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Abstract
One problem encountered while monitoring gigabit networks, is the need to 
filter only those packets that are interesting for a given task while ignoring the 
others. Popular packet filtering technologies enable users to specify complex 
filters but do not usually allow multiple filters to be specified.

This paper describes the design and implementation of a new dynamic packet 
filtering solution that allows users to specify several IP filters simultaneously 
with almost no packet loss even on high-loaded gigabit links. The advantage is 
that modern traffic monitoring applications such as P2P, IPTV, VoIP monitoring, 
and lawful interception can dynamically set packet filters to efficiently discard 
packets into the operating system kernel according to traffic, calls and users 
being monitored.
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1. INTRODUCTION
With the advent  of gigabit networks, many existing applications such as IDS (Intrusion Detection 
Systems), traffic monitoring applications, and packet  sniffers are faced with problems such as high 
packet-loss and CPU utilization due to the amount  of traffic to be analyzed. The industry and 
academia have produced some solutions both in hardware [9] [18] [7] [27] [28] and software [1] 
[19] [10] [26] [29] able to accelerate packet  capture in order to avoid packet loss due to high 
incoming packet rate. This is the theory as well as in practice that  monitoring applications still need 
to process incoming packets at  high-speed in order not to loose packets. The reason is that all the 
above solutions are suitable for accelerating packet  capture at wire speed with minimum packet 
size, but offer very little in terms of packet filtering as usually the number of filters that  can be 
specified is quite limited. In other application domains such as lawful interception [25] the problem 
is even worse as network operators usually provide a copy of packets flowing through a link where 
several hundred users are connected, while the law states that only the traffic of intercepted users 
can actually be captured and analyzed. This means that  if an xDSL user is intercepted, only a few 
tenths pps (packets per second) need to be captured out of million pps flowing on the link. The 
analysis of VoIP (Voice over IP) traffic is also challenging as monitoring applications analyze 
signaling protocols such as SIP and H.323 in order to dynamically figure out  the IP and port  where 
the video/voice RTP stream for a given call will happen. In general P2P traffic monitoring [22] [23] 
[24] is the most difficult traffic to be tracked as it  is by nature very dynamic, often encrypted/
scrambled, with continuously evolving protocols.

In a nutshell the above examples demonstrate that  high-speed packet capture without  advanced 
kernel filtering capabilities is useless in many scenarios; this is because the overall system 
performance can be improved only if both the kernel and applications do not waste several CPU 
cycles just  for pushing unnecessary packets to user space that will be later discarded. Furthermore 
modern applications require dynamic packet filtering based on simple VLAN/IP address/port 
number criteria whereas popular packet  filtering facilities such as BPF (Berkeley Packet Filter) or 
router-based ASIC filtering [16] allow one (or few) static filter whose reconfiguration has an impact 
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on active packet  capture applications in terms of packet  loss. The aim of this paper is to prove that it 
is possible to provide a positive answer to the above challenges, even using pure software-based 
approaches without the need to adopt costly hardware-based packet capture cards. Of course this 
work can be applied to cases where packet  filtering needs to be performed, as it brings no advantage 
to those applications that need to analyze the whole input stream without any filtering at all.

2. MOTIVATION AND SCOPE OF WORK
The problem of packets filtering is well known [12] and it has been tackled very often in literature. 
Historically the BPF (Berkeley Packet Filter) [4] dated 1990, an evolution of early packet filtering 
efforts carried on at  Carnegie-Mellon University, is still most the widely used solution to the 
problem. BPF includes a packet  filtering machine able to execute programs. Each program is an 
array of instructions that  sequentially execute some actions on a pseudo-machine state. The popular 
tcpdump tool allows the filtering program to be easily inspected (e.g. tcpdump -d “tcp and port 
80”). In BPF checking whether a given packet is TCP takes 8 instructions; a slightly more complex 
check such as verifying if a packet is http, takes more than double the number of instructions. This 
example shows that even pretty simple filters can require a large number of instructions whose 
number increases significantly if boolean operators are used in the filter. The release of BPF greatly 
stimulated the research community as over the years several improvements to BPF have been 
produced [5] [11] [14]. Unfortunately all these efforts basically present the same characteristics:

• Only very few filters can be specified; in general only one filter can be specified although it 
can be divided into sub-filters linked with boolean operators that can be arranged on a filter 
graph.

• The filtering expression is implemented using pseudo instructions whose number is propor-
tional to the number and complexity of the filters.

• Adding/removing filters require a general reconfiguration that  can lead to packet loss as cap-
turing activities might be temporarily interrupted.

• In some cases, packet  filtering is accelerated using network processors that  are no longer 
available on the market.

The conclusion is that the family of BPF-based approaches are suitable for some applications that 
require one arbitrarily complex filter, such as a packet  sniffer like tcpdump or wireshark, but not for 
dynamic applications such as those previously listed.

Hardware-based packet  filters such as those based on FPGA/NPU-accelerated [21] [15] cards, do 
not generally present  limitations in terms of filtering speed as filters operate at wire rate with no 
packet loss. Instead the limitations are:

• Very few filters can be specified (usually in the 8-64 range), as they are limited by the space 
available on the silicon/RAM used for storing filters.

• The more complex the filter, the less filters can be specified. This is because filters are ap-
parently implemented in a similar way to BPF, where the length of the filtering program de-
pends on the filter complexity.

• Filters are usually very basic, compared to the richness and expressiveness of BPF, and 
sometimes they need to be specified in byte-code.

• Negative filtering (e.g. not <expression>, not (tcp and port 80)) is often not  sup-
ported.

• Adding/removing filters can require a general reconfiguration of the hardware (e.g. when 
FPGAs are used), in some case this can take up to a minute, which is not compatible with 
most traffic monitoring applications that require to operate continuously.

• Filters are often not able to detect  mixed encapsulation. For instance if MPLS-tagged pack-
ets are mixed with plain (ethernet+IP) packets and VLAN tagged packets, the filter is not 
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able to operate properly as they usually assume a unique type of encapsulation. This is be-
cause filters are defined with offsets that change according to the encapsulation, hence they 
fail when mixed encapsulations are used, which is very common on high-speed links where 
different kinds of traffic are transported using  tagging.

ASIC-based filtering facilities present in some network routers such as Juniper JunOS or Cisco IOS, 
allow packets to be filtered efficiently using filtering expressions that are not as powerful as BPF 
but sufficient  for most applications. The drawback of using routers as packet  filters is the cost, 
complexity and feasibility of the whole solution, in addition to the fact  that  routers have not been 
designed to be used as packet  filters with continuous/frequent (e.g. when VoIP traffic is analyzed, 
tracking RTP streams based on signaling) configuration changes.

The lack of inexpensive solutions for dynamic packet  filtering in host-based systems has been the 
motivation for this research work. In fact both hardware and software-based solutions, with the 
exception of ASIC-based filtering that is too costly to be deployed in several scenarios, have 
interesting features but  do not satisfy the requirements of modern dynamic network monitoring 
applications (e.g. VoIP  monitoring, lawful interception, multimedia/IPTV, P2P traffic monitoring) 
and applications that need to handle hundreds of filtering rules such as host-based IDSs:

• Ability to specify a thousand different IP  packet filters. A VoIP  gateway can very well sup-
port thousand calls simultaneously, or an IDS can have several hundred active rules.

• Ability to dynamically add/remove filters without having to interrupt  existing applications. 
In other words, filter reconfiguration should not  require stopping the whole system even for 
a short period of time, instead the system must  be able to operate while filters are manipu-
lated.

• The filter processing speed and memory being used should not be proportional to the number 
of filters but independent from their number and complexity.

• Filters do not  need to be as rich as BPF but header-based filtering ‘VLAN/Protocol/IP 
address/port number’ is enough for the targeted applications.

• Due to the nature of applications for which this filter has been designed, only “precise” fil-
ters (e.g. host X and port Y) are supported. Features like ranges (e.g. port  > 1024) and sets 
(e.g. host X or host Y or host Z) are not  supported as, if necessary, they can be ex-
panded in several precise filters that  are instead supported by the system. Note that  with a 
little effort  it is also possible to support subnetworks, that  have not  been taken into account 
as they are used very seldom to monitor the above targeted applications.

• In order to achieve a reasonable performance, the system can have a limited false-positive 
filtering rate (i.e. the filtering system can report that a given packet matches the filters even 
if it not  so) but no false-negative rate (i.e. no packet  matching one or more filter should be 
discarded by mistake by the system).

In a nutshell, the goal of this work is to create a low-cost system based on commodity hardware, 
able to filter packets at  wire speed directly into the kernel so that  dynamic monitoring applications 
receive only those packets they are interested in. This does not  require that the filtering process 
needs to be fully accurate as long as dynamic in-kernel filtering dramatically reduces the amount  of 
work that applications need to carry-on, also because applications might still need to do some extra 
filtering based on more complex criteria (e.g. TCP connection state, or last message exchanged on 
the connection). The goal will be achieved only if this system has a very high performance 
compared to the traditional approach “get every packet and filter it in user-space” applied by most 
applications or whenever (e.g. in FPGA/NPU filtering systems) it is not possible to define as many 
filters as necessary to the application due to hardware limitations.
This work will also be beneficial to applications such as IDSs that need to handle hundreds of rules 
such as alert <source> -> <destination> (<extra criteria>). In fact for each of the above 
rules a filtering rule ‘<source> -> <destination>’ can be set so that packets are early filtered into 
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the kernel and the IDS gets only those packets that  are potentially interesting. Doing the same with 
BPF would result  in a giant  filter ((packet header filter for rule 1) || (packet header 
filter for rule 2)...) that will be inefficient and handled by BPF implementations.

In general the scope of this work is not  to replace BPF-like filters, useful for several applications, 
but to implement a pre-BPF filtering layer designed on the requirements of emerging traffic 
monitoring applications.

Figure 1. Network Packet Journey

For this reason, dynamic filtering is implemented directly into the network device driver because:
• This is the earliest  place on the system where a packet  pops up. This means that if packets 

are dropped on this component due to filtering, all components on top of the device driver 
(kernel and user space applications) will benefit from it. Instead, if dynamic filtering is im-
plemented on top of the device driver or, even worse, in user-space, the amount  of work 
needed to move a packet  from the device to the filtering component will be wasted for those 
packets that do not match any filter.

• This is the layer under the kernel where the BPF (or other BPF-like filters) resides, hence 
dynamic filtering can be used by BPF as a pre-filtering stage in order to filter out  all those 
packets that will definitively not match any BPF filter. From the user’s point of view, this 
means that  dynamic filtering is transparent  to existing applications so no modification at  all 
is necessary in order to take advantage of it.

• Dynamic filtering can take advantage of existing packet capture acceleration facilities that 
can further accelerate the journey of filtered packets through the kernel. 

Reducing (by means of filtering) the amount  of work that  an application has to carry on in order to 
achieve a certain task, has a positive effect on the overall system performance. Later in this paper it 
will be shown that early (in kernel) and efficient packet filter leads to better application 
performance than when using a non-filtering accelerated network driver with filtering inside the 
monitoring application. On the other hand it is out of the scope of this paper to discuss how user 
space application performance can be improved in terms of packet  capture and analysis 
performance.

The following chapter describes the design choices and implementation of the filtering. 
Furthermore it gives an evaluation in terms of performance of the solution.

3. THE DESIGN OF DYNAMIC FILTERS
In order to achieve the planned goal of having thousand of filters that  can be dynamically added and 
removed, for the reasons explained before, it  is obvious that  it  is not feasible to base it on a pseudo-
machine as the one used by the BPF family. Instead it  is necessary to use a different  solution that 
guarantees constant  memory consumption regardless of the number of filters with low/limited false 
positives and no false negatives. Bloom [2] [3] [6] [20] filters are a perfect  solution to the above 
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problem as they are space-efficient, do not present false negatives, and allow elements to be 
dynamically added from the filter set. A bloom filter is an array of m bits all initially set to zero, and 
a set of k different hash functions each of which maps a key value in the 0...m-1 range. When a key 
element  is added to the set, each hash is applied to the key, and all the bits that correspond to the 
results of the hash computation are set  to one. Checking whether an element belongs to the set  is 
pretty simple, as the k hashes are applied to the element, and if all the bits that  correspond to the 
result of the hash functions are set  to one, then the element  belongs to the set. Bloom filters have 
several advantages with respect  to other efficient data structures such as binary search trees and 
tries, as the time needed to add items or check whether an element  belongs to the filtering set  is 
constant, independently of the number of elements that  belong to the set, similar to what happens 
with sparse hash tables [8]. The disadvantage is that  elements can be added to blooms but  they 
cannot be removed as each bit can have been set  to one by several hashes hence if during removal it 
is set to zero this will break the logic. For this reason if removal is necessary a counting bloom [13] 
is used, where each bloom array element is not a bit but a counter that is incremented/decremented 
every time the bit is set/reset. Unlike filtering sets based on hash tables, adding an element  never 
fails due to the overflow of the data structure, although the false positive rate increases as elements 
are added to the set.
Even if bloom filters seem to have several interesting features and few limitations, they are 
generally used only on hardware as their implementation in software can be rather costly because:

• Every time an element  is checked if it  belongs to the set, k hash functions need to be calcu-
lated. This is not a problem in hardware as hashes are computed in parallel, whereas in soft-
ware they are computed sequentially with obvious limitations in terms of speed. It is worth 
to note that computing them sequentially and synchronizing results using semaphores does 
not bring any speed advantage.

• In order to both add and remove elements from the filter set, it  is necessary to use counting 
blooms that  unfortunately have the drawback of using too much memory, as they replace bits 
with counters, in particular if implemented inside the kernel where contiguous memory, nec-
essary for allocating the bloom array, is always an issue.

Starting from the principle that  a bloom-like approach is a good solution to the problem of keeping 
in memory a large amount of filters, the author tried to distillate a hybrid solution able to feature the 
advantages of blooms in a way that it  could be efficiently implemented in software. It is clear that 
given a large number of filters, all the procedural algorithms (e.g. all those based on pseudo 
machines such as BPF) cannot  be used, whereas a “compression” algorithm such as hashes or 
blooms is a good approach as it creates a small “fingerprint” easy to store and maintain. For this 
reason the author has decided to implement software bloom filters with the following differences 
with respect to the original recipe:

• The number of hash functions is limited to 2 (k=2). If the bloom size is large and the hash 
function is good, this solution does not  lead to many false positives while providing a good 
performance as only two hashes need to be computed in the worst  case whenever a packet  is 
checked for inclusion in the filter set.

Figure 2. Counting Bloom Implementation

• As counting blooms are necessary but the author is not willing to pay for the drawback in 
terms of large memory usage, a novel implementation of counting bloom is presented, based 
on the fact that  hash collisions (i.e. two different filters produce the same hash result), in par-
ticular with a large bloom array, are pretty rare. For this reason the bloom array is still im-
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plemented with single bits, but  whenever a new element  is added to the filter set, in case of 
collision, a list  of collisions is maintained. For instance if a new filter is added and the result 
of the hash function is x, if the bloom[x] is one, the collision list  is searched for x. If the col-
lision element  does not  exist, it  is created and its counter is set to two, the original value of 
bloom[x] plus one (the collision), instead if it  already exists it is incremented. If a filter with 
hash y is removed, before setting bloom[y] to zero the collision list  is searched for y; if it  
exists the corresponding bloom counter is decremented by one, if it does not exists bloom[y] 
is set  to zero. In case the bloom counter is decremented and the new value is one, the colli-
sion element for y is removed from the list  as there are no more collisions for such element. 
With this solution it is possible to implement counting bloom at little cost as only the extra 
collision list needs to be maintained with respect to the original bloom.

Before discussing implementation details and performance, it  is worth analyzing how the proposed 
solution behaves in terms of probability of false positives, i.e. packets that  pass the filtering but that 
do not match any rule. The standard equation for calculating the probability of a false positive in a 
bloom filter is q = 1 - (1- (1/m))nk ≈ q = (1- e-nk/m)k where:

• q is the probability that a random bit of the bloom filter is 1.
• n be the number of elements that have been added to the bloom filter.
• m is the number of bits used to implement a Bloom filter.
• k is the number of hash functions that as stated before will be set to 2.

The increased probability of setting k to 2 (a relatively low value as in hardware usually 8 or more 
hashes are used) can be balanced using a large value for m, that  it is generally not  a problem in 
software as in hardware, even when coding inside the kernel operating system that  has more 
constraints than user space. So doing some simple computations [17], supposing to set 1000 filters, 
the memory necessary for having a false negative probability of 10-6 is about 244 KB. This means 
that implementing blooms properly, it  is possible to dramatically reduce the amount of packets to be 
analyzed by the monitoring application at the cost  of few KB or memory, no false negatives, and 
with a constant  filtering time as it  is not proportional to the number of filters and bloom dictionary 
size.

Bloom filters are rather easy to implement as they are a contiguous array of bits that  are set to 0/1 
according to a hash function calculated on some input value, that is usually a concatenation of 
specific packet  properties such as VLAN id, IP address, protocol and port. This concatenation is not 
unique as it is affected by the nature of the monitoring application how packets are filtered out.

Application Type Packet Filtering Criteria

P2P IP (P2P server).
Port, used to track default P2P ports.
P2P Session (e.g. TCP, IP address/port).
Payload.

Lawful Interception Intercepted IP address.
Port (e.g. radius/1812) regardless of the user.

VoIP, Streaming
IPTV

Signaling protocol (e.g. H.323, SIP: UDP and port 5060).
RTP audio/video (UDP, IP address/port).
RTCP for audio/video synchronization.

IDS Home network (IP adddress/mask) to be analyzed.
Port (e.g. http/80) where signatures are searched for match.
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Table I. Comparison of Filtering Criteria based on Application Type

The previous table shows that there are no common criteria for filtering traffic among the listed 
applications, although all of them are pretty similar. In order to satisfy all of them, the author 
decided to compute the value of the bloom hash function on the concatenation of protocol, IP 
address and port.

Figure 3. Bloom Hash Calculation

This means that  for each incoming packet, the hash function in the worst  case is calculated twice on 
both the source and destination IP  address/port  using the same protocol value. Note that if the match 
using the first  hash fails, the second hash is not  computed at all. If some filtering rules require a 
wildcard, the value used for the corresponding hash element is set  to zero. For instance in the rule 
“TCP/any-address/port=80” the value for the any-address is set to zero.
Wildcard implementation however is not cheap as:

• When the rule is added to the dictionary, its wildcard value is zero. Note that  this algorithm 
does not  lead to errors whenever the wildcard is used on a field where zero is a valid value 
(e.g. protocol id 0 corresponds to IP).

• When a packet  is searched for match, for each wildcard value, both the real packet  value and 
the wildcard need to be used in the hash. For instance if port can have a wildcard value, two 
hashes need to be calculated (protocol/ip/port  and protocol/ip/0) hence the bloom dictionary 
is checked twice, one per hash value.

The consequence is that using wildcards with blooms is possible, if this practice is limited to one or 
two fields at most, because wildcard support  significantly increases filtering time. Another practice 
to be avoided is the ability to handle large value ranges, such as IP  addresses with a small mask 
(e.g. /16), because it  will be necessary to explode all the addresses and compute a hash with each of 
them. If ranges support  is mandatory, then it is recommended to implement several blooms one for 
each address space (e.g. bloom1 will handle proto/ip address with mask 32/port, bloom2 will handle 
proto/ip address with mask 24/port, and so on) than to have a single bloom and compute the hash 
with all the possible range values). Luckily all the monitoring applications taken into account into 
this work require precise matching with limited wildcard support, however it  is worth to mention 
that if value range support  and wildcard is strongly required, either some tricks are used or bloom 
filters need to be avoided as they are not adequate in terms of performance and false positive rate. 
In general, the work described into this paper is quite general and from case to case it  can be 
implemented on a different  way depending on the measurement  requirements of the monitoring 
application.

4. IMPLEMENTING DYNAMIC FILTERING
While it is desirable to have a perfect filtering algorithm, monitoring applications can tolerate a 
relatively low false positive rate at  the cost  of dramatically reducing the amount  of work that they 
instead would have to carry on without  any kind of filtering. Therefore the idea is to implement a 
two stage packet  filtering: in addition to the already implemented traffic filtering and selections 
facilities, a lower filtering layer based on bloom filters is used to reduce the number of packets that 
are forwarded to the application and that will be discarded later on.

Proto IP Address Port

8 32 16
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Figure 4. Two Stage Traffic Filtering

In order to efficiently implement  bloom filtering and avoid modifying exiting applications, the best 
place to put them is inside the kernel as:

• Early packet filtering (as close as possible to the network adapter from which packets are 
received) reduces the amount of work necessary to drop filtered packets.

• Implementing it  under the BPF layer facility used by most  applications makes it transparent 
to the application while significantly improving the overall performance. 

• Bloom complexity and memory requirements are rather limited, which makes them suitable 
to be implemented inside the kernel, where there are more limitations than in user space.

The linux 2.6 operating system has been selected as reference platform for the implementation. For 
performance reasons, blooms should be implemented as close as possible to the network adapter 
and the author has decided to implement them inside the network device driver rather than inside 
the kernel as this is the first place where incoming packets show up. The drawback of this design 
choice is that  the implementation is NIC-dependent, even if as explained later in this paper, porting 
the code across different  adapters is pretty simple as all the network device drivers share the same 
data structures hence  most of the code can work with no change. The author selected the Intel GE 
adapter (e1000 driver) as reference card, and then ported the code to the Broadcom GE adapter (tg3 
driver) in order to verify the code portability and as well demonstrate that  the work was not tight to 
an adapter but that is pretty general. 
On linux, packets are fetch from network adapters using NAPI, a network API that implements 
efficient packet polling. This means that whenever there is an incoming packet  just received by the 
adapter and ready to be handled by the driver, NAPI does the job by calling a function (e.g. tg3_rx() 
on the Broadcom driver) that polls packets out of the adapter. 

Figure 5. Packet Journey from NIC to User Space

Bloom filtering is implemented into this function, so that  only those packets that satisfy the bloom 
filters are returned, whereas those having no corresponding filtering rule are dropped at  this stage 
and never handled by NAPI. The advantage of this solution is that  packets do not enter at  all the 
protocol stack and hence there is no need to allocate memory (this is called skbuff or socket  buffer 
on Linux) to store the packet that will then be deallocated later when the packet is dropped. 
Reducing the number of memory (de)allocations is already a significant performance improvement 
as this has to be done for each incoming packet.
NAPI is based on interrupts: an interrupt is generated as soon as an the adapter receives an 
incoming packet. At this point  NAPI takes over the control, disables NIC interrupts and starts 
polling packets as long as there are packets to receive. When no more packets are available, 

NIC

NIC Device Driver

Linux Kernel

User Space

NAPI Packet
Journey

Bloom
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interrupts are restored. In the current  Linux kernel implementation, packet polling is a single thread 
of execution, meaning that only one NIC at  a time can be polled and that  packet polling is a start-
and-stop activity: at each NAPI polling session only some packets are fetched, then the kernel 
carries on other activities, then polling continues. Although this mechanism is rather efficient, it 
does not  fully exploit  multi-core/processor architectures where it would be possible to run several 
polling threads on different cores/CPUs. For this reason the author has implemented bloom filtering 
in two flavors:

• In the first  implementation, the function called by NAPI for polling packets (e.g. tg3_rx() for 
Broadcom adapters) has been enhanced with bloom filtering, so as soon as NAPI fetches 
packets, before they are returned to NAPI they are filtered and then passed to NAPI. This 
approach requires very little code changes as it  is simply an enhancement  over the existing 
NIC driver.

• In the second implementation, as soon as the network card is initialized, a kernel thread is 
allocated for each active NIC. This thread, that can be spawn on a physical core/CPU (a.k.a. 
processor affinity) or be bounced across CPUs (this is the standard behavior for kernel 
threads under Linux). Each thread acts as a private NAPI poller for the NIC as it  continu-
ously polls packets as NAPI does (e.g. disabling/enabling interrupts as needed). In this solu-
tion, packets are polled as soon as they become available, then filtered with blooms and if 
they pass this stage they are pushed up the network stack by calling the netif_rx() function. 
The obvious advantage of this approach is that packet latency is decreased, but  the greatest 
advantage is that the the NIC never interrupts the linux kernel as is the NIC that  pushes 
packets when necessary. In particular with bloom filters when an application needs only a 
small subset of packets (i.e. most  of the packets are discarded), the kernel will be interrupted 
by netif_rx() only for those packets that pass the filter. Instead of using the classical NAPI, 
the kernel would have to call NAPI (hence be interrupted during its activities) several times 
as there are many incoming packets, although most of the times NAPI will not return any 
packet, as most  of them will not pass the bloom filters. The drawback of this approach is that 
the code is more complex with respect to the first implementation, as kernel threads need to 
be started/stopped according to the NIC state, problem that  does not  be to be addressed in 
the first implementation.

In the following section, the performance of both approaches will be analyzed and compared in 
order to quantify the speed advantage of the threaded-NAPI over the classical NAPI.

As blooms are implemented inside the kernel whereas applications run in user space, it has been 
necessary to implement  a way for applications to pass commands (add/remove/reset blooms) to the 
kernel. In Unix usually this is done using the sysctl()/ioctl() system calls, but this would have 
required modifications to the socket layer and also to the libpcap. Therefore the author has decided 
to use a different solution that has the advantage of allowing existing applications to immediately 
take advantage of this work without any code change. Each bloomed-adapter registers a few entries 
into the /proc/net/ethX (where X is the index of the ethernet interface as listed by Linux) 
filesystem so that filters can be manipulated from user space or even from the command line:

• /proc/net/ethX/enable

• /proc/net/ethX/reset

• /proc/net/ethX/rules

Setting enable to 1 means that all incoming packets on the adapter ethX are first filtered with 
blooms and then passed to upper layers only if they pass the filters, whereas 0 disable blooms and 
everything works as without  blooms. Setting reset to 1 causes all bloom filters to be reset and all 
existing filters to be removed. The rules entry is the most  interesting as it allows filters to be added/
removed as shown below:

• echo “+ip=192.168.0.10,port=80” > /proc/net/eth1/rules  [add filter]
• echo “-proto=tcp” > /proc/net/eth1/rules     [remove filter]
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As you can read, filters can be manipulated in a user-friendly way from the command line or from 
applications  in a simple way. However it is worth noting that filters are specified per network 
interface and that  due the way blooms work, it is not  possible to list  stored filters being them stored 
as array of bits. For further implementation details, readers are advised to read the source code of 
the driver.

5. PERFORMANCE EVALUATION
The platform used to evaluate the implementation is a dual Xeon 3.2 GHz with HyperThreading 
(total 4 CPUs) equipped with a dual Intel Gbit card 64-bit/PCI-X and Linux 2.6.13. The traffic 
generator is an IXIA 400T  equipped with 4 Gbit ethernet cards. The goal is to evaluate the 
performance on a real environment, hence the traffic has been injected on both adapters 
simultaneously so that we simulate a network tap that  sends each traffic direction to each card, one 
for RX and one for TX. A simple packet  capture application based on the standard libpcap has been 
developed. This application sets a few bloom filters and counts the number of full (i.e. no header-
only or partial capture) packets received thorough libpcap on the specified adapters. A test session is 
successful if and only if there is no packet  loss, i.e. all the packets sent  by the traffic generator that 
pass the bloom filters are received by the application. In each test  session, the IXIA sends a 
specified number of packets so that  the pcap application can count the number of packets that  have 
been received, and hence verify if there has been some packet loss. In all tests the IXIA injected a 
fixed number (300 million) of TCP packets with a fixed source (10.10.10.1) and an increasing 
destination (192.168.0.0-254). The following table shows the test  outcome using the threaded 
version of blooms, and positions it  with respect  to the standard Intel driver and the same pcap 
application with user-space packet filtering. Note that:

• As there is only one IP match (i.e. match rate is 1:256) and the packet  format is static, the 
filter does not require packet  parsing as it  simply checks a 32 bit  integer (destination IP ad-
dress).

• In case of vanilla kernel, the kernel/driver do not  discard packets that are all received by the 
application.

ID Intel

Driver

Bloom

Filters

Packet

Size

Total Input Rate
(both adapters)

System

Load

Packet Loss

1 Threaded No filters 900 bytes 270 Kpps 1.14 No

2 Vanilla No filters 900 bytes 270 Kpps 3.12 Moderate (< 10%)

3 Threaded One IP match 900 bytes 270 Kpps 1.66 No

4 Threaded No filters Random 
64-1518

890 Kpps 1.34 No

5 Vanilla No filters Random 
64-1518

890 Kpps 2.45 Moderate (< 10%)

6 Threaded One IP match Random 
64-1518

890 Kpps 1.40 No

7 Threaded No filters 64 bytes 2.89 Mpps 3.68 Moderate ( < 20%;
interface counters do not 

keep up with traffic)

8 Threaded One IP match 64 bytes 2.89 Mpps > 4 Strong (> 20%)

Table II. Bloom Performance Evaluation
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Using the IXIA ability to precisely increase input  traffic rate, it has been verified that  the pcap 
application starts loosing packets when the input rate exceeds 1.8 Mpps. This is an excellent result 
as:

• It  is a vast improvement  over the vanilla Intel driver and it is more that enough for most 
monitoring applications as this is an extreme operating condition. Furthermore this technique 
shows that it’s possible to handle continuos packet bursts with no loss and little system load 
(e.g. please refer to test 6).

• Even if blooms are not used, this technique features a high performance packet capture ac-
celeration, due to the kernel threads that pump packets faster than the standard NAPI does.

• The above numbers do not  change if a few hundred non-matching blooms are used in addi-
tion to the matching bloom. This demonstrates that filtering performance is not  affected by 
the number of filters, but just false positive rate.

• This technique overcomes in terms of performance existing technologies. Just  to give an 
idea, on the same system and in the same conditions, nCap [19] presents some packet loss 
over 560 Kpps whereas with this technique we need to go over 1.8 Mpps to see some packet 
loss.

• The non-threaded version of blooms has filtering performance between the vanilla linux and 
the threaded version, although it  does not have any improvement in terms of accelerating 
packet capture as the threaded version does.

6. DYNAMIC FILTERING IN REAL LIFE: P2P TRAFFIC ANALYSIS
As explained before, dynamic filtering is very useful in every application and in particular to those 
situations where simple filters need to be added/removed very quickly. During the implementation 
phase, the author has developed a test  application used to verifying the implementation. The 
application is a simple P2P accounting application that works as follows. Instead of accounting P2P 
traffic that it  is quite hard  using classic signature-based techniques, the application filters out non-
P2P traffic using blooms, hence by difference it accounts P2P traffic. At  startup the application adds 
some static filters for detecting well-known non-P2P traffic (e.g. DNS, SMTP, POP3) that is 
discarded by blooms used in a negative form, as all traffic that matches blooms is not  forwarded but 
only the unmatched traffic. Note that usually there is no P2P  traffic on those ports/protocols as 
firewalls usually check those ports for consistency (e.g. internet SMTP traffic is between two peers 
that both use port 25, so a communication between port 25 and port  Y, where Y != 25, won’t  be 
allowed)  so the application does not have false positives. The rest  of the traffic is passed to the 
application that analyzes the packets payload and if known traffic on a non-standard port is detected 
(e.g. http on a port that’s not 80), a new bloom filter is dynamically added in order to filter out  this 
traffic. Although conceptually simple, the application demonstrated to account  P2P traffic pretty 
well in addition to the advantage of configuring known traffic (a simple task for a network 
administrator) that has very well known patterns (e.g. they are often documented in RFCs) instead 
of pretending to detect  P2P traffic that uses non-standard protocols changing over the time. 
Furthermore this application has been a good playground for testing both dynamic filtering and 
false positive rate, besides demonstrating that  dynamic filtering is important when very dynamic 
traffic needs to be monitored effectively.

7. OPEN ISSUES AND FUTURE WORK
Bloom filters have been implemented per network interface hence all packets received from a 
bloom-enabled interface are filtered. Instead BPF filters are set per network socket  (Linux) or BPF 
device (BSD). The main difference is that  per-interface filtering is much more efficient as only 
those packets that  pass filters are moved on upper layers, whereas per-socket  filtering is more 
flexible as each socket can have a different filter. As the author wants to have a fast  implementation 
able to sit under the BPF layer, blooms have been implemented per-interface (i.e. the bloom 
filtering takes place on all packets received by the interface) however it  might be interesting to 
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explore how the overall performance changes when blooms are implemented per-socket  (i.e. the 
bloom filtering happens only on packets received by the socket) similar to BPF. This is currently 
under implementation in PF_RING [30].

8. FINAL REMARKS
This paper described a novel approach to packet  filtering that  enables the creation of efficient 
network monitoring applications that  need to track dynamic traffic; these applications include P2P, 
VoIP, IPTV traffic monitoring and lawful interception. This approach overcomes the limitations of 
BPF-like filters both in terms of number of simultaneous filters and ability to dynamically add or 
remove filters without any reconfiguration or downtime.
Furthermore the threaded bloom implementation shows that it  is possible to capture and filter 1.8 
Mpps without any packet  loss on a commodity PC, which is a vast improvement with respect to  the 
existing state of the packet  capture techniques and more than enough for most  monitoring 
applications.

9. AVAILABILITY
This work is distributed under the GPL2 license and is available at  the ntop home page (http://
www.ntop.org/) and other mirrors on the Internet.
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