important to provide network visibility in 
this new changed scenario where clear-text protocols are used 
less frequently even though they are still relatively popular in 
LAN networks where obsolete operating systems and outdated 
IoT devices will be used for some more years. This means that 
we need to complement existing techniques with new 
measurements metrics able to inspect and characterise 
encrypted traffic for the purpose of identifying threats and 
changes in network traffic behaviour. In home networks the 
widespread use of IoT and healthcare devices that operate 
using cloud services has created new security issues as users no 
longer interact directly with the device but only through cloud 
services. This trend towards cloud-based security is present 
also on products manufactured by leading firewall vendors that 
can be accessed solely using a cloud console and no longer 
connecting to the firewall sitting on the company premises. 

Providing network visibility is the base on which security 
of modern networks works, as it is compulsory to implement 
mechanisms to enforce network policies that enable zero-trust 
and modern home networks to operate. This has been the 
motivation behind this work, being decryption of encrypted 
traffic not practical for various reasons including, but not 
limited to, ethical and technical issues that prevent MITM 
(Man In The Middle) techniques to operate on non-TLS 
(Transport Layer Security) protocols such as SSH, BitTorrent 
and Skype. Contrary to previous research [8, 9, 10], goal of this 
paper is not to define new methods for identifying specific 
threats but rather to classify network traffic in a generic way 
without searching specific traffic or malware fingerprints. As 
specified later in this paper, this approach is able to classify 

traffic using specific protocol metrics and also detect changes 
in network behaviour. This fact is effective in particular on IoT 
and home networks, where the device behaviour should not 
change unless it is reconfigured or compromised. One of the 
gol of this research work is to develop a tool able to run on 
devices of limited power and memory (e.g. NanoPi R1S that 
features 512 MB RAM), hence we have decided not to use in 
this work machine/deep learning techniques [1] that are 
computationally expensive hence unable to run low-end 
devices. Another objective that has motivated this work, is the 
definition of new metrics and techniques to be used with 
encrypted traffic similar to those used with clear text. For 
instance, in HTTP the User Agent has been used [16] to 
classify devices and identify malware: how can this be 
implemented with encrypted traffic? In essence, identify 
properties in encrypted traffic analysis equivalent to those used 
for years in clear text traffic so that it is possible to have the 
same level of visibility without decoding the encrypted traffic 
payload. 

The main contribution of this paper is to show in practice 
how existing network visibility methods and algorithms have 
been enhanced to take into account encrypted traffic and to 
promote the creation of a next generation deep packet 
inspection (DPI) engine (i.e. a techniques that analyses the 
complete packet payload) that does more than just identifying 
network protocols decoding a few packets. The novelty of this 
work is the combination of existing protocol fingerprint 
techniques coming from DPI with new traffic behavioural 
indicators based on data binning techniques that allow traffic 
not only to be recognised in terms of application protocol, but 
also to be checked for compliance with the expected behavioral 
model. Doing this it is possible to improve application protocol 
detection, and at the same time spot suspicious traffic 
behaviour in a simple way with respect to what popular IDSs 
can do in a significantly more complex fashion [6]. This is to 
create a comprehensive set of algorithms and metrics that can 
be effectively used to monitor both large and home/IoT 
networks as well Internet traffic. As described later in this 
paper, the results of this research have been merged into a 
popular open source DPI  and traffic classification engine 
named nDPI [8] whose code is publicly available at https://
github.com/ntop/nDPI. This is to enable researchers to benefit 
from this work and reproduce the results we are reporting on 
this paper. 

The rest of the paper is structured as follows. Section 2 
analyses encryption protocols and standard traffic fingerprint 
techniques used to classify encrypted traffic. Section 3 covers 
the proposed monitoring methodology, metrics and approach. 
Section 4 discusses the tool implementation and experiments, 
and finally Section 5 concludes the paper. 
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II. RELATED WORK 
This section first analyses fingerprints for encrypted 

protocols, then describes how IoT device traffic is analysed and 
enforced in networks by popular IDS (Intrusion Detection 
System) applications. 
A. Traffic Fingerprinting 

TLS is the most popular cryptographic protocol used to 
secure communications on computer networks. TLS 
communications flow over an encrypted, bidirectional network 
tunnel that is encrypted using some cryptographic keys based 
on shared secrets negotiated at the start of the session named 
TLS handshake. During handshake the two communicating 
peers agree on algorithms, exchange certificates and 
cryptographic options before starting encrypted data exchange. 
The TLS client sends a ClientHello message that contains a list 
of supported ciphers, compression methods and various 
parameters including options on elliptic-curve cryptography 
used by TLS. The server responds with a ServerHello message 
that contains the chosen TLS protocol version, ciphers and 
compression methods selected out of the various options 
offered by the client in the ClientHello message. Then the 
server sends an optional certificate message containing the 
public key used by the server. Handshake messages are 
exchanged in clear, so they can be decoded by dissecting 
packets, with the exception of the server certificate that in TLS 
1.3 is encrypted. Decoding the initial handshake packets allows 
applications to inspect how data is exchanged and disclose 
information about both the client and server configuration as 
well fingerprint and identify client applications. Part of the 
ClientHello message there is the SNI (Server Name Indication) 
that contains the server name is accessed by the client. JA3 [4] 
is a popular client/server fingerprinting method, hence named 
JA3C and JA3S. Both JA3 fingerprints ignore non-
cryptographic information such as the SNI string, or certificate 
information: their goal is to fingerprint the cryptographic 
libraries used by the two TLS peers rather than to create a 
unique client/server fingerprint. This means that if applications 
A, B, and C use the exact same version of OpenSSL they will 
have the same JA3 fingerprint even though they can be 
different in nature. The consequence is that methods based on 
JA3 fingerprint databases (e.g. https://ja3er.com) are “nice to 
have” but they cannot be reliably used for instance to 
discriminate malware from benign applications, or fingerprint a 
web browser. In addition to JA3, similar techniques exist: 
HASSH is used for SSH, CYU for Google QUIC, and RFDP 
for the popular RDP (Remote Desktop Protocol) used to 
remotely connect to Windows hosts. 

B. Encrypted Traffic Analysis in IDSs 
As stated earlier in this section, these protocol fingerprints 

are not designed to uniquely identify an application using it, 
but their intended use is to have a quick way to calculate a 
fingerprint that when combined with additional metrics it can 
be used to identify an application with high confidence. 
Fingerprints are a way to identity communications originated 
by the same (set of) application(s) by inspecting the first initial 
packets and they are often used by popular IDSs such as 
Suricata (https://suricata-ids.org) and Zeek (https://zeek.org) 
that use signatures to identify malware. Mercury [7] does not 
use standard signatures such as JA3 but a custom fingerprint to 
recognise applications. Joy [2, 3], Mercury predecessor, instead 
used (Sequence of Packet Length and Arrival Time) and bytes 

entropy of the first few packets past the 3WH to create 
malware signatures.  

In general, tools able to analyse encrypted traffic are 
designed to detect specific patterns and match signatures, as 
they are mostly focusing on security. This means that such 
tools are unable to analyse connection traffic past the few 
initial connection packets, and implement visibility looking at 
the big picture instead to analyse a single-flow. In IoT 
networks for instance, traffic patterns are rather static thus host 
misbehaviour can be detected by comparing current with past 
traffic values and not just looking at individual flows. The 
following section explains how we have extended visibility to 
encrypted traffic in order to monitor IoT traffic successfully. 

III. MONITORING ENCRYPTED AND IOT TRAFFIC 
Security monitoring applications can use DPI information 

in order to: 
• Fingerprint network traffic in order to detect if both the 

protocol (e.g. the certificate) has changed its behaviour. 
• Prevent specific traffic flows (e.g. unsafe TLS 

communications) to happen on our network. 
• Identify malware in network communications for instance 

comparing fingerprints with a database of known malware 
fingerprints, or by other means. 

This in essence requires monitoring applications being able 
to monitor traffic overtime and spot changes in behaviour that 
might indicate changes in the remote peers configuration or a 
malware infection. During this research work we have decided 
to focus on home IoT and smart devices that nowadays are 
present in many networks. Most devices such as Amazon Echo 
and Google Home do not interact directly with the local 
network but only through the cloud. This means that: 

• IoT devices installed in the home network are permanently 
connected to the cloud services they use. 

• When two local devices need to communicate they do not 
exchange data directly. For instance when the home 
assistant turns off a light, it sends a message to the cloud 
asking to turn off the light, and the home lightbulb 
receives a command from the cloud to turn the light off. 

Cloud communications are encrypted, and monitoring tools 
need to inspect IoT traffic in order to make sure that the 
devices behave normally. As IoT devices have static 
communication patterns, we claim this goal can be achieved in 
two steps: 
• Monitor both the pool of host names communicating with 

the IoT device, and the application protocols used to talk 
with the cloud: they should not change overtime. 

• Identify some encrypted traffic metrics useful to verify 
that data exchanged by the IoT device with the cloud does 
not change in nature and behaviour. 

The strategy we used in this work to provide visibility and 
introspection to encrypted network traffic is manyfold: 
• Uses DPI techniques to characterise traffic and extract 

relevant metadata that can be used to further classify the 
traffic. 
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• Compare traffic fingerprints to both databases of malicious 
fingerprints in order to speculate about the nature of the 
communication and detect when host fingerprints change. 

• Use traffic metrics to understand whether known traffic is 
still matching the previously observed behaviour, and if 
DPI detected application protocols are still matching the 
model for that protocol. 

This approach can be applied to both plain text and 
encrypted traffic. The main difference is that with plain text 
traffic it is possible to dissect the payload to interpret the 
content as IDSs do, whereas with encrypted traffic this is not 
possible and thus it is compulsory to use alternative techniques 
for achieving the same goal. This research work has combined 
the use of fingerprints as traffic indicators (i.e. not for 
blocking/alerting traffic in case of a match with a fingerprint 
blacklist) with behavioral traffic analysis used to spot changes 
with respect to past or expected behaviour. They are not 
necessarily an indication of compromise or errors, but rather an 
indicator worth to be analysed by network specialists. This is 
implemented by the concept of score for each entity such as 
flows and hosts: a non-negative number indicating that such 
entity has been affected by an unexpected behaviour. A zero 
flow score means that no issue has been reported, whereas a 
positive value indicates the relevance of the issue detected. The 
flow score is then used to increase the host peers score, that 
will then increase the AS score such hosts belong to, and so on 
This way we can easily identify and cluster unexpected 
behaviour not just at flow level, but also at entity level, easing 
for instance the work of network analysts that have to interpret 
data. For instance a network/port scan at flow level can look 
like an anomalous individual flow, but when correlated with 
the flow score to the host/network, this fact becomes evident 
without having to implement costly data structures that keep 
track of ports or peers being involved in the scan. It is worth to 
remark that the concept of score does not require perfect 
metrics that might be computationally/memory expensive, but 
reliable indicators are enough feed it. In this work we have 
used data binning techniques to group traffic dimensions (e.g. 
packet length and inter-arrival-time) into specific bins. Using 
Euclidean-distance comparison it has been possible to cluster 
similar behaviour as detect when a known behaviour deviates 
from what the system considers as normal. 

This rest of section describes the methodology and metrics 
used to provide visibility, and that have been implemented in 
this work that is based on practical experience coding various 
monitoring applications, and extensive validation tests 
described in the following section.  

C. TLS-Specific Protocol Fingerprints 
As described in the previous section, JA3 cannot be used as 

a unique fingerprint for identifying a single application but 
rather a family of application sharing the same TLS encryption 
configuration. This said: 
• In this work we have used JA3 to spot changes in 

applications as the list of known JA3C fingerprints must 
be static. Any new JA3C signature means that there is a 
new/unknown application running or that an existing 
application has been modified, or perhaps compromised. 
As on non-IoT devices this can happen when an 
application is installed or updated, on IoT devices any 

change is an indication of compromise unless the device 
firmware changed. 

• As the TLS client specifies what encryption options are 
available, unless the server configuration has changed, it 
must always use the same JA3S for a given JA3C, so the 
tuple <JA3C, JA3S> for the same client and server must 
be static. If JA3C does not change but JA3S does, then the 
server software configuration has been modified [12]. 

• In essence JA3C is the new HTTP User-Agent for TLS, as 
it can be used to fingerprint HTTPS client applications 
same as the User-Agent for plain text HTTP, as well to  

The previous statement triggers another question: how can 
we differentiate a generic TLS connection from HTTPS? This 
is a very important question to answer as TLS can be used for 
non-web usage such as for implementing VPNs for instance, or 
applications that are not web browsers such as malware, and 
that connect to web servers for compromising them. In the 
ClientHello packet there is a TLS extension (not effectively 
used by JA3) named ALPN (Application-Layer Protocol 
Negotiation) [24] that it is used by the client to tell the server 
the list of application protocols supported such as HTTP/1.1 
and HTTP/2.0. Non-web applications such as a VPN will not 
declare any HTTP protocol in the ALPN. Another TLS 
extension named supported_versions that specifies the list of 
supported TLS versions by the client, can be combined with 
ALPN to fingerprint the web client application [9] and thus 
further characterise the nature of a specific TLS connection. A 
further indicator that can be used to fingerprint 
communications in particular for IoT devices, are the TLS 
certificates exchanged by the devices available up to TLS 1.2. 
Same as the tuple <JA3C,JA3S> discussed earlier, certificate 
fingerprints can be used as change indicators not in terms of 
encryption options but rather of client/server configuration. 

D. Catching Unexpected Traffic Behaviour 
As protocol fingerprints use only the initial flow bytes, they 

are lightweight and predictable in computational costs. Their 
main limitation is that they have not been designed to analyse 
traffic behaviour, and thus they need to be complemented with 
additional metrics. When classifying network behaviour there 
are in essence two main strategies [11]: 

• Classify good (normal operations) and bad behaviour (e.g. 
malware) and match the current behaviour against the 
model. This approach has a few limitations such as being 
able to recognise only what the system has been trained 
for, and also requiring traffic annotation that is not 
something network specialists usually like to do.  

• Classify past traffic with a comprehensive list of metrics, 
and check if the current traffic matches the traffic model 
that it has been built for a given device. The limitation of 
this approach, is that traffic is classified as good if it’s a 
“déjà vu”, and bad if there is a new traffic pattern in the 
network that needs to be checked for maliciousness (i.e. an 
expected behaviour is not malicious per se).  

This research work uses the second classification strategy 
as it fits well with IoT devices where their behaviour is mostly 
static, this contrary to a laptop where traffic patterns and 
visited sites are less predictable. As in an encrypted stream it is 
not possible to inspect the content, the idea is to map key 
connection properties in order to create a traffic model for a 
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device traffic. This information could be used to complement 
MUD [10] profiles, that describe the intended service a device 
can use/provide, specified in terms of IP addresses and ports. 
Such model is not general to a device but is based on the tuple 
<IP source, IP destination, L3 protocol, L7 protocol, SNI or 
host name> because: 

• The SNI and host name further characterise the protocol 
that might behave differently according to the service 
the client is connecting to. For instance the traffic 
model of an Android device talking with two different 
server over TLS is not compulsory to be identical. 

• As with clear text traffic, the traffic model for encrypted 
traffic differs based on the service being requested. This 
means that in HTTP for instance, two requests will also 
behave differently as the type of data can be different. 
For this reason, the model should take this fact into 
account by creating a single model for the above tuple. 

The model is created only on the initial connection packets 
and leveraging on DPI for continuously inspecting traffic over 
time such as IAT (Inter Arrival Time), packet length, bytes 
distribution statistics, as well goodput and upload/download 
metrics. They can be used to spot changes in network 
behaviour and, for detecting the nature of a connection (i.e. 
interactive session, file upload/download, or protocol tunnel). 
The DPI component is used to detect the application protocol 
and so to label the traffic: for instance TLS.Instagram is used 
when observing TLS traffic whose SNI ends with 
cdninstagram.com. For each connection, the following metrics 
are computed for both client-to-server and server-to-client on 
the first 256 packets to reduce the computational cost of 
periodically recomputing it until the end of the connection: 

• Packet payload, past the 3WH for TCP, are divided into 
6 bins of size <= 64 bytes, 65-128, 129-256, 257-512, 
513-1024, 1025+. 

• Compute packet IAT and also divide it in 6 bins <= 1 
ms, 1-5, 6-10, 11-50, 51-100, 100+. 

• Payload bytes entropy: create a vector of 256 integers, 
and for each byte of the payload increment the 
corresponding element. The entropy is then calculated 
on this vector. A high value means that the bytes are 
more spread (high variance) with respect to low values 
where data is more predictable. 

After a few experiments, we have decided to use a non-
uniform bin size distribution that focuses on the bottom size 
(i.e. short packets and those with small IAT) as they map better 
traffic properties with respect to more heaven distribution. Bins 
are exported after normalisation, i.e. the bin value is reported 
as percentage with respect to the total. This allowed us to keep 
the detail of the time/packet length simple, while accounting 
for differences across flows. It is possible to represents the bins 
as a 64 bit value where the power 6 bytes of the number is the 
value for the i-th bin, and the upper two bytes are set to 0. Note 
that the 64 bit value is a compact way to represent the bin 
value, but two different flows cannot be compared with a 
simple 64 bit value difference but with other means such as the 
Euclidean distance of each value byte. In addition to the above 
metrics, for each tuple <host, L7 protocol> there are two 
additional bins defined: 

• Connection duration divided in 8 bins, <= 1 sec, 2-3, 

4-5, 6-10, 11-30, 31-60, 61-300, 300+. 
• New connection creation frequency also divided in 8 

bins with the same bin distribution. 

These last two metrics can be used to detect changes in 
behaviour. For instance a host that suddenly changes its usual 
connection duration/creation rate to many short-living flows is 
an indication of a possible network/port scan. The use of bins is 
basically a compact way to classify and compare traffic 
properties without taking into account the sequence of events. 
A simple way to keep track of the order of values is to use a 
Markov chain as some behavioral IDS do [13]. In our case the 
matrix size will be a 6x6 grid where each cell contains the 
number of transitions with respect to consecutive connection 
packets. While a Markov chain approach is more accurate than 
binning to report about the flow behaviour, this work relies on 
simple bins as they are efficient to compute, while capturing 
enough information to model the flow behaviour. Instead 
Markov chains are useful whenever it is necessary to detect an 
exact behaviour, (but this will move our work towards 
signature-based detection that is not the path we want to take). 
This has been also the motivation for selecting a few bin 
classes with respected to having many more classes: when we 
need to decide whether an observed behaviour matches the 
expected model, a few bin classes are enough, whereas for 
exactly fingerprinting a given behaviour many more classes 
and additional methods are necessary. In summary we have 
preferred a binning approach as in this work we do not want to 
create an exact flow fingerprint useful to spot a specific 
malware application, but rather model traffic to create a flow 
score that describes how the observed behaviour is far from the 
expected model. The following section describes how the 
proposed methods have been validated with real traffic, and 
how they have been evaluated with both IoT/non-IoT traffic. 

IV. VALIDATION 
This work has been developed and validated using various 

methods: 
• A dataset provided by NIST that contains network 

traffic of 16 different types of popular home IoT 
devices This dataset has been complemented with 
additional IoT traces [15] named Sentinel IoT. 

• Aposemat IoT-23 dataset, a labeled dataset with 
malicious and benign IoT network traffic provided by 
the Stratosphere IPS project available at https://
mcfp.felk.cvut.cz/publicDatasets/IoT-23-Dataset/. 
Unfortunately also this dataset has little TLS traffic. 

• A dataset captured in June 2018 on a “smart home” with 
several home IoT devices such as smart speakers, home 
assistant, and smart kitchen equipment. This dataset is 
interesting as it allowed us to compare current IoT 
traffic with the one captured two years ago. This is very 
important to validate this idea against devices such as 
home assistant that were already available years ago but 
with a very different hardware and software setup. 

The different nature of the above scenarios is important as 
it allowed results to be evaluated in different scenarios, with 
both IoT and non-IoT traffic and benign and malicious traffic. 
In total the traffic traces stored in pcap format exceeded 100 
GB. Most of the IoT datasets containing malicious traffic as 
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those used in this work and in other papers [5] contain non-
TLS attacks such as scans or spoofing, easy to spot with the 
new connection frequency and connection duration bins 
already discussed in this section. Furthermore, the DPI engine 
extracts metadata that can be used for detecting outdated 
software versions that are good indicators of potential 
compromise and thus they can contribute to the host score. For 
instance the string “SSH-2.0-libssh-0.5.2” identifies a library 
more than 6 years old and with many known vulnerabilities. 

E. Protocol Fingerprint Evaluation 
TLS traffic is about 90% based on TLS 1.2 for Internet 

traffic. Looking at IoT devices the percentage decreases to 
about 50% with half of the traffic TLS 1.0 in Sentinel that has 
been captured in 2018, whereas on the more recent NIST 
dataset TLS 1.2 is about 90% as in live ISP traffic. TLS 1.3 
slowly but steady increasing in terms of adoption. Looking at 
the ALPN flags in live ISP traffic 60% of the client advertise 
only HTTP 1.1 and 40% also support HTTP2, whereas going 
back to 2018 in the Sentinel or Stratosphere datasets the 
HTTP2 protocol is not advertised at all even also due to the 
limited support of ALPN in TLS traffic. The TLS extension 
advertising the supported TLS version is less popular than 
ALPN, and it can be found only in recent 2019 live traffic. The 
following table show some statistics about the above TLS 
extensions. 

TABLE I. ADVERTISED ALPN AND SUPPORTED TLS VERSIONS 

As expected, non-web-based applications such as the 
AnyConnect and OpenVPN client do not advertise any ALPN, 
whereas all the other applications do with the exception of 
wget whose source has not been refreshed in a while. This 
confirms that when ALPN is specified (as this is its purpose 
being it designed to advertise the protocol that will be used 
over TLS), the client is a web-based application whereas when 
ALPN is not present, nothing can be said about the nature of 
the application that can either be an outdated client as wget or a 
non-web applications (e.g. a VPN client). This is an interesting 
property to disclose the nature of TLS communications (i.e. Tor 
vs. a web browser) that can also be used to improve JA3 
fingerprinting reliability. 

TABLE II. JA3 FINGERPRINT DISTRIBUTION PER APPLICATION 

Talking about JA3 we have performed some experiments to 
better understand how JA3C fingerprints are used using a 
system probe that enabled us to track JA3C usage according to 
the application using it. As shown in the previous table, there 

are applications having only one fingerprint and others with 
more than one. Multiple fingerprints might indicate that there 
are different entities issuing requests. In the case of a web 
browser, for example, add-on and third-party extensions might 
generate this behaviour. This means that not only multiple 
applications can share the same fingerprint, but also that one 
application can have multiple fingerprints. The consequence is 
that while JA3 can be used as indicator of change when the 
JA3C is modified, the experiments confirm that it cannot be 
used as a reliable fingerprint being it affected by false 
positives. 

F. Traffic Behaviour Evaluation 
When the JA3 fingerprints do not change, we also need to 

check if the flow behaviour is unchanged with respect to the 
past. Instead of interpreting the protocol messages, complicated 
activity for proprietary protocols such as WhatsApp, we have 
used the entropy value computed on the raw packet payload. 
We have analysed several hundred of flows, and explored 
whether specific protocols have a typical entropy value. The is 
in order to understand if entropy could reveal the nature of the 
information being exchanged, and if each protocol has a typical 
entropy value. 

TABLE III. PAYLOAD ENTROPY DISTRIBUTION 

The results reported in the previous table are interesting as 
each protocol has a typical value whose variance is limited in 
range. This makes it possible to combine DPI application 
protocol discovery with the entropy value to further enforce 
detection and spot outliers and thus potential anomalies. Note 
that AmazonVideo, tested with various different movies, is 
delivered over TLS and that entropy values around 7.5 are 
typical of TLS and not of this specific video streaming 
application. Entropy has been an effective metric for detecting 
attacks such as OpenSSL hearthbleed. Under attack the victim 
host reported for TLS a <client, server> entropy of <7.9, 0.0> 
compared to <7.9, 7.8> when not under attack. In another 
experiment we combined entropy information with additional 
behaviour indicators including: 

• DPI application protocol (e.g. TLS.Amazon). 
• TLS SNI or host name (e.g. android.clients.google.com). 

• Client-to-server and server-to-client payload bin and 
entropy values. These values are computed on the first 256 
packets of a flow. Flows with less than 10 packets are not 
considered. The bin values have been normalised in order 
to make them comparable with other flows regardless of 
the number of packets. 

The following table contains the result of this experiment 
limited to a three flows out of several thousand flows: this just 
as a short example to clarify the concept. 

TABLE IV. TLS.OPENVPN BIN AND ENTROPY DISTRIBUTION 

TLS Client 
App

ALPN Supported TLS 
Versions 

git http/1.1 None
Firefox h2, http/1.1 TLS 1.0, 1.1, 1.2, 1.3
Chrome h2, http/1.1 TLS 1.0, 1.1, 1.2, 1.3
Safari h2,h2-14,h2-15,h2-16,spdy/3,spdy/3.1 None
OpenVPN None TLS 1.0, 1.1, 1.2, 1.3
AnyConnect None None

Application Number of Different JA3 Fingerprints
Dropbox 3
Telegram 1
chromium-browser 5
thunderbird 2

Byte Entropy DNS AmazonVideo NetFlow Skype VoiceCall
Average 4.285 7.789 4.079 5.963
Std Dev 0.272 0.231 0.533 0.055

PacketLen Bin 
Distribution %

Packet TimeDiff Bin 
Distribution %

Entropy 
Cli-to-Srv

Entropy  
Srv-to-Cli

50,9,0,9,18,14 41,0,5,32,9,14 7.402 7.312
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The first column is the packet length bin normalised to 256 
(decimals are not depicted as values have been rounded) and 
the second the normalised packet time difference bin. The last 
two columns represent the entropy mean and stddev.  

Based on the Euclidean distance, we have implemented 
functions for computing the bin centroid (i.e. the arithmetic 
means of the bins) and the maximum distance between the 
centroid and the bins, i.e. <centroid, max distance, otherTLS> . 
Note that for TLS traffic the otherTLS fields contains 
additional metrics such as ALPN, JA3C/JA3S, certificate 
fingerprint that will be empty for non TLS communications. 
This is the expected fingerprint, for this communication: we 
expect that future communications will honour this fingerprint 
and discrepancies will be considered as anomalies. As the use 
of bins is very lightweight with respect to a machine learning 
model, it is possible to create a fingerprint for each triplet 
<client IP, server IP+SNI+Certificate, destination port>. The 
use of SNI and of the certificate fingerprint is very important as 
the destination IP can serve multiple SNIs whose behaviour 
can be very different. The table below shows a GoogleHome 
device that contacts a remote google service whose SNI is 
clients.google.com served by host 172.217.7.206 whose traffic 
was part of the NIST dataset containing over 800 flows 
generated by this device.  

TABLE V. GOOGLE HOME CONTACTING SNI CLIENTS.GOOGLE.COM. 

The centroid has been computed using the Euclidean 
distance of the individual bin values as computed by nDPI. As 
you can see, the centroid is very different as the TLS certificate 
fingerprint changes; this even though the server IP, SNI and 
destination port and JA3C are the same. This means that with 
our approach we can fingerprint traffic per triplet and detect 
when observed traffic does not match the fingerprint as its max 
distance exceeds the one set in the model. A disadvantage of 
this approach is that it cannot generalised for instance to all 
TLS traffic going towards all Google SNIs as each service has 
its own fingerprint. This is not necessarily a limitation of this 
work as a single comprehensive model would use many more 
resources, thus jeopardising the advantage of having resource 
effective and fine grained models. 

While the NIST and our home-dataset do not contain 
malicious activities, they have been used to tune our techniques 
and make sure that our tool does not report false positives 
when analysing traffic behaviour. Instead we have used IoT-23 
to verify that the techniques we have implemented in the DPI 
library are effective to detect attacks typical of IoT devices 
often based on unencrypted protocols. In both cases the 
developed tool has not reported any false positive. All attacks 
families contained in the IoT-23 dataset have been successfully 
detected by exploiting the host score described in section III, 

based on the metadata information generated by the DPI 
library. As the dataset contains evident attacks, any reasonable 
score threshold can be used to detect such attacks, whereas in 
real life some threshold tuning is necessary as we do not expect 
attacks to be always so brute and thus simple to detect. 

V. CONCLUSION 
This paper has demonstrated that it is possible to effectively 

characterise and fingerprint encrypted network traffic by 
leveraging on existing methods complemented with novel 
techniques described in this paper without using 
computationally expensive machine learning-based techniques 
that are unfeasible to use on IoT devices. The ability to 
fingerprint protocols also in terms of behaviour, enables traffic 
characterisation and detection of changes in traffic behaviour. 
The result of this research work has been successfully validated 
on live Internet traffic as well on various traffic datasets, and 
integrated an open source DPI engine used in many open 
source applications for network traffic monitoring and security. 
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