
An Object-Oriented Approach to the
Implementation of OSI Management

Luca Deri, Eugenio Mattei

Despite the advantages offered by the generality of its model, the effort put into its
definition by the standardization bodies, and the support of government organizations,
OSI management is still far from reaching a predominant stand in the market of network
and systems management. Proprietary architectures, products and, especially in the
United States, SNMP are still the preferred solutions for many users. One of the main
obstacles to the wide adoption of OSI management is the supposed difficulty of its
implementation.
This article will attempt to show that such complexity can be resolved if the proper tools
are chosen and if the intrinsic object-oriented features of OSI management are exploited.
The design and implementation of an OSI management library is described. It will be
shown that a library implementation is feasible and can suitably exploit the object-
oriented structure of the management information: the definition of automatic tools for
the implementation of new managed object classes is also covered. Finally, implications
related to the handling of extension of the managed object class behaviour are identified.
Familiarity with OSI management, object-oriented terminology and C++, though not
strictly required, is certainly useful.

Keywords: Network Management, OSI Management, GDMO, ASN.1, C++

Introduction

OSI Management [1] encompasses the definition and implementation of

management tools that use the OSI application layer protocols for communication.

Base components of OSI management are: the Management Model, the Information

Model, communication protocols used for the actual transfer of management

information, and a number of generic resource-independent functionalities

collectively called Systems Management Functions. The Management Model [5] is

defined in terms of management applications that perform management activities in

a distributed manner by establishing associations between system management

entities (agents and managers). The manager system manages the network resources,

according to a defined policy, by issuing remote management requests to one or

more agent processes. The agent process manages the real resources by executing the

requests issued by the manager.

The OSI Information Model [6, 7] structures the management information according to

a description of the resources to be managed in the network. Examples of such

resources may be a host, a routing table, a network device and an application

process. The information model deals with managed objects that are abstractions of

2 An Object-Oriented Approach to the Implementation of OSI Management

real resources for the purpose of management. They embody the management

information for management applications. The notation used to describe them is

defined in a document entitled “Guidelines for the Definition of Managed Objects

(GDMO)” [8]. ISO has defined the GDMO language to provide a common way to

define the managed information.

The effective transfer of the management information between agent and manager

processes is performed using the CMIP (Common Management Information

Protocol) protocol [3, 4].

This article focuses on the design and implementation of an OSI general-purpose

management library. It describes a true library implementation that may be used as

the kernel of an OSI management application. The guidelines and examples have

been drawn from implementation experience of the authors in the context of

European research projects and in the course of designing and implementing

commercial products.

The library implementation contains a set of functions to be linked to the user

modules to obtain the final application. This solution has been mainly chosen

because it does not contain any system dependent section and therefore it allows

great portability.

1. OSI Management and Object-Oriented Technology: An
Evolutionary Approach

Much of the complexity of the OSI management stems from the generality of its

model. The complexity arises from the amount of validity checking that an

implementation must perform, such as checking if an attribute is member of a

particular managed object class, verifying if a particular instance can be created,

controlling if the specified value is within the specified range. In order to limit this

complexity, an important objective is to define a framework and a set of tools that

perform all these oprations in a general and efficient way, therefore allowing the

implementor to focus on the part of the implementation that does the “real” work.

This goal may be achieved by suitably exploiting the intrinsic object-oriented

structure of the OSI management information.

This section shows that the GDMO constructs can be represented by an object-

oriented language. The C++ language has been chosen since it adds powerful object-

oriented extensions to C, which is by far the most widely used language in network

applications.

Chapter 1 - OSI Management and Object-Oriented Technology: An Evolutionary Approach 3

In GDMO the key construct used to define the structure and behaviour of the

managed object classes (MOCs) is the MOC template. This template identifies the

inheritance relationship, the contained packages behaviour, the attributes,

notifications and operations allowed in the MOC. A GDMO class template is the base

of the formal definition of a managed object. It is defined in the following way:

<class-label> MANAGED OBJECT CLASS
[DERIVED FROM <class-label> [,<class-label>]*;]
[CHARACTERIZED BY <package-label> [,<package-label>]*;]
[CONDITIONAL PACKAGES <package-label> PRESENT IF condition-definition

[, <package-label> PRESENT IF condition-definition]*;]
REGISTERED AS object-identifier;

The above management scheme clearly encompasses object-oriented concepts and

features. In fact a MOC may be considered as a category of managed objects. The

definition of a class is derived from that of another class. The specific peculiarities of

the class that characterizes it with respect to its superclass are defined by means of

the packages specified after the CHARACTERIZED BY construct. The DERIVED FROM construct

defines that this MOC requires all the characteristics of the superclass(es) and the

CHARACTERIZED BY construct specializes it by adding new characteristics. The

characteristics of the properties of a MOC are named its attributes, and each attribute

has a value.

In order to show how this can be expressed in C++, suppose we have the following

GDMO class:

logRecord MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY ...
...

REGISTERED AS {2, 9, 3, 2, 3, 7};

This MOC may be defined in C++ in the following way:

typedef char* ObjectId;

class top {
private:

ObjectId registeredAs;
NameBinding nameBinding;

... };

class logRecord : public top {
private:
...

public:
logRecord() {

objectIdCopy(®isteredAs,
“logRecord”); ...};

... };

Please note that the symbolic value of the object identifier, logRecord in this case, is

stored, rather than a sequence of integers: this is mapped internally into the real

value 2.9.3.2.3.7, following the same approach used in Isode [13] with the oidtable

files.

4 An Object-Oriented Approach to the Implementation of OSI Management

With this C++ definition, it is possible to exploit the inheritance between the MOCs

thus avoiding the need to redefine the same attribute, registeredAs: for each class it is

defined once and instantiated according to the GDMO definition of the derived class.

The package template is a combination of behaviour definitions, attributes, attribute

groups, operations, notifications and parameters. It may be referenced in a MOC

template and is defined in the following way:

<package-label> PACKAGE
[BEHAVIOUR <behaviour-definition-label> [,<behaviour-definition-label>]*;]
[ATTRIBUTES <attribute-label> propertyList [<parameter-label>]*

[, <attribute-label> propertyList [<parameter-label>]*]*;]
[ATTRIBUTE GROUPS <group-label> [<attribute-label>]*

[, <group-label> [<attribute-label>]*]*;]
[ACTIONS <actions-label> [<parameter-label>]*

[, <actions-label> [<parameter-label>]*]*;]
[NOTIFICATIONS <notification-label> [<parameter-label>]*

[, <notification-label> [<parameter-label>]*]* ;]
REGISTERED AS object-identifier;

where

propertyList −> [REPLACE-WITH-DEFAULT]
[DEFAULT VALUE value-specifier]
[INITIAL VALUE value-specifier]
[PERMITTED VALUES type-reference]
[REQUIRED VALUES type-reference]
[get-replace]
[add-remove]

value-specifier −> value-reference DERIVATION RULE <behaviour-derivation-label>
get-replace−> GET | REPLACE | GET-REPLACE
add-remove −> ADD | REMOVE | ADD-REMOVE

The package template can also be modelled using object-oriented design. A package

may be defined as a C++ class that contains instances of attributes, attribute groups,

actions and notifications. Suppose we have defined the following GDMO package:

examplePackage PACKAGE
BEHAVIOUR exampleClassBehaviour;
ATTRIBUTES objectName GET,

Error-Counter PERMITTED VALUES AttributeModule.CounterRange
REQUIRED VALUES AttributeModule.CounterRange
GET;

ATTRIBUTE GROUPS attributeGroup;
NOTIFICATIONS protocolError;

REGISTERED AS {joint-iso-ccitt ms(9) smi(3) part4(4) package(4) examplepackage(1)}

Chapter 1 - OSI Management and Object-Oriented Technology: An Evolutionary Approach 5

This package may be defined in C++ in the following way:

class examplePackage : public Package {
private:

ObjectNameAttribute objectNameAttribute;
ErrorCounterAttribute errorCounterAttribute;
AttributeGroup attributeGroup;
ProtocolErrorNotification protocolErrorNotification;

public:
examplePackage() { objectIdCopy(®isteredAs, “examplePackage”); ...};

... };

where

class Package {
private:

ObjectId registeredAs;
... };

class ObjectNameAttribute :public Attribute { ...
class ErrorCounterAttribute: public Attribute { ...
class AttributeGroup: public AttributeGroup { ...
class ProtocolErrorNotification: public Notification { ...

and the detailed definition of the Attribute and Notification classes is the one given

in 2.1.

In the OSI management environment, the semantics (behaviour definition) of the

various components of a MOC is distinguished from the corresponding format

(syntax). The syntax is defined by the Abstract Syntax Notation One (ASN.1) [2],

which provides a wide variety of types ranging from simple bit strings to complex

structures. The GDMO formalism defines a set of templates to link the semantics of

the various constructs with the syntax of their values: the most commonly used are

the WITH ATTRIBUTE SYNTAX in the ATTRIBUTE template, WITH INFORMATION SYNTAX and WITH REPLY

SYNTAX supporting productions in the ACTION and NOTIFICATION templates. The different

options for syntax management are described in 2.2. Another way to establish this

link is by means of the PARAMETER template. It is defined in the following way:

<parameter-label> PARAMETER
CONTEXT context-type;
syntax-or-attribute-choice;
[BEHAVIOUR <behaviour-definition-label> [, <behaviour-definition-label>]*;]

REGISTERED AS object-identifier;

where

context-type -> context-keyword | ACTION-INFO | ACTION-REPLY |
EVENT-INFO | EVENT-REPLY | SPECIFIC-ERROR

context-keyword -> type-reference.<identifier>
syntax-or-attribute-choice -> WITH SYNTAX type-reference |

ATTRIBUTE <attribute-label>

Parameters qualify and further define the structures in the syntax of attributes,

action requests/responses and notifications; therefore they are most commonly used

6 An Object-Oriented Approach to the Implementation of OSI Management

to associate user responses with actions, operations on attributes, create and delete. A

parameter template not only joins the behaviour with the syntax definition, but also

identifies the context where the parameter may be present in a Protocol Data Unit

(PDU) as expressed by the context-type production. This feature may be exploited not

only for checking purposes, but also in the encoding/decoding phase to restrict the

contexts where the parameter may be present.

The adoption of an object-oriented approach to model the OSI management

information reduces the design of a MOC to an “ad hoc” composition of basic

modules. In this way it is also possible to reuse modules as the attributes in different

classes, thus reducing the amount of code to be written for each MOC but also

making the integration of different modules easier. In fact defining for each basic

piece an API, which in C++ is a set of attributes and methods, allows modules to be

integrated from various implementations and automatic tools to be produced for

their generation and integration.

2. The management framework: library structure

This section shows how to apply the concepts introduced in the previous one. An

implementation of the OSI management library has the following objectives:

• to develop a general-purpose library;

• to limit the size of the code needed to add new MOCs by sharing the code

among MOCs;

• to define tools that automatically generate the code needed to manage

additional MOCs.

2.1 Definition of managed objects

Each MOC may be seen as the integration of the following basic components:

packages, name bindings, behaviour characteristics. Distinct MOCs are derived from

a common superclass, and they are different with regard to the number and type of

their basic components.

class ManagedObjectClass {
protected:

char* ClassName; /* Class name */
ObjectId ClassId; /* Class identifier */
int NumberOfClassPackages;
Package* theListOfClassPackages; /* Package list */
int NumberOfNameBindings;
BindingRecord* theListOfClassNameBindings; /* Name Binding list */
Allomorphism allomorphs; /* List of allomorphic classes */

........ };

Chapter 2 - The management framework: library structure 7

This C++ class models the structure of a MOC. The packages of the class, derived

from the Package C++ class, are stored in the theListOfClassPackages list. The various

name bindings, defined using the BindingRecord C++ class, are stored in the

theListOfNameBindings list. The BindingRecord class, which contains all the information

related to the name binding, may be defined in the following way:

class BindingRecord {
 private:

ObjectIdSuperiorClassId; /* ObjId of the superior class */
ObjectIdBindingClassAttributeId; /* Class binding attrib. identifier */
Bool allowManagementCreation; /* True if creation is allowed through

 management operations */
CreateModifier createModifier; /* Flags: reference and automatic creat. */
Bool allowManagementDeletion; /* True if the deletion is allowed through

 management operations */
DeleteModifier deleteModifier; /* Flags: delete-if-no-contained or

 delete-contained */
....};

The correspondence between these C++ classes and the pertinent GDMO templates

is clear.

The Package class may be defined in the following way:

class Package {
private:
ObjectId PackageId; /* Package identifier */
Bool IsAPresentPackage; /* True if the pkg. is present */
int NumberOfAttributes;
Attribute* theListOfAttributes; /* Attribute list */
int NumberOfGroupAttributes;
AttributeGroup* theListOfGroupAttributes; /* Attribute Groups list */
int NumberOfClassNotifications;
Notification* theListOfClassNotifications; /* Notification list */
int NumberOfClassActions;
Action* theListOfClassActions; /* Action list */

........ };

The attributes derived from the Attribute C++ class are stored in the

theListOfClassAttributes list. The notifications derived from the Notification C++ class

are stored in the theListOfClassNotifications list. The actions derived from the Action

C++ class are stored in the theListOfClassActions list.

8 An Object-Oriented Approach to the Implementation of OSI Management

The Notification class may be defined in the following way:

typedef int Error;

class Notification {
private:

ObjectId NotificationId; /* Notification identifier */
public:

Error BuildNotification(EventReportArgument*, ManagedObjectClass*);
/* Builds the notification filling the
 EventReportArgument for given input MO; an
 error code is returned */

........ };

The BuildNotification method builds the notification for the given ManagedObjectClass

instance, filling the EventReportArgument parameter. This method is used in the

implementation of the Event Forward Discriminators and Log MOCs [7] as described

below.

The Action class may be defined in the following way:

class Action {
private:

ObjectId ActionId; /* Action identifier */
public:

Bool TryToExecuteAction(ActionInfo*, ManagedObjectClass*);
/* This method returns True if the action can be
 executed with success on the input MO, False
 otherwise. The ActionInfo parameter, if not
 applicable to the action, is set to NIL */

Error ExecuteAction(ActionInfo*, ActionReply*, ManagedObjectClass*);
/* Executes the action on the input MO and fills the
 ActionReply; an error code is returned. The
 ActionInfo and ActionReply parameters, if not
 applicable to the action, are set to NIL */

........ };

In the previous class the two methods TryToExecuteAction and ExecuteAction are

defined to execute the action. The first method is used in the case of an action request

with the synchronization set to atomic: for each filtered MO instance, the library

checks whether it is possible to execute the action invoking the TryToExecuteAction

method on the selected MO instance. The ExecuteAction method executes the defined

action.

The framework described above offers the following advantages:

• the management information is modelled as in GDMO: this approach, aside

from its intrinsic coherence, provides extendibility and will allow the

implementation of forthcoming standard functionalities such as management

knowledge functions;

• each class is modelled by exploiting the Attribute class (used indirectly in the

Notification and Action classes): this allows run-time instantiation of the

Chapter 2 - The management framework: library structure 9

MOCs as explained below.

The Attribute class may be defined in the following way:

class Attribute {
private:

ObjectId AttributeId; /* Attribute identifier */
char* theAttributeValue;/* Parsed attribute value */

public:
virtual void Free();
virtual char* Copy(Error, Bool); /* Return a copy of the attr. value */
virtual Result Compare(void*, Bool); /* Compares the input value with the

 attribute value */
virtual char* Get(Bool); /* Return the attribute value */
virtual void* GetResourceValue(Error*); /* Get the value of the associated

 resource */
virtual Result CheckSet(AttrModifier*); /* Check if the attribute value may be

 set according to the AttrModifier*/
virtual Error Set(void*, Bool, /* Set the attribute value according to

 AttrModifier*); the AttrModifier*/
virtual Error SetResourceValue(void*, /* Set the value of the associated

Bool); resource */
virtual Error SetToDefault(); /* Set the attribute value to the

 default value */
virtual Error Add(void*, Bool); /* Add an (a set of) element to the

 attr. value; defined for set-valued
 attributes only */

virtual Error Remove(void*, Bool); /* Remove an (a set of) element from the
 attr. value; defined for set-valued
 attributes only */

virtual Result CheckAction(ActionInfo*); /* Check if the action may be executed
 successfully */

virtual Error Filter(FilterItem*); /* Evaluate the filter item */
virtual Error GetAny_ty(Any_ty*); /* Fills the input parameter with the

 any defined by type related to the
 theAttributeValue value */

...};

Even though it is not possible to describe the meaning of each method in detail, it is

important to note that the principle is to avoid the diversity of the attribute types by

casting and storing the attribute value in theAttributeValue class attribute. In this way

it is possible to define a common Attribute class rather than different classes, one for

each attribute type; different attribute classes are subclasses of the Attribute class. The

attribute value is a string that contains the parsed value1. Let us consider the

following example. Suppose we have this ASN.1 value:

 SimpleSyntax ::= CHOICE {
 numberINTEGER,
 stringOCTET STRING,
 objectOBJECT IDENTIFIER,
 empty NULL }

1Please note that not all the attributes must be “stored”. In fact some of them are very dynamic and
keeping their values wouldn’t make any sense. In this case theAttributeValue attribute points to NULL
and when such attribute is accessed its value is retrieved via the Get method.

10An Object-Oriented Approach to the Implementation of OSI Management

Possible values are (number = 25) or (string = “Hello world !”). This approach, similar

to the one used by the IBM CmipWorks platform [10] that represents the syntax

values using strings, offers several advantages:

•the use of C structures to store attribute values gives rise to the problem of

memory management (allocation, copy, freeing), for instance when an element is

added to or removed from a ‘set/seq. of’; with the use of the string representation

is the system that takes care of it simply concatenating or deleting substrings.

•the string representation is closer to the ASN.1 than a C type; this hides the way

that the value is stored inside the attribute, which may be the string itself (like in

our case), a C type of even an XOM object depending on the user requirements.

•a string is stored in a single adjacent area of memory rather that a C type that may

contain sub-pointers; this is extremely useful to implement a persistent attribute

because we simply have to store the string value.

To provide the highest flexibility the string and the C type representations are used.

The attribute methods have a boolean flag; when this flag is set to FALSE the value,

cast to void*, contains the corresponding C structure, otherwise it contains the string

value cast to void*. Because the attribute value is always stored in the string format,

in the first case the parsing function is invoked to convert the value.

The complexity of the filters, the addition/deletion of members to/from the

attribute, and the filling of any defined by's are moved from the library kernel to

each Attribute class or subclasses. The kernel of the library handles attributes as if

they were of the same type, and each Attribute hides the complexity and the

peculiarities of such attributes. Another advantage of this approach is that the

structure of the library is not complex, thus enabling the possible errors to be

confined to the Attribute subclasses. It is also possible to define two attributes that

share the same syntax but with different methods or vice versa (e.g. same ASN.1 type

with different tagging) defining a common superclass and deriving from that class

the two subclasses that redefine only the non-common section.

The Attribute class is used in the EventForwardDiscriminator (EFD) and Log MOCs to

handle the notifications. When a potential notification is to be evaluated, the

elements of the notification may be seen as a set of Attribute instances. The evaluation

process is simply a sequence of Attribute::Compare method calls. In fact the

DiscriminatorConstruct attribute, present in EFDs and in LogRecords instances, is a filter to

be evaluated against the set of the attributes present in the potential notifications.

This is the same process that is executed to select instances by means of filtering in a

CMIS operation.

Chapter 2 - The management framework: library structure 11

In order to exploit the inheritance relationship supported by the GDMO, each class

should define its own characteristics and allow subclasses to add or redefine

characteristics without having to rewrite everything from scratch. For such reason

the ManagedObjectClass and the Package class contain the following methods:

class ManagedObjectClass {
...
public:

Error AddPackage(Package*);
Error AddNameBind(BindingRecord*);

... };

class Package {
...
public:
Error AddAttribute(Attribute*);
Error AddAttrGroup(AttributeGroup*);
Error AddNotific(Notification*);
Error AddAction(Action*);

... };

With this framework each class can handle and manage packages, attribute groups,

actions and notifications, and identify them with the respective ObjectIds. Each AddXXX

method simply adds the input instance to the theListOfXXX list of instances. In fact

each MOC constructor method contains the methods to add actions, packages, etc.,

dynamically to the class. This feature is important for handling the run-time

definition of the MOCs.

Suppose we have defined the following GDMO class:

exampleClass MANAGED OBJECT CLASS
DERIVED FROM fatherClass1, fatherClass2;
CHARACTERIZED BY examplePackage1, examplePackage2;
CONDITIONAL PACKAGES

examplePackage3 PACKAGE
ACTIONS action1, action2;
NOTIFICATION notification1;

REGISTERED AS {joint-iso-ccitt ms(9) smi(3) part4(4) package(3)
 examplePackage3(3) }

PRESENT IF !....!
REGISTERED AS {joint-iso-ccitt ms(9) smi(3) part4(4) managedObjectClass(3)

 exampleClass(0) }

That class will be handled in the following way:

class exampleClass : public fatherClass1, fatherClass2 {};

exampleClass::exampleClass()
{
Package *examplePackage1, *examplePackage2, *examplePackage3;
Action *action1, *action2;
Notification *notification1;
BindingRecord *theNameBinding;

/* Instanciate and fill every instance */
....
AddPackage(examplePackage1); /* Add the package to theListOfClassPackages list */
AddPackage(examplePackage2); /* Add the package to theListOfClassPackages list */

12An Object-Oriented Approach to the Implementation of OSI Management

if(...) /* The condition on examplePackage3 is satisfied */
{
examplePackage3->AddAction(action1); /* Add action1 to examplePackage3 */
examplePackage3->AddAction(action2); /* Add action2 to examplePackage3 */
examplePackage3->AddNotific(notification1); /* Add notification1 to examplePackage3 */
AddPackage(examplePackage3); /* Add the package to theListOfClassPackages list */

}
AddNameBind(theNameBinding); /* Add the NB to theListOfClassNameBindings list */
....

};

When exampleClass is instantiated, the following methods are called in this order:

• fatherClass1::fatherClass1, fatherClass2::fatherClass2

• exampleClass ::exampleClass

Hence exampleClass exploits the inheritance relationship to instanciate its own

attributes once the father classes have automatically instantiated their own. Another

important feature shown by the example is how to express the GDMO multiple

inheritance (exampleClass is derived from both fatherClass1 and fatherClass2).

Allomorphism, that is the ability for a managed object to act as if it were a member

of another object class, may also be easily expressed with the proposed framework,

by exploiting the value of the allomorphs attribute, member of the ManagedObjectClass

class, which contains the list of all the allomorphic classes.

2.2 Syntax management

Syntax management is handled in two different ways, depending on the availability

in the OSI stack of an automatic encoding/decoding (enc/dec) utility. Some

implementations such as the Finsiel one [11, 12], provide automatic enc/dec; others

(eg. Isode [13]) do not. In the former case the syntax must be registered at the

initialization time and the PDUs are automatically encoded/decoded; in the latter

the application has to encode/decode the PDUs, and no syntax registration is

needed.

Chapter 2 - The management framework: library structure 13

::=

}

ASN.1

ASN.1
Compiler

C tables
(automatic enc/dec)

{
}

#
#

C functions
(no automatic enc/dec)

{

}

f()

 SET {

Fig. 1 - ASN.1 compiler

Generally each OSI stack has an off-line compiler that takes as input an ASN.1 file

and produces tables or functions for the enc/dec depending on the presence of

automatic enc/dec utility.

In both cases the WITH INFORMATION SYNTAX and WITH REPLY SYNTAX productions (as well as

the Parameter template) are used to identify exactly which position the ASN.1 data

type may occupy in a PDU. This has the following advantages:

• strong checking: the errors during the enc/dec are easily identified by

limiting the set of possible data types to analyze;

• enhanced performance: during the enc/dec of specific sections of a PDU

only specific data types that may occur in those sections are scanned.

Depending on the presence of automatic enc/dec, two approaches may be adopted

to handle the syntax management:

• read the file containing the tables for the enc/dec automatically at run-time and

register these syntaxes (automatic enc/dec);

• integrate the functions for the enc/dec in methods of the Attribute class

that are called when a specific data type is to be managed (no automatic

enc/dec).

In the first case a library function is provided:

Error RegisterAbstractSyntax(char* syntaxFile, char* contextFile);

where the syntaxFile is the path name of the file containing the tables for the

enc/dec to be registered and contextFile is the path name of the file that contains

14An Object-Oriented Approach to the Implementation of OSI Management

information related to the context of the attribute. Suppose we have defined the

SimpleAsn1Type type inside the SimpleModule ASN.1 module. The ASN.1 compiler

(Figure 1) will produce for this type the SimpleAsn1TypeTable table that contains the

information to be registered to handle the enc/dec automatically. Supposing that this

data type may be present in an action info or in an event reply, an entry of the

context file is:

SimpleModule.SimpleAsn1Type; {1, 9, 3, 4, 7, 1}; ACTION-INFO, EVENT-REPLY

The RegisterAbstactSyntax function simply links the information in the two input files

and automatically performs the registration of the data types.

If an automatic enc/dec is not present, the Attribute class provides the following

virtual methods:

class Attribute {
 ...
public:

virtual Any_ty* Encode(Error); /* Encode the value contained in theAttributeValue
 attribute */

virtual Error Decode(Any_ty*); /* Decode the value contained in the input
 parameter and stores it into the
 theAttributeValue attribute */

Error RegisterAttrContext(); /* Register the attribute context */
 ... };

The Any_ty type contains the encoded attribute value that will be stored inside the

PDU; this is equivalent to the Isode PE. When a new class is registered, all the

attributes register their context. When a data type is encoded/decoded in the table

corresponding to the context where the data type is present, the attribute matching

the ObjectId of the data type is found. When found, the Encode/Decode method is

called.

The approach described in this section allows a generic framework to handle MOCs

to be defined. The inheritance and the containment relationship are handled and the

GDMO constructs are implemented in a natural and extensible way. The next section

shows how it is possible to automate the implementation of MOCs.

3. Automating code generation

A network management system is not very useful as long as it does not offer tools

to automate the addition of new MOCs. Figure 2 depicts the steps needed to add new

MOCs to the management library.

Chapter 3 - Automating code generation 15

::=
 SET {

}

ASN.1

CLASS
abc

GDMO

C++

{

}

OSI Mgmt
Library

010
00110
00101

OSI Management
Application

ASN.1 - GDMO
Compiler

User Interaction

Fig. 2 - Process of building an OSI management application

The user defines his own MOCs in GDMO and their syntax in ASN.1; the

GDMO/ASN.1 compiler produces the code that implements the MOCs to be

modified by the user in order to define behaviour-dependent functionalities. The last

step is the integration of the library with the C++ code to produce the final OSI

management application.

This architecture uses the management library as the kernel of the management

application and exploits the GDMO/ASN.1 compiler to define the code needed to

implement the MOCs. A user interaction is needed in this process for the following

reasons:

• the behaviour in GDMO is defined in plain English and therefore the code

implementing the behaviour clause cannot be automatically generated;

• the interaction with the real resources still has to be added.

Some protocols exist that define interaction with the real resources, while no

standard or general formal approach exists for the definition of the behaviour. All

the code implementing a new MOC may be produced by an automatic tool, except

for some modules: actions, notification and the behaviour-dependent sections. In

fact, for instance, a method to trigger an action for a certain MOC may be

automatically generated but this method can’t be ‘filled’ by an automatic tool

because the behaviour of this action is described in plain English in the DEFINED AS

16An Object-Oriented Approach to the Implementation of OSI Management

section of the action template. Analogously, attributes are often behaviour dependent

and a get/set operation on an attribute usually causes an interaction with the

corresponding real resources.

The GDMO/ASN.1 tool takes as input an ASN.1 file containing the abstract syntax

and a GDMO file containing the MOCs definition and produces the code to handle

the syntax and to manage the MOCs. Note that this tool can be split into a GDMO

compiler and an ASN.1 compiler. The former generates the code for the MOCs and

the latter the data structures (functions) to manage the syntax. This may be useful

because an OSI stack generally already has an ASN.1 compiler. The GDMO compiler

is simply a tool that ‘assembles’ attribute, behaviour, action and notification

instances driven by the GDMO definitions. All this architecture works if the Attribute

subclasses are defined for each data type because the basic module of this assembly

is the Attribute class instance. The code for the Attribute subclasses may be generated

in two ways: either the existing ASN.1 compiler is not modified and so continues to

produce C data structures and enc/dec functions while a new tool produces the

attribute subclasses, or a single tool is implemented possibly modifying and

integrating an existing ASN.1 compiler. In the former case the Attribute compiler

must know the naming rules used by the ASN.1 compiler to define the C types that it

takes as input and that have been generated from ASN.1. Note that the attribute

compiler may take as input the ASN.1 rather than the C types to generate the

Attribute subclasses; also in this case the naming rules for the compiler must be the

same.

::=
 SET {

}

ASN.1

ASN.1/Attribute
Compiler

Attribute subclasses, C data
types and enc/dec functions

{

}

f()

::=
 SET {

}

ASN.1

ASN.1
Compiler

Attribute subclasses

{

}

a::f()

C data types and
enc/dec functions

Attribute
Compiler

{

}

f()

Fig. 3 - Generation of code for the Attribute subclasses

Chapter 3 - Automating code generation 17

The Attribute compiler produces the copy, compare, free, print, parse, add and

remove (when applicable) methods for each Attribute subclass derived from ASN.1.

This compiler is based on the ‘divide et impera’ principle. It is not possible to

generate functions to compare, add, etc., general C types because the meaning of the

type fields is not always known. Instead this may be done if the C types are

generated, as in our case, by the ASN.1 compiler, because the naming rules for the C

types are known and the different type structures generated by the ASN.1 compiler

correspond to the number of ASN.1 keyword constructs. Thus by defining the

methods to copy, free, etc., basic ASN.1 types such as OBJECT IDENTIFIER or OCTET STRING,

it is possible to generate the same methods for each other type as composition of the

basic methods. The Add, Remove methods for set types may be defined as the

composition of a function that scans the elements of the set/sequence and a function

that compares them. For instance, to add an element to a set-valued type, the Add

method should scan the set/sequence to find whether the element is already present

and, if not, find the position where to insert it.

This architecture work in the most of the cases; it fails when a type has an

embedded behaviour because a tool can treat a type as a stream of bytes to compare

and free but cannot interpret the meaning of the fields. Consider the following ASN.1

type defined in X.208:

GeneralizedTime ::= [UNIVERSAL 24] IMPLICIT VisibleString

The Attribute compiler produces a method to compare two GeneralizedTime type

instances and treats these instances as a stream of bits. So ‘19851106210627.3Z’ is seen

as different from ‘19851106210627.3-0500’ although they are equal because a different

representation for the time zone is used. In these cases, the Compare method generated

by the Attribute compiler must be modified by hand; note that with this

modification, the other data types that are a composition of this type automatically

work properly because they use the Compare method that we have just modified.

The size of the code generated for a specific set of MOC’s depends on several

factors: the number of the attributes and the complexity of their syntaxes, the fact

that some of them may be inherited from other classes, the amount of code needed to

implement specific behaviour and the communication with the real resource, if any.

The attribute compiler generates about 70-100 lines of code for an attribute class with

a relatively complicated syntax and the GDMO compiler about 400 lines of code per

MOC. Please note that the user has to customize this generated code by filling some

18An Object-Oriented Approach to the Implementation of OSI Management

methods in order to implement the behaviour and to communicate with the real

resource.

The framework defined in the previous sections allows automatic tools to be

produced to generate the code for new MOCs; it was shown that it is possible do this

by integrating existing tools, such as an ASN.1 compiler, without modifying them.

This is very important in an industrial environment where backward compatibility is

required.

4. A step forward: defining the behaviour

The previous section showed that the full automatic generation of code to

implement MOCs is not possible because the behaviour is defined in natural

language. The OSI community is currently working on the formal techniques to

define the behaviour but a standard in this area is still a long way off. Instead of

defining the behaviour, this section proposes that the problem be approached in

terms of real implementations until a standard is established.

The idea is to enhance the previously defined C++ classes (ManagedObjectClass,

Attribute...) by adding an attribute of type char*. This is for instance the

ManagedObjectClass definition:

class ManagedObjectClass {
private:
 ... /* Former defined attributes */
 char* theBehaviourScript;
 ...};

This text field contains a script that is executed every time characteristics of the

MOC (or Attribute values) are modified or every time an instance of the class is

scheduled. The language used for this script is a high-level language. Note that this is

an interpreted language, not a compiled one. The peculiar characteristics of the

language are not the keywords but the self-defined variables that contain the state of

the application and of every instance currently managed. The richer this set of

variables, the more powerful the language. In fact the managing application may be

seen as a particular database where the actions are performed depending on the

results of queries. For that reason it is more important to provide powerful query

functions rather than complex language constructs; this is exactly what happens with

4th generation query languages. Practically, the language has to define a set of

variables representing the state of the application and a number of constructs that

basically hide calls to class methods. Every time that the application calls the script,

Chapter 4 - A step forward: defining the behaviour 19

the event type (attributeValueChange, objectDeletion...) is passed as a function

argument. In this way, for instance, each ManagedObjectClass script has this skeleton

switch(theEvent) {
case attributeValueChange:

/* Execute the appropriate action */
break;
case objectDeletion:
... }

and the skeleton of each Attribute script is the following

switch(theEvent) {
case getValue:

/* Execute the appropriate action */
break;
case setValue:
...

}

This approach is totally event-driven:

• the script is executed only when there is an event to serve;

• the application can choose to catch the event filling the corresponding case

branch with a non-empty action.

This language has powerful functions that allow:

• interaction with other MIB MO instances;

• attribute values to be obtained/set;

• execution of such actions as to call a C function or to issue a notification.

Suppose for instance that when the attribute K of the class J is modified, all the

managed object instances (MOI) contained whose MOC is X, should set the attribute

Y to the default value. In this case the script for the attribute J of the class K is:

20An Object-Oriented Approach to the Implementation of OSI Management

switch(theEvent) {
case setValue:

InstanceSet z;
Instance w;
-- The input for the SEARCH function is a string that contains
-- a CMISFilter
z = SEARCH(“(item (equality (managedObjectClass = X)))”);
-- Now z contains all the MOI’s that satisfy the criteria
FOR EACH w in z DO
 BEGIN

-- For each MOI in the set of selected instances
-- the method SetToDefault() is called on
-- his Y attribute (this is equivalent to the C++
-- method call w->Y.SetToDefault())
SEND MESSAGE “SetToDefault” WITH PARAM ““ TO Y

 END
break;
... /* Other cases */

}

As seen in this example, the language allows interaction with other MOIs using a

high-level API. Following this approach, it is easy to define the behaviour by simply

implementing the script that formalizes what is written in plain English in the

BEHAVIOUR clause. Because this language is close to C++, it is easy to write a tool that

translates this language into C++. In this way the GDMO compiler may take as input

a set of GDMO documents and a set of scripts and generate all the C++ code needed

to implement the managing application. It is now possible to build an initialization

function that reads the GDMO file and the file containing the enc/dec tables and

builds the management application at run-time. When the standard that defines the

behaviour is published, the script language will be changed for conformity.

Conclusion

This article shows that a library implementing the kernel of an OSI Management

application is possible and feasible. The implementation discussed supports all the

features present in GDMO, such as inheritance and containment, and offers an easily

extensible framework to accommodate future modifications and additions to the OSI

standards. Off-line tools have been defined to add new MOCs to the library. Finally a

solution to the problem of implementing the behaviour has been proposed.

The final result is an general-purpose environment for full OSI-compliant

management applications. The complete coverage of the various GDMO features

permits the fulfilment of the largest range of the user requirements and greatly

reduces the development efforts required for the production of the final applications.

Despite its broad field of applications, the proposed implementation does not

introduce additional costs, and the results are also attractive in terms of efficiency

and size of code as shown in the section 3.

Acknowledgements 21

Acknowledgements

The code examples described in this article are derived from direct experience of

the authors in the design and implementation of commercial and public-domain

products, which are mentioned in the next section. The authors are aware of other

existing products and public-domain implementations based on similar or different

approaches, which are not mentioned simply because this article is by no means a

review of existing products, nor wants to suggest the adoption of any of them.

However, the authors wish to acknowledge the importance of the OSIMIS platform

[9], that has greatly contributed to the diffusion of the OSI management and has

introduced a number of concepts now integrated in many currently available

implementations.

References

[1] ISO/IEC 7498-4: 1989, “Information processing systems - Open Systems

Interconnection - Basic Reference Model - Part 4: Management Framework”

[2] CCITT Recommendation X.208 (1988), ISO/IEC 8824: 1988, “Specification of

Abstract Syntax Notation One (ASN.1)”

[3] CCITT Recommendation X.710 (1990), ISO/IEC 9595: 1990, “Information

Technology - OSI, Common Management Information Service Definition (CMIS)

for CCITT Applications”

[4] CCITT Recommendation X.711 (1991), ISO/IEC 9596-1: 1991, “Information

Technology - OSI, Common Management Information Protocol (CMIP) -

Part 1: Specification”

[5] CCITT Recommendation X.701 (1992), ISO/IEC 10040: 1992, “Information

Processing System - Open System Interconnection - System Management Overview”

[6] CCITT Recommendation X.720 (1992), ISO/IEC 10165-1: 1992, “Information

Technology - OSI - Management Information Services - Structure of

Management Information - Part 1: Management Information Model”

22An Object-Oriented Approach to the Implementation of OSI Management

[7] CCITT Recommendation X.721 (1992), ISO/IEC 10165-2: 1992, “Information

Technology - OSI - Management Information Services - Structure of

Management Information - Part 2: Definition of Management Information”

[8] CCITT Recommendation X.722 (1992), ISO/IEC 10165-4: “Information

Technology - OSI - Management Information Services - Structure of

Management Information - Part 4: Guidelines for the Definition of Managed

Objects”

[9] G.Pavlou, S.N.Bhatti, G.Knight, “The OSI Management Information Service: User’s

Manual”, Version 1.0, February 1993

[10] G.Geiger, W.Allen, A.Majtenyi, P.Reder, “IBM cmipWorks: Technical paper”,
IBM, March 1994

[11] “X/OBJ Agent platform: User documentation”, Finsiel S.p.A. 1994

[12] “X/ASN1, ASN.1 Compiler: User documentation”, Finsiel S.p.A. 1991

[13] M.T.Rose, J.P.Onions, C.J.Robbins, “The ISO Development Environment: User’s
Manual”, Version 8.0, June 1992

Author Information

Luca Deri, formerly a research fellow at the University College of London and

member of the OSIMIS development team, is currently working at IBM’s Zurich

Research Laboratory. He received his degree in Computer Science with a thesis on

Network Management from Finsiel S.p.A. where he worked as a consultant after the

graduation. His professional interests include OSI management, conformance testing

and OO technology. His e–mail address is: lde@zurich.ibm.com.

Eugenio Mattei is working for Finsiel S.p.A. He has been involved in the

development of commercial OSI products for several years, leading the team

dedicated to the Network Management implementations. He also acted as Finsiel

technical project leader in the context of European conformance testing projects

specifically dealing with Network Management. His e–mail address is:

mattei@tecsiel.it.

