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Despite the advantages offered by the generality of its model, the effort put into its
definition by the standardization bodies, and the support of government organizations,
OSI management is still far from reaching a predominant stand in the market of network
and systems management. Proprietary architectures, products and, especially in the
United States, SNMP are still the preferred solutions for many users. One of the main
obstacles to the wide adoption of OSI management is the supposed difficulty of its
implementation.
This article will attempt to show that such complexity can be resolved if the proper tools
are chosen and if the intrinsic object-oriented features of OSI management are exploited.
The design and implementation of an OSI management library is described. It will be
shown that a library implementation is feasible and can suitably exploit the object-
oriented structure of the management information: the definition of automatic tools for
the implementation of new managed object classes is also covered. Finally, implications
related to the handling of extension of the managed object class behaviour are identified.
Familiarity with OSI management, object-oriented terminology and C++, though not
strictly required, is certainly useful.
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Introduction


OSI Management [1] encompasses the definition and implementation of


management tools that use the OSI application layer protocols for communication.


Base components of OSI management are: the Management Model, the Information


Model, communication protocols used for the actual transfer of management


information, and a number of generic resource-independent functionalities


collectively called Systems Management Functions. The Management Model [5] is


defined in terms of management applications that perform management activities in


a distributed manner by establishing associations between system management


entities (agents and managers). The manager system manages the network resources,


according to a defined policy, by issuing remote management requests to one or


more agent processes. The agent process manages the real resources by executing the


requests issued by the manager.


The OSI Information Model [6, 7] structures the management information according to


a description of the resources to be managed in the network. Examples of such


resources may be a host, a routing table, a network device and an application


process. The information model deals with managed objects  that are abstractions of
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real resources for the purpose of management. They embody the management


information for management applications. The notation used to describe them is


defined in a document entitled “Guidelines for the Definition of Managed Objects


(GDMO)” [8]. ISO has defined the GDMO language to provide a common way to


define the managed information.


The effective transfer of the management information between agent and manager


processes is performed using the CMIP (Common Management Information


Protocol) protocol [3, 4].


This article focuses on the design and implementation of an OSI general-purpose


management library. It describes a true library implementation that may be used as


the kernel of an OSI management application. The guidelines and examples have


been drawn from implementation experience of the authors in the context of


European research projects and in the course of designing and implementing


commercial products.


The library implementation contains a set of functions to be linked to the user


modules to obtain the final application. This solution has been mainly chosen


because it does not contain any system dependent section and therefore it allows


great portability.


1. OSI Management and Object-Oriented Technology: An
Evolutionary Approach


Much of the complexity of the OSI management stems from the generality of its


model. The complexity arises from the amount of validity checking that an


implementation must perform, such as checking if an attribute is member of a


particular managed object class, verifying if a particular instance can be created,


controlling if the specified value is within the specified range. In order to limit this


complexity, an important objective is to define a framework and a set of tools that


perform all these oprations in a general and efficient way, therefore allowing the


implementor to focus on the part of the implementation that does the “real” work.


This goal may be achieved by suitably exploiting the intrinsic object-oriented


structure of the OSI management information.


This section shows that the GDMO constructs can be represented by an object-


oriented language. The C++ language has been chosen since it adds powerful object-


oriented extensions to C, which is by far the most widely used language in network


applications.
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In GDMO the key construct used to define the structure and behaviour of the


managed object classes (MOCs) is the MOC template. This template identifies the


inheritance relationship, the contained packages behaviour, the attributes,


notifications and operations allowed in the MOC. A GDMO class template is the base


of the formal definition of a managed object. It is defined in the following way:


<class-label> MANAGED OBJECT CLASS
[DERIVED FROM <class-label> [,<class-label>]*;]
[CHARACTERIZED BY <package-label> [,<package-label>]*;]
[CONDITIONAL PACKAGES <package-label> PRESENT IF condition-definition


[, <package-label> PRESENT IF condition-definition]*;]
REGISTERED AS object-identifier;


The above management scheme clearly encompasses object-oriented concepts and


features. In fact a MOC may be considered as a category of managed objects. The


definition of a class is derived from that of another class. The specific peculiarities of


the class that characterizes it with respect to its superclass are defined by means of


the packages specified after the CHARACTERIZED BY construct. The DERIVED FROM construct


defines that this MOC requires all the characteristics of the superclass(es) and the


CHARACTERIZED BY construct specializes it by adding new characteristics. The


characteristics of the properties of a MOC are named its attributes, and each attribute


has a value.


In order to show how this can be expressed in C++, suppose we have the following


GDMO class:


logRecord MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY ...
...


REGISTERED AS {2, 9, 3, 2, 3, 7};


This MOC may be defined in C++ in the following way:


typedef char* ObjectId;


class top {
private:


ObjectId registeredAs;
NameBinding nameBinding;


... };


class logRecord : public top {
private:
...


public:
logRecord() {


objectIdCopy(&registeredAs,
“logRecord”); ...};


... };


Please note that the symbolic value of the object identifier, logRecord in this case, is


stored, rather than a sequence of integers: this is mapped internally into the real


value 2.9.3.2.3.7, following the same approach used in Isode [13] with the oidtable


files.
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With this C++ definition, it is possible to exploit the inheritance between the MOCs


thus avoiding the need to redefine the same attribute, registeredAs: for each class it is


defined once and instantiated according to the GDMO definition of the derived class.


The package template is a combination of behaviour definitions, attributes, attribute


groups, operations, notifications and parameters. It may be referenced in a MOC


template and is defined in the following way:


<package-label> PACKAGE
[BEHAVIOUR <behaviour-definition-label> [,<behaviour-definition-label>]*;]
[ATTRIBUTES <attribute-label> propertyList [<parameter-label>]*


[, <attribute-label> propertyList [<parameter-label>]*]*;]
[ATTRIBUTE GROUPS <group-label> [<attribute-label>]*


[, <group-label> [<attribute-label>]*]*;]
[ACTIONS <actions-label> [<parameter-label>]*


[, <actions-label> [<parameter-label>]*]*;]
[NOTIFICATIONS <notification-label> [<parameter-label>]*


[, <notification-label> [<parameter-label>]*]* ;]
REGISTERED AS object-identifier;


where


propertyList −> [REPLACE-WITH-DEFAULT]
[DEFAULT VALUE value-specifier]
[INITIAL VALUE value-specifier]
[PERMITTED VALUES type-reference]
[REQUIRED VALUES type-reference]
[get-replace]
[add-remove]


value-specifier −> value-reference DERIVATION RULE <behaviour-derivation-label>
get-replace−> GET | REPLACE | GET-REPLACE
add-remove −> ADD | REMOVE  | ADD-REMOVE


The package template can also be modelled using object-oriented design. A package


may be defined as a C++ class that contains instances of attributes, attribute groups,


actions and notifications. Suppose we have defined the following GDMO package:


examplePackage PACKAGE
BEHAVIOUR exampleClassBehaviour;
ATTRIBUTES objectName GET,


Error-Counter PERMITTED VALUES AttributeModule.CounterRange
REQUIRED  VALUES AttributeModule.CounterRange
GET;


ATTRIBUTE GROUPS attributeGroup;
NOTIFICATIONS protocolError;


REGISTERED AS {joint-iso-ccitt ms(9) smi(3) part4(4) package(4) examplepackage(1)}
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This package may be defined in C++ in the following way:


class examplePackage : public Package {
private:


ObjectNameAttribute objectNameAttribute;
ErrorCounterAttribute errorCounterAttribute;
AttributeGroup attributeGroup;
ProtocolErrorNotification protocolErrorNotification;


public:
examplePackage() { objectIdCopy(&registeredAs, “examplePackage”); ...};


... };


where


class Package {
private:


ObjectId registeredAs;
... };


class ObjectNameAttribute :public Attribute { ...
class ErrorCounterAttribute: public Attribute { ...
class AttributeGroup: public AttributeGroup { ...
class ProtocolErrorNotification: public Notification { ...


and the detailed definition of the Attribute and Notification classes is the one given


in 2.1.


In the OSI management environment, the semantics (behaviour definition) of the


various components of a MOC is distinguished from the corresponding format


(syntax). The syntax is defined by the Abstract Syntax Notation One (ASN.1) [2],


which provides a wide variety of types ranging from simple bit strings to complex


structures. The GDMO formalism defines a set of templates to link the semantics of


the various constructs with the syntax of their values: the most commonly used are


the WITH ATTRIBUTE SYNTAX in the ATTRIBUTE template, WITH INFORMATION SYNTAX and WITH REPLY


SYNTAX supporting productions in the ACTION and NOTIFICATION templates. The different


options for syntax management are described in 2.2. Another way to establish this


link is by means of the PARAMETER template. It is defined in the following way:


<parameter-label> PARAMETER
CONTEXT context-type;
syntax-or-attribute-choice;
[BEHAVIOUR <behaviour-definition-label> [, <behaviour-definition-label>]*;]


REGISTERED AS object-identifier;


where


context-type -> context-keyword | ACTION-INFO | ACTION-REPLY |
EVENT-INFO | EVENT-REPLY | SPECIFIC-ERROR


context-keyword -> type-reference.<identifier>
syntax-or-attribute-choice -> WITH SYNTAX type-reference |


ATTRIBUTE <attribute-label>


Parameters qualify and further define the structures in the syntax of attributes,


action requests/responses and notifications; therefore they are most commonly used
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to associate user responses with actions, operations on attributes, create and delete. A


parameter template not only joins the behaviour with the syntax definition, but also


identifies the context where the parameter may be present in a Protocol Data Unit


(PDU) as expressed by the context-type production. This feature may be exploited not


only for checking purposes, but also in the encoding/decoding phase to restrict the


contexts where the parameter may be present.


The adoption of an object-oriented approach to model the OSI management


information reduces the design of a MOC to an “ad hoc” composition of basic


modules. In this way it is also possible to reuse modules as the attributes in different


classes, thus reducing the amount of code to be written for each MOC but also


making the integration of different modules easier. In fact defining for each basic


piece an API, which in C++ is a set of attributes and methods, allows modules to be


integrated from various implementations and automatic tools to be produced for


their generation and integration.


2. The management framework: library structure


This section shows how to apply the concepts introduced in the previous one. An


implementation of the OSI management library has the following objectives:


• to develop a general-purpose library;


• to limit the size of the code needed to add new MOCs by sharing the code


among MOCs;


• to define tools that automatically generate the code needed to manage


additional MOCs.


2.1 Definition of managed objects


Each MOC may be seen as the integration of the following basic components:


packages, name bindings, behaviour characteristics. Distinct MOCs are derived from


a common superclass, and they are different with regard to the number and type of


their basic components.


class ManagedObjectClass {
protected:


char* ClassName; /* Class name */
ObjectId ClassId; /* Class identifier */
int NumberOfClassPackages;
Package* theListOfClassPackages; /* Package list */
int NumberOfNameBindings;
BindingRecord* theListOfClassNameBindings; /* Name Binding list */
Allomorphism allomorphs; /* List of allomorphic classes */


........ };
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This C++ class models the structure of a MOC. The packages of the class, derived


from the Package C++ class, are stored in the theListOfClassPackages list. The various


name bindings, defined using the BindingRecord C++ class, are stored in the


theListOfNameBindings list. The BindingRecord class, which contains all the information


related to the name binding, may be defined in the following way:


class BindingRecord {
  private:


ObjectIdSuperiorClassId; /* ObjId of the superior class */
ObjectIdBindingClassAttributeId; /* Class binding attrib. identifier */
Bool allowManagementCreation; /* True if creation is allowed through


   management operations */
CreateModifier createModifier; /* Flags: reference and automatic creat. */
Bool allowManagementDeletion; /* True if the deletion is allowed through


   management operations */
DeleteModifier deleteModifier; /* Flags: delete-if-no-contained or


 delete-contained */
....};


The correspondence between these C++ classes and the pertinent GDMO templates


is clear.


The Package class may be defined in the following way:


class Package {
private:
ObjectId PackageId; /* Package identifier */
Bool IsAPresentPackage; /* True if the pkg. is present */
int NumberOfAttributes;
Attribute* theListOfAttributes; /* Attribute list */
int NumberOfGroupAttributes;
AttributeGroup* theListOfGroupAttributes; /* Attribute Groups list */
int NumberOfClassNotifications;
Notification* theListOfClassNotifications; /* Notification list */
int NumberOfClassActions;
Action* theListOfClassActions; /* Action list */


........ };


The attributes derived from the Attribute C++ class are stored in the


theListOfClassAttributes list. The notifications derived from the Notification C++ class


are stored in the theListOfClassNotifications list. The actions derived from the Action


C++ class are stored in the theListOfClassActions list.
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The Notification class may be defined in the following way:


typedef int Error;


class Notification {
private:


ObjectId NotificationId; /* Notification identifier */
public:


Error BuildNotification(EventReportArgument*, ManagedObjectClass*);
/* Builds the notification filling the
   EventReportArgument for given input MO; an
   error code is returned */


........ };


The BuildNotification method builds the notification for the given ManagedObjectClass


instance, filling the EventReportArgument parameter. This method is used in the


implementation of the Event Forward Discriminators and Log MOCs [7] as described


below.


The Action class may be defined in the following way:


class Action {
private:


ObjectId ActionId; /* Action identifier */
public:


Bool TryToExecuteAction(ActionInfo*, ManagedObjectClass*);
/* This method returns True if the action can be
   executed with success on the input MO, False
   otherwise. The ActionInfo parameter, if not
   applicable to the action, is set to NIL */


Error ExecuteAction(ActionInfo*, ActionReply*, ManagedObjectClass*);
/* Executes the action on the input MO and fills the
   ActionReply; an error code is returned. The
   ActionInfo and ActionReply parameters, if not
   applicable to the action, are set to NIL */


........ };


In the previous class the two methods TryToExecuteAction and ExecuteAction are


defined to execute the action. The first method is used in the case of an action request


with the synchronization set to atomic: for each filtered MO instance, the library


checks whether it is possible to execute the action invoking the TryToExecuteAction


method on the selected MO instance. The ExecuteAction method executes the defined


action.


The framework described above offers the following advantages:


• the management information is modelled as in GDMO: this approach, aside


from its intrinsic coherence, provides extendibility and will allow the


implementation of forthcoming standard functionalities such as management


knowledge functions;


• each class is modelled by exploiting the Attribute class (used indirectly in the


Notification and Action classes): this allows run-time instantiation of the
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MOCs as explained below.


The Attribute class may be defined in the following way:


class Attribute {
private:


ObjectId AttributeId; /* Attribute identifier */
char* theAttributeValue;/* Parsed attribute value */


public:
virtual void Free();
virtual char* Copy(Error, Bool); /* Return a copy of the attr. value */
virtual Result Compare(void*, Bool); /* Compares the input value with the


   attribute value */
virtual char* Get(Bool); /* Return the attribute value */
virtual void* GetResourceValue(Error*); /* Get the value of the associated


   resource */
virtual Result CheckSet(AttrModifier*); /* Check if the attribute value may be


   set according to the AttrModifier*/
virtual Error Set(void*, Bool, /* Set the attribute value according to


   AttrModifier*);    the AttrModifier*/
virtual Error SetResourceValue(void*, /* Set the value of the associated


Bool);    resource */
virtual Error SetToDefault(); /* Set the attribute value to the


   default value */
virtual Error Add(void*, Bool); /* Add an (a set of) element to the


   attr. value; defined for set-valued
   attributes only */


virtual Error Remove(void*, Bool); /* Remove an (a set of) element from the
   attr. value; defined for set-valued
   attributes only */


virtual Result CheckAction(ActionInfo*); /* Check if the action may be executed
   successfully */


virtual Error Filter(FilterItem*); /* Evaluate the filter item */
virtual Error GetAny_ty(Any_ty*); /* Fills the input parameter with the


   any defined by type related to the
   theAttributeValue value */


...};


Even though it is not possible to describe the meaning of each method in detail, it is


important to note that the principle is to avoid the diversity of the attribute types by


casting and storing the attribute value in theAttributeValue class attribute. In this way


it is possible to define a common Attribute class rather than different classes, one for


each attribute type; different attribute classes are subclasses of the Attribute class. The


attribute value is a string that contains the parsed value1. Let us consider the


following example. Suppose we have this ASN.1 value:


                  SimpleSyntax ::=  CHOICE {
                          numberINTEGER,
                          stringOCTET STRING,
                          objectOBJECT IDENTIFIER,
                          empty NULL }


                                                
1Please note that not all the attributes must be “stored”. In fact some of them are very dynamic and
keeping their values wouldn’t make any sense. In this case theAttributeValue attribute points to NULL
and when such attribute is accessed its value is retrieved via the Get method.
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Possible values are (number = 25) or (string = “Hello world !”). This approach, similar


to the one used by the IBM CmipWorks platform [10] that represents the syntax


values using strings, offers several advantages:


•the use of C structures to store attribute values gives rise to the problem of


memory management (allocation, copy, freeing), for instance when an element is 


added to or removed from a ‘set/seq. of’; with the use of the string representation


is the system that takes care of it simply concatenating or deleting substrings.


•the string representation is closer to the ASN.1 than a C type; this hides the way


that the value is stored inside the attribute, which may be the string itself (like in


our case), a C type of even an XOM object depending on the user requirements.


•a string is stored in a single adjacent area of memory rather that a C type that may 


contain sub-pointers; this is extremely useful to implement a persistent attribute 


because we simply have to store the string value.


To provide the highest flexibility the string and the C type representations are used.


The attribute methods have a boolean flag; when this flag is set to FALSE the value,


cast to void*, contains the corresponding C structure, otherwise it contains the string


value cast to void*. Because the attribute value is always stored in the string format,


in the first case the parsing function is invoked to convert the value.


The complexity of the filters, the addition/deletion of members to/from the


attribute, and the filling of any defined by's are moved from the library kernel to


each Attribute class or subclasses. The kernel of the library handles attributes as if


they were of the same type, and each Attribute hides the complexity and the


peculiarities of such attributes. Another advantage of this approach is that the


structure of the library is not complex, thus enabling the possible errors to be


confined to the Attribute subclasses. It is also possible to define two attributes that


share the same syntax but with different methods or vice versa (e.g. same ASN.1 type


with different tagging) defining a common superclass and deriving from that class


the two subclasses that redefine only the non-common section.


The Attribute class is used in the EventForwardDiscriminator (EFD) and Log MOCs to


handle the notifications. When a potential notification is to be evaluated, the


elements of the notification may be seen as a set of Attribute instances. The evaluation


process is simply a sequence of Attribute::Compare method calls. In fact the


DiscriminatorConstruct attribute, present in EFDs and in LogRecords instances, is a filter to


be evaluated against the set of the attributes present in the potential notifications.


This is the same process that is executed to select instances by means of filtering in a


CMIS operation.
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In order to exploit the inheritance relationship supported by the GDMO, each class


should define its own characteristics and allow subclasses to add or redefine


characteristics without having to rewrite everything from scratch. For such reason


the ManagedObjectClass and the Package class contain the following methods:


class ManagedObjectClass {
...
public:


Error AddPackage(Package*);
Error AddNameBind(BindingRecord*);


... };


class Package {
...
public:
Error AddAttribute(Attribute*);
Error AddAttrGroup(AttributeGroup*);
Error AddNotific(Notification*);
Error AddAction(Action*);


... };


With this framework each class can handle and manage packages, attribute groups,


actions and notifications, and identify them with the respective ObjectIds. Each AddXXX


method simply adds the input instance to the theListOfXXX list of instances. In fact


each MOC constructor method contains the methods to add actions, packages, etc.,


dynamically to the class. This feature is important for handling the run-time


definition of the MOCs.


Suppose we have defined the following GDMO class:


exampleClass MANAGED OBJECT CLASS
DERIVED FROM fatherClass1, fatherClass2;
CHARACTERIZED BY examplePackage1, examplePackage2;
CONDITIONAL PACKAGES


examplePackage3 PACKAGE
ACTIONS action1, action2;
NOTIFICATION notification1;


REGISTERED AS {joint-iso-ccitt ms(9) smi(3) part4(4) package(3)
 examplePackage3(3) }


PRESENT IF !....!
REGISTERED AS {joint-iso-ccitt ms(9) smi(3) part4(4) managedObjectClass(3)


    exampleClass(0) }


That class will be handled in the following way:


class exampleClass : public fatherClass1, fatherClass2 { .....};


exampleClass::exampleClass()
{
Package       *examplePackage1, *examplePackage2, *examplePackage3;
Action        *action1, *action2;
Notification  *notification1;
BindingRecord *theNameBinding;


/* Instanciate and fill every instance */
....
AddPackage(examplePackage1); /* Add the package to theListOfClassPackages list */
AddPackage(examplePackage2); /* Add the package to theListOfClassPackages list */
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if(...) /* The condition on examplePackage3 is satisfied */
{
examplePackage3->AddAction(action1);       /* Add action1 to examplePackage3 */
examplePackage3->AddAction(action2);       /* Add action2 to examplePackage3 */
examplePackage3->AddNotific(notification1); /* Add notification1 to examplePackage3 */
AddPackage(examplePackage3); /* Add the package to theListOfClassPackages list */


}
AddNameBind(theNameBinding); /* Add the NB to theListOfClassNameBindings list */
....


};


When exampleClass is instantiated, the following methods are called in this order:


• fatherClass1::fatherClass1, fatherClass2::fatherClass2


• exampleClass ::exampleClass


Hence exampleClass exploits the inheritance relationship to instanciate its own


attributes once the father classes have automatically instantiated their own. Another


important feature shown by the example is how to express the GDMO multiple


inheritance (exampleClass is derived from both fatherClass1 and fatherClass2).


Allomorphism, that is the ability for a managed object to act as if it were a member


of another object class, may also be easily expressed with the proposed framework,


by exploiting the value of the allomorphs attribute, member of the ManagedObjectClass


class, which contains the list of all the allomorphic classes.


2.2 Syntax management


Syntax management is handled in two different ways, depending on the availability


in the OSI stack of an automatic encoding/decoding (enc/dec) utility. Some


implementations such as the Finsiel one [11, 12], provide automatic enc/dec; others


(eg. Isode [13]) do not. In the former case the syntax must be registered at the


initialization time and the PDUs are automatically encoded/decoded; in the latter


the application has to encode/decode the PDUs, and no syntax registration is


needed.
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Fig. 1 - ASN.1 compiler


Generally each OSI stack has an off-line compiler that takes as input an ASN.1 file


and produces tables or functions for the enc/dec depending on the presence of


automatic enc/dec utility.


In both cases the WITH INFORMATION SYNTAX and WITH REPLY SYNTAX productions (as well as


the Parameter template) are used to identify exactly which position the ASN.1 data


type may occupy in a PDU. This has the following advantages:


• strong checking: the errors during the enc/dec are easily identified by


limiting the set of possible data types to analyze;


• enhanced performance: during the enc/dec of specific sections of a PDU


only specific data types that may occur in those sections are scanned.


Depending on the presence of automatic enc/dec, two approaches may be adopted


to handle the syntax management:


• read the file containing the tables for the enc/dec automatically at run-time and


register these syntaxes (automatic enc/dec);


• integrate the functions for the enc/dec in methods of the Attribute class


that are called when a specific data type is to be managed (no automatic


enc/dec).


In the first case a library function is provided:


Error RegisterAbstractSyntax(char* syntaxFile, char* contextFile);


where the syntaxFile is the path name of the file containing the tables for the


enc/dec to be registered and contextFile is the path name of the file that contains
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information related to the context of the attribute. Suppose we have defined the


SimpleAsn1Type type inside the SimpleModule ASN.1 module. The ASN.1 compiler


(Figure 1) will produce for this type the SimpleAsn1TypeTable table that contains the


information to be registered to handle the enc/dec automatically. Supposing that this


data type may be present in an action info or in an event reply, an entry of the


context file is:


SimpleModule.SimpleAsn1Type; {1, 9, 3, 4, 7, 1}; ACTION-INFO, EVENT-REPLY


The RegisterAbstactSyntax function simply links the information in the two input files


and automatically performs the registration of the data types.


If an automatic enc/dec is not present, the Attribute class provides the following


virtual methods:


class Attribute {
 ...
public:


virtual Any_ty* Encode(Error); /* Encode the value contained in theAttributeValue
   attribute */


virtual Error   Decode(Any_ty*); /* Decode the value contained in the input
   parameter and stores it into the
   theAttributeValue attribute */


Error   RegisterAttrContext(); /* Register the attribute context */
 ... };


The Any_ty type contains the encoded attribute value that will be stored inside the


PDU; this is equivalent to the Isode PE. When a new class is registered, all the


attributes register their context. When a data type is encoded/decoded in the table


corresponding to the context where the data type is present, the attribute matching


the ObjectId of the data type is found. When found, the Encode/Decode method is


called.


The approach described in this section allows a generic framework to handle MOCs


to be defined. The inheritance and the containment relationship are handled and the


GDMO constructs are implemented in a natural and extensible way. The next section


shows how it is possible to automate the implementation of MOCs.


3. Automating code generation


A network management system is not very useful as long as it does not offer tools


to automate the addition of new MOCs. Figure 2 depicts the steps needed to add new


MOCs to the management library.
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Fig. 2 - Process of building an OSI management application


The user defines his own MOCs in GDMO and their syntax in ASN.1; the


GDMO/ASN.1 compiler produces the code that implements the MOCs to be


modified by the user in order to define behaviour-dependent functionalities. The last


step is the integration of the library with the C++ code to produce the final OSI


management application.


This architecture uses the management library as the kernel of the management


application and exploits the GDMO/ASN.1 compiler to define the code needed to


implement the MOCs. A user interaction is needed in this process for the following


reasons:


• the behaviour in GDMO is defined in plain English and therefore the code


implementing the behaviour clause cannot be automatically generated;


• the interaction with the real resources still has to be added.


Some protocols exist that define interaction with the real resources, while no


standard or general formal approach exists for the definition of the behaviour. All


the code implementing a new MOC may be produced by an automatic tool, except


for some modules: actions, notification and the behaviour-dependent sections. In


fact, for instance, a method to trigger an action for a certain MOC may be


automatically generated but this method can’t be ‘filled’ by an automatic tool


because the behaviour of this action is described in plain English in the DEFINED AS
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section of the action template. Analogously, attributes are often behaviour dependent


and a get/set operation on an attribute usually causes an interaction with the


corresponding real resources.


The GDMO/ASN.1 tool takes as input an ASN.1 file containing the abstract syntax


and a GDMO file containing the MOCs definition and produces the code to handle


the syntax and to manage the MOCs. Note that this tool can be split into a GDMO


compiler and an ASN.1 compiler. The former generates the code for the MOCs and


the latter the data structures (functions) to manage the syntax. This may be useful


because an OSI stack generally already has an ASN.1 compiler. The GDMO compiler


is simply a tool that ‘assembles’ attribute, behaviour, action and notification


instances driven by the GDMO definitions. All this architecture works if the Attribute


subclasses are defined for each data type because the basic module of this assembly


is the Attribute class instance. The code for the Attribute subclasses may be generated


in two ways: either the existing ASN.1 compiler is not modified and so continues to


produce C data structures and enc/dec functions while a new tool produces the


attribute subclasses, or a single tool is implemented possibly modifying and


integrating an existing ASN.1 compiler. In the former case the Attribute compiler


must know the naming rules used by the ASN.1 compiler to define the C types that it


takes as input and that have been generated from ASN.1. Note that the attribute


compiler may take as input the ASN.1 rather than the C types to generate the


Attribute subclasses; also in this case the naming rules for the compiler must be the


same.


::=
 SET {


}


ASN.1


ASN.1/Attribute
Compiler


Attribute subclasses, C data
types and enc/dec functions


{


}


f()


   


::=
 SET {


}


ASN.1


ASN.1
Compiler


Attribute subclasses


{


}


a::f()


C data types and
enc/dec functions


Attribute
Compiler


{


}


f()


Fig. 3 - Generation of code for the Attribute subclasses
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The Attribute compiler produces the copy, compare, free, print, parse, add and


remove (when applicable) methods for each Attribute subclass derived from ASN.1.


This compiler is based on the ‘divide et impera’ principle. It is not possible to


generate functions to compare, add, etc., general C types because the meaning of the


type fields is not always known. Instead this may be done if the C types are


generated, as in our case, by the ASN.1 compiler, because the naming rules for the C


types are known and the different type structures generated by the ASN.1 compiler


correspond to the number of ASN.1 keyword constructs. Thus by defining the


methods to copy, free, etc., basic ASN.1 types such as OBJECT IDENTIFIER or OCTET STRING,


it is possible to generate the same methods for each other type as composition of the


basic methods. The Add, Remove methods for set types may be defined as the


composition of a function that scans the elements of the set/sequence and a function


that compares them. For instance, to add an element to a set-valued type, the Add


method should scan the set/sequence to find whether the element is already present


and, if not, find the position where to insert it.


This architecture work in the most of the cases; it fails when a type has an


embedded behaviour because a tool can treat a type as a stream of bytes to compare


and free but cannot interpret the meaning of the fields. Consider the following ASN.1


type defined in X.208:


GeneralizedTime ::= [UNIVERSAL 24] IMPLICIT VisibleString


The Attribute compiler produces a method to compare two GeneralizedTime type


instances and treats these instances as a stream of bits. So ‘19851106210627.3Z’ is seen


as different from ‘19851106210627.3-0500’ although they are equal because a different


representation for the time zone is used. In these cases, the Compare method generated


by the Attribute compiler must be modified by hand; note that with this


modification, the other data types that are a composition of this type automatically


work properly because they use the Compare method that we have just modified.


The size of the code generated for a specific set of MOC’s depends on several


factors: the number of the attributes and the complexity of their syntaxes, the fact


that some of them may be inherited from other classes, the amount of code needed to


implement specific behaviour and the communication with the real resource, if any.


The attribute compiler generates about 70-100 lines of code for an attribute class with


a relatively complicated syntax and the GDMO compiler about 400 lines of code per


MOC. Please note that the user has to customize this generated code by filling some
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methods in order to implement the behaviour and to communicate with the real


resource.


The framework defined in the previous sections allows automatic tools to be


produced to generate the code for new MOCs; it was shown that it is possible do this


by integrating existing tools, such as an ASN.1 compiler, without modifying them.


This is very important in an industrial environment where backward compatibility is


required.


4. A step forward: defining the behaviour


The previous section showed that the full automatic generation of code to


implement MOCs is not possible because the behaviour is defined in natural


language. The OSI community is currently working on the formal techniques to


define the behaviour but a standard in this area is still a long way off. Instead of


defining the behaviour, this section proposes that the problem be approached in


terms of real implementations until a standard is established.


The idea is to enhance the previously defined C++ classes (ManagedObjectClass,


Attribute...) by adding an attribute of type char*. This is for instance the


ManagedObjectClass definition:


class ManagedObjectClass {
private:
  ... /* Former defined attributes */
  char* theBehaviourScript;
  ...};


This text field contains a script that is executed every time characteristics of the


MOC (or Attribute values) are modified or every time an instance of the class is


scheduled. The language used for this script is a high-level language. Note that this is


an interpreted language, not a compiled one. The peculiar characteristics of the


language are not the keywords but the self-defined variables that contain the state of


the application and of every instance currently managed. The richer this set of


variables, the more powerful the language. In fact the managing application may be


seen as a particular database where the actions are performed depending on the


results of queries. For that reason it is more important to provide powerful query


functions rather than complex language constructs; this is exactly what happens with


4th generation query languages. Practically, the language has to define a set of


variables representing the state of the application and a number of constructs that


basically hide calls to class methods. Every time that the application calls the script,







Chapter 4 - A step forward: defining the behaviour 19


the event type (attributeValueChange, objectDeletion...) is passed as a function


argument. In this way, for instance, each ManagedObjectClass script has this skeleton


switch(theEvent) {
case attributeValueChange:


/* Execute the appropriate action */
break;
case objectDeletion:
... }


and the skeleton of each Attribute script is the following


switch(theEvent) {
case getValue:


/* Execute the appropriate action */
break;
case setValue:
...


}


This approach is totally event-driven:


• the script is executed only when there is an event to serve;


• the application can choose to catch the event filling the corresponding case


branch with a non-empty action.


This language has powerful functions that allow:


• interaction with other MIB MO instances;


• attribute values to be obtained/set;


• execution of such actions as to call a C function or to issue a notification.


Suppose for instance that when the attribute K of the class J is modified, all the


managed object instances (MOI) contained whose MOC is X, should set the attribute


Y to the default value. In this case the script for the attribute J of the class K is:
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switch(theEvent) {
case setValue:


InstanceSet z;
Instance    w;
-- The input for the SEARCH function is a string that contains
-- a CMISFilter
z = SEARCH(“(item (equality (managedObjectClass = X)))”);
-- Now z contains all the MOI’s that satisfy the criteria
FOR EACH w in z DO
  BEGIN


-- For each MOI in the set of selected instances
-- the method SetToDefault() is called on
-- his Y attribute (this is equivalent to the C++
-- method call w->Y.SetToDefault())
SEND MESSAGE “SetToDefault” WITH PARAM ““ TO Y


  END
break;
... /* Other cases */


}


As seen in this example, the language allows interaction with other MOIs using a


high-level API. Following this approach, it is easy to define the behaviour by simply


implementing the script that formalizes what is written in plain English in the


BEHAVIOUR clause. Because this language is close to C++, it is easy to write a tool that


translates this language into C++. In this way the GDMO compiler may take as input


a set of GDMO documents and a set of scripts and generate all the C++ code needed


to implement the managing application. It is now possible to build an initialization


function that reads the GDMO file and the file containing the enc/dec tables and


builds the management application at run-time. When the standard that defines the


behaviour is published, the script language will be changed for conformity.


Conclusion


This article shows that a library implementing the kernel of an OSI Management


application is possible and feasible. The implementation discussed supports all the


features present in GDMO, such as inheritance and containment, and offers an easily


extensible framework to accommodate future modifications and additions to the OSI


standards. Off-line tools have been defined to add new MOCs to the library. Finally a


solution to the problem of implementing the behaviour has been proposed.


The final result is an general-purpose environment for full OSI-compliant


management applications. The complete coverage of the various GDMO features


permits the fulfilment of the largest range of the user requirements and greatly


reduces the development efforts required for the production of the final applications.


Despite its broad field of applications, the proposed implementation does not


introduce additional costs, and the results are also attractive in terms of efficiency


and size of code as shown in the section 3.
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