
Commoditising DDoS Mitigation

Alfredo Cardigliano
ntop

Pisa, Italy
cardigliano@ntop.org

Luca Deri
ntop, IIT/CNR

Pisa, Italy
deri@ntop.org, luca.deri@iit.cnr.it

Tord Lundstrom
Virtualroad

Stockholm, Sweden
t@virtualroad.org

Abstract—Current practices in network security deployment
require multiple specialised devices as firewalls, traffic shapers,
sensors or Intrusion Detection Systems (IDSs) to handle
malicious traffic. This practice not only increases the overall
operational costs but also makes network administration
complicated. The high cost of Distributed Denial of Service
(DDoS) mitigation devices empowers centralised services and
network architectures as there is not a cost-effective model to
deploy them at the "true edge" of the network.  
 
This paper describes the design and implementation of a multi-10
Gbit extensible network traffic analysis and policing system. It is
composed of logical detection and enforcement functions built
from reusable underlying primitives. As an example of such
modular approach, we present an innovative DDoS scrubbing
system composed of various attack detection primitives,
combined with enforcement primitives that include traffic
filtering, rate limiting, and proxying. Based on commodity
hardware and open source software, such system is price, space,
and power efficient enough to be practically deployable at the
edge of the network. Performance measurements carried on
10Gbit networks, show that it can effectively provide both traffic
visibility and enforcement of a wide range of network traffic
policies.

Keywords—Datacenter networks; Internet measurement and
modelling; Network control and management; Routing and traffic
engineering.

I. INTRODUCTION AND MOTIVATION
Despite the increasing deployment of devices for traffic

analysis and mitigation, the number of Distributed Denial of
Service (DDoS) attacks recorded last year [1] is more than
double the number of attacks of 2014. Unlike attacks generated
in the past years that lasted until the attack was mitigated or the
the attacker was taken down, currently the large majority of
DDoS attacks are launched from stresser/booter-based services
[9, 14] and DDoS-for-hire tools [15]. Services able to generate
high packet rates and volumes of traffic are available for less
than 40$/hour [8] making DDoS attacks affordable for
everyone. The most common attacks include UDP, ICMP and
TCP (SYN) floods, amplification attacks [5, 11] using
reflection techniques [40], and application-based specific
attacks targeting HTTP and DNS servers. Both volumetric and
protocol specific attacks often take advantage of the ability to
spoof traffic. Spoofing not only increases the attack impact, but
it makes more challenging the traceback to the real origin of
the malicious traffic and thus who has created the malicious
traffic. When volumetric attacks (aiming at the exhaustion of
available bandwidth) are not enough, attackers often exploit

protocol specific vulnerabilities including:

• TCP state-exhaustion attacks that attempt to consume
TCP state tables of infrastructure components such as load
balancers and application servers [17].

• DNS attacks as those that aim to poison caches or flood
servers with bogus lookups and high rate requests.

• Application-layer attacks as those that originate by few
machines that generate low traffic rates [18]. They are
difficult to be detected by traditional flow-based monitoring
applications [13].

• Popular DDoS attacks target the online-gaming industry
and financial services, and widespread software applications
(e.g. Joomla, Wordpress) that are often used for reflection
attacks [6].

While academia has extensively investigated the impact of
DDoS attacks, and suggests techniques for detecting and
mitigating them [7, 10, 14, 19, 24, 25], a quick tour on
github.com shows that all the publicly available DDoS tools
are either botnet simulators or application-specific anti-DDoS
tools (e.g. Apache and nginx HTTP server protection modules).
Contrary to other security markets such as IDS/IPS (Intrusion
Detection/Prevention System) where there are many publicly
available tools, most DDoS protection tools are very coarse
grained [4, 12, 21] or just a proof-of-concept [2, 3, 16, 20, 22,
23]. In the industry, DDoS mitigation devices and services are
often expensive and not always affordable by everyone [26],
thus making them suitable for permanently protection only by
large ISP (Internet Service Providers). A cheaper alternative to
permanent protection, is to use on-demand DDoS mitigation
services; when a DDoS attack is detected, traffic is rerouted via
BGP or DNS towards a scrubbing center, a place where ingress
traffic is analysed and cleaned before being tunnelled back or
proxied to the victim's original destination. Their high hosts
makes them unsuitable to be deployed at the edge of the
network where potential victims/attackers reside. Furthermore
being these devices deployed as black-boxes, network
administrators are can do only very limited customisation
including their inability to develop specific plugins/code for
dissecting protocols not supported by the box.

In the past years we have implemented various tools for
efficient packet processing [27, 28]. The core of our activities
traditionally focused on network traffic monitoring including
content analysis, deep packet inspection, packet balancing, and
flow generation. We have decided to merge all these
heterogeneous tools into a single application in order to create
a comprehensive tool able to satisfy most network monitoring

needs in a single tool. The high cost of commercial solutions
and lack of flexible and efficient tools for DDoS mitigation has
motivated us to design and built a novel traffic mitigation tool
named nScrub. It runs on commodity hardware and has been
designed to be a user-extensible mitigation tool that could be
deployed as a true network-edge protection.

The rest of the paper is structured as follows. Section II
covers the architecture and design principles of nScrub. Section
III describes the validation process and experiments. Section
IV highlights some future work activities, and finally section V
concludes the paper.

II. ARCHITECTURE
nScrub is a highly configurable and scalable system

designed to run on sub-1000$ servers and able to implement 10
Gbit full-duplex traffic mitigation. It operates inline with
traffic, by examining traffic content. It can forward, discard and
inject packets as needed. In nScrub, hosts are partitioned into
two big groups: potential victims (the networks nScrub
protects) and potential attackers (external hosts that can
potentially attack our network). nScrub can operate as:

• Transparent bridge: in this mode no special
configuration is necessary, as it works as bump-in-the-
wire.
• Network router which can be combined with BGP
(Border Gateway Protocol) diversion techniques.

1. Virtual Policers Demultiplexing

Network traffic is processed according to user-defined
policies. The system can be partitioned into multiple virtual
policers, represented by profiles, which in essence are traffic
policies configurations. Traffic demultiplexing between virtual
policers takes place based on destination IP subnet. This
enables the definition of multiple profiles in order to handle
different target services (e.g. a game server and a web server)
and thus implement flexible traffic polishing configurations
based on the service being protected.

As depicted in Figure 2, nScrub is partitioned into the
following components:

• Control: it is responsible for configuring the engine.
• Data path: it implements the mechanism for traffic

enforcement.
• Traffic analysis: it observes traffic and triggers policies

updates when specific events occur.
• Traffic dumping: it records to disk specific traffic that

could be used for in-depth analysis.

2. nScrub System Components

The following subsections describe in detail the various
system components, their functionality, and how they interact.
A. Control

The control component is responsible for configuring the
engine based on policies specified by the user. Configuration
requests are sent to this component by the user using an HTTP-
based RESTful API, and stored into a persistent database so
that they can be read at startup. Through this mechanism, new
policies can be injected at runtime in various ways: manually
from a graphical user interface, or dynamically from external
(to nScrub) threat detection and traffic analysis applications.
B. Data Path

The data path component is responsible for forwarding
traffic across network interfaces and implementing
mechanisms for traffic policy enforcement.

3. Data Path Submodules

This component is logically divided into a pipeline of
submodules, each responsible for a specific traffic filtering task
or policy enforcement mechanism:

• White/Black list: this component is responsible for
handling lists of subnets with specific network access
restrictions. List types include (but not limited to) white
and black lists. Each list is bound to a user-defined
profile which includes the policies that apply to the
corresponding subnets. Subnets can be manually (i.e. by
end-users) or dynamically (i.e. though traffic check
mechanisms and specific plugins) added to lists.

• Firewall-like filtering: it implements simple ACL
(Access Control List) rules based on protocol, port and
other relevant packet header fields.

Traffic Policer
Target

Network
A

Target
Network

B

Virtual Policer

Virtual Policer

Demulti
plexer

Datapath

PluginPluginPluginPlugins
Firewall-like

Filtering
RegExp
Filtering

white/black
list

v ________
v ________
v ________

Rate
Limiting

white/black
list

v ________
v ________
v ________

Flows Table

Datapath

ControlDB

API

Traffic
Analysis

Traffic
Dumping

Mirroring/SamplingPolicy Update

Traffic Traffic

• Payload searching: it supports packet payload content
inspection in order to identify and filter specific
applications, viruses, and malicious requests. Currently,
it is possible to specify strings for searching at specific
offsets. Strings are dynamically reconfigurable at
runtime so that users can add/modify them when a new
attack has been detected, and a specific plugin has not
been developed yet. As described in section IV we are
planning to make this facility even more powerful in
future application releases.

• Plugins: the policer has been designed as an open
platform. This means that it can be extended with
custom plugins that implement specific filtering
facilities that can be used in addition to those
implemented by the application core. For instance a
specific UDP-based gaming protocol not natively
supported by the system, can be protected by coding a
custom plugin able to dissect its specific protocol. Such
plugin can sanitise the packet, or implement behaviour
analysis by means of stateful algorithms. Plugins can
interact with the nScrub flow table, used for keeping
track of stateful connection state, and with white/black
lists to forward traffic coming from legitimate users or
drop attackers. Additionally, plugins can also inject
traffic when necessary (e.g. send a TCP RST packet to
terminate unwanted connections), and for implementing
techniques such as SYN Cookie [32, 33], useful for
mitigating SYN flood attacks.

• Rate limiting: rate traffic from selected subnets or
towards specific target networks. The rate can be
controlled both in terms of maximum bandwidth and
packet rate, according to traffic type and matching
profile. For instance, by using this module it is possible
to limit the number of incoming TCP connections per
source IP or towards a specific service.

C. Traffic Analysis
The system provides auxiliary monitor queues (bound to

either virtual or physical interfaces) where traffic analysis
applications can be connected. A full or sampled copy of the
nScrub processed traffic (bad, good or all) can be sent to the
queue. This mechanism is very useful for:

• Enabling traffic visibility.
• Detection of low-bandwidth and slow DDoS attacks. As

described in section IV, traffic analysis applications,
such as ntopng [39], can trigger policies updates when
these threats are detected.

D. Traffic Dumping
Through the auxiliary queues implemented by nScrub,

external packet-to-disk traffic recording applications can be
connected to the system. They can record relevant (bad, good
or all) traffic for post-analysis that can be inspected using
specific tools such as Wireshark. It is also possible to set
thresholds for dumping malicious traffic as soon as a
volumetric attack starts. This is to implement visibility of
attacks type and behaviour without the need to continuously
record all received packets.

III. IMPLEMENTATION

This section describes the current nScrub implementation.

A. Packet Processing Framework
In inline packet processing applications, packet processing

must be quick, low-latency and efficient. In order to achieve
this design goal, nScrub has been coded on top of PF_RING
ZC (Zero Copy). PF_RING ZC [27] is a home-grown flexible
packet processing framework that allows applications to
achieve 10 Gbit line-rate packet capture and transmission, at
any packet size. In addition to speed, with PF_RING ZC it is
possible to perform all operations in zero copy, thus saving
memory bandwidth, optimising latency, and reducing CPU
load. Furthermore as the kernel is bypassed and the NICs have
no IP, it guarantees that the system running the scrubber is not
affected by DDoS attacks. Operations include packet balancing
across multiple processing threads and interface-to-interface
packet forwarding in zero copy. Due to the high 10 Gbit packet
rate, multiple processing units are needed for implementing the
data path component. When traffic enters the policer, it is split
across the various processing units in zero copy by means of a
load balancing function.

4. Load balancing with PF_RING ZC

This way packets belonging to the same flow are all bound
to a specific processing unit, as otherwise filtering or scrubbing
techniques based on stateful algorithms may do not operate as
expected. For instance the SYN Cookie algorithm will not
work if packets belonging to the same source and destination
pair are not all handled by the same processing unit. Load
balancing is performed by a distribution unit that uses a hash of
the IP address to select a destination processing unit.
B. Core Features

The current implementation features:
• 10 Gigabit full-duplex packet processing based on

PF_RING ZC, with hardware bypass support when
available in the network adapter.

• Hardware-bypass support (when available in the
network adapter) based on a watchdog/heartbeat
mechanism, to keep forwarding traffic in case of system
failures, including application crashes, system reboot, or
other software/hardware failures.

• Support for symmetric/asymmetric working modes. In
asymmetric mode the system is able to inspect inbound
traffic only (from the Internet to the target network),
whereas in symmetric mode both traffic directions are
inspected.

• Routing support: it is possible to re-route traffic using
BGP diversion techniques and re-inject traffic towards
the target network.

Datapath

Load
Balancer

Processing

Processing

Processing

Processing

Load
Balancer

• Support for lists (set of subnets), including (but not
limited to) white and black lists (implemented with
radix trees). Additional lists, such as grey lists, can be
defined for applying selected policies/profiles to
specific subnets.

• TCP traffic check algorithms including SYN Cookie
[32, 33] and SYN Sanity Check, that include active and
passive checks for enforcing compliancy with the RFC
specification.

• ACL-like filtering on TCP/UDP source/destination port,
ICMP type accept/drop, etc.

• DNS packet check algorithms, and payload pattern
matching for filtering layer 7 attacks.

• Rate limiting, including the ability to rate based on
source/destination IP, and traffic type (implemented
with leaky buckets algorithms).

• Traffic mirror through virtual interfaces (i.e. PF_RING
ZC queues) for connecting packet-to-disk applications,
traffic analysis applications, and IDSs.

• Low bandwidth and slow-DDoS attack detection by
forwarding packets to ntopng.

• RESTful API (see figure 2) for checking the system
status and changing the system configuration (policies,
access control lists, etc.) at runtime.

III. VALIDATION
This section describes how the system has been validated

and what is the expected application performance. In order to
verify the performance on different setups, we have performed
tests using real traffic in both symmetrical and asymmetrical
traffic configurations. The feedback received by users
protecting their production network using nScrub has helped us
to improve the algorithms and mitigation strategies. While
advanced users and administrators often prefer highly
configurable systems, our development efforts are going
towards nearly zeroconf configuration. We are confident that
by quickly detecting variations of attack vectors, we can
improve mitigation by dynamically selecting adequate
responses. For this reason we believe that flexibility and
adaptability at nearly zeroconf is not only a desired feature but
the ultimate requirement if we want mitigation technologies to
become widely adopted.
A. Effectiveness

nScrub has been tested using traffic generated using known
booter's leaked toolkits [34, 35] and packet captures (recorded
during real DDoS attacks) at increasing packet rate. Our tests
also include three of the most common attack vectors: SYN
flood attacks [29, 33], TCP-based amplification attacks [30,
32] and UDP-based amplification attacks [31]. In all the
performed tests the system protected by nScrub was able to
stay up with no significant impact in the response time.
B. Performance

The performance tests have been done on a low-end
sub-1000$ Dell 220, based on an Intel Xeon E3 processor.
nScrub was installed on a E3-1230 v3 @ 3.30GHz dual-
channel with 4 cores and hyper-threading enabled. The system
was equipped with 4 DDR3 8GB 1600MHz RAM modules and

a dual-port Intel 82599ES-based Intel 10 Gbit NIC. The
mitigation system was configured with four processing threads,
each bound to a different physical core. nScrub was
benchmarked during four different attack types using a traffic
generator based on PF_RING ZC simulating real traffic from a
SYN flood and UDP-based amplification attacks. In all the
tests, we have selected the smallest packet size (10 Gigabit line
rate at 14.88 Mpps), this to evaluate the system performance in
the worst case scenario.

For SYN flood attacks, two mitigation methods have been
implemented and compared: SYN Cookie and SYN Sanity
Check. Contrary to the SYN Sanity Check that does not
challenge traffic, the SYN Cookie method needs to inject at
least one packet back for every processed SYN in order to
validate clients. As shown in Figure 5, nScrub was able to
process 96.7% of all traffic using the SYN Sanity Check and
86.6% or about 13 Mpps using a SYN Cookie challenge.
Performance degradation is reached with memory exhaustion
as the SYN Cookie requires more resources to forge and inject
the traffic than other mitigation techniques.

5. Traffic processing speed (14.88 Mpps ingress rate)

Application scalability is implemented through RSS that
can partition traffic across various virtual queued to which
individual scrubber threads connect.

6. Forwarding speed vs RSS (14.88 Mpps ingress rate)

In order to test the system under UDP attacks we have
generated UDP traffic with minimum packet size of 60 bytes.

!
7. Traffic processing performance vs access control list size on 10 Gbit

line-rate traffic (14.88 Mpps ingress).

Check Method Received Lost Injected Forwarded

TCP SYN-Cookie 12.9 Mpps 1.98 Mpps 12.9 Mpps 0

TCP Sanity 14.4 Mpps 0.48 Mpps 0 0

UDP Drop All 14.88 Mpps 0 0 0

UDP Pass All 14.88 Mpps 0 0 14.88 Mpps

RSS Pass-All Whitelist Lookup 10k IPs

1 9.2 Mpps 4.8 Mpps

4 14.88 Mpps 14.1 Mpps

 0 10K 20K 40K 65K

0

14,88

2

4

6

8

10

12

access control list size (subnets)

p
ro

ce
ss

ed
 p

ac
ke

ts
 (

M
p
p
s)

Src IP in black-list
Src IP not in black-list, drop policy
Src IP not in black-list, forward policy

nScrub was configured in two scenarios: a rule to check
and drop (drop all) traffic, and a second scenario to match and
forward all traffic (pass all). In both cases the system was able
to keep up with the ingress traffic, even in the “forward all”
worse case scenario where memory pressure was not too high
thanks to the zero copy packet forwarding support provided by
PF_RING ZC. In other tests we have evaluated the impact of
IP access control lists in the performance of the nScrub. As
depicted in figure 6, with the same hardware configuration
nScrub was able to handle 20.000 rules at full line-rate when
dropping bad traffic, or more than 11 Mpps if traffic was
forwarded.

nScrub was also tested in various production networks
across the Internet. The following pictures are taken from a real
production network during a DDoS attack. In this case nScrub
was deployed inline between the edge router and the internal
network.

8. Network Traffic During DDoS Attack before/after nScrub

As depicted in the above figure, the network was hit by
ingress traffic spikes that accounted 3 to 5 Gbit of traffic. The
figure depicts the same network traffic as observed on the
interface connecting nScrub to the protected network (i.e. after
traffic mitigation): ingress rate passed from a 5 Gbit to a 200
Mbit of only good traffic that passed nScrub controls. Thanks
to nScrub, the ingress traffic peaks have been mitigated and
they did not reach the internal network that was then protected
from the DDoS attack.

C. Robustness
The scrubber can be a single point of failure if the hardware

breaks or nScrub crashes. To avoid that it is important to
implement protection mechanisms. nScrub supports hardware
bypass NICs via a watchdog mechanism, so that in case of
failure the box can let the (unfiltered) traffic go through. In
addition to that, standard network protection mechanisms such
as BGP or VRRP (e.g. Linux keepalived) can be used to react
to failures.

IV. OPEN ISSUES AND FUTURE WORK ITEMS
While nScrub is in production in many locations since more

than a year, we acknowledge that there are some open issues
that need to be tackled in future releases. They include:

• Filtering offload. We are prototyping various
techniques for offloading traffic filtering to external
devices including external OpenFlow-based switches,
embedded switches such as Silicom Redirector NICs and
Intel FM1000-based NICs.

• Plugins are statically compiled into nScrub, preventing
users from upgrading the application without restarting it.
One of the features that we are planning to implement, is

the ability to reload plugins at runtime. This feature has
already been integrated in other applications we have
developed in the past [36]. Once the feature is
implemented, we can enable selective application update
without using offline traffic mechanisms to let traffic go
through, while the application is reconfigured/updated.

• Implementation of additional plugins for sanitising
protocols such as SIP and RTP. This would allow nScrub
to discard protocol requests that are either invalid or
potentially dangerous.

• Currently nScrub is able to search specific strings at a
specified packet payload offset (implemented with
memcmp()-like functions). While this feature is enough
for most users, we are planning to add support for regular
expressions or exact pattern/string matching (faster than
the former in terms of CPU cycles) that are popular
techniques for filtering layer 7 attacks.

• Low rate DDoS attack detection using statistical
analysis [37, 38]. Having designed nScrub as a high-speed
packet scrubber, we believe that this type of detection
should be performed on an external application that can
keep flow state information. In fact, implementing this
functionality into nScrub, might not be a good idea as
specific attacks could leverage on flow state information to
tear down nScrub and thus disrupt Internet connectivity.
For this reason we are implementing statistical traffic
analysis in ntopng that detects non-volumetric DDoS
attacks and injects into nScrub specific rules for dropping
them.

V. FINAL REMARKS
This paper has covered the design and implementation of a

pure software-based DDoS mitigation application named
nScrub. It leverages on several years of research carried on by
the authors in the field of high-speed packet processing and
traffic monitoring. nScrub core features include traffic filtering,
rate limiting and proxying, as well as scrubbing popular
protocols such as DNS. The integration of network traffic
visibility with policy enforcement allowed us to create a tool
open to third party applications, while implementing facilities
typically present in high-end hardware devices that are unlikely
to be deployed at the edge of the network due to their high cost
and complexity.

The application has been validated both in a laboratory
using synthetic traffic, and for over a year in production
networks with live traffic. The validation phase has
demonstrated that using a sub-1000$ server, nScrub performs
well enough for protecting networks connected to 10 Gbit
links. This makes it practically deployable at the edge of the
network for providing both traffic visibility and the
enforcement of a wide range of network traffic policies.

ACKNOWLEDGMENT
The authors would like to thank users and early adopters of

nScrub who have tested it in real-life traffic scenarios. Without
their help, feedback, comments and suggestions, we would not
have been able to validate it on heterogeneous setups and real-
life challenging deployment locations.

AVAILABILITY
nScrub can be downloaded at http://packages.ntop.org/.

REFERENCES
1. Akamai, Akamai’s [state of the internet] / security, Q4 2015 Report,

2015.
2. Mar Callau-Zori, Ricardo Jiménez Peris, Vincenzo Gulisano, Marina

Papatriantafilou, Zhang Fu, and Marta Patiño Martínez. STONE: a
stream based DDoS defense framework. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, pages 807–812.
ACM, 2013

3. Jinghe Jin, Chaetae Im, and Seung Yeob Nam. Mitigating HTTP GET
Flooding Attacks through Modified NetFPGA Reference Router. 2009.

4. Mattijs Jonker and Anna Sperotto. Mitigating DDoS Attacks using
OpenFlow-based Software Defined Networking. In Proc. of the 9th IFIP
WG 6.6 International Conference on Autonomous Infrastructure,
Management, and Security (AIMS’15), pages 129–133, 2015.

5. Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz.
Exit from Hell? Reducing the Impact of Amplification DDoS Attacks. In
Proceedings of the 23rd USENIX Security Symposium, August 2014.

6. Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz.
Hell of a Handshake: Abusing TCP for Reflective Amplification DDoS
Attacks. In Proceedings of the 8th USENIX Workshop on Offensive
Technologies (WOOT ’14), August 2014.

7. Lukas Krämer, Johannes Krupp, Daisuke Makita, Tomomi Nishizoe,
Takashi Koide, Katsunari Yoshioka, and Christian Rossow. AmpPot:
Monitoring and Defending Amplification DDoS Attacks. In Proceedings
of the 18th International Symposium on Research in Attacks, Intrusions
and Defenses, November 2015.

8. Tara Seals, DDoS-for-Hire Costs Just $38 per Hour, InfoSec Magazine,
http://www.infosecurity-magazine.com/news/ddosforhire-costs-just-38-
per-hour/, June 2015.

9. Giancarlo Pellegrino, Christian Rossow, and Matthias Waehlisch Fabrice
J. Ryba, Thomas C. Schmidt. Cashing Out the Great Cannon? On
Browser Based DDoS Attacks and Economics. In Proceedings of the 9th
USENIX Workshop on Offensive Technologies (WOOT ’15), August
2015.

10. F. Ricciato, A. Coluccia, and A. D’Alconzo. A review of DoS attack
models for 3G cellular networks from a system design perspective.
Computer Communications, 33(5), March 2010.

11. Christian Rossow. Amplification Hell: Revisiting Network Protocols for
DDoS Abuse. In Proceedings of the 2014 Network and Distributed
System Security (NDSS) Symposium, February 2014.

12. Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, and Hervé Debar.
Towards Autonomic DDoS Mitigation using Software Defined
Networking. 2015.

13. R. Sadre, A. Sperotto, and A. Pras. The effects of DDoS attacks on flow
monitoring applications. In Proceedings of the 2012 IEEE Network
Operations and Management Symposium (NOMS 2012), Maui, Hawaii,
pages 269–277, USA, April 2012. IEEE Computer Society.

14. J.J Santanna, Roland van Rijswijk Deij, Anna Sperotto, Rick Hofstede,
Mark Wierbosch, L. Zamdebenedetti, Arne Welzel, Christian Rossow,
and Herbert Bos. On Measuring the Impact of DDoS Botnets. In
Proceedings of the 7th European Workshop on Systems Security
(EuroSec 2014), April 2014.

15. Granville, and Aiko Pras. Booters – An Analysis of DDoS-as-a-Service
Attacks. In Proc. of the 14th IFIP/IEEE Symposium on Integrated
Network and Service Management (IM’15), pages 243– 251, 2015.

16. Z. Fu, M. Papatriantafilou, and P. Tsigas. Club: a cluster based
framework for mitigating distributed denial of service attacks. In ACM
SAC’11, pages 520–527, 2011.

17. Schuba, Christoph L., et al., Analysis of a denial of service attack on
TCP, Proceedings of IEEE Symposium on Security and Privacy, IEEE,
1997.

18. ha.ckers.org, Slowloris HTTP DoS, http://ha.ckers.org/slowloris/, 2009.
19. R. R. Kompella, S . Singh, and G. Varghese. On scalable attack detection

in the network. IEEE/ACM Trans. Netw., 15(1):14–25, 2007.

20. K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V.
Maglaris, Combining OpenFlow and sFlow for an effective and scalable
anomaly detection and mitigation mechanism on SDN environments,
Computer Networks, vol. 62, no. 0, pp. 122 – 136, 2014.

21. N. Hachem, H. Debar, and J. Garcia-Alfaro, HADEGA: A novel MPLS-
based mitigation solution to handle network attacks, in 31st IEEE
International Performance Computing and Communications Con-
ference (IPCCC), Dec 2012, pp. 171–180.

22. J. Ioannidis and S. M. Bellovin, Implementing Pushback: Router- Based
Defense Against DDoS Attacks, in Proceedings of Network and
Distributed System Security Symposium (NDSS), 2002.

23. A. Yaar, A. Perrig, and D. Song, SIFF: a stateless Internet flow filter to
mitigate DDoS flooding attacks, in Proceedings of the 2004 IEEE
Symposium on Security and Privacy, May 2004, pp. 130–143.

24. Andrew Carlin , Mohammad Hammoudeh, Omar Aldabbas, Defence for
Distributed Denial of Service Attacks in Cloud Computing, In
International Conference on Advanced Wireless Information and
Communication Technologies (AWICT 2015), 2015.

25. Latin Patel, Vijay Katkar, Chandra Suresh Satapathy, Amit Joshi, Nilesh
Modi, Nisarg Pathak, A Multi-classifiers Based Novel DoS/DDoS
Attack Detection Using Fuzzy Logic, Proceedings of International
Conference on ICT for Sustainable Development: ICT4SD 2015 Volume
2, 2015.

26. Reddit, DDoS Solution Comparison, https://www.reddit.com/r/
sysadmin/comments/3gqeqv/ddos_solution_comparison/, 2015.

27. Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel
Raumer, and Georg Carle, Comparison of Frameworks for High-
Performance Packet IO, Proceedings of the Eleventh ACM/IEEE
Symposium on Architectures for networking and communications
systems (ANCS ’15), 2015.

28. Luca Deri and Francesco Fusco. High Speed Network Traffic Analysis
with Commodity Multicore Systems. In Proceedings of IMC 2010,
November 2010.

29. Mitko Bogdanoski, Tomislav Shuminoski and Aleksandar Risteski,
Analysis of the SYN Flood DoS Attack, International Journal of
Computer Network and Information Security, 2013

30. Marc Kuhrer, Thomas Hupperich, Christian Rossow and Thorsten Holz,
Hell of a Handshake: Abusing TCP for Reflective Amplification DDoS
Attacks, 8th USENIX Workshop on Offensive Technologies (WOOT
14), 2014.

31. Christian Rossow, Amplification Hell: Revisiting Network Protocols for
DDoS Abuse, Network and Distributed System Security Symposium
(NDSS 2014), 2014.

32. Gerald W. Gordon, SYN Cookies, an exploration, GIAC
33. Bo Hang, Ruimin Hu, Wei Shi, An Enhanced SYN Cookie Defence

Method for TCP DDoS Attack, Journal of Networks, 2011
34. Mohammad Karami and Damon McCoy, Understanding the Emerging

Threat of DDoS-as-a-Service, 6th USENIX Workshop on Large-Scale
Exploits and Emergent Threats, 2013

35. Curt Wilson, Attack of the Shuriken 2015: Many Hands, Many
Weapons, http://www.arbornetworks.com/blog/asert/attack-of-the-
shuriken-2015-many-hands-many-weapons/, 2015.

36. Luca Deri, A Component-based Architecture for Open, Independently
Extensible Distributed Systems, PhD Thesis, University of Berne, 1997.

37. Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, Darrell
Kindred, Statistical Approaches to DDoS Attack Detection and
Response, Proceedings of DARPA Information Survivability Conference
and Exposition, 2003.

38. Neha Tewari and Akash Bhardwaj, Flow Statistics Based Detection of
Low Rate and High Rate DDoS Attacks, International Journal of
Scientific & Engineering Research, Volume 4, Issue 5, May 2013.

39. Luca Deri, Maurizio Martinelli, and Alfredo Cardigliano, Realtime
High-Speed Network Traffic Monitoring Using ntopng, Proceedings of
LISA 2014, November 2014.

40. Akamai, Akamai’s [state of the internet] / DrDoS Attacks, https://
www.stateoftheinternet.com/faq-best-practices-drdos-attacks-what-is-dr-
dos-reflection.html, 2015.

