
Collection and Exploration of Large Data
Monitoring Sets Using Bitmap Databases

Luca Deri1 2, Valeria Lorenzetti1, Steve Mortimer3

1 ntop.org, Italy
2 IIT/CNR, Italy

3 British Telecom, United Kingdom
{deri, lorenzetti}@ntop.org, steve.mortimer@bt.com

Abstract. Collecting and exploring monitoring data is becoming increasingly
challenging as networks become larger and faster. Solutions based on both
SQL-databases and specialized binary formats do not scale well as the amount
of monitoring information increases. This paper presents a novel approach to
the problem by using a bitmap database that allowed the authors to implement
an efficient solution for both data collection and retrieval. The validation
process on production networks has demonstrated the advantage of the
proposed solution over traditional approaches. This makes it suitable for
efficiently handling and interactively exploring large data monitoring sets.

Keywords: NetFlow, Flow Collection, Bitmap Databases.

1 Introduction

NetFlow [1] and sFlow [2] are the current state-of-the-art standards for building
traffic monitoring applications. Both are based on the concept of traffic probe (or
agent in the sFlow parlance) that analyzes network traffic and produces statistics,
known as flow records, which are delivered to a central data collector [3]. As the
number of records can be pretty high, probes can use sampling mechanisms in order
to reduce the workload on both probe and collectors. In sFlow, the use of sampling
mechanisms is native in the architecture so that it can be used by agents to effectively
reduce the number of flow records delivered to collectors. This practice has a
drawback in terms of result accuracy while providing them with quantifiable
accuracy. In NetFlow the use of sampling (both on packets and flows) while reducing
the load on routers it leads to inaccuracy [4] [5] [6], hence it is often disabled in
production networks. The consequence is that network operators have to face the
problem of collecting and analyzing a large number of flow records. This problem is
often solved using a flow collector that stores data on a relational database or on a
disk in raw format for maximum collection speed [7] [8]. Both approaches have pros
and cons; in general SQL-based solutions allow users to write powerful and

expressive queries while sacrificing flow collection speed and query response time,
whereas raw-based solutions are more efficient but provide limited query facilities.
The motivation behind this work is to overcome the limitations of existing solutions
and create an efficient alternative to relational databases and raw files. We aim to
create a new generation of a flow collection and storage architecture that exploits
state-of-the-art indexing and querying technologies [9], and a set of tools capable of
interactively exploring large volume of collected traffic data with minimal query
response time.

The main contributions of this paper include:
• The ability to execute multidimensional queries on arbitrary large amounts of

data with response time in the order of seconds (in many cases, milliseconds).
• An efficient yet simple flow record storage architecture in terms of disk space,

query response time, and data collection duration.
• A system that operates on raw flow records without first reducing or

summarizing them.
• The reduction of the time needed to explore a large dataset and the possibility to

display query results in real-time, making the exploration process truly
interactive.

The following section presents a survey of relevant flow storage and retrieval
architectures, describes their limitations, and lists a set of requirements that a flow
management architecture should feature. Section three covers the architecture and
design choices of the proposed solution. Section four validates this solution on two
production networks, evaluates the implementation performance and positions this
work against popular tools identified during the survey.

2 Related Work and Motivation

Flow collectors are software applications responsible for receiving flow records
emitted by network elements such as routers and switches. Their main duty is to make
sure that all flow records are received and successfully written on a persistent storage.
This solution limits flow record loss and decouples the collection phase from flow
analysis, with the drawback of adding some latency as records are often not
immediately processed as they arrive. Tools falling into this category include
nfdump [10], flow-tools [11], FlowScan [12], Stager [13] and SiLK [14]. These tools
store data in binary flat files, optionally in compressed format in order to reduce disk
space usage and read time; they typically offer additional tools for filtering,
extracting, and summarizing flow records matching specific criteria. As flat files have
no indexing, data searching always requires a sequential scan of all stored records. In

order to reduce the dataset to scan, these tools save flow records in directories that
have a specific duration, so that to ease record temporal selection during queries.
Basically the speed advantage of dumping flow records in raw format is paid at each
search operation in terms of amount of data to read. Another limitation of these
families of tools, is that the query language they offer is limited when compared to
SQL, as they feature flow-based filtering with minimal aggregation, join and reporting
facilities.

The use of relational databases is fairly popular in most commercial flow-collectors
such as Cisco NetFlow collector, Fluke NetFlow Tracker, and on open-source tools
such as Navarro [15] and pmacct [16]. The flexibility of the SQL language is very
useful during report creation and data aggregation phases although some researchers
have proposed a specialized flow query language [17]. Unfortunately the use of
relational databases is known to be slower (both during data insert and query) and
take more space when compared to raw flow record files [18] [19] [20].

The conclusions of the survey on popular flow management tools are:
• Tools based on raw binary files are efficient when storing flow records (e.g.

nfdump can store over 250K records/sec on a dual-core PC) but provide limited
flow query facilities.

• Relational databases are both slower during flow record insertion and retrieval,
but thanks to SQL they offer very flexible flow query and reporting facilities.

• On large volume of collected flow records, the query time of both tool families
takes a significant amount of time (measured in minutes if not hours [21]) even
when high-end computers are used, making them unsuitable for interactive data
exploration.

Seen that the performance figures of state-of-the-art tools is suboptimal, authors
investigated whether there was a better solution to the problem of flow collection and
query with respect to raw files and relational databases.

2.1 Towards Column-oriented Databases with Bitmap Indexes

A database management system typically structures data records using tables with
rows and columns. The system optimizes the query-answering process by
implementing auxiliary data structures known as database indexes [22] to accelerate
queries. Relational databases encounter performance issues with large tables in
particular because of the size of table indexes that need to be updated at each record
insertion. In the last few years, new regulations that require ISPs to maintain large
archive of user activities (e.g. login/logout/radius/email/wifi access logs) [23]
stimulated the development of new database types able to efficiently handle billion of
records. Although available since late 70‘s [24], column-oriented databases [25] have

been niche products until vendors such as Sensage [26], Sybase [27] and open source
implementation such as FastBit [28] [29] [30] ignited new interest on this technology.
A column-oriented database stores its content by column rather than by row is known
as vertical organization. This way the values for each single column are stored
contiguously, and column-stores compression ratios are generally better than row-
stores because consecutive entries in a column are homogeneous to each other [31]
[32]. These database systems have been shown to perform more than an order of
magnitude better than traditional row-oriented database systems, particularly on read-
intensive analytical processing workloads. In fact, column-stores are more I/O
efficient for read-only queries since they only have to read from disk (or from
memory) those attributes accessed by a query [25].

B-tree indexes are the most popular method for accelerating search operations.
They are designed initially for transactional data (where any index on data must be
updated quickly as data records are modified, and query results are usually limited in
number of records) and fail to meet requirements of modern data analysis, such as
interactive analysis over large volume of collected traffic data. Such queries return
thousands of records that with b-trees would require a large number of tree-branching
operations that use slow pointer chases in memory and random disk access, thus
taking a long time. Many popular indexing techniques such as hash indexes, have
similar shortcomings. Considering the peculiarity of network monitoring data where
flow records are read-only and several flow fields have very few unique values, as of
today the best indexing method is a bitmap index [33]. These indexes use bit arrays
(commonly called bitmaps) and answer queries by performing bitwise logical
operations on these bitmaps. For tasks that demand the fastest possible query
processing speed, bitmap indexes perform extremely well because the intersection
between the search results on each variable is a simple AND operation over the
resulting bitmaps [22].

Seen that column-oriented databases with bitmap indexes provide better
performance compared to relational databases, the authors explored their use in the
field of flow monitoring. Hence they have designed a system based on this technology
able to efficiently handle flow records. The main requirements of this development
work include:

• Ability to save flow records on disk with minimal overhead allowing no-loss on-
the-fly flow-to-disk storage, as it happens with tools based on raw files.

• Compact data storage for limiting disk usage hence enable users to store months
of flow records on a cheap hard-disk with no need to use costly storage systems.

• Stored data must be immutable (i.e. once it has been saved it cannot be modified/
deleted) as this is a key feature for billing and security systems where non-
repudiation is mandatory.

• Ability to perform efficiently on network storage such as NFS (Network File
System).

• Simple data archive structure in order to move ancient data on off-line storage
systems without having to use complex data partitioning solutions.

• Avoid complex architectures [34], hard to maintain and operate, by developing a
simple tool that can be potentially used by all network administrators.

• On tens of millions of records:
• Sub-second search time when performing cardinality searches (e.g. count

the number or records that satisfy a certain criteria). This is a requirement
for exploring data in real-time and implementing interactive drill-down data
search.

• Sub-minute search time when extracting records matching a certain criteria
(e.g. top X hosts and their total traffic on TCP port Y).

• Feature rich query language as SQL with the ability to sort, join, and aggregate
data while perform mathematical operations on columns (e.g. sum, average, min/
max, variance, median, distinct), necessary to perform complex statistics on
flows.

The following chapters covers the design and implementation of an extension to
nProbe [35], an open-source probe and flow collector, that allows flow records to be
stored on disk using a column-oriented database with an efficient compressed bitmap
indexing technology. Finally the nProbe implementation performance is evaluated and
positioned against similar tools previously listed.

3 Architecture and Implementation

nProbe is an open-source NetFlow probe that supports both NetFlow and sFlow
collection, as well as flow conversion between versions (for instance convert v5 to v9
flows).

Fig. 1. nProbe Flow Record Collection and Export Architecture

nProbe

NetFlowsFlow

Packet
Capture

Data Dump

Raw Files / MySQL / SQLite / FastBit

Flow Export

It fully supports the NetFlow v9/IPFIX so it has the ability to specify dynamic flow
templates (i.e. it supports flexible netflow) that are configured when the tool is started.
nProbe features flow collection and storage, both on raw files and relational databases
such as MySQL and SQLite. Support of relational databases has always been
controversial as nProbe users appreciated the ability to query flow records using SQL,
but at the same time flow dump to database is usually activated only for small sites.
The reason is that enabling database support could lead to flow records loss due to the
database processing overhead. This is mostly caused by network latency and multi-
user database access, slow-down caused by table indexes update during data insertion,
and poor database performance while searching records during data insertion.
Databases offer mechanisms for mitigating some of the above issues, including data
insertion in batch mode instead of realtime, transaction disabling, and definition of
tables with no indexes for avoiding the overhead of indexes update.

In order to overcome the limitations of existing flow-management systems, the
authors decided to explore the use of column-based databases by implementing an
extension to nProbe that allows flows to be stored on disk using FastBit [29]. More
precisely, FastBit is not a database but a C++ library that implements efficient bitmap
indexing methods. Data is represented as tables with rows and columns. A large table
may be partitioned into many data partitions and each of them is stored on a distinct
directory, with each column stored as a separated file in raw binary form. The name of
the data file is the name of the column. In each data partition there is an extra file
named -part.txt that contains metadata information such as the name of the partition,
and column names. Each column contains data stored in an uncompressed form, so its
size is the same size of a raw file dump. Columns can accept data of 1, 2, 4, and 8
bytes long. Data longer than 8 bytes needs to be split across two or more columns.
Compressed bitmap indexes are stored in separate files whose name is the name of the
column with the .idx suffix. This means that each column typically has two files: one
file contains data and the other the index. Indexes can be created on data “as stored on
disk” or on reordered data. This is a main difference with respect to conventional
databases. In fact it is possible to first reorder data, column by column, so that bitmap
indexes are built on reordered data. Please note that reordering does not affect queries
results (i.e. rows data is not mixed when columns are reordered), but it just improves
index size and query speed. Data insert and query facilities is performed by means of
library calls or using a subset of SQL, natively supported by the library. In FastBit the
SELECT clause can only contain a list of column names and some functions that
include AVG, MIN, MAX, SUM, and DISTINCT. Each function can only take a
column name as its argument. The WHERE clause is a set of range conditions joined
together with logical operators such as AND, OR, XOR, and NOT. The clauses
GROUP BY, ORDER BY, LIMIT and the operators IN, BETWEEN and LIKE can
also be applied to queries. FastBit actually does not support advanced SQL

functionalities such as nested queries, and neither operators such as UNION,
HAVING, or functions like FIRST, LAST, NOW, and FORMAT.

nProbe creates FastBit partitions depending on the flow templates being configured
(probe mode) or read from incoming flows (collector mode), with columns having the
same size as the the netflow element it contains. Users can configure partition
duration (in minutes) at runtime and when a partition reaches its maximum duration, a
new one is automatically created. Partition names are created on a tree fashion (e.g.
<base directory>/year/month/day/hour/minute). Similar to [36], authors have
developed facilities for rotating partitions hence limiting disk space usage while
preserving their structure. No FastBit specific configuration is necessary as nProbe
knows the flow format, and then it automatically creates partitions and columns.
Datatypes longer than 64 bit as IPv6 addresses are transparently split onto two FastBit
columns. Flow records are not saved individually on disk, but for efficiency reasons
they are dumped in blocks of 4096 records. Users can decide to build indexes on all
or only on a few selected columns, this in order to save space creating indexes for
columns that will never be used in queries. If while executing a query FastBit does
not find an index for a key column, it will build the index for such column on the fly,
prior to execute the query. For efficiency reasons, the authors have decided that
indexes are not built at every data dump but when a partition is completed (e.g. the
partition duration time has elapsed). This happens because building indexes on
reordered data is more efficient (both in terms of disk usage and query response time)
than building them on data on the same order as it has been saved on disk. The
drawback of this design choice is that queries can use indexes only once they have
been built hence the partition is completely dumped on disk. On the other hand, flow
records can be dumped at full speed with no index-build overhead. Thus, not
considering flow receive/decoding overhead, it is possible to save on disk more than
one million flow records/sec on a standard Serial ATA (SATA) disk. Column indexes
are completely loaded into memory during searches, thus it imposes a limit on the
partition size also limited by FastBit to 232 records. Hence it is wise to avoid creating
large partitions, but at the same time the creation of too many small partitions must
also be avoided, as this will result in many files created on disk and the overhead of
accessing them (open, close and file seek time) can dominate the data analysis time.
A good compromise is to have partitions that either last a fixed amount of time (e.g. 5
minutes of flow records) or that have a maximum number of records. Typically, for a
machine with a few GB of memory, FastBit developers recommend data partition
containing between 1 million and 100 million records.

Conceptually a FastBit partition is similar to a table on a relational database, thus
when a query is spread across several partitions, it is necessary to merge results and to
collapse them when using the DISTINCT SQL clause. This task is not performed by
FastBit but it is delegated to utilities developed by the authors:

• fbmerge: tool for merging several FastBit partitions into a single one. This tool,
now part of the FastBit distribution, is useful when small fine grained partitions
need to be aggregated into a larger one. For instance if nProbe is configured to
create ‘one minute’ partitions, at the end of the hour all of them can be
aggregated into a ‘one hour’ partition. This allows the number of column files
hence the number of disk i-nodes to be reduced a lot, very useful on large disks
containing many days/months of collected records.

• fbquery: tool that allows queries to be performed on partitions. It supports SQL-
like syntax for querying data and implements on top of FastBit useful facilities
such as:

• Aggregation of similar results, data sort, and result set limitation (same as
MySQL LIMIT).

• Search recursively on nested directories so that a single directory containing
several partitions can be searched in one shot. This is useful for instance
when nProbe has dumped 5 minutes long partitions, and users want to
search on the last hour so that various partitions need to be read by fbquery.

• Data dump on several formats such as CSV, XML, and plain text. Data
format is based on the metadata information produced by nProbe, thus
partition columns are printed according to its native representation (e.g. an
IPV4_DST_ADDR is printed as dot-separated IPv4 address and not as a 32
bit unsigned integer).

• Scriptability using the Python language for combining several queries or
creating HTML pages for rendering data on a web browser.

In a nutshell, the authors have used the FastBit library for creating an efficient flow
collection and storage system. As the library was not designed for handling network
flows, the authors have implemented some missing features that are a prerequisite for
creating comprehensive network traffic reports. The following section evaluates the
performance of the proposed solution, compares it against relational databases, and
validates it on two large networks. This is to demonstrate that nProbe with FastBit is a
mature solution that can be used on a production environment.

4 Validation and Performance Evaluation

In order to evaluate the FastBit performance, nProbe has been deployed in two
different environments:

• Medium ISP: Bolig:net A/S
The average backbone traffic is around 250 Mbit/sec (about 40K pps). The traffic
is mirrored onto a Linux PC (Linux Fedora Core 8 32 bit, Dual Core Pentium D
3.0 GHz, 1 GB of RAM, two SATA III disks configured with RAID 1) that runs

nProbe in probe mode. nProbe computes the flows (NetFlow v9 bi-directional
format with 5 minutes maximum flow duration) and saves flow records on disk
using FastBit. Each FastBit partition stores one hour of traffic, and in average the
probe produces 36 million flow records/day. Before deploying nProbe, records
were collected and stored on a MySQL database.

• Large ISP: British Telecom
nProbe is used in collector mode. It receives flow records from 10 peering
routers, with peak flow export of 85 K flow records/sec with no flow loss. Each
month the total amount of record exceeds 4 TB of disk space. The application
server has dual quad-core Intel processors with 24 GB of memory, running
Ubuntu Linux 9.10 64 bit, and is used to carry out queries on the data stored on
an NFS server by the Collection server. The Netflow collection server has a
single quad-core Intel processor and 8 GB of memory, running Ubuntu Linux
9.10 64 bit, and stores the fastbit data to the NFS server. Each FastBit partition
stores 60 minutes of traffic that occupy about 5.8 GB of disk space when
indexed. Before deploying nProbe, flow records were collected using nfdump.

The goal of these two setups is to both validate nProbe with FastBit on two
different setups and compare the results with the solutions previously used. The idea
is to compare a regional with a country-wide ISP, and verify if the proposed solution
can be effectively used in both scenarios. Being the code open-source, it is also
important to verify that this work is efficient when used on standard PCs (contrary to
solutions based on costly clusters or server farms mostly used in Telco environments)
as this is the most common scenario for many open-source users.

4.1 FastBit vs Relational Databases

The goal of this test is to compare the performance of FastBit with respect to MySQL
(version 5.1.40 64 bit), a popular relational database. As the host running nProbe is a
critical machine, in order to not interfere with the collection process, two days worth
of traffic was dumped in FastBit format, and then transferred to a Core2Duo 3.06
GHz Apple iMac running MacOS 10.6.2. Moving FastBit partitions across machines
running different operating systems and word length (one is 32, the other is 64 bit)
has not required any data conversion as FastBit transparently takes care of differences
among various architectures. This is a good feature as collector hosts can be based on
different operating systems and technology. In order to evaluate how FastBit partition
size affects the search speed, hourly partitions have been merged into a single daily
directory. In order to compare both approaches, five queries have been defined:

• Q1: SELECT COUNT(*), SUM(PKTS), SUM(BYTES) FROM NETFLOW

• Q2: SELECT COUNT(*) FROM NETFLOW WHERE L4_SRC_PORT=80 OR
L4_DST_PORT=80

• Q3: SELECT COUNT(*) FROM NETFLOW GROUP BY IPV4_SRC_ADDR
• Q4: SELECT IPV4_SRC_ADDR, SUM(PKTS), SUM(BYTES) AS s FROM

NETFLOW GROUP BY IPV4_SRC_ADDR ORDER BY s DESC LIMIT 1,5
• Q5: SELECT IPV4_SRC_ADDR, L4_SRC_PORT, IPV4_DST_ADDR,

L4_DST_PORT, PROTOCOL, COUNT(*), SUM(PKTS), SUM(BYTES)
FROM NETFLOW WHERE L4_SRC_PORT=80 OR L4_DST_PORT=80
GROUP BY IPV4_SRC_ADDR, L4_SRC_PORT, IPV4_DST_ADDR,
L4_DST_PORT, PROTOCOL

FastBit partitions have been queried using the fbquery tool with appropriate command
line parameters. All MySQL tests have been performed on the same machine with no
network communications between client and server (i.e. MySQL client and server
communicate using a Unix socket). In order to evaluate the influence of MySQL
indexes on queries, the same test has been repeated with and without indexes. Tests
were performed on 68 million flow records containing a subset of all NetFlow fields
(IP source/destination, port source/destination, protocol, begin/end time). The
following table compares the disk space used by MySQL and FastBit. In the case of
FastBit, indexes have been computed on all columns.

MySQL No/With Indexes

FastBit
Daily Partition (no/with Indexes)

FastBit
Hourly Partition (no/with Indexes)

1.9 / 4.2

1.9 / 3.4

1.9 / 3.9

Table 1. FastBit vs MySQL Disk Usage (results are in GB)

Query
MySQLMySQL Daily PartitionsDaily Partitions Hourly PartitionsHourly Partitions

Query
No

Index
With

Indexes
No

Cache
Cached No

Cache
Cached

Q1 20.8 22.6 12.8 5.86 10 5.6

Q2 23.4 69 0.3 0.29 1.5 0.5

Q3 796 971 17.6 14.6 32.9 12.5

Query
MySQLMySQL Daily PartitionsDaily Partitions Hourly PartitionsHourly Partitions

Query
No

Index
With

Indexes
No

Cache
Cached No

Cache
Cached

Q4 1033 1341 62 57.2 55.7 48.2

Q5 1754 2257 44.5 28.1 47.3 30.7

Table 2. FastBit vs MySQL Query Speed (results are in seconds)

The test outcome has demonstrated that FastBit takes approximately the same disk
space as MySQL in terms or raw data, whereas MySQL indexes are much larger.
Merging FastBit partitions does not usually improve the search speed, but instead
queries on merged data requires more memory, as FastBit loads a larger index.

The size/duration of a partition mostly depends on the application that will access
data. Having small partitions (e.g. 1 or 5 minutes long) makes sense for interactive
data exploration where drill-down operations are common. In this case, having small
partitions means that the FastBit index would also be small, resulting in faster
operations and less memory used. On the other hand, querying data on a long period
using small partitions requires fbquery to read several small indexes instead of a
single one that is inefficient on standard disks (i.e. non solid-state drive) due to disk
seek time. In addition, a side effect of multi-partitions is that fbquery need to merge
results produced on each partition, this without relying on FastBit. Note that the use
of large partitions has drawbacks on searches, as indexes cannot be built on the them
until they have been completely dumped. For this reason, if nProbe saves flow records
on a large one day long partition, it means that queries on the current day must be
performed without indexes as the partition has not completely dumped yet. In a
nutshell there is not a single rule for defining partition duration; in general the
partition granularity should be as close as possible to the expected query granularity.
Authors suggest to use partitions lasting from 1 to 5 minutes in order to have quick
searches even on partitions being written (i.e. on most recent data), and then daily
merge partitions using fbmerge. This to avoid exhausting disk i-nodes with index
files, and efficiently perform searches on past data without accessing too many files.

In terms of query performance FastBit is not at all comparable with MySQL:
• Queries that only require access to indexes take less than a second, regardless of

the query type.
• Queries that require data access are at least an order of magnitude faster than on

MySQL but always complete within a minute.
• Index creation time on MySQL takes many minutes and it prevents it using in

real life when importing data in (near-)realtime, also considering that they take a
significant amount of disk space. Indexes on MySQL do not speed up queries,

contrary to FastBit, as query time using indexes takes longer when compared to
the same query on unindexed data.

• Disk speed is an important factor for accelerating queries. In fact running the
same test twice with data already cached in memory, it significantly decreases
the query speed. The use of RAID 0 has demonstrated that the performance
speed has been improved.

4.2 FastBit vs Raw Files

The goal of this test is to compare FastBit with a popular open-source collection
tool named nfdump. Tests have been performed on a large network with TB of
collected flow data per month. Although nfdump performs well when it comes to flow
collection, its performance is sub-optimal during query time when using large data
sets. One of the main concerns of the network operators is that with nfdump queries
take a long amount of time, so they often need to be run overnight before producing
results. An explanation of this behavior is that nfdump does not index data, so
searching on a large time span means reading all raw data that was received over that
period, and in this setup means GBs (if not TBs) of records. Using FastBit the average
speed improvement is in the order of 20:1. From the operator's point of view this
means that queries can last a reasonable amount of time. For instance, a query written
in SQL as ‘SELECT IPV4_SRC_ADDR, L4_SRC_PORT, IPV4_DST_ADDR,
L4_DST_PORT, PROTOCOL FROM NETFLOW WHERE IPV4_SRC_ADDR=X
OR IPV4_DST_ADDR=X’ on 19 GB of data that contain 14 hours of collected flow
records, takes about 45 seconds with FastBit which is major improvement with
respect to nfdump, which takes about 1500 seconds (25 minutes) to complete the
same query. As nfdump does not use any index, its execution time is dominated by the
time needed to sequentially read the binary data. This means that: query time = (time
to sequentially read the raw data) + (record filtering time). The time needed to filter
records is usually very little as nfdump is fast enough, and also because the
complexity of filters, whose syntax is similar to BPF [37] filters, is usually limited.
This means that in nfdump the query time is basically the time needed to sequentially
read the raw data. The previous query validates this hypothesis: 1500 seconds to read
19 GB of data means that the average reading speed is about 12.6 MB/sec, that is the
typical speed of a SATA drive. For this reason, this section does not list the same tests
as in section 4.1, because the query time of nfdump is mostly proportional to the
amount of data to read [20]; hence with some simple math it is possible to compute
the expected nfdump response time. Also note that the nfdump query language is not
SQL-like, therefore it is not possible to make a one-to-one comparison with FastBit
and MySQL.

As flow records take a large amount of disk space, it is likely that they will be
stored on a SAN (Storage Area Network). When the storage is directly attached to the

host by means of fast communication links such as InfiniBand and FibreChannel, the
system does not see any speed degradation when compared with a directly attached
SATA disk. The authors decided to study how the use of network file systems such as
NFS affects the query results. A simple model for the time needed to read γ bytes is t
= α + β * γ, where α represents the disk access latency and β is the throughput. NFS
typically increases α but not β as the network speed is typically higher than disk read
speed. In the case of nfdump the data is read sequentially, whereas on FastBit the raw
data is accessed based on indexes. Thus FastBit requires a small number of read
operations which have to pay α multiple times. However this extra cost is in
milliseconds, so it does not alter the overall comparison. This behavior has been
tested repeating some queries of 4.1, and demonstrating that the use of NFS
marginally affects the total query time.

4.3 FastBit Scalability

The tests have shown that the use of FastBit offers advantages with respect to both
relational databases and raw files-based solutions. In order to understand nProbe
scalability when used with FastBit, it is necessary to split flow collection from flow
query. As stated in section 3, the index creation happens when the partition has been
dumped on disk, hence the dump speed to disk is basically the speed of the hard drive
where, in the case of SATA disks, it exceeds 1 million flow records/sec. As shown in
4.2, a large ISP network produces less than 100’000 flow records/sec, this means that
FastBit introduces no bottleneck in flow collection and dump. Flow query requires
disk access, therefore the query process is mostly I/O bound. For every query, FastBit
reads the whole index file of each column present in the WHERE clause. Then based
on the index search, it reads if necessary (e.g. COUNT(*) does not require that) the
column files containing real data by performing seeks on files in order to move to the
offset where the index has found a data match. Thus a simple model for query
response time is τ = γ + ε + δ, where γ represents the time needed to read all the
column indexes present in the WHERE clause, ε is the time to read (if there is any)
the matching rows data present in the SELECT clause, and δ is the processing
overhead. In general δ is very limited with respect to γ and ε. As γ = (index size / disk
speed), it takes no more than a couple of seconds. Instead δ can be pretty large if data
is sparse, and several disk seeks are required. Note that δ can grow significantly
depending on the query (e.g. in case of sorting large data sets), and that ε is zero for
queries that count (e.g. compute the number of records on port X produced by host Y)
or that use mathematical functions such as SUM (e.g. total number of bytes on port
X).

5 Open Issues and Future Work

Tests on various FastBit configurations have shown that the disk is an important
component that has a major impact on the whole system. The authors are planning to
use SSD drives in order to see how query time is affected, in particular while
accessing raw data records that require several disk seek operations.

One of the main limitations of FastBit is the lack of data compression, since it
currently compresses only indexes. This is a feature that the authors are planning to
add, as it allows disk space to be saved hence reduce the time needed to read the
records. Using compression libraries such as QuickLZO, lzop, and FastLZ it should
be possible to implement transparent de/compression while reducing disk space.

Another area of interest is the use of FastBit for indexing packets instead of flows.
The authors have prototyped an application that parses pcap files and creates a FastBit
partition based on various packet fields such as IP address, port, protocol, and flags, in
addition to an extra column that contains the file id and packet offset inside the pcap
file. Using a web interface built on top of fbquery, users can search packets matching
the criteria and also retrieve the original packet contained in the original pcap files.
Although this work is not rich in features when compared with specialized tools [36],
it demonstrates that the use of bitmap indexes is also effective for handling packets
and not just flow records.

The work described on this paper is the base for developing interactive data
visualization tools based on FastBit partitions. Thanks to recent innovation in web
2.0, there are libraries such as the Google Visualization API that split visualization
from data. Currently, the authors are extending nProbe adding an embedded web
server that can make FastBit queries on the fly and return query results in JSON
format [38]. The idea is to create an interactive query system that can visualize both
tabular data (e.g. flow information) and graphs (e.g. average number of flow records
on port X over the last hour) by means of FastBit queries. This way the user does not
have to interact with FastBit tools at all, and can focus on data exploration.

6 Final Remarks

The use of nProbe with FastBit is a major step ahead when compared to state-of-the-
art tools based on both relational databases and raw data dump. When searching data
on datasets of a few million records the query time is limited to a few seconds in the
worst case, whereas queries that just use indexes are completed within a second. The
consequence of this major speed improvement is that it is now possible to query data
in real time and avoid periodically updating costly counters, as their value can be
computed on-demand using bitmap indexes. Finally this work paves the way to the
creation of new monitoring tools on large data sets that can interactively analyze

traffic data in near-realtime, contrary to what usually happens with most tools
available today.

Availability. This work is distributed under the GNU GPL license and is available at
the ntop home page http://www.ntop.org/nProbe.html.

Acknowledgments. The authors would like to thank K. John Wu <kwu@lbl.gov> for
his help and support while using the FastBit library, Anders Kjærgaard Jørgensen
<akj@bolignet.dk> for his support during the validation of this work, and Cristian
Morariu <morariu@ifi.unizh.ch> for his suggestions during MySQL tests.

References

1. B. Claise, NetFlow Services Export Version 9, RFC 3954, (2004).
2. P. Phaal and others, InMon Corporation's sFlow: A Method for Monitoring Traffic in

Switched and Routed Networks, RFC 3176, (2001).
3. J. Quittek, and others, Requirements for IP Flow Information Export (IPFIX), RFC

3917, (2004).
4. H. Haddadi and others, Revisiting the Issues on Netflow Sample and Export

Performance, ChinaCom 2008, 442-446, (2008).
5. N. Duffield and others, Properties and Statistics from Sampled Packet Streams, Proc.

ACM SIGCOMM IMW’ 02, (2002).
6. C. Estan and others, Building a better NetFlow, Proc. of the ACM SIGCOMM

Conference, (2004).
7. S. Chakchai, A Survey of Network Traffic Monitoring and Analysis Tools, (2006).
8. C. Ning and X. Tong-Ge, Study on NetFlow-based Network Traffic Data Collection and

Storage, Application Research of Computers, Vol. 25, no. 2, (2008).
9. F. Reiss and others, Enabling Real-Time Querying of Live and Historical Stream Data,

Proc. of 19th Intl. Conference on Scientific and Statistical Database Management,
(2007).

10. P. Haag, Watch your Flows with NfSen and NfDump, 50th RIPE Meeting, (2005).
11. M. Fullmer and S. Roming, The OSU Flow-tools Package and Cisco NetFlow Logs,

Proc. of 14th USENIX Lisa Conference, (2000).
12. D. Plonka, FlowScan: A Network Traffic Flow Reporting and Visualization Tool, Proc.

of 14th USENIX Lisa Conference, (2000).
13. A. Øslebø, Stager A Web Based Application for Presenting Network Statistics, Proc. of

NOMS 2006, (2006).
14. C. Gates and others, More NetFlow Tools: For Performance and Security, Proc. 18th

Systems Administration Conference (LISA), (2004).
15. J.P. Navarro and others, Combining Cisco NetFlow Exports with Relational Database

Technology for Usage Statistics, Intrusion Detection and Network Forensics, Proc. 14th
Systems Administration Conference (LISA), (2000).

16. P. Lucente, pmacct: a New Player in the Network Management Arena, RIPE 52
Meeting, (2006).

17. V. Marinov and J. Schönwälder, Design of an IP Flow Record Query Language, Proc.
of AIMS 08, Springer LNCS 5127, (2008).

18. A. Sperrotto, Using SQL databases for flow processing, Joint EMANICS/IRTF-NMRG
Workshop on Netflow/IPFIX Usage in Network Management, (2008).

19. R. Hofstede, Performance measurements of NfDump and MySQL and development of
a SURFmap plug-in for NfSen, Bachlor assignement, University of Twente, (2009).

20. R. Hofstede and others, Comparison Between General and Specialized Information
Sources When Handling Large Amounts of Network Data, Technical Report, University
of Twente, (2009).

21. M. Siekkinen and others, InTraBase: Integrated Traffic Analysis Based on a Database
Management System, Proc. of E2EMON ’05, (2005).

22. K. Wu and others, A Lightning-Fast Index Drives Massive Data Analysis, SciDAC
Review, (2009).

23. J. Oltsik, The Silent Explosion of Log Management, CNET News, http://
news.cnet.com/8301-10784_3-9867563-7.html, (2008).

24. M. J. Turner and others, A DBMS for large statistical databases, Proc. of 5th VLDB
Conference, (1979).

25. D. Abadi and others, Column-Stores vs. Row-Stores: How Different Are They Really?,
Proc. of ACM SIGMOD ’08, (2008).

26. O. Herrnstadt, Multiple Dimensioned Database Architecture, U.S. Patent application
20090193006, (2009).

27. D. Loshin, Gaining the Performance Edge Using a Column-Oriented Database
Management System, White Paper, (2009).

28. K. Wu and others, Compressed Bitmap Indices for Efficient Query Processing,
Technical Report LBNL-47807, (2001).

29. K. Wu and others, FastBit: Interactively Searching Massive Data, Proc. of SciDAC
2009, (2009).

30. E.W. Bethel and others, Accelerating Network Traffic Analytics Using Query-Driver
Visualization, IEEE Symposium in Visual Analytics Science and Technology, (2006).

31. D. Abadi and others, Integrating Compression and Execution in Column-Oriented
Database Systems, Proc. of 2006 ACM SIGMOD, (2006).

32. F. Otten, Evaluating Compression as an Enabler for Centralised Monitoring in a Next
Generation Network, Proc. of SATNAC 2007, (2007).

33. V. Sharma, Bitmap Index vs. B-tree Index: Which and When?, Oracle Technology
Network, (2005).

34. J. Chandrasekaran and others, TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World, Proc. of Conference on Innovative Data Systems Research, (2003).

35. L. Deri, nProbe: an Open Source NetFlow Probe for Gigabit Networks, Proc. of Terena
TNC 2003, (2003).

36. P. Desnoyers and P. Shenoy. Hyperion: High Volume Stream Archival for Retrospective
Querying, Proc. of 2007 USENIX Annual Technical Conference, (2007).

37. S. McCanne and V. Jacobson, The BSD Packet Filter: A New architecture for User-
level Packet Capture, Proc. Winter ‘93 USENIX Conference, (1993).

38. D. Crockford, JSON: The fat-free alternative to XML, Proc. of XML 2006, (2006).

