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Abstract—Current practices in network security deployment 
require multiple specialised devices as firewalls, traffic shapers, 
sensors or Intrusion Detection Systems (IDSs) to handle 
malicious traffic. This practice not only increases the overall 
operational costs but also makes network administration 
complicated. The high cost of Distributed Denial of Service 
(DDoS) mitigation devices empowers centralised services and 
network architectures as there is not a cost-effective model to 
deploy them at the "true edge" of the network.  
 
This paper describes the design and implementation of a multi-10 
Gbit extensible network traffic analysis and policing system. It is 
composed of logical detection and enforcement functions built 
from reusable underlying primitives. As an example of such 
modular approach, we present an innovative DDoS scrubbing 
system composed of various attack detection primitives, 
combined with enforcement primitives that include traffic 
filtering, rate limiting, and proxying. Based on commodity 
hardware and open source software, such system is price, space, 
and power efficient enough to be practically deployable at the 
edge of the network. Performance measurements carried on 
10Gbit networks, show that it can effectively provide both traffic 
visibility and enforcement of a wide range of network traffic 
policies.  

Keywords—Datacenter networks; Internet measurement and 
modelling; Network control and management; Routing and traffic 
engineering. 

I.  INTRODUCTION AND MOTIVATION 
Despite the increasing deployment of devices for traffic 

analysis and mitigation, the number of Distributed Denial of 
Service (DDoS) attacks recorded last year [1] is more than 
double the number of attacks of 2014. Unlike attacks generated 
in the past years that lasted until the attack was mitigated or the 
the attacker was taken down, currently the large majority of 
DDoS attacks are launched from stresser/booter-based services 
[9, 14] and DDoS-for-hire tools [15]. Services able to generate 
high packet rates and volumes of traffic are available for less 
than 40$/hour [8] making DDoS attacks affordable for 
everyone. The most common attacks include UDP, ICMP and 
TCP (SYN) floods, amplification attacks [5, 11] using 
reflection techniques [40], and application-based specific 
attacks targeting HTTP and DNS servers. Both volumetric and 
protocol specific attacks often take advantage of the ability to 
spoof traffic. Spoofing not only increases the attack impact, but 
it makes more challenging the traceback to the real origin of 
the malicious traffic and thus who has created the malicious 
traffic. When volumetric attacks (aiming at the exhaustion of 
available bandwidth) are not enough, attackers often exploit 

protocol specific vulnerabilities including: 

• TCP state-exhaustion attacks that attempt to consume 
TCP state tables of infrastructure components such as load 
balancers and application servers [17]. 

• DNS attacks as those that aim to poison caches or flood 
servers with bogus lookups and high rate requests.  

• Application-layer attacks as those that originate by few 
machines that generate low traffic rates [18]. They are 
difficult to be detected by traditional flow-based monitoring 
applications [13]. 

• Popular DDoS attacks target the online-gaming industry 
and financial services, and widespread software applications 
(e.g. Joomla, Wordpress) that are often used for reflection 
attacks [6]. 

While academia has extensively investigated the impact of 
DDoS attacks, and suggests techniques for detecting and 
mitigating them [7, 10, 14, 19, 24, 25], a quick tour on 
github.com shows that all the publicly available DDoS tools 
are either botnet simulators or application-specific anti-DDoS 
tools (e.g. Apache and nginx HTTP server protection modules). 
Contrary to other security markets such as IDS/IPS (Intrusion 
Detection/Prevention System) where there are many publicly 
available tools, most DDoS protection tools are very coarse 
grained [4, 12, 21] or just a proof-of-concept [2, 3, 16, 20, 22, 
23]. In the industry, DDoS mitigation devices and services are 
often expensive and not always affordable by everyone [26], 
thus making them suitable for permanently protection only by 
large ISP (Internet Service Providers). A cheaper alternative to 
permanent protection, is to use on-demand DDoS mitigation 
services; when a DDoS attack is detected, traffic is rerouted via 
BGP or DNS towards a scrubbing center, a place where ingress 
traffic is analysed and cleaned before being tunnelled back or 
proxied to the victim's original destination. Their high hosts 
makes them unsuitable to be deployed at the edge of the 
network where potential victims/attackers reside. Furthermore 
being these devices deployed as black-boxes, network 
administrators are can do only very limited customisation 
including their inability to develop specific plugins/code for 
dissecting protocols not supported by the box. 

In the past years we have implemented various tools for 
efficient packet processing [27, 28]. The core of our activities 
traditionally focused on network traffic monitoring including 
content analysis, deep packet inspection, packet balancing, and 
flow generation. We have decided to merge all these 
heterogeneous tools into a single application in order to create 
a comprehensive tool able to satisfy most network monitoring 



needs in a single tool. The high cost of commercial solutions 
and lack of flexible and efficient tools for DDoS mitigation has 
motivated us to design and built a novel traffic mitigation tool 
named nScrub. It runs on commodity hardware and has been 
designed to be a user-extensible mitigation tool that could be 
deployed as a true network-edge protection. 

The rest of the paper is structured as follows. Section II 
covers the architecture and design principles of nScrub. Section 
III describes the validation process and experiments. Section 
IV highlights some future work activities, and finally section V 
concludes the paper. 

II. ARCHITECTURE 
nScrub is a highly configurable and scalable system 

designed to run on sub-1000$ servers and able to implement 10 
Gbit full-duplex traffic mitigation. It operates inline with 
traffic, by examining traffic content. It can forward, discard and 
inject packets as needed. In nScrub, hosts are partitioned into 
two big groups: potential victims (the networks nScrub 
protects) and potential attackers (external hosts that can 
potentially attack our network). nScrub can operate as: 

• Transparent bridge: in this mode no special 
configuration is necessary, as it works as bump-in-the-
wire.  
• Network router which can be combined with BGP 
(Border Gateway Protocol) diversion techniques. 

1. Virtual Policers Demultiplexing 

Network traffic is processed according to user-defined 
policies. The system can be partitioned into multiple virtual 
policers, represented by profiles, which in essence are traffic 
policies configurations. Traffic demultiplexing between virtual 
policers takes place based on destination IP subnet. This 
enables the definition of multiple profiles in order to handle 
different target services (e.g. a game server and a web server) 
and thus implement flexible traffic polishing configurations 
based on the service being protected. 

As depicted in Figure 2, nScrub is partitioned into the 
following components:  

• Control: it is responsible for configuring the engine. 
• Data path: it implements the mechanism for traffic 

enforcement.  
• Traffic analysis: it observes traffic and triggers policies 

updates when specific events occur.  
• Traffic dumping: it records to disk specific traffic that 

could be used for in-depth analysis.  

2. nScrub System Components 

The following subsections describe in detail the various 
system components, their functionality, and how they interact. 
A. Control 

The control component is responsible for configuring the 
engine based on policies specified by the user. Configuration 
requests are sent to this component by the user using an HTTP-
based RESTful API, and stored into a persistent database so 
that they can be read at startup. Through this mechanism, new 
policies can be injected at runtime in various ways: manually 
from a graphical user interface, or dynamically from external 
(to nScrub) threat detection and traffic analysis applications.  
B. Data Path 

The data path component is responsible for forwarding 
traffic across network interfaces and implementing 
mechanisms for traffic policy enforcement.  

3. Data Path Submodules 

This component is logically divided into a pipeline of 
submodules, each responsible for a specific traffic filtering task 
or policy enforcement mechanism:  

• White/Black list: this component is responsible for 
handling lists of subnets with specific network access 
restrictions. List types include (but not limited to) white 
and black lists. Each list is bound to a user-defined 
profile which includes the policies that apply to the 
corresponding subnets. Subnets can be manually (i.e. by 
end-users) or dynamically (i.e. though traffic check 
mechanisms and specific plugins) added to lists.  

• Firewall-like filtering: it implements simple ACL 
(Access Control List) rules based on protocol, port and 
other relevant packet header fields.  
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• Payload searching: it supports packet payload content 
inspection in order to identify and filter specific 
applications, viruses, and malicious requests. Currently, 
it is possible to specify strings for searching at specific 
offsets. Strings are dynamically reconfigurable at 
runtime so that users can add/modify them when a new 
attack has been detected, and a specific plugin has not 
been developed yet. As described in section IV we are 
planning to make this facility even more powerful in 
future application releases. 

• Plugins: the policer has been designed as an open 
platform. This means that it can be extended with 
custom plugins that implement specific filtering 
facilities that can be used in addition to those 
implemented by the application core. For instance a 
specific UDP-based gaming protocol not natively 
supported by the system, can be protected by coding a 
custom plugin able to dissect its specific protocol. Such 
plugin can sanitise the packet, or implement behaviour 
analysis by means of stateful algorithms. Plugins can 
interact with the nScrub flow table, used for keeping 
track of stateful connection state, and with white/black 
lists to forward traffic coming from legitimate users or 
drop attackers. Additionally, plugins can also inject 
traffic when necessary (e.g. send a TCP RST packet to 
terminate unwanted connections), and for implementing 
techniques such as SYN Cookie [32, 33], useful for 
mitigating SYN flood attacks. 

• Rate limiting: rate traffic from selected subnets or 
towards specific target networks. The rate can be 
controlled both in terms of maximum bandwidth and 
packet rate, according to traffic type and matching 
profile. For instance, by using this module it is possible 
to limit the number of incoming TCP connections per 
source IP or towards a specific service. 

C. Traffic Analysis  
The system provides auxiliary monitor queues (bound to 

either virtual or physical interfaces) where traffic analysis 
applications can be connected. A full or sampled copy of the 
nScrub processed traffic (bad, good or all) can be sent to the 
queue. This mechanism is very useful for:  

• Enabling traffic visibility. 
• Detection of low-bandwidth and slow DDoS attacks. As 

described in section IV, traffic analysis applications, 
such as ntopng [39], can trigger policies updates when 
these threats are detected.  

D. Traffic Dumping  
Through the auxiliary queues implemented by nScrub, 

external packet-to-disk traffic recording applications can be 
connected to the system. They can record relevant (bad, good 
or all) traffic for post-analysis that can be inspected using 
specific tools such as Wireshark. It is also possible to set 
thresholds for dumping malicious traffic as soon as a 
volumetric attack starts. This is to implement visibility of 
attacks type and behaviour without the need to continuously 
record all received packets. 

III. IMPLEMENTATION  

This section describes the current nScrub implementation. 

A. Packet Processing Framework  
In inline packet processing applications, packet processing 

must be quick, low-latency and efficient. In order to achieve 
this design goal, nScrub has been coded on top of PF_RING 
ZC (Zero Copy). PF_RING ZC [27] is a home-grown flexible 
packet processing framework that allows applications to 
achieve 10 Gbit line-rate packet capture and transmission, at 
any packet size. In addition to speed, with PF_RING ZC it is 
possible to perform all operations in zero copy, thus saving 
memory bandwidth, optimising latency, and reducing CPU 
load. Furthermore as the kernel is bypassed and the NICs have 
no IP, it guarantees that the system running the scrubber is not 
affected by DDoS attacks. Operations include packet balancing 
across multiple processing threads and interface-to-interface 
packet forwarding in zero copy. Due to the high 10 Gbit packet 
rate, multiple processing units are needed for implementing the 
data path component. When traffic enters the policer, it is split 
across the various processing units in zero copy by means of a 
load balancing function.  

4. Load balancing with PF_RING ZC 

This way packets belonging to the same flow are all bound 
to a specific processing unit, as otherwise filtering or scrubbing 
techniques based on stateful algorithms may do not operate as 
expected. For instance the SYN Cookie algorithm will not 
work if packets belonging to the same source and destination 
pair are not all handled by the same processing unit. Load 
balancing is performed by a distribution unit that uses a hash of 
the IP address to select a destination processing unit. 
B. Core Features  

The current implementation features: 
• 10 Gigabit full-duplex packet processing based on 

PF_RING ZC, with hardware bypass support when 
available in the network adapter. 

• Hardware-bypass support (when available in the 
network adapter) based on a watchdog/heartbeat 
mechanism, to keep forwarding traffic in case of system 
failures, including application crashes, system reboot, or 
other software/hardware failures.  

• Support for symmetric/asymmetric working modes. In 
asymmetric mode the system is able to inspect inbound 
traffic only (from the Internet to the target network), 
whereas in symmetric mode both traffic directions are 
inspected. 

• Routing support: it is possible to re-route traffic using 
BGP diversion techniques and re-inject traffic towards 
the target network. 
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• Support for lists (set of subnets), including (but not 
limited to) white and black lists (implemented with 
radix trees). Additional lists, such as grey lists, can be 
defined for applying selected policies/profiles to 
specific subnets. 

• TCP traffic check algorithms including SYN Cookie 
[32, 33] and SYN Sanity Check, that include active and 
passive checks for enforcing compliancy with the RFC 
specification. 

• ACL-like filtering on TCP/UDP source/destination port, 
ICMP type accept/drop, etc. 

• DNS packet check algorithms, and payload pattern 
matching for filtering layer 7 attacks. 

• Rate limiting, including the ability to rate based on 
source/destination IP, and traffic type (implemented 
with leaky buckets algorithms). 

• Traffic mirror through virtual interfaces (i.e. PF_RING 
ZC queues) for connecting packet-to-disk applications, 
traffic analysis applications, and IDSs. 

• Low bandwidth and slow-DDoS attack detection by 
forwarding packets to ntopng. 

• RESTful API (see figure 2) for checking the system 
status and changing the system configuration (policies, 
access control lists, etc.) at runtime. 

III. VALIDATION  
This section describes how the system has been validated 

and what is the expected application performance. In order to 
verify the performance on different setups, we have performed 
tests using real traffic in both symmetrical and asymmetrical 
traffic configurations. The feedback received by users 
protecting their production network using nScrub has helped us 
to improve the algorithms and mitigation strategies. While 
advanced users and administrators often prefer highly 
configurable systems, our development efforts are going 
towards nearly zeroconf configuration. We are confident that 
by quickly detecting variations of attack vectors, we can 
improve mitigation by dynamically selecting adequate 
responses. For this reason we believe that flexibility and 
adaptability at nearly zeroconf is not only a desired feature but 
the ultimate requirement if we want mitigation technologies to 
become widely adopted. 
A. Effectiveness 

nScrub has been tested using traffic generated using known 
booter's leaked toolkits [34, 35] and packet captures (recorded 
during real DDoS attacks) at increasing packet rate. Our tests 
also include three of the most common attack vectors: SYN 
flood attacks [29, 33], TCP-based amplification attacks [30, 
32] and UDP-based amplification attacks [31]. In all the 
performed tests the system protected by nScrub was able to 
stay up with no significant impact in the response time. 
B. Performance 

The performance tests have been done on a low-end 
sub-1000$ Dell 220, based on an Intel Xeon E3 processor. 
nScrub was installed on a E3-1230 v3 @ 3.30GHz dual-
channel with 4 cores and hyper-threading enabled. The system 
was equipped with 4 DDR3 8GB 1600MHz RAM modules and 

a dual-port Intel 82599ES-based Intel 10 Gbit NIC. The 
mitigation system was configured with four processing threads, 
each bound to a different physical core. nScrub was 
benchmarked during four different attack types using a traffic 
generator based on PF_RING ZC simulating real traffic from a 
SYN flood and UDP-based amplification attacks. In all the 
tests, we have selected the smallest packet size (10 Gigabit line 
rate at 14.88 Mpps), this to evaluate the system performance in 
the worst case scenario. 

For SYN flood attacks, two mitigation methods have been 
implemented and compared: SYN Cookie and SYN Sanity 
Check. Contrary to the SYN Sanity Check that does not 
challenge traffic, the SYN Cookie method needs to inject at 
least one packet back for every processed SYN in order to 
validate clients. As shown in Figure 5, nScrub was able to 
process 96.7% of all traffic using the SYN Sanity Check and 
86.6% or about 13 Mpps using a SYN Cookie challenge. 
Performance degradation is reached with memory exhaustion 
as the SYN Cookie requires more resources to forge and inject 
the traffic than other mitigation techniques. 

5. Traffic processing speed (14.88 Mpps ingress rate) 

Application scalability is implemented through RSS that 
can partition traffic across various virtual queued to which 
individual scrubber threads connect. 

6. Forwarding speed vs RSS (14.88 Mpps ingress rate) 

In order to test the system under UDP attacks we have 
generated UDP traffic with minimum packet size of 60 bytes.  

!  
7. Traffic processing performance vs access control list size on 10 Gbit 

line-rate traffic (14.88 Mpps ingress). 
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nScrub was configured in two scenarios: a rule to check 
and drop (drop all) traffic, and a second scenario to match and 
forward all traffic (pass all). In both cases the system was able 
to keep up with the ingress traffic, even in the “forward all” 
worse case scenario where memory pressure was not too high 
thanks to the zero copy packet forwarding support provided by 
PF_RING ZC. In other tests we have evaluated the impact of 
IP access control lists in the performance of the nScrub. As 
depicted in figure 6, with the same hardware configuration 
nScrub was able to handle 20.000 rules at full line-rate when 
dropping bad traffic, or more than 11 Mpps if traffic was 
forwarded. 

nScrub was also tested in various production networks 
across the Internet. The following pictures are taken from a real 
production network during a DDoS attack. In this case nScrub 
was deployed inline between the edge router and the internal 
network. 

8. Network Traffic During DDoS Attack before/after nScrub 

As depicted in the above figure, the network was hit by 
ingress traffic spikes that accounted 3 to 5 Gbit of traffic. The 
figure depicts the same network traffic as observed on the 
interface connecting nScrub to the protected network (i.e. after 
traffic mitigation): ingress rate passed from a 5 Gbit to a 200 
Mbit of only good traffic that passed nScrub controls. Thanks 
to nScrub, the ingress traffic peaks have been mitigated and 
they did not reach the internal network that was then protected 
from the DDoS attack. 

C. Robustness 
The scrubber can be a single point of failure if the hardware 

breaks or nScrub crashes. To avoid that it is important to 
implement protection mechanisms. nScrub supports hardware 
bypass NICs via a watchdog mechanism, so that in case of 
failure the box can let the (unfiltered) traffic go through. In 
addition to that, standard network protection mechanisms such 
as BGP or VRRP (e.g. Linux keepalived) can be used to react 
to failures. 

IV. OPEN ISSUES AND FUTURE WORK ITEMS  
While nScrub is in production in many locations since more 

than a year, we acknowledge that there are some open issues 
that need to be tackled in future releases. They include: 

• Filtering offload. We are prototyping various 
techniques for offloading traffic filtering to external 
devices including external OpenFlow-based switches, 
embedded switches such as Silicom Redirector NICs and 
Intel FM1000-based NICs. 

• Plugins are statically compiled into nScrub, preventing 
users from upgrading the application without restarting it. 
One of the features that we are planning to implement, is 

the ability to reload plugins at runtime. This feature has 
already been integrated in other applications we have 
developed in the past [36]. Once the feature is 
implemented, we can enable selective application update 
without using offline traffic mechanisms to let traffic go 
through, while the application is reconfigured/updated. 

• Implementation of additional plugins for sanitising 
protocols such as SIP and RTP. This would allow nScrub 
to discard protocol requests that are either invalid or 
potentially dangerous. 

• Currently nScrub is able to search specific strings at a 
specified packet payload offset (implemented with 
memcmp()-like functions). While this feature is enough 
for most users, we are planning to add support for regular 
expressions or exact pattern/string matching (faster than 
the former in terms of CPU cycles) that are popular 
techniques for filtering layer 7 attacks.  

• Low rate DDoS attack detection using statistical 
analysis [37, 38]. Having designed nScrub as a high-speed 
packet scrubber, we believe that this type of detection 
should be performed on an external application that can 
keep flow state information. In fact, implementing this 
functionality into nScrub, might not be a good idea as 
specific attacks could leverage on flow state information to 
tear down nScrub and thus disrupt Internet connectivity. 
For this reason we are implementing statistical traffic 
analysis in ntopng that detects non-volumetric DDoS 
attacks and injects into nScrub specific rules for dropping 
them. 

V. FINAL REMARKS 
This paper has covered the design and implementation of a 

pure software-based DDoS mitigation application named 
nScrub. It leverages on several years of research carried on by 
the authors in the field of high-speed packet processing and 
traffic monitoring. nScrub core features include traffic filtering, 
rate limiting and proxying, as well as scrubbing popular 
protocols such as DNS. The integration of network traffic 
visibility with policy enforcement allowed us to create a tool 
open to third party applications, while implementing facilities 
typically present in high-end hardware devices that are unlikely 
to be deployed at the edge of the network due to their high cost 
and complexity.  

The application has been validated both in a laboratory 
using synthetic traffic, and for over a year in production 
networks with live traffic. The validation phase has 
demonstrated that using a sub-1000$ server, nScrub performs 
well enough for protecting networks connected to 10 Gbit 
links. This makes it practically deployable at the edge of the 
network for providing both traffic visibility and the 
enforcement of a wide range of network traffic policies.  
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AVAILABILITY 
nScrub can be downloaded at http://packages.ntop.org/. 
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