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Abstract. Collecting and exploring monitoring data is becoming increasingly 
challenging as networks become larger and faster. Solutions based on both 
SQL-databases and specialized binary  formats do not scale well as the amount 
of monitoring information increases. This paper presents a novel approach to 
the problem by using a bitmap database that  allowed the authors to implement 
an efficient solution for both data collection and retrieval. The validation 
process on  production networks has demonstrated the advantage of the 
proposed solution over traditional approaches. This makes it suitable for 
efficiently handling and interactively exploring large data monitoring sets.
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1  Introduction

NetFlow [1] and sFlow [2] are the current state-of-the-art standards for building 
traffic monitoring applications. Both are based on the concept of traffic probe (or 
agent in the sFlow parlance)  that analyzes network traffic and produces statistics, 
known as flow records, which are delivered to a central data collector [3]. As the 
number of records can be pretty high, probes can use sampling mechanisms in order 
to reduce the workload on both probe and collectors. In sFlow, the use of sampling 
mechanisms is native in the architecture so that it can be used by agents to effectively 
reduce the number of flow records delivered to collectors. This practice has a 
drawback in terms of result accuracy while providing them with quantifiable 
accuracy. In NetFlow the use of sampling (both on packets and flows) while reducing 
the load on routers it leads to inaccuracy [4] [5] [6], hence it is often disabled in 
production networks. The consequence is that network operators have to face the 
problem of collecting and analyzing a large number of flow records. This problem is 
often solved using a flow collector that stores data on a relational database or on a 
disk in raw format for maximum collection speed [7]  [8]. Both approaches have pros 
and cons; in general SQL-based solutions allow users to write powerful and 



expressive queries while sacrificing flow collection speed and query response time, 
whereas raw-based solutions are more efficient but provide limited query facilities.
The motivation behind this work is to overcome the limitations of existing solutions 
and create an efficient alternative to relational databases and raw files. We aim to 
create a new generation of a flow collection and storage architecture that exploits 
state-of-the-art indexing and querying technologies [9], and a set of tools capable of 
interactively exploring large volume of collected traffic data with minimal query 
response time.

The main contributions of this paper include:
• The ability to execute multidimensional queries on arbitrary large amounts of 

data with response time in the order of seconds (in many cases, milliseconds).
• An efficient yet simple flow record storage architecture in terms of disk space, 

query response time, and data collection duration.
• A system that operates on raw flow records without first reducing or 

summarizing them.
• The reduction of the time needed to explore a large dataset and the possibility to 

display query results in real-time, making the exploration process truly 
interactive.

The following section presents a survey of relevant flow storage and retrieval 
architectures, describes their limitations, and lists a set of requirements that a flow 
management architecture should feature. Section three covers the architecture and 
design choices of the proposed solution. Section four validates this solution on two 
production networks, evaluates the implementation performance and positions this 
work against popular tools identified during the survey.

2  Related Work and Motivation

Flow collectors are software applications responsible for receiving flow records 
emitted by network elements such as routers and switches. Their main duty is to make 
sure that all flow records are received and successfully written on a persistent storage. 
This solution limits flow record loss and decouples the collection phase from flow 
analysis, with the drawback of adding some latency as records are often not 
immediately processed as they arrive. Tools falling into this category include 
nfdump [10], flow-tools [11], FlowScan [12], Stager [13] and SiLK [14]. These tools 
store data in binary flat files, optionally in compressed format in order to reduce disk 
space usage and read time; they typically offer additional tools for filtering, 
extracting, and summarizing flow records matching specific criteria. As flat files have 
no indexing, data searching always requires a sequential scan of all stored records. In 



order to reduce the dataset to scan, these tools save flow records in directories that 
have a specific duration, so that to ease record temporal selection during queries. 
Basically the speed advantage of dumping flow records in raw format is paid at each 
search operation in terms of amount of data to read. Another limitation of these 
families of tools, is that the query language they offer is limited when compared to 
SQL, as they feature flow-based filtering with minimal aggregation, join and reporting 
facilities.

The use of relational databases is fairly popular in most commercial flow-collectors 
such as Cisco NetFlow collector, Fluke NetFlow Tracker, and on open-source tools 
such as Navarro [15] and pmacct [16]. The flexibility of the SQL language is very 
useful during report creation and data aggregation phases although some researchers 
have proposed a specialized flow query language [17]. Unfortunately the use of 
relational databases is known to be slower (both during data insert and query) and 
take more space when compared to raw flow record files [18] [19] [20]. 

The conclusions of the survey on popular flow management tools are:
• Tools based on raw binary files are efficient when storing flow records (e.g. 

nfdump can store over 250K records/sec on a dual-core PC) but provide limited 
flow query facilities.

• Relational databases are both slower during flow record insertion and retrieval, 
but thanks to SQL they offer very flexible flow query and reporting facilities.

• On large volume of collected flow records, the query time of both tool families 
takes a significant amount of time (measured in minutes if not hours [21]) even 
when high-end computers are used, making them unsuitable for interactive data 
exploration.

Seen that the performance figures of state-of-the-art tools is suboptimal, authors 
investigated whether there was a better solution to the problem of flow collection and 
query with respect to raw files and relational databases.

2.1 Towards Column-oriented Databases with Bitmap Indexes

A database management system typically structures data records using tables with 
rows and columns. The system optimizes the query-answering process by 
implementing auxiliary data structures known as database indexes [22]  to accelerate 
queries. Relational databases encounter performance issues with large tables in 
particular because of the size of table indexes that need to be updated at each record 
insertion. In the last few years, new regulations that require ISPs to maintain large 
archive of user activities (e.g. login/logout/radius/email/wifi access logs)  [23] 
stimulated the development of new database types able to efficiently handle billion of 
records. Although available since late 70‘s [24], column-oriented databases [25] have 



been niche products until vendors such as Sensage [26], Sybase [27]  and open source 
implementation such as FastBit [28]  [29] [30] ignited new interest on this technology. 
A column-oriented database stores its content by column rather than by row is known 
as vertical organization. This way the values for each single column are stored 
contiguously, and column-stores compression ratios are generally better than row-
stores because consecutive entries in a column are homogeneous to each other [31] 
[32]. These database systems have been shown to perform more than an order of 
magnitude better than traditional row-oriented database systems, particularly on read-
intensive analytical processing workloads. In fact, column-stores are more I/O 
efficient for read-only queries since they only have to read from disk (or from 
memory) those attributes accessed by a query [25].

B-tree indexes are the most popular method for accelerating search operations. 
They are designed initially for transactional data (where any index on data must be 
updated quickly as data records are modified, and query results are usually limited in 
number of records) and fail to meet requirements of modern data analysis, such as 
interactive analysis over large volume of collected traffic data. Such queries return 
thousands of records that with b-trees would require a large number of tree-branching 
operations that use slow pointer chases in memory and random disk access, thus 
taking a long time. Many popular indexing techniques such as hash indexes, have 
similar shortcomings. Considering the peculiarity of network monitoring data where 
flow records are read-only and several flow fields have very few unique values, as of 
today the best indexing method is a bitmap index [33]. These indexes use bit arrays 
(commonly called bitmaps) and answer queries by performing bitwise logical 
operations on these bitmaps. For tasks that demand the fastest possible query 
processing speed, bitmap indexes perform extremely well because the intersection 
between the search results on each variable is a simple AND operation over the 
resulting bitmaps [22].

Seen that column-oriented databases with bitmap indexes provide better 
performance compared to relational databases, the authors explored their use in the 
field of flow monitoring. Hence they have designed a system based on this technology 
able to efficiently handle flow records. The main requirements of this development 
work include:

• Ability to save flow records on disk with minimal overhead allowing no-loss on-
the-fly flow-to-disk storage, as it happens with tools based on raw files.

• Compact data storage for limiting disk usage hence enable users to store months 
of flow records on a cheap hard-disk with no need to use costly storage systems.

• Stored data must be immutable (i.e. once it has been saved it cannot be modified/
deleted) as this is a key feature for billing and security systems where non-
repudiation is mandatory.

• Ability to perform efficiently on network storage such as NFS (Network File 
System).



• Simple data archive structure in order to move ancient data on off-line storage 
systems without having to use complex data partitioning solutions.

• Avoid complex architectures [34], hard to maintain and operate, by developing a 
simple tool that can be potentially used by all network administrators.

• On tens of millions of records:
• Sub-second search time when performing cardinality searches (e.g. count 

the number or records that satisfy a certain criteria). This is a requirement 
for exploring data in real-time and implementing interactive drill-down data 
search.

• Sub-minute search time when extracting records matching a certain criteria 
(e.g. top X hosts and their total traffic on TCP port Y).

• Feature rich query language as SQL with the ability to sort, join, and aggregate 
data while perform mathematical operations on columns (e.g. sum, average, min/
max, variance, median, distinct), necessary to perform complex statistics on 
flows.

The following chapters covers the design and implementation of an extension to 
nProbe [35], an open-source probe and flow collector, that allows flow records to be 
stored on disk using a column-oriented database with an efficient compressed bitmap 
indexing technology. Finally the nProbe implementation performance is evaluated and 
positioned against similar tools previously listed.

3  Architecture and Implementation

nProbe is an open-source NetFlow probe that supports both NetFlow and sFlow 
collection, as well as flow conversion between versions (for instance convert v5 to v9 
flows). 

Fig. 1. nProbe Flow Record Collection and Export Architecture
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It fully supports the NetFlow v9/IPFIX so it has the ability to specify dynamic flow 
templates (i.e. it supports flexible netflow) that are configured when the tool is started. 
nProbe features flow collection and storage, both on raw files and relational databases 
such as MySQL and SQLite. Support of relational databases has always been 
controversial as nProbe users appreciated the ability to query flow records using SQL, 
but at the same time flow dump to database is usually activated only for small sites. 
The reason is that enabling database support could lead to flow records loss due to the 
database processing overhead. This is mostly caused by network latency and multi-
user database access, slow-down caused by table indexes update during data insertion, 
and poor database performance while searching records during data insertion. 
Databases offer mechanisms for mitigating some of the above issues, including data 
insertion in batch mode instead of realtime, transaction disabling, and definition of 
tables with no indexes for avoiding the overhead of indexes update.

In order to overcome the limitations of existing flow-management systems, the 
authors decided to explore the use of column-based databases by implementing an 
extension to nProbe that allows flows to be stored on disk using FastBit [29]. More 
precisely, FastBit is not a database but a C++ library that implements efficient bitmap 
indexing methods. Data is represented as tables with rows and columns. A large table 
may be partitioned into many data partitions and each of them is stored on a distinct 
directory, with each column stored as a separated file in raw binary form. The name of 
the data file is the name of the column. In each data partition there is an extra file 
named -part.txt that contains metadata information such as the name of the partition, 
and column names. Each column contains data stored in an uncompressed form, so its 
size is the same size of a raw file dump. Columns can accept data of 1, 2, 4, and 8 
bytes long. Data longer than 8 bytes needs to be split across two or more columns. 
Compressed bitmap indexes are stored in separate files whose name is the name of the 
column with the .idx suffix. This means that each column typically has two files: one 
file contains data and the other the index. Indexes can be created on data “as stored on 
disk” or on reordered data. This is a main difference with respect to conventional 
databases. In fact it is possible to first reorder data, column by column, so that bitmap 
indexes are built on reordered data. Please note that reordering does not affect queries 
results (i.e. rows data is not mixed when columns are reordered), but it just improves 
index size and query speed. Data insert and query facilities is performed by means of 
library calls or using a subset of SQL, natively supported by the library. In FastBit the 
SELECT clause can only contain a list of column names and some functions that 
include AVG, MIN, MAX, SUM, and DISTINCT. Each function can only take a 
column name as its argument. The WHERE clause is a set of range conditions joined 
together with logical operators such as AND, OR, XOR, and NOT. The clauses 
GROUP BY, ORDER BY, LIMIT and the operators IN, BETWEEN and LIKE can 
also be applied to queries. FastBit actually does not support advanced SQL 



functionalities such as nested queries, and neither operators such as UNION, 
HAVING, or functions like FIRST, LAST, NOW, and FORMAT.

nProbe creates FastBit partitions depending on the flow templates being configured 
(probe mode) or read from incoming flows (collector mode), with columns having the 
same size as the the netflow element it contains. Users can configure partition 
duration (in minutes) at runtime and when a partition reaches its maximum duration, a 
new one is automatically created. Partition names are created on a tree fashion (e.g. 
<base directory>/year/month/day/hour/minute). Similar to [36], authors have 
developed facilities for rotating partitions hence limiting disk space usage while 
preserving their structure. No FastBit specific configuration is necessary as nProbe 
knows the flow format, and then it automatically creates partitions and columns. 
Datatypes longer than 64 bit as IPv6 addresses are transparently split onto two FastBit 
columns. Flow records are not saved individually on disk, but for efficiency reasons 
they are dumped in blocks of 4096 records. Users can decide to build indexes on all 
or only on a few selected columns, this in order to save space creating indexes for 
columns that will never be used in queries. If while executing a query FastBit does 
not find an index for a key column, it will build the index for such column on the fly, 
prior to execute the query. For efficiency reasons, the authors have decided that 
indexes are not built at every data dump but when a partition is completed (e.g. the 
partition duration time has elapsed). This happens because building indexes on 
reordered data is more efficient (both in terms of disk usage and query response time) 
than building them on data on the same order as it has been saved on disk. The 
drawback of this design choice is that queries can use indexes only once they have 
been built hence the partition is completely dumped on disk. On the other hand, flow 
records can be dumped at full speed with no index-build overhead. Thus, not 
considering flow receive/decoding overhead, it is possible to save on disk more than 
one million flow records/sec on a standard Serial ATA (SATA) disk. Column indexes 
are completely loaded into memory during searches, thus it imposes a limit on the 
partition size also limited by FastBit to 232 records. Hence it is wise to avoid creating 
large partitions, but at the same time the creation of too many small partitions must 
also be avoided, as this will result in many files created on disk and the overhead of 
accessing them (open, close and file seek time) can dominate the data analysis time. 
A good compromise is to have partitions that either last a fixed amount of time (e.g. 5 
minutes of flow records) or that have a maximum number of records. Typically, for a 
machine with a few GB of memory, FastBit developers recommend data partition 
containing between 1 million and 100 million records.

Conceptually a FastBit partition is similar to a table on a relational database, thus 
when a query is spread across several partitions, it is necessary to merge results and to 
collapse them when using the DISTINCT SQL clause. This task is not performed by 
FastBit but it is delegated to utilities developed by the authors:



• fbmerge: tool for merging several FastBit partitions into a single one. This tool, 
now part of the FastBit distribution, is useful when small fine grained partitions 
need to be aggregated into a larger one. For instance if nProbe is configured to 
create ‘one minute’ partitions, at the end of the hour all of them can be 
aggregated into a ‘one hour’ partition. This allows the number of column files 
hence the number of disk i-nodes to be reduced a lot, very useful on large disks 
containing many days/months of collected records. 

• fbquery: tool that allows queries to be performed on partitions. It supports SQL-
like syntax for querying data and implements on top of FastBit useful facilities 
such as:

• Aggregation of similar results, data sort, and result set limitation (same as 
MySQL LIMIT).

• Search recursively on nested directories so that a single directory containing 
several partitions can be searched in one shot. This is useful for instance 
when nProbe has dumped 5 minutes long partitions, and users want to 
search on the last hour so that various partitions need to be read by fbquery.

• Data dump on several formats such as CSV, XML, and plain text. Data 
format is based on the metadata information produced by nProbe, thus 
partition columns are printed according to its native representation (e.g. an 
IPV4_DST_ADDR is printed as dot-separated IPv4 address and not as a 32 
bit unsigned integer).

• Scriptability using the Python language for combining several queries or 
creating HTML pages for rendering data on a web browser.

In a nutshell, the authors have used the FastBit library for creating an efficient flow 
collection and storage system. As the library was not designed for handling network 
flows, the authors have implemented some missing features that are a prerequisite for 
creating comprehensive network traffic reports. The following section evaluates the 
performance of the proposed solution, compares it against relational databases, and 
validates it on two large networks. This is to demonstrate that nProbe with FastBit is a 
mature solution that can be used on a production environment.

4  Validation and Performance Evaluation

In order to evaluate the FastBit performance, nProbe has been deployed in two 
different environments:

• Medium ISP: Bolig:net A/S
The average backbone traffic is around 250 Mbit/sec (about 40K pps). The traffic 
is mirrored onto a Linux PC (Linux Fedora Core 8 32 bit, Dual Core Pentium D 
3.0 GHz, 1 GB of RAM, two SATA III disks configured with RAID 1) that runs 



nProbe in probe mode. nProbe computes the flows (NetFlow v9 bi-directional 
format with 5 minutes maximum flow duration) and saves flow records on disk 
using FastBit. Each FastBit partition stores one hour of traffic, and in average the 
probe produces 36 million flow records/day. Before deploying nProbe, records 
were collected and stored on a MySQL database.

• Large ISP: British Telecom
nProbe is used in collector mode. It receives flow records from 10 peering 
routers, with peak flow export of 85 K flow records/sec with no flow loss. Each 
month the total amount of record exceeds 4 TB of disk space. The application 
server has dual quad-core Intel processors with 24 GB of memory, running 
Ubuntu Linux 9.10 64 bit, and is used to carry out queries on the data stored on 
an NFS server by the Collection server. The Netflow collection server has a 
single quad-core Intel processor and 8 GB of memory, running Ubuntu Linux 
9.10 64 bit, and stores the fastbit data to the NFS server.  Each FastBit partition 
stores 60 minutes of traffic that occupy about 5.8 GB of disk space when 
indexed. Before deploying nProbe, flow records were collected using nfdump.

The goal of these two setups is to both validate nProbe with FastBit on two 
different setups and compare the results with the solutions previously used. The idea 
is to compare a regional with a country-wide ISP, and verify if the proposed solution 
can be effectively used in both scenarios. Being the code open-source, it is also 
important to verify that this work is efficient when used on standard PCs (contrary to 
solutions based on costly clusters or server farms mostly used in Telco environments) 
as this is the most common scenario for many open-source users.

4.1  FastBit vs Relational Databases

The goal of this test is to compare the performance of FastBit with respect to MySQL 
(version 5.1.40 64 bit), a popular relational database. As the host running nProbe is a 
critical machine, in order to not interfere with the collection process, two days worth 
of traffic was dumped in FastBit format, and then transferred to a Core2Duo 3.06 
GHz Apple iMac running MacOS 10.6.2. Moving FastBit partitions across machines 
running different operating systems and word length (one is 32, the other is 64 bit) 
has not required any data conversion as FastBit transparently takes care of differences 
among various architectures. This is a good feature as collector hosts can be based on 
different operating systems and technology. In order to evaluate how FastBit partition 
size affects the search speed, hourly partitions have been merged into a single daily 
directory. In order to compare both approaches, five queries have been defined:

• Q1: SELECT COUNT(*), SUM(PKTS), SUM(BYTES) FROM NETFLOW



• Q2: SELECT COUNT(*) FROM NETFLOW WHERE L4_SRC_PORT=80 OR 
L4_DST_PORT=80

• Q3: SELECT COUNT(*) FROM NETFLOW GROUP BY IPV4_SRC_ADDR
• Q4: SELECT IPV4_SRC_ADDR, SUM(PKTS), SUM(BYTES) AS s FROM 

NETFLOW GROUP BY IPV4_SRC_ADDR ORDER BY s DESC LIMIT 1,5
• Q5: SELECT IPV4_SRC_ADDR, L4_SRC_PORT, IPV4_DST_ADDR, 

L4_DST_PORT, PROTOCOL, COUNT(*), SUM(PKTS), SUM(BYTES) 
FROM NETFLOW WHERE L4_SRC_PORT=80 OR L4_DST_PORT=80 
GROUP BY IPV4_SRC_ADDR, L4_SRC_PORT, IPV4_DST_ADDR, 
L4_DST_PORT, PROTOCOL

FastBit partitions have been queried using the fbquery tool with appropriate command 
line parameters. All MySQL tests have been performed on the same machine with no 
network communications between client and server (i.e. MySQL client and server 
communicate using a Unix socket). In order to evaluate the influence of MySQL 
indexes on queries, the same test has been repeated with and without indexes. Tests 
were performed on 68 million flow records containing a subset of all NetFlow fields 
(IP source/destination, port source/destination, protocol, begin/end time). The 
following table compares the disk space used by MySQL and FastBit. In the case of 
FastBit, indexes have been computed on all columns.

MySQL No/With Indexes

FastBit
Daily Partition (no/with Indexes)

FastBit
Hourly Partition (no/with Indexes)

1.9 / 4.2

1.9 / 3.4

1.9 / 3.9

Table 1. FastBit vs MySQL Disk Usage (results are in GB)

Query
MySQLMySQL Daily PartitionsDaily Partitions Hourly PartitionsHourly Partitions

Query
No 

Index
With

Indexes
No 

Cache
Cached No

Cache
Cached

Q1 20.8 22.6 12.8 5.86 10 5.6

Q2 23.4 69 0.3 0.29 1.5 0.5

Q3 796 971 17.6 14.6 32.9 12.5



Query
MySQLMySQL Daily PartitionsDaily Partitions Hourly PartitionsHourly Partitions

Query
No 

Index
With

Indexes
No 

Cache
Cached No

Cache
Cached

Q4 1033 1341 62 57.2 55.7 48.2

Q5 1754 2257 44.5 28.1 47.3 30.7

Table 2. FastBit vs MySQL Query Speed (results are in seconds)

The test outcome has demonstrated that FastBit takes approximately the same disk 
space as MySQL in terms or raw data, whereas MySQL indexes are much larger. 
Merging FastBit partitions does not usually improve the search speed, but instead 
queries on merged data requires more memory, as FastBit loads a larger index.

The size/duration of a partition mostly depends on the application that will access 
data. Having small partitions (e.g. 1 or 5 minutes long) makes sense for interactive 
data exploration where drill-down operations are common. In this case, having small 
partitions means that the FastBit index would also be small, resulting in faster 
operations and less memory used. On the other hand, querying data on a long period 
using small partitions requires fbquery to read several small indexes instead of a 
single one that is inefficient on standard disks (i.e. non solid-state drive) due to disk 
seek time. In addition, a side effect of multi-partitions is that fbquery need to merge 
results produced on each partition, this without relying on FastBit. Note that the use 
of large partitions has drawbacks on searches, as indexes cannot be built on the them 
until they have been completely dumped. For this reason, if nProbe saves flow records 
on a large one day long partition, it means that queries on the current day must be 
performed without indexes as the partition has not completely dumped yet. In a 
nutshell there is not a single rule for defining partition duration; in general the 
partition granularity should be as close as possible to the expected query granularity. 
Authors suggest to use partitions lasting from 1 to 5 minutes in order to have quick 
searches even on partitions being written (i.e. on most recent data), and then daily 
merge partitions using fbmerge. This to avoid exhausting disk i-nodes with index 
files, and efficiently perform searches on past data without accessing too many files.

In terms of query performance FastBit is not at all comparable with MySQL:
• Queries that only require access to indexes take less than a second, regardless of 

the query type.
• Queries that require data access are at least an order of magnitude faster than on 

MySQL but always complete within a minute.
• Index creation time on MySQL takes many minutes and it prevents it using in 

real life when importing data in (near-)realtime, also considering that they take a 
significant amount of disk space. Indexes on MySQL do not speed up queries, 



contrary to FastBit, as query time using indexes takes longer when compared to 
the same query on unindexed data.

• Disk speed is an important factor for accelerating queries. In fact running the 
same test twice with data already cached in memory, it significantly decreases 
the query speed. The use of RAID 0 has demonstrated that the performance 
speed has been improved.

4.2  FastBit vs Raw Files

The goal of this test is to compare FastBit with a popular open-source collection 
tool named nfdump. Tests have been performed on a large network with TB of 
collected flow data per month. Although nfdump performs well when it comes to flow 
collection, its performance is sub-optimal during query time when using large data 
sets. One of the main concerns of the network operators is that with nfdump queries 
take a long amount of time, so they often need to be run overnight before producing 
results. An explanation of this behavior is that nfdump does not index data, so 
searching on a large time span means reading all raw data that was received over that 
period, and in this setup means GBs (if not TBs)  of records. Using FastBit the average 
speed improvement is in the order of 20:1. From the operator's point of view this 
means that queries can last a reasonable amount of time. For instance, a query written 
in SQL as ‘SELECT IPV4_SRC_ADDR, L4_SRC_PORT, IPV4_DST_ADDR, 
L4_DST_PORT, PROTOCOL FROM NETFLOW WHERE IPV4_SRC_ADDR=X 
OR IPV4_DST_ADDR=X’ on 19 GB of data that contain 14 hours of collected flow 
records, takes about 45 seconds with FastBit which is major improvement with 
respect to nfdump, which takes about 1500 seconds (25 minutes)  to complete the 
same query. As nfdump does not use any index, its execution time is dominated by the 
time needed to sequentially read the binary data. This means that: query time = (time 
to sequentially read the raw data) + (record filtering time). The time needed to filter 
records is usually very little as nfdump is fast enough, and also because the 
complexity of filters, whose syntax is similar to BPF [37] filters, is usually limited. 
This means that in nfdump the query time is basically the time needed to sequentially 
read the raw data. The previous query validates this hypothesis: 1500 seconds to read 
19 GB of data means that the average reading speed is about 12.6 MB/sec, that is the 
typical speed of a SATA drive. For this reason, this section does not list the same tests 
as in section 4.1, because the query time of nfdump is mostly proportional to the 
amount of data to read [20]; hence with some simple math it is possible to compute 
the expected nfdump response time. Also note that the nfdump query language is not 
SQL-like, therefore it is not possible to make a one-to-one comparison with FastBit 
and MySQL.

As flow records take a large amount of disk space, it is likely that they will be 
stored on a SAN (Storage Area Network). When the storage is directly attached to the 



host by means of fast communication links such as InfiniBand and FibreChannel, the 
system does not see any speed degradation when compared with a directly attached 
SATA disk. The authors decided to study how the use of network file systems such as 
NFS affects the query results. A simple model for the time needed to read γ bytes is t 
= α + β  * γ, where α represents the disk access latency and β  is the throughput. NFS 
typically increases α but not β  as the network speed is typically higher than disk read 
speed. In the case of nfdump the data is read sequentially, whereas on FastBit the raw 
data is accessed based on indexes. Thus FastBit requires a small number of read 
operations which have to pay α multiple times. However this extra cost is in 
milliseconds, so it does not alter the overall comparison. This behavior has been 
tested repeating some queries of 4.1, and demonstrating that the use of NFS 
marginally affects the total query time.

4.3  FastBit Scalability

The tests have shown that the use of FastBit offers advantages with respect to both 
relational databases and raw files-based solutions. In order to understand nProbe 
scalability when used with FastBit, it is necessary to split flow collection from flow 
query. As stated in section 3, the index creation happens when the partition has been 
dumped on disk, hence the dump speed to disk is basically the speed of the hard drive 
where, in the case of SATA disks, it exceeds 1 million flow records/sec. As shown in 
4.2, a large ISP network produces less than 100’000 flow records/sec, this means that 
FastBit introduces no bottleneck in flow collection and dump. Flow query requires 
disk access, therefore the query process is mostly I/O bound. For every query, FastBit 
reads the whole index file of each column present in the WHERE clause. Then based 
on the index search, it reads if necessary (e.g. COUNT(*) does not require that)  the 
column files containing real data by performing seeks on files in order to move to the 
offset where the index has found a data match. Thus a simple model for query 
response time is τ = γ + ε + δ, where γ represents the time needed to read all the 
column indexes present in the WHERE clause, ε is the time to read (if there is any) 
the matching rows data present in the SELECT clause, and δ is the processing 
overhead. In general δ  is very limited with respect to γ and ε. As γ = (index size / disk 
speed), it takes no more than a couple of seconds. Instead δ  can be pretty large if data 
is sparse, and several disk seeks are required. Note that δ  can grow significantly 
depending on the query (e.g. in case of sorting large data sets), and that ε is zero for 
queries that count (e.g. compute the number of records on port X produced by host Y) 
or that use mathematical functions such as SUM (e.g. total number of bytes on port 
X). 



5  Open Issues and Future Work

Tests on various FastBit configurations have shown that the disk is an important 
component that has a major impact on the whole system. The authors are planning to 
use SSD drives in order to see how query time is affected, in particular while 
accessing raw data records that require several disk seek operations.

One of the main limitations of FastBit is the lack of data compression, since it 
currently compresses only indexes. This is a feature that the authors are planning to 
add, as it allows disk space to be saved hence reduce the time needed to read the 
records. Using compression libraries such as QuickLZO, lzop, and FastLZ it should 
be possible to implement transparent de/compression while reducing disk space.

Another area of interest is the use of FastBit for indexing packets instead of flows. 
The authors have prototyped an application that parses pcap files and creates a FastBit 
partition based on various packet fields such as IP address, port, protocol, and flags, in 
addition to an extra column that contains the file id and packet offset inside the pcap 
file. Using a web interface built on top of fbquery, users can search packets matching 
the criteria and also retrieve the original packet contained in the original pcap files. 
Although this work is not rich in features when compared with specialized tools [36], 
it demonstrates that the use of bitmap indexes is also effective for handling packets 
and not just flow records. 

The work described on this paper is the base for developing interactive data 
visualization tools based on FastBit partitions. Thanks to recent innovation in web 
2.0, there are libraries such as the Google Visualization API that split visualization 
from data. Currently, the authors are extending nProbe adding an embedded web 
server that can make FastBit queries on the fly and return query results in JSON 
format [38]. The idea is to create an interactive query system that can visualize both 
tabular data (e.g. flow information) and graphs (e.g. average number of flow records 
on port X over the last hour)  by means of FastBit queries. This way the user does not 
have to interact with FastBit tools at all, and can focus on data exploration.

6  Final Remarks

The use of nProbe with FastBit is a major step ahead when compared to state-of-the-
art tools based on both relational databases and raw data dump. When searching data 
on datasets of a few million records the query time is limited to a few seconds in the 
worst case, whereas queries that just use indexes are completed within a second. The 
consequence of this major speed improvement is that it is now possible to query data 
in real time and avoid periodically updating costly counters, as their value can be 
computed on-demand using bitmap indexes. Finally this work paves the way to the 
creation of new monitoring tools on large data sets that can interactively analyze 



traffic data in near-realtime, contrary to what usually happens with most tools 
available today.

Availability. This work is distributed under the GNU GPL license and is available at 
the ntop home page http://www.ntop.org/nProbe.html.
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