
Design and Implementation of an Anomaly Detection

System: an Empirical Approach

Gaia Maselli

Dipartimento di Informatica

University of Pisa

Via Buonarroti 2

56100, Pisa, Italy

maselli@di.unipi.it

Luca Deri

NETikos S.p.A.

Via Matteucci 34/b

56124 Pisa, Italy

deri@ntop.org

Stefano Suin

Centro Serra

University of Pisa

Lungarno Pacinotti 43

56100 Pisa, Italy

stefano@ntop.org

Keywords

Security, network intrusion detection, network monitoring and planning.

Abstract

Network management platforms provide flexible facilities for setting up custom applica-
tions able to detect network anomalies on a specific environment. This is because each
network is made of users, services and computers with a specific behaviour that is then
reflected in the generated network traffic.

Goal of this paper is to show that in every network there are some global variables
that can be profitably used for detecting network anomalies, regardless of the type of
network users and equipment. As most of the relations among these variables are fixed,
this paper shows that it is possible to define generic network rules aimed to automati-
cally detect selected network anomalies. Finally, it covers the design and implementation
of an open-source application used to effectively validate this work on a large campus
network.

1 Background and Motivation

This paper focuses on network-based intrusion detection and it explores a different ap-
proach to the problem. Intrusion detection techniques can be categorised into signature
detection and anomaly detection [1][2]. Signature detection systems use patterns of
well-known attacks or weak spots of the system to match and identify known intrusions.
They perform a pattern matching between network traffic captured and attack signa-
ture. If the matching succeds, then the system generates an alarm. The main advantage
of signature detection paradigm is that it can accurately and efficiently detect instances
of known attacks. The main disadvantage is that it lacks the ability to detect the newly

1

Figure 1: Simple MRTG network traffic curves

invented attacks. Anomaly detection systems flag observed activities that deviate sig-
nificantly from the established normal usage profiles as anomalies. This paradigm takes
the attitude that something that is abnormal is probably suspicious. The construction
of such a detector starts by creating a model of what constitutes normal for the observed
network, and then deciding on what percentage an activity must be flagged as abnormal.
The main advantage of anomaly detection is that it does not require prior knowledge of
intrusion and can thus detect new intrusions. The main disadvantage is that it may not
be able to describe what an attack is and may have high false positive rate.

The idea behind this work is to define a new type of anomaly detection system, that
includes aspects of both signature and anomaly detection techniques. On one hand, it
includes a deep study of all well-known attacks that are considered to understand how
they influence the normal network behaviour, while they are executed. On the other
hand, the defined systems are able to detect not just specific attacks but also unexpected
behaviour (anomalies), that can be caused by several kinds of attacks. So, the model
that specifies the normal behaviour for the observed network is created by identifying
the effects produced over network traffic by an attack and it is independent of the actual
network context.

This approach was inspired by some experiments with traffic measurement tools such
as Ntop [3], developed for monitoring network traffic, and MRTG [4], a popular tool for
network traffic measurement, that confirmed the presence of some similarities on traffic
generated by different networks. In fact, although the overall traffic (both in terms of
packets and volume) changes significantly, depending on the day and the time of day,
the analysis of some popular protocols (e.g. HTTP and SMTP) has produced some
traffic distribution curves that do not change significantly over the time.

This fact led the authors to believe that by monitoring some kinds of traffic, it
would have been possible, for each network, to draw a specific network traffic curve that
does not change significantly over the time, and that could be used to identify network
problems (e.g. security flaws). Additional experiments demonstrated that it was quite
a difficult task to select those network traffic parameter that allow people to build the
network curve of a network. This is because simple curves drawing total traffic that flows
across a network interface (see Figure 1), are not very reliable for detecting networks
problems, as they can present some peaks (see Figure 2) caused by various reasons that
could be a problem (e.g. a DOS attack) or not (e.g. multicast video transmission at the

2

Figure 2: DOS attack effect on network traffic

CS department).
In this case, it is not very wise to use these curves as a litmus paper because the num-

ber of false positives could be large, leading the network monitoring system to produce
several alarms, most of which need to be discarded. These experiments highlighted that
network traffic can show the presence of problems, but it is necessary to identify those
variables that can work as network problems detectors. In addition, it is necessary to
define some rules that can be profitably used to model network traffic behaviour so that
when such rules are violated there is necessarily a network anomaly (e.g. an abnormal
network activity).

The following sections cover the outcome of this investigation activity and list the
relevant traffic parameters that have been identified as problem detectors. The validation
has been performed by implementing a new kind of anomaly detection system (ADS)
and by testing it against real network traffic. By anomaly we mean a deviation from the
network’s expected behaviour that is defined by considering two kinds of knowledge:

• IP protocol specifications contained in RFCs, that needs to be satisfied by every
host and network (static knowledge);

• statistical traffic analysis that varies according to network characteristics and type
of users (dynamic knowledge).

By referring to both the static and dynamic knowledge it is possible to find out a list of
network traffic parameters useful for detecting common network anomalies.

2 Static Network Traffic Knowledge

Static knowledge allows to identify those network traffic parameters that are expected
to be verified in each network as they have been defined in standard documents (e.g.
RFC) and that are useful for detecting network anomalies. We aimed at finding such
parameters by approaching the problem under different points of view:

1. Network Security Violations
Classify the effects of a security violation over network traffic behaviour for the
purpose of identifying a small set of traffic parameters whose value changes signif-
icantly during an attack (litmus paper approach).

3

2. IP Protocol Dissection
Study the IP RFCs in order to identify those constraints, either mandatory or not,
that must always be respected by well-behaved IP applications.

3. Network Traffic Monitoring
List all the metrics used by traffic monitoring/management RFCs that could be
useful for identifying network anomalies.

4. Experience Survey
Learn what are the traffic parameters monitored by system administrators for
rapidly detecting common network problems.

The outcome of this section is a list of network traffic parameters useful for detecting
common network anomalies that have been used for the implementation of the tool used
to validate this work.

2.1 Network Security Violations

As in real life sickness symptoms are more evident to the doctor when a patient is very
hill, the authors decided to study how networks behave under a security attack. In
this phase it is not important to know how to detect attack X, but rather to find out
how X alters the normal network behaviour. Basically at this stage the authors are
not interested in knowing if event A, B and C happen, then somebody is attacking the
network using method X, but they want to know what are the network parameters to
look for in order to say: “there is something strange out there”. In other words the
authors want to learn both what network traffic parameters can be used for detecting
weird network behaviour and the relations among such parameters in order to detect
the problem and raise a security alert. Translating the previous sentence to real life,
as doctors know that if body temperature goes above 37◦C then the patient is sick
unless he is running a marathon, in the same way the authors want to find out the
measurements (body temperature), the thresholds (37◦C) and the conditions (unless
running a marathon) that must be verified for detecting network sickness .

After having done a survey of several security threats [5], the authors have identi-
fied some symptoms and effects that are commons to many attacks, in terms of traffic
generated during the execution of the attack. The host executing or suffering the attack
can produce these effects. In fact, while some attacks produce strange kinds of traffic
that can be recognised by observing network traffic, others use valid packets that cannot
be identified. However in the latter case, the victim receiving such packets sends back
a sequence of packets we can again recognise. The effects produced on network traffic
by the author/victim of an attack, highlight some network traffic parameters useful for
detecting anomalies. The following sections list the most common attacks grouped in
three families:

1. attacks that exploit IP protocol insecurity;

2. attacks that exploit IP services (e.g. DNS, FTP) insecurity;

4

3. Denial of Service (DOS) attacks.

2.1.1 IP Protocol Stack Violation

IP protocol insecurity is the ability to exploit the IP protocol lack of specifications or
security for the purpose of violating system security [6]. Many network mapping and
port scanning techniques are based on sending valid IP packets, passing the checksum
control but containing information semantically wrong. Attacks that belong to this
family include:

1. Attacks that exploit IP protocol insecurity:

• Forged packets sent from a spoofed IP source address (e.g. packets with
local source address coming from outside the network or packets containing
impossible source address).

• Duplicated or with the same source/destination IP address (land attack).

• TCP packets sent out of sequence (e.g. TCP packet with the FIN flag set
sent over a connection that has not yet been established) or with invalid TCP
sequence number for the purpose of terminating or redirecting (hijacking)
TCP connections.

2. Attacks that exploit valid IP packets containing unexpected data:

• Huge packets (e.g. ICMP Ping of Death) that cause remote hosts to hang or
crash.

• TCP packets containing wrong flags combination or out of sequence (e.g.
all/no TCP flags set in XMAS/NULL scan, or packets containing the SYN
flag and belonging to a session already established, or flags set in other kind
of port/network scanning).

• Packets split in a huge number of fragments or containing invalid IP field
values (e.g. invalid IP TTL values for firewalking, i.e. firewall crossing).

3. Attacks that violate the IP protocol specification:

• TCP three-way handshake exploitation (e.g. incomplete sequence) for the
purpose of detecting remote network services (portscan).

• Invalid (wrong/overlapping/missing) IP fragments.

• Invalid TCP packet sequence for the purpose of detecting remote host oper-
ating system (host fingerprinting).

• Valid packets sent by the wrong actor (e.g. ICMP Redirect sent by a host
that is not a router).

5

2.1.2 IP Protocol Exploitation

As attacks described so far exploit some IP protocol insecurities, other attacks exploit
insecurity of basic IP services for the purpose of disrupting normal network activities.
Attacks belonging to this family include:

• Service behaviour change after an attacker gained service root access (e.g. via a
buffer overflow).

• Injection of invalid/false/forged information (e.g. ARP poisoning, DNS cache
corruption).

• Termination of network services by means of invalid requests that exploit weak
service implementations.

• Routing table alteration (e.g. forged ICMP Router Advertising packets).

2.1.3 (D)DOS Attacks

A DOS attack is designed to turn a host/network down by flooding it with useless
traffic usually generated by a trojan application. A DDOS (Distributed DOS) instead
performs the flooding by sending little traffic from several sources. Attacks belonging
to this family include:

• Packets sent from spoofed addressed to invalid destinations (e.g. broadcast/network
address) for the purpose of amplifying network traffic (e.g. smurfing).

• Storm of packets (e.g. SYN flood) all sent/originated to/from the same host or
network.

• Termination of TCP sessions (e.g. forged TCP RST packet) by exploiting some
weaknesses of the TCP/IP protocol.

• Flood storm originated by several different sources and targeted to the same victim.

2.2 IP Protocol Dissection

A classification of the effects produced over network traffic by the previously described
attacks, together with a deep study of the IP protocol, has led the authors to identify
a subset of anomalous behaviour commons to many attacks. The IP protocol defines
some constraints that must always hold. Whenever an application violates them, the
protocol specifies how to report the problem (e.g. send an error back to the sender).
Unfortunately, the IP protocol is not very strict and it is possible (see section 2.1) that
some valid packets are used for nasty purposes. In fact, attacks violate the expected
behaviour that is implicitly defined by the IP protocol and that should be satisfied
during normal network usage. As IP does not provide any error notification system for
these violations, by identifying and defining the expected behaviour, it is possible to
detect many attacks as they explicitly violate such behaviour. A group of behaviour
corresponds to each of the effects just mentioned:

6

• Packet semantics behaviour The information contained in packet headers must
be consistent with the protocol specification. The IP protocol is quite rich in
terms of flags/options that can be specified in packets. Their monitoring and
distribution over the time gives an indication about the current network state.
For instance, invalid TCP flag combinations can indicate a port scanning, while
invalid IP addresses can indicate the presence of a spoofer.

• Activities behaviour

– Incomplete or incorrect activities
Any activity that has been started must be completed in the right order. This
means that a probe should never report TCP packets sent out of sequence,
and that the procedures for establishing/ shutting down a TCP connection
should be executed only as specified by the protocol. Dummy activities or
messages

– Dummy activities or messages
Although not specifically forbidden by IP, each communication must be per-
formed for a certain purpose. Dummy data exchanges usually indicate either
a problem or a malicious activity. TCP sessions that have no data exchanged,
ICMP fragmented packets, and initial TCP three-way handshake packets with
data payload, all belong to this class.

– Request/response ratio
Some protocols such as ICMP and ARP define some primitives with 1:1 re-
quest/response ratio: zero or one response to a request (e.g. ICMP echo re-
quest/response). When the 1:1 ratio is violated this can be the indication of a
problem. For instance, in the case of ARP, if(#requests) >> (#responses)
the sender could perform a network scan for identifying local active hosts
or run a misconfigured application that attempts to talk with an inactive
host. In the case of ICMP echo, if(#responses) >> (#requests) the target
machine could be victim of a distributed DOS.

• Traffic distribution behaviour

– Suspicious Traffic Peaks
Some kinds of traffic should not be frequent in normal traffic conditions. In
fact, besides a number of rare exceptions (e.g. a host that runs a management
system), the distribution of some message types (e.g. ICMP Port/Destination
Unreachable) or packets (e.g. TCP packet with the RST flag set) is usually
very limited and proportional to the traffic generated by a host. This means
that peaks or high rates of such messages indicate a problem whose cause
needs further investigations. In fact, the peak can be due to a DOS attack,
a misconfiguration of a local application (e.g. wrong address of DNS) or an
inactivity of a remote application (e.g. POP3 server not active). Average
Protocol Distribution

7

– Average Protocol Distribution
Statistics have shown that host protocol distribution does not change sig-
nificantly on a weekly or monthly base. Protocol distribution peaks often
indicate network problems or anomalies. Unfortunately in our experience we
have noticed that thresholds on protocol distribution are difficult to set as
they vary on a host base. On the other hand, when the threshold has been
determined, the results in terms of anomaly detection are quite good with a
very low rate of false positives.

2.3 Network Traffic Monitoring

After having done a survey about all (over 100) the available network management
related RFCs (http:// wwwsnmp.cs.utwente.nl/ietf/rfcs/rfcbytopic.html), the outcome
is the following:

1. Most of these RFCs have been designed for monitoring very specific protocols or
network media types.

2. The purpose of most of the MIBs is to expose via SNMP statistical, configuration,
and accounting information already available on other formats (e.g. the RFC 2925
[7] provides access via SNMP to common operations such as ping and address
lookup).

3. Very few RFCs provide information that can be used for detecting network anoma-
lies (e.g. ipOutNoRoutes of RFC 1213 [8] and etherStatsTable of RFC 2819 [9]).

4. The very few information present in the RFCs that can be useful for our purpose,
beside some rare exceptions, it is usually counted per network port or card making
it difficult to exploit for precise, per host, problem detection.

5. A few MIBs define alarms and mechanisms for issuing SNMP Traps when a prob-
lem occurs, but they rather limit their scope to exposing management information,
leaving this task to manager applications.

6. Alarms are usually emitted when a simple threshold, usually over a single variable,
is exceeded, whereas network anomalies are usually detected by analysing several
parameters with floating thresholds depending on the overall network traffic.

In summary, the survey has been useful for double-checking whether the very few
information present in RFCs that can be used for detecting network anomalies was
already considered in one of the three other approaches identified by the authors.

2.4 Learning from Experience

Another approach for identifying those network traffic parameters useful for detecting
network anomalies, is to interview a group of experienced network administrators and
ask them how they identify and tackle problems. The authors have selected different

8

kinds of administrators ranging from small, single OS (e.g. mostly Apple or Windows)
networks to large heterogeneous, multi vendor networks. Below it is summarised the
original results of the survey:

1. Control a few core services to control all the services. In IP networks there are
some core services (e.g. DNS, routing) that if not fully working cause most of the
services to fail. This means that it is very valuable to monitor very well those core
services for indirectly monitoring most of the provided network services.

2. The statistical analysis over the time of error responses is usually a good way for
detecting anomalies. In fact, depending on the user(s), each computer has a precise
usage curve at least with respect to errors. For instance, DNS error responses and
ICMP errors are usually very few and their rate is proportional to the overall host
traffic. Hosts with over-the-average error rates or errors peaks usually indicate a
problem.

3. Non-unicast traffic is often the key traffic. Many protocols (e.g. ARP, OSPF,
NetBios, AppleTalk) strongly rely on this kind of traffic; hence the analysis of
broadcast and multicast traffic (usually a small portion of the overall traffic) can be
quite useful for finding out the overall network status. For instance, misconfigured
Windows hosts that have a mispelled workgroup name or mistyped WINS server
create a significant amount of broadcast traffic and can be easily detected. In
other cases, high ARP traffic rates usually indicate the presence of a local network
scanner or proxy ARP probably installed without permission.

4. Precise traffic analysis is very valuable although it is often enough to monitor
the overall traffic with the help of some heuristics for obtaining the same result.
For instance some peer-to-peer applications are not very secure, hence network
administrators discourage their use in some environments (e.g. on the accounting
department) as they can cause some serious security threats. In order to precisely
identify such applications it would be necessary to implement some decoders that
implement stateful inspection, analyse each network flow and learn the type of
traffic. Instead, thanks to some heuristics [10], it is possible to avoid implementing
decoders and still have an efficient way to detect unwanted network protocols.

5. Active monitoring is often not the most efficient way to check whether a ser-
vice is available or a client is misconfigured: core services availability can also be
monitored by analysing the responses returned by the server to clients. Rejected
connection rate can be used for TCP services, whereas ICMP port unreachable
can be used for UDP services. Active, but not responding, services can instead be
detected by analysing the response vs. request service rate.

6. Experience says that every host has a precise behaviour in terms of protocol dis-
tribution. In general such distribution does not change significantly over the time,
at least in the short time frame. This means that if a host has never generated
IRC (Internet Relay Chat) traffic and at same point in time such host serves IRC

9

requests, this necessarily means that the host is running either an IRC daemon or a
trojan. In conclusion, anomaly detection is not always about detecting unexpected
activities but also about detecting state changes.

7. Usually the hosts that are attached first are those that are more vulnerable (e.g.
user workstations not maintained by the network administrators), and using those
hosts the final attack targets (e.g. the main network servers) are finally reached.
For this reason it is important to monitor not only the servers but also the client
hosts that are more vulnerable and can potentially produce great problems, as
they are physically located on the attacked network.

8. Statistically in the last few years most of the attacks have been performed using a
few protocols such as DNS, IRC and FTP. These attacks exploited either protocol
or implementation insecurity. For this reasons, hosts that offer services based on
the above protocols need to be controlled and managed very precisely as they can
be more vulnerable to attacks. This means that alarm threshold values need also
to be tuned according to the host vulnerability that is partially determined by the
provided services.

3 Dynamic Network Traffic Knowledge

The previous section has shown the result of the investigations carried out for identify-
ing the static network traffic knowledge. This section instead focuses on the dynamic
traffic knowledge, based on the idea that it is possible to identify a small set of traffic
parameters, useful for detecting network anomalies, analysing traffic statistics. Some pa-
rameters are simple counters or gauges that have been selected according to the lessons
learnt during the study of static network knowledge, whereas more complex parameters
are derived from the composition of simple parameters using simple operators such as
ratio or derivative. What leads the authors to label this knowledge ‘dynamic’ are not
the traffic parameters, but the thresholds associated with each parameter, that are not
the same for every host, class of user, and network. This is because if host X is used
as workstation for reading emails and word processing, its expected traffic curve is not
similar to another workstation used for playing multicast videos. Therefore, as each
network and host has different thresholds for each of those parameters, it is necessary
to have a network information gathering phase that usually takes place as follows:

• network administrators make a quick survey in order to identify all the network
assets that need to be monitored (usually the core hosts that run services such as
DNS or mail);

• for each asset, the main network protocols (both as client and server) used by the
asset are listed;

• a passive traffic monitoring system is configured in order to monitor over the time
all the protocols/assets above identified and additional traffic parameters as those
identified in the previous section (e.g. the number of SYN packets).

10

After some time, ranging from a few days up to a month, the gathering phase is over.
For each asset, collected information regards a list of all the IP ports on which the host
has exchanged traffic as server, and a traffic curve (absolute and derivative value) of
each monitored parameter.

The goal of this gathering phase is to produce a traffic model for each monitored
asset that includes:

• the list of active services to which remote users can connect;

• some thresholds useful for limiting the bandwidth of potentially dangerous traffic
(e.g.SYN packets) or specific protocol traffic (e.g. limit the number of incoming
DNS requests);

• a list of traffic parameters that should not be monitored for a given asset as
they are not reliable on this specific situation (e.g. a host that runs peer-to-peer
applications sends/receives many ICMP errors, hence ICMP cannot be reliably
used for such asset as a criteria for emitting alarms);

• a security index that indicates how insecure is the asset, calculated on some pa-
rameters including:

– protocols being used (e.g. a host that accepts telnet connections is more
insecure than another based on ssh);

– kind of users (e.g. asset users that run applications based on weak protocols
such as IRC or some peer-to-peer protocols contribute to the overall asset
insecurity);

– service permission (e.g. a host that accepts FTP connections in active mode
is more insecure than another host that accepts only passive connections, as
the first case is not easy to protect with firewall rules);

– ICMP “alert” messages (e.g. destination unreachable, source quench, or redi-
rect) emitted/received.

Common thresholds used by the authors include (but are not limited to):

• ICMP echo request/reply ratio, and ARP request/reply ratio useful for detecting
whether a host is performing a network scan;

• ICMP Destination Unreachable that may indicate a misconfigured host;

• (# of SYN packets)/(# of active connections) for detecting service scan of DOS
attacks;

• asset security index minor than the AS (Autonomous System) allowable security
index.

Once the traffic parameters and thresholds have been selected, it is possible to setup:

11

• an access control list for blocking and logging requests to unwanted protocols;

• a traffic shaper used for attach mitigation and for enforcing some of the above
identified thresholds;

• a threshold-based alarming subsystem.

The following section shows in details the validation testbed and describes the selected
traffic parameters.

4 Validation: Implementing Network Anomaly Detectors

The previous section highlighted some network traffic parameters used for detecting net-
work anomalies. This section describes the scenario where this work has been validated
and it shows how dynamic traffic knowledge parameters have been collected.

In order to validate the work in a real, large network, the authors decided to use the
whole network campus of the University of Pisa as testbed.

Internet Link

ntopJuniper

ATM Backbone

Figure 3: Validation Testbed

The Juniper switch [11] is a high speed switch that sports both ATM and Gigabit
Ethernet interfaces. This switch has been configured in a way that the ATM backbone
traffic to/from Internet has been mirrored on an Ethernet port where a home-grown
traffic probe named Ntop has been installed (see Fig. 3). This configuration allows the
probe to see all the traffic from/to the Internet that flows through the 34 Mbit Internet
link. Thus, the authors can validate the work on a large network without having to
place different probes one in each department under analysis.

The decision to use a Juniper switch instead of a conventional router (e.g. Cisco) has
been made for several reason. First, the Juniper box takes care of converting IP-over-
ATM traffic into Ethernet packets, so that the probe does not need to have an ATM
card for capturing and analysing backbone traffic. Second, it is very fast and allows to
test thousand of traffic rules per port with almost no performance degradation. Finally,
it has a quite flexible configuration language that enables administrators to define:

12

• packets/volume counters for traffic that matches some traffic rules (e.g. fragmented
HTTP traffic);

• traffic shapers per network flow;

• filters for logging and discarding certain kind of traffic.

Although the Juniper box is very flexible, its measurement capabilities are quite rudi-
mental as they have been designed for measuring overall traffic and not fine-grained host
traffic. For this reasons we decided to enhance Ntop to integrate into it the ability to
measure all the traffic parameters useful for detecting network anomalies, and to store
information into a database for statistical analysis. The implementation of the alarm-
ing system and anomaly detector has been realized outside of ntop, in order to avoid
creating a large monolithic application difficult to manage and configure.

Figure 4 highlights the current Ntop architecture. The Ntop core is responsible for
capturing and analysing network packets. Most of the information is kept in memory
with some limited caching on disk for storing data accessed very seldom. For each
monitored host, Ntop has a set of counters that keep track of the relevant network
activities including (but are not limited to):

• The total traffic (volume and packets sent/received) generated/received by the
host classified according to network protocol (IP, IPX, AppleTalk, etc.) and,
when applicable, IP protocol (TCP, UDP, ICMP, FTP, HTTP, NFS, etc.).

• TCP session history: source/destination, duration, TCP sliding window size and
TTL statistics, retransmitted data, fragmented packets percentage.

• Host used TCP/UDP services, operating system type, and address tracking by
means of DHCP monitoring.

• Traffic distribution (local vs. remote traffic), network usage (contacted peers,
traffic generated by each running application), overall used bandwidth (actual,
peak, and average), local subnet traffic matrix.

• Packets distribution: total number of packets sorted by packet size, unicast vs.
multicast vs. broadcast, and IP vs. non-IP traffic.

• Protocol utilisation and distribution according to both protocol and source/ des-
tination (local vs. remote).

In addition, Ntop has been extended with new counters (one for data sent, and one
for data received) to detect all the anomalies listed in Table 1.

Whenever a counter goes above a threshold, the counter that keeps track of the
problem is incremented, an alarm is emitted, and the packet(s) that triggered the alarm
is stored on disk for later in depth analysis.

Ntop-emitted alarms are both stored in a SQL database and used to alert users using
several ways including SNMP Traps, GSM SMSs, and instant messengers. Although

13

Traffic
Stats

Alarms

Traffic Thresholds

Threshold Analyzer

Report Engine

Packet Sniffer
and Analyzer

RRD

SQL DB

User
Alarms

Figure 4: Ntop Security Architecture

TCP Flags synPkts, rstPkts, rstAckPkts, synFinPkts, finPushUrgPkts

Scanning ackScan, xmasScan, finScan, nullScan, udpToClosedPort,

udptoDiagnosticPort, tcpToDiagnosticPort

TCP Connections rejectedTCPConn, establishedTCPConn,

closedEmptyTCPConn, incompleteTWHandshaking

Fragments tinyFragment, icmpFragment, overlappingFragment,

icmpFragments

ICMP icmpPortUnreach, icmpHostNetUnreach, icmpProtocolUnreach,

icmpAdminProhibited, icmpToBroadcast

Protocol Checker invalidHTTPReq, invalidFTPReq, invalidSMTPReq,

invalidSSHReq

Other landAttackPkts, malformedPkts

Table 1: Ntop Host Security Counters

alarms and counters can partially overlap, the authors have decided to have both for
two reason. First, some problems (e.g. portscan or fragmented ICMP packet) are
evident after just one alarm, hence the alarming subsystem can alert the user as soon
as it sees an alarm without having to wait the polling time. Second, further problems
(e.g. network scan) cannot be detected with one single Ntop-generated alarm but with
a broader view of the overall network traffic over a specified period of time.

The alarming subsystem is split into two independent components: a traffic informa-
tion storage, and a traffic analyser. The first one is responsible for periodically polling
traffic information (represented in simple ASCII or using high level languages such as
XML) out of Ntop via HTTP and storing it on disk. In order to create a modular system
the following conventions have been used:

• each counter of each host is stored using the RRDTool [12] on a different RRD
(Round Robin Database) file as this format allows to easily maintain large amount
of data over the time with limited effort;

• supposing to store the value of counter tinyFragmentSent for host Y, the RRD file

14

that contains the counter is stored on $DATA DIR/Y/tinyFragmentSent.rrd.

The traffic analyser is a component written in Perl and responsible for analysing
and correlating the data stored in RRD, and generated alarms. The correlation rules
used by the traffic analyser are stored on a table inside the same SQL database where
the alarms are stored. The format of that table that contains the rules is the following:
< counter comparison expression > < time period > < action >. For instance:

‘‘for each host if ((# ARP requests) - (# ARP responses) > 20) over

the past 10 minutes then send a trap’’ is translated in one SQL table row:

(arpSent-arpRcvd)>20 10 ALARM ’Host $host is sending too many ARP

requests: (network scan attempt)’

‘‘if host jake sent more that 5 pkts to a closed UDP port in the past

15 minutes then send a trap’’ becomes:

jake.udpToClosedPort>5 15 ALARM Host $host sent too packets to a closed

UDP port over the past $timePeriod minutes

where:

• The < counter comparison expression > is expressed as < host > . < counter >:
if the host name is not specified then the rule is applied to all stored hosts.

• The variable names start with the dollar sign $ and are expanded by the traffic
analyser at runtime for each matching rule.

As the counters rely on RRD, the analyser takes advantage of the facilities of-
fered by RRD for analysing the counter archives and validating the expression: <
counter comparison expression >. Nevertheless, it is usually not very wise to emit
an alarm every time the analyser detects that a counter is above the specified threshold.
In fact, some early tests have shown that it does not make sense to emit an alarm when-
ever Ntop detects a suspicious event such as data sent to a closed port or a not completed
three-way handshake. In addition, in order to detect events such as network mapping it
would be necessary to control most of the hosts of the network, making life difficult for
network anomaly applications developers. For the above reasons it has been introduced
the concept of risk factor, an integer value in the range 0-100 that shows how likely the
system has detected an anomaly in the network. The risk factor is implemented in the
analyser as follows:

• The < action > field can contain the value RISK < X > where < X > is the
value of the risk factor.

• Whenever the traffic analysed encounters for a host Y a matching rule containing
as RISK action, it increments of X the value of the RRD file $DATA DIR/Y/ −

15

riskFactor.rrd1

• as soon as the value of $DATA DIR/Y/riskFactor.rrd for the current timeframe
goes above 100, an alarm is emitted (no additional alarms are emitted if the value
is further incremented by additional rules).

As stated before, the Ntop probe has been attached to an Ethernet port of the Juniper
box and configured to analyse all the traffic Internet traffic generated/directed to the
campus hosts. The alarming subsystem (running on the same host where Ntop is active)
stores once every 5 minutes the Ntop traffic counters on disk and validates the traffic
correlations rules against the stored traffic.

The main goals of the validation have been to:

• prove that the proposed architecture and implementation can work effectively on
a real large network;

• put at work the traffic information gathered by Ntop as show in the previous
section by instrumenting the border gateway;

• create a set of correlation rules that allows the campus network administrators to
be notified about security violations of campus hosts.

The validation phase lasted more than six months. During the first weeks of validation,
the whole system has been strongly modified in order to be able to keep up with the
large number of hosts (60 000 hosts) that caused major performance problems. In the
remaining weeks, the alarming system has been tuned in order to reduce the number of
alarms emitted by the system. It also takes care of hosts that make strong use of peer-
to-peer protocols that are characterized by a large number of short living connections
and several failed connection attempts.

The set of rules/thresholds/actions produced during the validation phase and the
learnt experience has allowed campus network administrators to instrument the Juniper
campus border router for:

• blocking the most common attacks;

• detecting common trojans that have been installed on campus hosts

• counting valid yet suspicious traffic (e.g. fragmented UDP traffic originated outside
the unipi system);

• adding traffic shaping rules for limiting the bandwidth of some class of traffic (e.g.
SYN packets);

1When RRD files are created it is specified the measurement interval over which the counter value is

computed. Thanks to RRDtool, anomaly detection applications can access historical data for making

decisions with no effort as RRDtool stores historical data and performs data reduction automatically

each time a new data set is added or modified.

16

In order to reduce the number of alarms generated by the anomaly detection applica-
tions, especially in the case of multiple events received in a small timeframe such as
those produced by a network mapping events, the authors experimented several tech-
niques [13][14] including:

• Time over threshold
In case of alarms emitted for threshold crossing, the alarms are really emitted if
an only if, the monitored value persists over the threshold for a specified amount
of time.

• Rearm
When an event triggers and alarms, future events of the same type that would
cause the same target to emit the very same alarm are discarded for a specified
timeframe.

The above techniques produced good results and allowed anomaly detection applica-
tions not to generate frequent alarms for minor problems. On the other hand it is worth
to remark that alarm reduction is not a simple task as the experiments shown that
almost every network and host need a large amount of time for tuning alarm thresh-
olds and discarding known issues (e.g. a workstation that hosts a management console
generates periodically several network mapping alarms). In addition, due to network
evolution addition/removal/replacement of computers it is necessary to periodically tune
the thresholds according to the new traffic conditions.

5 Evaluation

The way the ADS has been conceived and implemented has several advantages over
other similar efforts [5][15]:

1. Anomaly detection based on expected behaviour and the study of RFCs, guar-
antees a better longevity with respect to detection mechanisms based on pattern
matching and signature detection [13]. In the latter case the attack database needs
to be updated when a new attack is detected whereas in the case of the ADS there
is a good probability to detect new anomalies without having to modify the tool.
This means that an ADS can be run mostly unattended with obvious advantages
in terms of network management and maintenance.

2. The ADS is effective in many situations where a firewall or an intrusion detection
system fail. For instance if an attacker gains root access exploiting a buffer overflow
(this is one of the most common attacks) and then takes over a host, the ADS:

• cannot detect the attack itself as it has been performed using little traffic
that it is usually valid from the protocol point of view;

• can detect the actions performed after the attack (e.g. the attacker installs a
trojan that makes some traffic on a TCP port never used before) hence the
security violation.

17

3. This study has highlighted that attacks, when classified in terms of anomaly cat-
egories, are very few with respect to the large number of signatures and patterns
that similar solutions need to handle. This means that an ADS is much simpler
to implement as the information that needs to be handled is very few.

4. The ADS can very well be integrated in an existing network environment. In
particular it can feed network appliances such as the latest generation of border
routers that allow network administrators to define thousand of network traffic
rules per port, mostly produced by the ADS, with no performance glitch.

5. The study of the results produced by the ADS can be very well used for:

(a) network bandwidth optimisation;

(b) detection of network bandwidth killers;

(c) avoidance of unwanted protocols (e.g. printers or proprietary protocols);

(d) network misconfiguration (e.g. wrong DNS setup, usage of inexistent DHCP/
BOOTP servers); unwanted server activity detection (e.g. installation by
mistake of unwanted services);

(e) TCP/IP stack tuning (very useful for servers) based on the distribution of
TCP connection number, flags (e.g. RST, SYN), and latency.

In conclusion, the experiments based on the described architecture have produced good
results in terms of detection of network anomalies. As expected, anomaly detection
applications are very effective and can run without modifications on different networks.
Nevertheless, it is necessary to adjust some thresholds whenever the application is moved
as every network/host has its own peculiarities and without threshold tuning the network
administrator is often alerted because of issues that are normal on some hosts (e.g.
network management stations).

6 Open Issues and Future Work

This paper mostly deals with anomalies detectable at the IP protocol level. The authors
are aware that this work should be extended up to include the application level (e.g.
DNS). On the other hand, the work described in this paper still remains valid as several
application anomalies can still to be detected at IP level, and also because it would
be rather costly and challenging to implement a new version of Ntop that contains
decoders for most of the protocols. Another work item is the implementation of a
user-friendly interface for host-based threshold tuning and alarms discard. In fact the
available applications are written in pure Perl applications with limited configurability
if not by modifying the source code or tweaking a few configuration files. This is an
important extension as when several hosts are monitored it is necessary to keep several
alarm/threshold configurations one per (class of) host, which can be difficult to maintain
without a user interface. Finally, it is necessary to rework the event notification system,
as the current implementation is very simple to use but not very efficient and simple to

18

keep consistent in terms of configuration with the anomaly detection applications when
the network administrator changes some configuration files.

7 Final Remarks

This paper has demonstrated that it is possible to define generic network traffic rules
that allow network anomalies to be detected regardless of the host and network type.
An application, released under GNU GPL, and based on the assertions described in the
previous sections has been used for validating this work using real network traffic. The
outcome of this paper is not a firewall-like application but a new application type named
anomaly detection system that is quite close to a network management tool.

Such a system highlights network anomalies, regardless of the network type. It
requires a limited confoguration and can be easily integrated with a firewall, or a border
switch, for enforcing the overall network security.

8 Availability

Ntop, all the code and applications described in this paper are distributed under the
GPL 2 licence and can be downloaded free of charge from both the Ntop home page
(http://www.ntop.org/) and other mirrors on the Internet. Some Unix distributions
including but not limited to *BSD and Linux, come with Ntop preinstalled.

References

[1] K. Jackson, Intrusion Detection Systems (IDS): Product Survey, Los Alamos Na-
tional Laboratory, LA-UR-99-3883, 1999.

[2] H. Debar, M. Dacier, and A. Wespi, Towards a Taxonomy of Intrusion Detection
Systems, Computer Networks, 31(8):805-822, April 1999.

[3] L. Deri, R.Carbone, and S.Suin, Monitoring Networks Using Ntop, Proc. of IM
2001, Seattle, May 2001.

[4] T. Oetiker and A. Van den Bogaerdt, RRDtool Tutorial, http://rrdtool.eu.org/,
2000.

[5] S. Northcutt, and J. Novak, Network Intrusion Detection: An Analist s Handbook,
2nd Edition, 2000.

[6] S. Kumar, Classification and Detection of Computer Intrusions, PhD Thesis, Pur-
due University, August 1995.

[7] K. White, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup
Operations, RFC 2925, September 2000.

19

[8] K. McCloghrie, M. Rose, Management Information Base for Network Management
of TCP/IP-based internets:MIB-II, RFC 1213, March 1991.

[9] S. Waldbusser, Remote Network Monitoring Management Information Base, RFC
2819, May 2000.

[10] D. Plonka, FlowScan: A Network Traffic Flow Reporting and Visualization Tool,
Proc. of XIV th Lisa Conference, December 2000.

[11] J. Doyle, Juniper Network Routers: the Complete Reference, Osborne, 2002.

[12] T. Oetiker and A. Van den Bogaerdt, RRDtool Tutorial, http://rrdtool.eu.org/,
2000.

[13] M. Sylor and L. Meng, Using Time Over Threshold to Reduce Noise in Performance
and Fault Management Systems, Boston University, 2001.

[14] R. Vilalta, S. Ma, and J. Hellerstein, Rule Induction of Computer Events, IBM T.J.
Watson Research Centre, 2001

[15] S. Axelsson, Intrusion Detection Systems: A Survey and Taxonomy, Chalmers Uni-
versity, March 2000.

20

